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Downstream decay of fully developed Dean flow
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Direct numerical simulations were used to investigate the downstream decay of fully
developed flow in a 180◦ curved pipe that exits into a straight outlet. The flow is
studied for a range of Reynolds numbers and pipe-to-curvature radius ratios. Velocity,
pressure and vorticity fields are calculated to visualize the downstream decay process.
Transition ‘decay’ lengths are calculated using the norm of the velocity perturbation
from the Hagen–Poiseuille velocity profile, the wall-averaged shear stress, the integral
of the magnitude of the vorticity, and the maximum value of the Q-criterion on a
cross-section. Transition lengths to the fully developed Poiseuille distribution are found
to have a linear dependence on the Reynolds number with no noticeable dependence
on the pipe-to-curvature radius ratio, despite the flow’s dependence on both parameters.
This linear dependence of Reynolds number on the transition length is explained by
linearizing the Navier–Stokes equations about the Poiseuille flow, using the form of
the fully developed Dean flow as an initial condition, and using appropriate scaling
arguments. We extend our results by comparing this flow recovery downstream of
a curved pipe to the flow recovery in the downstream outlets of a T-junction flow.
Specifically, we compare the transition lengths between these flows and document how
the transition lengths depend on the Reynolds number.

Key words: low-Reynolds-number flows

1. Introduction

Flows in curved pipes are ubiquitous in industrial piping systems, microfluidic
devices, and even biological systems. Furthermore, the widespread use of curved
pipes in heat exchangers, chemical reactors and many other experimental flow systems
demands an intimate knowledge of the flow details in these geometries. Centrifugal
effects are significant in these flows and have been an area of active research. For
example, flows in curved pipes are known to contain counter-rotating vortical features
that can enhance heat and mass transfer (Dean 1927; Austin & Seader 1973). In
applications where these effects are unwanted, a thorough understanding of the flow
features and how to mitigate them is needed. For example, several studies of turbulent
flow downstream of a bend have emphasized the long distances that these vortical
structures can propagate in a straight pipe (Smits, Young & Bradshaw 1979; Anwer,

† Email address for correspondence: hastone@princeton.edu
‡ Present address: Department of Aerospace and Mechanical Engineering, USC, Los Angeles,

CA 90089, USA.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

35
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:hastone@princeton.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.353&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.353&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.353&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.353&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.353&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.353&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.353&domain=pdf
https://doi.org/10.1017/jfm.2015.353


220 J. T. Ault, K. K. Chen and H. A. Stone

R

z

d

d

(a) (b)

FIGURE 1. Flow in a curved pipe of diameter d with centreline curvature R. The
simulation domain visualized from (a) top-down and (b) axial cross-sectional views.
Arrows indicate the direction of flow. Mesh resolutions have been purposefully coarsened
by a factor of eight for visualization purposes.

So & Lai 1989; So & Anwer 1993). However, the distances over which the flow
evolves have not been quantified, even for laminar flows.

In this paper, we analyse the transition from fully developed laminar curved pipe
flow to fully developed straight pipe flow. We solve for the flow field numerically
using three-dimensional Navier–Stokes simulations. A sample simulation domain is
shown in figure 1. Results detailing the grid validation and numerical convergence
are presented in the Appendix. We focus our attention primarily on the straight pipe
section downstream of the 180◦ curved pipe section. Decay lengths are calculated in
the straight pipe using various physical parameters of the flow and are found to vary
linearly with the Reynolds number. Scaling arguments are used to confirm this result.
Similar results are presented for the decay of vortices in the outlets of a T-junction
flow, where the flow enters through the base of the T and splits between the two outlet
arms.

Dean theoretically derived a velocity profile for fully developed flow in slowly
curving pipes with circular cross-sections, which qualitatively agreed with experiments
(Dean 1927, 1928). Dean developed a first approximation to the secondary streamline
flow in a curved pipe, in which two counter-rotating vortices form, with the flow
moving from the inner to the outer edge of the pipe on the central plane. Thus, the
streamlines travel in helical paths in fully developed laminar flow in curved pipes.
This flow is governed by two dimensionless parameters, the Reynolds number and the
pipe-to-curvature radius ratio. Using ρ as the density of the fluid, uavg as the average
axial pipe velocity, d as the diameter of the pipe, µ as the dynamic viscosity of the
fluid and R as the radius of curvature of the centreline of the pipe, the Reynolds
number is defined as

Re= ρuavgd
µ

, (1.1)

and the pipe-to-curvature radius ratio is given by

α = d
2R
. (1.2)

For slowly curving pipes, α � 1, Dean extended this analysis, showing that the
behaviour of the flow could be reduced to a dependence on a single variable, now
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called the Dean number, which is commonly defined as

D= Reα1/2. (1.3)

For small Dean numbers, the solution for the velocity field can be expanded in powers
of D (Dean 1928). However, D is not necessarily small in many applications, so new
solution methods were needed.

Since Dean’s original research, the flow in curved pipes has been a topic of
substantial interest. Table 1 gives a short review of several of the studies related
to curved pipe flow, including studies on developing curved pipe flow, laminar
and turbulent fully developed curved pipe flow, and laminar and turbulent flow
downstream of curved pipes. For example, Austin & Seader (1973) numerically
solved the stream-function/vorticity formulation of the Navier–Stokes equation for
fully developed curved pipe flow, confirming Dean’s conclusion that the Dean
number was the main parameter governing the flow under certain conditions. In
addition, Dennis & Riley (1991) extended the results of Dean to large values of
D, giving evidence for the existence of an asymptotic structure of the flow. Also,
the development of flows in the entrance regions of curved pipes with varying inlet
conditions has been studied. This flow has been solved using the method of matched
asymptotic expansions for a uniform inlet velocity profile (Singh 1974). In addition, a
theoretical relationship for the entrance length in the curved pipe has been presented
(Yao & Berger 1975), although the authors only claim qualitative validity based on
the assumptions of their model.

Hot-wire anemometry has been used to study the entry region of curved pipes
for laminar flow (Olson & Snyder 1985). Single-phase and two-phase particle/liquid
flows in planar and helical pipes have been analysed theoretically and numerically
(Liu & Masliyah 1996; Tiwari, Antal & Podowski 2006). Turbulent flows in 90◦ and
180◦ bends with and without initial swirl have also been studied numerically (Pruvost,
Legrand & Legentilhomme 2004). The swirling motions were strong enough to
entirely suppress the Dean motions in some cases. Berger & Talbot (1983) presented
a comprehensive review of the laminar, incompressible flow in curved pipes. They
reference research that touches on many aspects of curved pipe flow: varying
cross-sections, developing flows, entry conditions, entry lengths, pressure drops,
variable pipe curvatures, flexible walls, porous tubes, non-Newtonian fluids, multiphase
flows, mass transfer flows, thermal effects and pulsatile flows.

Despite the abundance of research on flow in curved pipes and developing flow
in curved pipes, almost no research exists concerning the decay that accompanies
the transition from fully developed curved pipe flow back to fully developed straight
pipe flow. To the best of our knowledge, almost all of the research that does exist
concerning the flow downstream of a pipe bend deals exclusively with turbulent
flow. For example, Tunstall & Harvey (1968) studied the turbulent flow through a
sharp 90◦ bend and documented a secondary flow that was dominated by a single
clockwise or counterclockwise circulation about the pipe axis that switched the sense
of rotation at a certain frequency. The switching could only occur if the bend angle
was sufficiently acute. This flow showed little resemblance to the counter-rotating
vortices observed in laminar flow (Dean 1927, 1928). In addition, Smits et al. (1979)
measured the mean products of velocity fluctuations in turbulent boundary layers
downstream of 20◦ and 30◦ angle bends and investigated the responses of the
boundary layers to these ‘impulses’ of curvature and the decay of those responses
downstream; the extremely slow recovery of the flow downstream of the bend was
emphasized.
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Hot-wire techniques have been used to measure mean velocity and Reynolds stress
components downstream of 90◦ and 180◦ pipe bends (Anwer et al. 1989; Sudo et al.
2000). Steady and pulsatile turbulent flows in curved pipes have also been computed
using the Reynolds-averaged Navier–Stokes technique and large eddy simulations
(Hellström & Fuchs 2007). In addition, stereoscopic particle image velocimetry has
been used to study the unsteady undulations of Dean vortices and bimodal ‘swirl
switching’ downstream of a 90◦ pipe bend (Sakakibara & Machida 2012; Hellström
et al. 2013) and to study the flow in a pipe bend with conditions similar to those
in an internal combustion engine, using high Dean and Womersley numbers. The
turbulent flow through a pipe bend and in a downstream outlet has also been studied
for the case of added swirl in the inlet (Anwer & So 1993; So & Anwer 1993).
None of the flow conditions in these studies bear a strong resemblance to the steady,
laminar flow downstream of a curved pipe that we study here.

We have found few papers in the literature that study the laminar flow downstream
of curved pipes. Two of these studies were experimental in nature and used
laser-Doppler velocimetry to measure fluid velocities. In particular, experiments were
performed for flow through a 90◦ bend with Reynolds numbers of 500 and 1093
(Enayet et al. 1982), although downstream measurements were only recorded at a
single cross-sectional plane, one pipe diameter downstream in the outlet. Experiments
were also performed for flow through a 180◦ bend with pipe-to-curvature radius ratios
of 0.08 and 0.30, both at a Reynolds number of 400 (Fairbank & So 1987). The
influence of the pipe bend was found to propagate 14 pipe diameters downstream
for the case of α = 0.30 and 11 pipe diameters for the case of α = 0.08. However,
the authors remarked that, using air as a working fluid, temperature variations in
the experimental set-up were not sufficiently reduced, and buoyancy-driven secondary
flows of the same order as the Dean flow polluted the experiments.

In the following sections, the methods, results, theoretical considerations, and
conclusions of this study will be presented. Section 2 describes the numerical
methods, flow geometries and simulation domains used, while § 3 presents theoretical
considerations, including a linearization of the Navier–Stokes equations about
the Poiseuille flow and the application of several useful scaling arguments for
characterizing the flow. Section 4 presents numerical results for decay lengths in
the outlet domain, and documents flow features of the decay process. Section 5 gives
a comparison of the numerical results to the linearized theory. Section 6 applies
these results to the flow in a T-junction. Section 7 presents conclusions and practical
implications of this study. The Appendix presents the convergence studies we used
to verify the accuracy of our simulations.

2. Methods
2.1. Numerical approach

We performed direct numerical simulations to solve for the laminar, steady, incompre-
ssible flow downstream of a 180◦ section of curved pipe of constant centreline
curvature for a range of Reynolds numbers, Re, and pipe-to-curvature radius ratios, α.
After scaling lengths by the pipe diameter d, velocities by the average axial pipe
velocity uavg, and pressures by the viscous scale µuavg/d, the basic equations
governing the flow are the incompressible form of the steady Navier–Stokes and
continuity equations:

Re u · ∇u=−∇p+∇2u and ∇ · u= 0, (2.1a,b)
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where p is the pressure and u is the velocity vector. These equations are solved
using the open-source computational fluid dynamics package OpenFOAM (Weller
et al. 1998), using the icoFoam solver, which implements the ‘pressure-implicit with
splitting of operators’ (PISO) method described by Issa (1985, 1986). This scheme
solves a pressure–velocity formulation of the implicitly discretized time-dependent
incompressible form of the Navier–Stokes equation. A predictor–corrector scheme is
used to handle the coupling between the pressure and velocity non-iteratively, such
that operations on the pressure are decoupled from operations on the velocity at each
time step. The temporal evolution scheme is a second-order implicit Euler method,
and the spatial derivatives are second-order accurate. The variables are defined at the
cell centres, although velocities are interpolated to the surface centres for computing
the velocity fluxes. The cumulative continuity errors, given by

∑
(∇ · u), where the

summation is over every finite volume cell in the simulation domain, are typically of
the order of 10−11.

Since the PISO method is time-dependent, and our flows are expected to be steady
for the range of Re and α that we study, the flow is given an initial condition and
allowed to evolve towards the steady-state solution. The norm of the time derivative
of the velocity field is used to monitor convergence in time. We define this norm as∥∥∥∥∂u

∂t

∥∥∥∥2

= 1
V

∫
Ω

(
∂u
∂t

)2

dV, (2.2)

where V is the total volume of fluid, and the integration is over the entire simulation
domain Ω .

As the solver approaches the steady-state solution, we expect the value of this norm
to approach zero. However, an issue we have identified with the icoFoam solver is
that this norm does not identically approach zero as the solver approaches the steady
state. Instead, over the course of a simulation, the value of this norm decreases by
approximately eight orders of magnitude, at which point the velocity/pressure fields
begin to oscillate about a small orbit. This feature of the numerical convergence is
documented in the Appendix, and is a numerical oscillation, not an analytical one; it
is purely a numerical feature of the solver. On this numerical orbit, ‖∂u/∂t‖/‖u‖ ≈
10−4 or smaller. For the purposes of measuring transition lengths, velocity profiles and
flow development to characterize the flow, this numerical oscillation does not appear
to have any noticeable negative effects. Measuring transition lengths at various points
on this numerical orbit results in identical transition lengths. For the purposes of this
paper, we consider steady state to have been achieved once ‖∂u/∂t‖/‖u‖. 10−4 and
the solver has converged to the numerical orbit. For more details about the temporal
convergence see the Appendix.

After steady state is achieved, built-in OpenFOAM utilities are used to calculate the
wall shear stress, vorticity and velocity gradients. The open-source data visualization
application ParaView is used to visualize the results and extract useful data, and
MATLAB algorithms are used to analyse the results.

2.2. Vortex identification
In order to identify, quantify and visualize the vortices in the flow throughout
the decay process as the flow evolves downstream of a pipe bend, we utilize the
Q-criterion. This is a vortex identification technique (Hunt, Wray & Moin 1988),
which is calculated using the rate-of-strain tensor (E) and the vorticity tensor (Ω),
which are defined by

E = 1
2(∇u+ (∇u)T) and Ω = 1

2(∇u− (∇u)T). (2.3a,b)
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0
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1570

400

–288

(a) (b) (c)

Q-criterion

FIGURE 2. (Colour online) Q-criterion on a slice through the vortex cores for α = 0.07
and (a) Re= 40, (b) Re= 50 and (c) Re= 60. The strength of the vortices increases with
the Reynolds number. The vortices also propagate further into the outlet for larger Re.
Arrows indicate the direction of flow. Vortices develop in the initial portion of the curved
pipe section and propagate into the outlet as they decay. The calculated decay lengths,
`d, are also shown. The decay lengths increase as Re is increased, implying a further
propagation of the vortices into the outlets.

The Q-criterion is defined as

Q= 1
2(‖Ω‖2

F − ‖E‖2
F), (2.4)

where ‖ · ‖F is the Frobenius norm, which is given by

‖E‖2
F =

∑
i,j

|E ij|2 and ‖Ω‖2
F =

∑
i,j

|Ωij|2, (2.5a,b)

where the E ij and Ωij are the elements of the rate-of-strain and vorticity tensors,
respectively. Using this criterion, a vortex is defined as the spatial region where
Q> 0.

Generally speaking, the larger the Q-criterion, the stronger and more pronounced
the vortical structure at that location, resulting in a numerical technique that can
be used to visualize vortices. For example, figure 2 shows the Q-criterion along a
slice taken through the centre of the vortices in our simulations, where α= 0.07 and
Re= 40, 50 and 60. As expected from the work of Dean (1927, 1928), the vortical
structures become stronger and more pronounced for a given α as the Reynolds
number is increased. Thus, by plotting the Q-criterion we can visualize the vortical
regions. Not only do we see that the vortices become relatively stronger and more
pronounced as the Reynolds number increases, but below we will also show that the
vortices propagate further into the outlet pipe as the Reynolds number increases.

2.3. Determining decay lengths
To characterize the flow downstream of a 180◦ curved pipe, we visualize streamlines,
level-set contours of the Q-criterion, and velocity, pressure and vorticity fields on
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various cross-sections in the outlet pipe. In addition to characterizing the flow through
visualization, we seek a quantitative relationship for the transition length of the decay
process as a function of the Reynolds number and pipe-to-curvature-radius ratio. We
evaluate transition lengths using four different approaches: (i) the wall-averaged shear
stress about a cross-section, (ii) the integral of the magnitude of the vorticity on
a cross-section, (iii) the maximum value of the Q-criterion on a cross-section and
(iv) the norm of the perturbation velocity field u′ (velocity u minus fully developed
Poiseuille flow up) on a cross-section. This norm is defined as in (2.2) and is given
by

‖u′‖2 = ‖u− up‖2 = 1
V

∫
Ω

(u− up)
2 dV, (2.6)

where again Ω is the entire simulation domain and V is the total volume of Ω .
For each of the four approaches mentioned above, the ‘decay length’ `d is defined

as the axial coordinate position z in the straight outlet pipe at which the given
parameter of interest varies by less than 1 % from its fully developed value for all
z> `d. For each simulation, we take a slice through the cross-section at a given axial
location. We then calculate the four aforementioned properties. Using these calculated
values, we vary the axial position of the slice to determine the dependence of each
parameter on the axial coordinate. Finally, we determine the transition lengths using
the 1 % criterion, which is particularly useful since our experience is that not all
parameters vary monotonically. For the case of parameters that vary monotonically,
this criterion is equivalent to measuring the familiar 99 % transition length.

2.4. Geometry
An example simulation domain was shown previously in figure 1, featuring a straight
inlet pipe section, a 180◦ curved pipe section and a straight outlet pipe section.
Simulations were performed for pipe-to-curvature radius ratios α = d/2R = 0.005,
0.01, 0.03, 0.07, 0.1, 0.15 and 0.25. In order to limit our study to the decay of
fully developed curved pipe flow, the Reynolds numbers were chosen such that the
inlet flow would have sufficient pipe length to become fully developed in the curved
pipe section according to the four criteria previously mentioned. A safety margin
was included in this selection process to ensure the flow was fully developed. Given
a certain α, a maximum Reynolds number was selected such that the flow would
be fully developed in the curved pipe section for a distance of at least 20 % of the
total curved pipe length before entering the straight outlet. The maximum Reynolds
number allowed for small values of α was higher than that for larger values of α. In
particular, while the largest Reynolds number simulated for α = 0.005 was 800, the
largest Reynolds number simulated for α = 0.25 was only 10. For higher Reynolds
numbers, a fully developed curved pipe flow simply does not exist for large values
of α since there is not a sufficient pipe length in the 180◦ curved section for the flow
to become fully developed.

Using the curved pipe entrance length calculations reported by Yao & Berger
(1975), initial estimates for the maximum Reynolds numbers were determined for
each value of α. Using those Reynolds numbers, inlet/outlet lengths were estimated
such that the flow would have sufficient length to become fully developed in the
straight sections up- and downstream as well. These estimates were achieved using
calculations of the entrance length for a straight pipe (see for example Mohanty
& Asthana (1978) as well as textbook estimates for laminar flow development, e.g.
Fox, Pritchard & McDonald (2009)). However, these inlet/outlet lengths were not
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α Inlet/outlet length Maximum Re Maximum D= Reα1/2

0.005 100 800 56.6
0.01 70 500 50.0
0.03 30 250 43.3
0.07 7 60 15.9
0.1 4 40 12.6
0.15 4 40 15.5
0.25 2 10 5.0

TABLE 2. Parameters for the numerical simulations: inlet/outlet lengths, maximum
Reynolds numbers, and maximum Dean numbers corresponding to each value of
pipe-to-curvature radius ratio.

sufficiently long because the decay lengths in the outlet downstream of a bend,
which are the subject of this work, were roughly twice as long as the entrance
lengths in a straight pipe for a given Reynolds number. Therefore, the inlet/outlet
lengths were adjusted to ensure that the flow in those regions was fully developed
with a safety margin for all Reynolds numbers. The inlet/outlet lengths and maximum
Reynolds numbers for each value of α are summarized in table 2.

2.5. Boundary and initial conditions
Numerical solutions of the fluid motions require both boundary and initial conditions
for the pressure and velocity fields. The initial condition for the pressure field is a
uniform value of zero. The outlet boundary condition on the domain is also given
a uniform value of zero pressure for all time (only relative pressure differences
matter for incompressible flow, so zero and even negative pressures are allowed by
the solver). The gradient of pressure normal to the walls is zero for all time. The
gradient of pressure normal to the inlet is also zero for all time, and although this inlet
boundary condition is not correct, the pressure gradient converges rapidly downstream
to the analytical value over a distance of just a few grid cells. Furthermore, the inlet
is not the region of interest for this work, so this choice of boundary condition has
a negligible influence on our results.

The initial condition for the velocity field is zero velocity throughout the domain.
The outlet boundary condition for the velocity is a zero normal gradient in velocity,
which assumes that the outlet flow is fully developed. This boundary condition
would not be accurate for large Reynolds number simulations in which the vortical
structures propagate beyond the outlet. However, we limit the maximum Reynolds
numbers specifically to eliminate those cases, and we observe the development of the
flow variables to confirm this boundary condition. The wall boundary condition is
no-slip. The inlet boundary condition for the velocity is a fixed uniform value. Using
these initial and boundary conditions, the simulations consist of a time evolution that
proceeds towards steady state, as previously described.

3. Theoretical considerations: flow in the straight outlet

We now focus our attention on the flow in the straight outlet pipe. Our goal
in this analysis is to rescale the linearized governing equations so as to eliminate
Re and α from the governing equations and boundary conditions, and in this way
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identify the asymptotic structure for this laminar flow downstream of the bend. Before
presenting our numerical results, we seek to provide an analytical scaling between the
transition/decay length in the outlet pipe and the governing dimensionless parameters,
Re and α. By linearizing and rescaling the Navier–Stokes and continuity equations, as
well as our boundary conditions, we can eliminate the α-dependence and demonstrate
a linear relationship between the Reynolds number and the characteristic length scale
of the outlet decay. These conclusions will be justified by our numerical simulations
in § 4.

To proceed, we assume that the velocity profile in the curved pipe section is
a small perturbation away from the Poiseuille flow of a laminar fully developed
straight pipe flow, i.e. if ez is the unit vector in the axial direction, then the Poiseuille
velocity profile is given by u = (1 − 4r2)ez, where the radial coordinate r has been
non-dimensionalized by the pipe diameter d. We then linearize the basic equations
about this Poiseuille flow. We will comment on the validity of this linearization in the
following section by making direct use of our numerical results. We use cylindrical
coordinates where we consider the region downstream of the bend, and define the
velocity perturbation as u′ = (u′r, u′θ , u′z), where z is the axial direction of the straight
outlet pipe. Here θ = 0 corresponds to the direction from the centreline of the pipe
towards the outer edge of the curved pipe section, and the positive θ direction is
chosen to be counterclockwise when looking upstream in the outlet section. The
non-dimensional steady-state linearized equations are

Re(1− 4r2)
∂u′r
∂z
=−∂p′

∂r
+ 1

r
∂

∂r

(
r
∂u′r
∂r

)
+ 1

r2

∂2u′r
∂θ 2
+ ∂

2u′r
∂z2
− u′r

r2
− 2

r2

∂u′θ
∂θ
, (3.1a)

Re(1− 4r2)
∂u′θ
∂z
=−1

r
∂p′

∂θ
+ 1

r
∂

∂r

(
r
∂u′θ
∂r

)
+ 1

r2

∂2u′θ
∂θ 2
+ ∂

2u′θ
∂z2
− u′θ

r2
+ 2

r2

∂u′r
∂θ
, (3.1b)

Re(1− 4r2)
∂u′z
∂z
− 8 Re r u′r =−

∂p′

∂z
+ 1

r
∂

∂r

(
r
∂u′z
∂r

)
+ 1

r2

∂2u′z
∂θ 2
+ ∂

2u′z
∂z2

, (3.1c)

and
1
r
∂

∂r
(ru′r)+

1
r
∂u′θ
∂θ
+ ∂u′z
∂z
= 0. (3.1d)

Next, we rescale the axial coordinate z by the Reynolds number, i.e. z̃ = z/Re.
To satisfy continuity we also scale the axial component of the perturbation velocity
with the Reynolds number, i.e. ũ′z = u′z/Re. Rewriting the basic equations using these
scalings and considering the case of large Reynolds numbers, Re � 1 (but still a
laminar flow), which eliminates z-derivatives on the right-hand side of (3.1), gives a
set of four coupled, linear equations, independent of the Reynolds number:

(1− 4r2)
∂u′r
∂ z̃
=−∂p′

∂r
+ 1

r
∂

∂r

(
r
∂u′r
∂r

)
+ 1

r2

∂2u′r
∂θ 2
− u′r

r2
− 2

r2

∂u′θ
∂θ
, (3.2a)

(1− 4r2)
∂u′θ
∂ z̃
=−1

r
∂p′

∂θ
+ 1

r
∂

∂r

(
r
∂u′θ
∂r

)
+ 1

r2

∂2u′θ
∂θ 2
− u′θ

r2
+ 2

r2

∂u′r
∂θ
, (3.2b)

(1− 4r2)
∂ ũ′z
∂ z̃
− 8 r u′r =

1
r
∂

∂r

(
r
∂ ũ′z
∂r

)
+ 1

r2

∂2ũ′z
∂θ 2

, (3.2c)

and
1
r
∂

∂r
(ru′r)+

1
r
∂u′θ
∂θ
+ ∂ ũ′z
∂ z̃
= 0. (3.2d)
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These equations govern the evolution of the velocity perturbation in the straight outlet
pipe section downstream of the curved pipe.

We must also consider the inlet boundary conditions to the straight outlet pipe.
Specifically, this inlet condition is approximately the fully developed curved pipe flow.
Although the effects of the straight outlet propagate upstream into the curved pipe a
small distance, experience shows this effect can be neglected. For example, for the
case α=0.005 and Re=200 (D=14.1), the difference between the straight outlet pipe
inlet condition and Dean’s analytical curved pipe velocity profile uD is approximately

‖u− uD‖/‖u‖ ≈ 3.5× 10−6, (3.3)

where the norm is given by

‖·‖2 = 1
S

∫
Γ

(·)2 dS. (3.4)

Here, Γ is the cross-section at the inlet to the straight outlet section (z= 0), and S is
the area of that cross-section. Thus, the velocity profile entering the straight outlet is
approximately the fully developed Dean profile (at least for α= 0.005 and Re= 200).

Using Dean’s analytical velocity profile for the flow in a curved pipe, the
perturbation velocity profile inlet condition (z = 0) to the straight outlet pipe can
be written as

u′r(r, θ, 0)= Reα cos θ
36

(1− 4r2)2(1− r2), (3.5a)

u′θ(r, θ, 0)=−Reα sin θ
144

(1− 4r2)(4− 92r2 + 112r4), (3.5b)

u′z(r, θ, 0)= α r cos θ(1− 4r2)

[
−3+ Re2

2880
(19− 84r2 + 144r4 − 64r6)

]
, (3.5c)

and

p′(r, θ, 0)= Reα r cos θ
3

(18− 48r2 + 64r4). (3.5d)

For large Reynolds numbers, in terms of linearized rescaled variables, ũ′z= u′z/Re can
be approximated as

ũ′z(r, θ, 0)= Reα r cos θ
2880

(1− 4r2)(19− 84r2 + 144r4 − 64r6). (3.5e)

Strictly speaking, Dean’s results were derived in the limit

D2

1440
� 1. (3.6)

However, as indicated in (3.3), the agreement is still reasonable when D2/1440 =
O(0.1). Below we will show that differences from the Dean solution occur when
D2/1440=O(1).

These equations for u′r, u′θ , ũ′z, and p′ set the inlet boundary condition for the straight
outlet pipe. As can be seen, each is a linear function of both Reynolds number and the
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pipe-to-curvature radius ratio. Since the governing equations (3.2) for the perturbation
are linear, we can rescale by the product Reα, giving

U′r =
u′r

Reα
, U′θ =

u′θ
Reα

, U′z =
ũ′z

Reα
and P′ = p′

Reα
, (3.7a−d)

at the inlet (z̃ = 0). Thus, the linearized boundary-value problem downstream of the
bend is

(1− 4r2)
∂U′r
∂ z̃
=−∂P′

∂r
+ 1

r
∂

∂r

(
r
∂U′r
∂r

)
+ 1

r2

∂2U′r
∂θ 2
− U′r

r2
− 2

r2

∂U′θ
∂θ

, (3.8a)

(1− 4r2)
∂U′θ
∂ z̃
=−1

r
∂P′

∂θ
+ 1

r
∂

∂r

(
r
∂U′θ
∂r

)
+ 1

r2

∂2U′θ
∂θ 2
− U′θ

r2
+ 2

r2

∂U′r
∂θ

, (3.8b)

(1− 4r2)
∂U′z
∂ z̃
− 8 rU′r =

1
r
∂

∂r

(
r
∂U′z
∂r

)
+ 1

r2

∂2U′z
∂θ 2

, (3.8c)

and
1
r
∂

∂r
(rU′r)+

1
r
∂U′θ
∂θ
+ ∂U′z
∂ z̃
= 0, (3.8d)

subject to the inlet boundary conditions (z̃= 0)

U′r(r, θ, 0)= cos θ
36

(1− 4r2)2(−r2), (3.9a)

U′θ(r, θ, 0)=−sin θ
144

(1− 4r2)(4− 92r2 + 112r4), (3.9b)

U′z(r, θ, 0)= r cos θ
2880

(1− 4r2)(19− 84r2 + 144r4 − 64r6), (3.9c)

and
P′(r, θ, 0)= r cos θ

3
(18− 482 + 64r4). (3.9d)

As stated in (3.6), the boundary conditions (3.9) are limited to flows with
sufficiently small Dean numbers (D2/1440� 1) (Dean 1927). In practice, this limits
the maximum Reynolds number for each value of α for which we might expect these
boundary conditions to hold. Below we will compare the results of our numerical
simulations with the conclusions from these scaling arguments.

We note that the flow downstream of a curved pipe could be solved numerically by
solving (3.8) as long as the flow remains laminar, the inlet boundary condition remains
a small perturbation to the Poiseuille flow, the Reynolds number is large enough, and
the Dean number remains small enough for (3.9) to apply. In particular, the solution
can be achieved by noting that, according to the proposed rescaling, the perturbation
decays a fixed percentage over a length scale that varies linearly with the Reynolds
number. Thus, a form of the velocity/pressure perturbation can be sought that includes
a sum of modes that decay exponentially with the rescaled axial coordinate z̃ if a
finite pipe length domain is selected. Then, the governing equations, corresponding to
(3.8), can be rewritten as a set of four coupled, linear, Sturm–Liouville-type ordinary
differential equations. However, in practice these equations would still need to be
solved numerically and thus would not provide any additional information about the
flow beyond the direct numerical solutions that we have achieved below. Nevertheless,
the theoretical scaling with Reynolds number of the relaxation of the linearized flow
has been identified, and will be tested in § 5 by direct comparison with the full
simulations.
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FIGURE 3. Numerical results for the outlet pipe flow for α= 0.005 and Re= 800. Results
shown are (a) the maximum value of the Q-criterion, (b) the wall-averaged shear stress,
(c) the integral of the magnitude of the vorticity and (d) the norm of the axial gradient
of the velocity field. All results are calculated on a cross-section taken at the respective
z-values. Vorticity has been non-dimensionalized by uavg/d, wall shear stress has been non-
dimensionalized by µuavg/d, and z has been non-dimensionalized by d. Transition lengths
are determined by finding the axial z-position corresponding to a 1 % deviation from the
fully developed value, denoted by the vertical black lines.

4. Results and discussion
In this section, we develop a quantitative relationship relating the decay length `d,

Re and α. Also, we present several visualizations of the flow decay process in the
downstream outlet. In § 5, we compare details of the flow with the linearized theory
in § 3.

4.1. Decay lengths
As explained in § 2.3, we determine transition lengths based upon the wall shear
stress, the vorticity, the Q-criterion and the norm of the axial gradient of the velocity
field. Transition lengths for a given property are extracted by determining the axial
z-coordinate corresponding to a 1 % deviation in that property from its fully developed
value. Typical numerical results are shown in figure 3 for the case α = 0.005 and
Re = 800. Since the norm of the axial gradient of the velocity field (figure 3d)
consistently yields the largest transition length, we select that criterion to determine
the overall decay lengths for the flows.

Using the criterion based on the norm of the perturbation velocity field, the
numerically determined relationship between the Reynolds number and the decay
length downstream of the curved pipe section is shown in figure 4, which shows a
linear relationship between decay length and Re, at least for Re> 30; we anticipated
the linear dependence using scaling arguments in § 3, based on a linearized flow
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FIGURE 4. Decay length (`d) calculated using the norm of the perturbation velocity field.
The linear fit shown is given by (4.1). As predicted in the analysis of § 3, the data shows
no α-dependence on the decay length.

analysis. Furthermore, figure 4 shows that the decay length does not depend on α;
also as predicted from our scaling arguments. Below Re≈ 30, the viscous effects are
comparable to or dominate the inertial effects, and the transition length approaches
approximately one pipe diameter for small Reynolds numbers. This Reynolds number
behaviour is consistent with other pipe flows of this type. For example, the entrance
length in a developing straight pipe flow is known to be related linearly to the
Reynolds number when Re is large, and the flow is known to develop on a length
scale of the order of one pipe diameter when Re is small (Atkinson et al. 1969).

Although the flow is expected to be a function of both α and Re, our scaling
arguments (§ 3) have shown that the pipe-to-curvature radius ratio should not have
an effect on the decay length, based on assumptions of Re� 1 and D2/1440� 1.
We now seek to verify this prediction with additional numerical results. Several decay
lengths are shown in figure 5 for a range of α at two specific Reynolds numbers. The
dependence on α appears to be negligible, at least relative to the dependence on Re.
Relatively close, modest values of Re were chosen so that we could include results for
the full range of α. Furthermore, this approach allows us to see that, while a 35-fold
increase in α appears to have a negligible effect on the decay length, a 14 % increase
in Re results in a distinctive increase in the decay length. The error bars displayed are
plus and minus twice the length of the grid spacing in the axial flow direction. We
note that, for the smaller values of α, we designed the geometries with larger values
of Re in mind, because the total arc length of the curved section is greater for small
α. Also, for larger values of Re, the axial velocity gradients are smaller. This feature
allows us to use larger grid spacings in the axial directions for small values of α and
explains the increase in the error bars for small values of α in figure 5. Considering
figures 4 and 5 together, our numerical results demonstrate that the pipe-to-curvature
radius ratio does not influence the perturbation velocity’s decay length, as anticipated
by the scaling arguments in § 3.

We now investigate how the transition lengths associated with all of our physical
properties vary with the Reynolds number. The decay lengths, as a function of Re,
calculated using the wall shear stress, vorticity, Q-criterion and velocity perturbation,
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FIGURE 5. Numerical results for the decay length as a function of the pipe-to-curvature
radius ratio (α) for Re = 35 and 40. The results show a negligible effect of α on the
decay length.
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FIGURE 6. Decay lengths calculated using the wall-averaged shear stress, the integral of
the magnitude of the vorticity, the maximum value of the Q-criterion, and the norm of
the perturbation velocity field u′.

as previously described, are compared in figure 6. The decay lengths all display
linear trends with the Reynolds number, at least for approximately Re > 30. The
decay lengths calculated using the wall shear stress and the vorticity show some
irregularities when Re< 30. This feature is due to the fact that these properties vary
increasingly non-monotonically with the axial coordinate in the pipe outlet as the
Reynolds number is increased. Thus, as a new oscillation in the wall shear stress
and/or the vorticity emerges as the Reynolds number is increased, the corresponding
99 % transition length experiences unexpected jumps. However, we still see the key
features: the decay lengths approach a constant value of the order of the pipe diameter
at low Reynolds numbers, and they increase linearly with the Reynolds number for
Re > 30. The longest calculated lengths are found using the norm of the velocity
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perturbation. Using these results, a relationship, calculated using the criterion based
on the norm of the perturbation velocity field ‖u′‖, for the decay length `d of fully
developed curved pipe flow in a straight, tangent outlet pipe can be given by

`d

d
= 0.1020 Re− 0.2070 Re>O(10). (4.1)

This formula is plotted in figure 4.

4.2. Decay process
Now we seek to understand the decay process further by visualizing the flow
properties in the straight outlet pipe at various axial cross-sections downstream.
Typical results are shown in figure 7 for the case α = 0.005 and Re = 800, where
we report the magnitude of the velocity perturbation, the pressure and the axial
component of vorticity on cross-sectional slices taken at z = 0, z = 5, z = 10 and
z= 15. The results at z= 0 correspond approximately to the fully developed curved
pipe flow (although the effects of the straight outlet pipe have propagated upstream
a small distance into the curved pipe, as previously discussed). The leftmost column
shows the magnitude of the velocity perturbation, overlaid with the streamlines
of the secondary flow. The maximum magnitude of the velocity perturbation for
this case is approximately 0.67uavg, which corresponds to the highest Dean number
from our simulations (D = 56.6), and so we might expect the velocity profile to
no longer be a small perturbation about the Poiseuille flow up. Indeed, we see
that ‖u′‖/‖up‖ ≈ 0.28. Thus, the small perturbation assumption considered in § 3
may not be a good approximation, although the linear relationship between decay
length and Reynolds number nonetheless holds, as shown in the previous section. For
comparison, ‖u′‖/‖up‖ ≈ 0.073 for α = 0.005 and Re = 200, and is approximately
0.021 for α = 0.005 and Re= 100.

The middle column of figure 7 shows the pressure field on the same cross-sections.
At z= 0, the secondary pressure gradient is such that the pressure is highest on the
side of the outer edge of the curved pipe (the right side of the figure), and the pressure
is lowest on the inner edge, as expected from the predictions of Dean flow. However,
immediately downstream of the curved pipe section, this pressure difference begins
to equilibrate. The maximum pressure difference on a cross-section is approximately
0.24 % at z = 0, 0.063 % at z = 5, 0.013 % at z = 10, and 0.0036 % at z = 15. As
the pressure difference decreases, we also observe that the lowest pressure on each
cross-section shifts to correspond to the region of the vortex cores.

The rightmost column in figure 7 shows the axial component of vorticity
non-dimensionalized by uavg/d on each cross-section. The vortex cores correspond
to the regions of largest magnitude of axial vorticity. We also observe that, as the
vortices decay, their cores drift closer together and towards the outside edge of the
pipe (to the right-hand side of the page). The drift to the right at least may be
explained by a well-known behaviour of travelling vortex pairs, in which they drift
under the action of their own induced velocity fields.

Since we expect the product Reα to simply scale the parameters of the flow in the
exit tube (having scaled it out of the linearized equations and boundary conditions
in § 3), we seek to check this response with our numerical results. The effect of α
on the decay process is visualized in figure 8 for Re = 35 and α = 0.005, 0.03 and
0.07. The decay process is visually identical for the three cases, independent of α, as
expected from our scaling arguments. However, we clearly see that the flow strength
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FIGURE 7. (Colour online) Secondary streamlines and non-dimensional physical properties
visualized at (a) z= 0, (b) z= 5, (c) z= 10 and (d) z= 15 from figure 1, for α = 0.005
and Re = 800. The leftmost, centre and rightmost columns show the magnitude of the
velocity perturbation, the pressure and the axial component of vorticity, respectively. The
pressure is scaled by µuavg/d and vorticity has been scaled by uavg/d. Coming out of
the pipe bend, the left side of each cross-section corresponds to the inner surface of the
curved pipe, and the right side of each cross-section corresponds to the outer surface of
the curved pipe.

depends on α, since the magnitude of the vorticity is approximately 14 times greater
for the case of α= 0.07 than the α= 0.005 case. Nonetheless, the value of α does not
affect the decay process itself, having been effectively scaled out of both the governing
equations and boundary conditions. We see this immediately by scaling the maximum
magnitude of vorticity by Reα for each case: for α= 0.005, |ωmax

z |/(Reα)≈ 0.26, for
α = 0.03, |ωmax

z |/(Reα)≈ 0.26, and for α = 0.07, |ωmax
z |/(Reα)≈ 0.26.
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FIGURE 8. (Colour online) Comparison of vorticity decay for α = 0.005, 0.03 and 0.07
with Re = 35. Results are shown with secondary streamlines at (a) z = 0, (b) z = 0.2,
(c) z= 0.4 and (d) z= 0.6 from figure 1. Results demonstrate that vorticities scale with
Reα, as expected from our scaling arguments (|ωmax

z |/(Reα)≈ constant).

5. Comparison with linearized theory
We can also understand details of the flow evolution in terms of the linearized

theory and scaling arguments. Using the rescalings from § 3, we have successfully
eliminated all dependence on the Reynolds number and pipe-to-curvature radius ratio
from both the governing equations and the boundary conditions. This independence
from Re and α is shown in figure 9, where we plot the magnitude of the maximum
value of the numerically calculated rescaled axial velocity U′z on a cross-section versus
the rescaled axial coordinate z̃ for a range of Re and α. Similarly, in figure 10 we plot
the magnitude of the maximum value of the rescaled secondary velocity component
U′sec (the maximum velocity in the cross-section) versus the rescaled axial coordinate z̃.
The figure insets show the data in the unscaled variables. We see that the data collapse
when we apply the rescalings indicated in § 3.
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FIGURE 9. Maximum magnitude of the numerically computed rescaled axial velocity
component U′z versus the rescaled axial coordinate z̃. Data points are shown for a range
of Re and α. The figure inset shows the unscaled u′z versus the unscaled axial coordinate
z. The data collapse when we apply the scalings described in the text: ũ′z = u′z/Re,
equation (3.7), and z̃= z/Re.
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FIGURE 10. Maximum magnitude of the rescaled secondary velocity component U′sec (the
maximum velocity in the cross-section) versus the rescaled axial coordinate z̃. Data points
are shown for a range of Re and α. The figure inset shows the unscaled data. The data
collapse when we apply the scalings of (3.7) and z̃= z/Re.

The data shown in figures 9 and 10 were selected such that D2/1440 . 0.3. Dean
derived his velocity profile (3.5) for D2� 1440, although the data still collapse when
D2/1440 = O(0.1). However, when D2/1440 approaches O(1) the results begin to
diverge, and the scaling fails, as shown in figure 11, where we plot the maximum
value of the Q-criterion rescaled by (Reα)2. The Q-criterion is proportional to u′2r and
u′2θ . Thus, according to our scaling analysis in § 3, Qmax/(Reα)2 should be independent
of Re and α when plotted against z̃. This result is exactly what we see in figure 11
for the cases with D2/1440 . 0.3. However, the scaling fails for the cases with
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FIGURE 11. Maximum value of the rescaled Q-criterion, Qmax/(Reα)2, versus the rescaled
axial coordinate z̃. Data points are shown for a range of Re and α. The data show that
when D2/1440 . 0.3, the data collapse. However, when D2/1440≈O(1), the data do not
collapse. At these values of D2/1440, Dean’s analytical velocity profile no longer holds.

D2/1440 = O(1). The failure to collapse is due to the fact that the Dean velocity
profile (3.5) no longer matches the fully developed curved pipe velocity profile when
D2/1440 > O(1).

So, after applying the scaling arguments presented in the linearized theory in § 3,
the results of our numerical simulations collapse, at least for the ranges Re&O(100)
and D2/1440.O(0.1). Thus, by reporting a single numerical simulation with Re and
D within these ranges, we can directly obtain the flow solution for every set of Re
and D within these ranges by simply rescaling the results of our numerical solution,
as described in § 3.

6. Application to the flow in a T-junction
The counter-rotating vortices that we study are not a unique feature to fully

developed curved pipe flow. In fact, counter-rotating vortical structures are a common
feature of the secondary motion of many flows in networks with bends and corners.
We now demonstrate an analogy between the flow downstream of a curved pipe
studied here and the flow in an impacting T-junction flow, where the flow enters
through the base of the T and splits between the two outlet arms of the T. Most
importantly, we consider whether or not any comparisons can be made between the
decaying straight pipe outlet flow and the outlet flow in the arms of the T-junction.
Steady-state simulations of the flow in T-junctions, along with descriptions of the
numerical methods, initial conditions and boundary conditions used can be found in
Vigolo, Radl & Stone (2014) and Chen, Rowley & Stone (2015).

First, we seek to perform a visual comparison between the two flows, which we
accomplish by plotting contours of the Q-criterion for a range of Reynolds numbers.
For the T-junction case, we visualize the counter-rotating vortices in figure 12.
Velocity streamlines are shown, along with a level set of the Q-contour. The vortices
grow and propagate further downstream as the Reynolds number increases. For
comparison, in figure 13 we show a single level set of the Q-contour for the flow
downstream of a curved pipe which has a pipe-to-curvature radius ratio of α= 0.005.
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 12. (Colour online) The steady-state solution of flow in a T-junction, shown as
velocity streamlines (blue: low speed; white: high speed) and a single level set of the
Q-contour (yellow); (a) Re= 10, (b) Re= 50, (c) Re= 100, (d) Re= 200, (e) Re= 400,
(f ) Re= 600. Arrows indicate the direction of flow. Results extracted from the numerical
simulations of Chen et al. (2015).

Results are shown for Re= 200, 400, 600 and 800. The leftmost edge of each figure
represents the cross-sectional plane where z = 0 from figure 1. Streamlines are not
added to this plot, because the magnitude of the secondary velocities is small, and
the streamlines would appear nearly straight.

Although the T-junction flow is visually more complicated than the flow in a straight
pipe outlet from a curved section, we see that for both cases the vortices grow and
propagate further downstream as the Reynolds number increases. We have shown that,
for the straight pipe outlet flow, the characteristic length scale of the vortices scales
linearly with the Reynolds number. We now ask whether this result also holds for the
T-junction outlet flow, such that the characteristic length scale of the decay process in
the arms of the T varies systematically with the Reynolds number.

In order to investigate this question, we calculate decay lengths for the vortical
structures found in the outlets of the T-junction flow. Figure 14 shows the decay length
(in channel widths) versus the Reynolds number that we calculated for the numerical
results of Chen et al. (2015). These results were found using the maximum value of
the Q-criterion on a cross-section, as for the straight pipe outlet flow, as described in
§ 2. The data show a good linear fit. Thus we see that the decay lengths in the outlet
arms of T-junction flow vary linearly with the Reynolds number, as for the case of
decaying fully developed Dean flow.

For the case of the T-junction flow, the velocity profile entering each outlet arm is
a large perturbation away from the fully developed square pipe velocity profile, unlike
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FIGURE 13. (Colour online) Level set of the Q-contour (red) in the straight outlet pipe
for α = 0.01; (a) Re= 200, (b) Re= 400, (c) Re= 600, (d) Re= 800.

0 50 100 150 200 250

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re

Numerical results
Best fit

(c
ha

nn
el

 w
id

th
s)

FIGURE 14. Decay length (in channel widths) for the counter-rotating vortices found in
the outlets of the flow in T-junctions based on the Q-criterion condition. Results extracted
from the numerical simulations of Chen et al. (2015).

in the flow downstream of a curved pipe at modest Dean numbers. Furthermore, in
the outlet arms, the secondary velocities can have magnitudes of the same order as
the axial velocity. Thus, the linearization about the fully developed flow would most
likely be a bad approximation for the flow in the outlet arms of a T-junction, at least
at the Reynolds numbers studied here and by Chen et al. (2015). Nevertheless, we
find a linear relationship between the decay length and the Reynolds number. The
results for the T-junction in figure 14 can be compared to the results for the outlet
flow downstream of a curved pipe in figure 6. Both show a good linear relationship,
differing only by a scale factor. The magnitude of the scale factor is expected to be
a function of the differing inlet conditions and the pipe geometry (circular versus
square). The key result, however, is that in both cases the characteristic axial length
scale of the decay perturbation, non-dimensionalized by the channel width, varies
proportional to Re.
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FIGURE 15. Temporal convergence with α = 0.01 and Re= 100.

7. Conclusion

Direct numerical simulations have been performed to investigate the downstream
decay of fully developed curved pipe flow in a straight, tangential outlet downstream
of a 180◦ pipe bend for a range of Reynolds numbers and pipe-to-curvature radius
ratios. We quantified this decay process by calculating the transition lengths associated
with the wall shear stress, vorticity, Q-criterion and velocity gradients in the outlet
section. These decay lengths were found to have a linear dependence on the Reynolds
number, with no dependence on the pipe-to-curvature radius ratio of the upstream
curved pipe section. These dependencies were confirmed by applying judicious scaling
arguments to the linearized governing equations and to the approximate boundary
conditions. Velocity, pressure and vorticity fields were calculated and plotted in order
to visualize the decay process. Finally, an analogy was found with the flow in the
outlet arms of T-junction flow, where again a linear relationship was found between
the decay length in the outlets and the Reynolds number.

The connection between this work and the flow in the outlets of a T-junction may
suggest that some of the assumptions made in our scaling arguments could be relaxed
and still result in linear relationships between decay lengths and the Reynolds number.
Specifically, for the T-junction flow, the initial velocity perturbation in the outlet flow
is large relative to the axial velocity, although our scaling arguments required a small
velocity perturbation in order to perform the linearization. Nevertheless, we found a
linear relationship also for the T-junction outlet case.

This work provides a quantitative prediction for the transition length downstream
of a curved pipe. These transition lengths may be relevant for systems that seek to
minimize heat/mass transfer in certain regions of the flow or for systems that require
precise Poiseuille flow conditions downstream of various other piping elements.
Furthermore, prior to this work, the best estimates of such transition lengths would
probably be the entrance length predictions in a straight pipe. However, such estimates
could be off by 100 % or more, since (4.1) suggests that these decay lengths are
nearly double the entrance length in a straight pipe (Atkinson et al. 1969).

Future work could seek an analytical solution to (3.8) subject to the boundary
conditions (3.9). As mentioned, a form of the velocity/pressure perturbation may
be sought that includes a sum of modes that decay exponentially with the rescaled
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FIGURE 16. Grid convergence test results based on the magnitude of vorticity (α= 0.03
and Re= 400).

coordinate z̃. Furthermore, the analysis of Smith (1976) may be applied to the
neighbourhood of the transition from the curved to the straight section in order to
solve for the local structure of the boundary layer and to take into account the
upstream influence on the local flow structure. Finally, this work may be extended to
larger values of D, and additional appropriate scalings may be sought.
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Appendix. Numerical convergence
In order to verify numerical accuracy, both temporal and spatial convergence are

monitored. As stated, temporal convergence is confirmed by monitoring the norm
of the time derivative of the velocity vector field. Results representing the temporal
convergence for the case with α = 0.01 and Re = 100 are shown in figure 15. As
can be seen, the time derivative of the velocity decreases by almost eight orders
of magnitude, at which time the solver oscillates about a small numerical orbit. On
this numerical orbit, ‖∂u/∂t‖/‖u‖ ≈ 10−4 or less. As mentioned, for the purposes of
measuring transition lengths, velocity profiles and flow development, this numerical
oscillation is not seen to have any noticeable effect. Measuring velocity profiles at
various points on this oscillation never resulted in any change in measured transition
lengths. This feature is likely due to the error introduced by this numerical oscillation
on the transition length having a smaller order of magnitude than the error introduced
by the spatial discretization itself. We also verify spatial convergence by performing
a mesh refinement study at the largest Reynolds number chosen for each value of α.
For these tests, the integral of the vorticity over the cross-sectional area of the pipe is
plotted against the angle along the curved pipe. This is repeated for each value of α
with simulation domains having 2.0× 105, 4.0× 105, 8.0× 105, 1.6× 106, 3.2× 106,
6.4 × 106 and 1.28 × 107 cells. Representative results are shown in figure 16. The
results show monotonic convergence as the number of grid cells is doubled. Having
performed such a convergence test for each value of α, we choose to perform all
simulations using 6.4× 106 cells.
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