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It is pointed out that the generalized Lambert series
∑∞

n=1[(nN−2h)/(enN x − 1)]
studied by Kanemitsu, Tanigawa and Yoshimoto can be found on page 332 of
Ramanujan’s Lost Notebook in a slightly more general form. We extend an
important transformation of this series obtained by Kanemitsu, Tanigawa and
Yoshimoto by removing restrictions on the parameters N and h that they impose.
From our extension we deduce a beautiful new generalization of Ramanujan’s
famous formula for odd zeta values which, for N odd and m > 0, gives a relation
between ζ(2m + 1) and ζ(2Nm + 1). A result complementary to the aforementioned
generalization is obtained for any even N and m ∈ Z. It generalizes a transformation
of Wigert and can be regarded as a formula for ζ(2m + 1 − 1/N). Applications of
these transformations include a generalization of the transformation for the
logarithm of Dedekind eta-function η(z), Zudilin- and Rivoal-type results on
transcendence of certain values, and a transcendence criterion for Euler’s constant γ.

Keywords: Lambert series; Dedekind eta function; odd zeta values; Euler’s constant;
Ramanujan’s formula; transcendence
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1. Introduction

Surprises from Ramanujan’s Lost Notebook [31] seem to continue unabated. We
recently came across a new instance of this phenomenon while reading page 332
of the Lost Notebook, which we describe soon. Page 332 is mainly devoted to two
versions of a beautiful formula for ζ(1/2), one of which is also given in Entry 8 of
Chapter 15 of Ramanujan’s second notebook [32], [7, p. 314], and is as follows.

Let α and β be two positive numbers such that αβ = 4π3. Then
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n=1

1
en2α − 1

=
π2
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(1.1)
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As mentioned in [1, p. 191], one can conceive this result as an identity for an
infinite sum of theta functions. Katsurada [24] interpreted the infinite series on the
right as the exact form of the error term in the asymptotic formula

∞∑
n=1

1
en2α − 1

=
π2

6α
+

1
4

+
√

β

4π
ζ

(
1
2

)
+ o(1)

as α → 0+. The result (1.1) has instigated a flurry of activity over the past two
decades with several mathematicians obtaining generalizations, including analogues
for the Hurwitz zeta function and Dirichlet L-functions. A complete account of these
activities is given in [1, p. 191-193] and while we avoid duplicating all references
given there, we do mention those which are relevant to the material in the sequel.

Ramanujan’s second reformulation of (1.1) in [31, p. 332] appears in a footnote
on page 9 of a paper of Wigert [34] who also generalized it [34, p. 8–9, equation
(1.5)] by deriving a formula for ζ(1/N) for any even positive integer N without
knowledge that the case N = 2 had been considered by Ramanujan. This alternative
reformulation of the formula for ζ(1/2) has been recently generalized in a different
direction in [11, p. 859, theorem 10.1]. Wigert’s formula for N even and x positive1

reads

∞∑
n=1

1
enN x − 1

=
ζ(N)

x
+ x−(1/N)Γ

(
1 +

1
N

)
ζ

(
1
N

)
+

1
4

+
(−1)(N/2)−1

N

(
2π

x

)1/N (N/2)−1∑
j=0

×
{

e(iπ(2j+1)(N−1))/2NLN

(
2π

(
2π

x

)1/N

e−(((2j+1)πi)/2N)

)

+ e−((iπ(2j+1)(N−1))/2N)LN

(
2π

(
2π

x

)1/N

e((2j+1)πi)/2N

)}
,

(1.2)

where LN (x) :=
∑∞

n=1[(n
(1/N)−1)/(exp(n1/Nx) − 1)].

Kanemitsu, Tanigawa and Yoshimoto systematically studied various analogues
and generalizations of (1.1) which give values of the Riemann zeta function
[20, § 3], Hurwitz zeta function [22, theorem 2.1], and also Dirichlet L-functions
[23, p. 32–33] at rational arguments with even denominator and odd numerator.
The culmination of their results occurred in [21, theorem 1] when they obtained
the following beautiful result for values of the Riemann zeta function at positive
rational arguments irrespective of the parity of the numerator and the denominator.

1Wigert actually obtains the transformation for complex x with Re(x) > 0, however, this can
be easily seen to be true by analytic continuation.
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Let h and N be fixed natural numbers with h � N/2. Let

aj,N = cos
(

πj

2N

)
, bj,N = sin

(
πj

2N

)
, AN (y) = π (2πy)1/N

. (1.3)

Also, let

f0(x;n,N) =
e−AN (n/x)

2 sinh (AN (n/x))
(1.4)

and for j � 1,

fj(x;n,N, h) =

cos (2AN (n/x)bj,N + ((π(2h − 1)j)/2N)
−e−2AN (n/x)aj,N cos ((π(2h − 1)j)/2N)

cosh (2AN (n/x) aj,N ) − cos (2AN (n/x) bj,N )
. (1.5)

Then for x > 0,
∞∑

n=1

nN−2h

enN x − 1
= P (x) + S(x), (1.6)

where

P (x) = P (x;N,h) = −1
2
ζ(−N + 2h) +

ζ(2h)
x

+
1
N

Γ
(

N − 2h + 1
N

)
ζ

(
N − 2h + 1

N

)
x−((N−2h+1)/N),

(1.7)

and2

S(x) = S(x;N,h) =
(−1)h+1

N

(
2π

x

)(N−2h+1)/N

×
∞∑

n=1

1
n(2h−1)/N

⎧⎨
⎩f0(x;n,N) +

(N−1)/2∑
j=1

f2j(x;n,N, h)

⎫⎬
⎭ (1.8)

for N odd, and

S(x) = S(x;N,h) =
(−1)h+1

N

(
2π

x

)(N−2h+1)/N ∞∑
n=1

1
n(2h−1)/N

N/2∑
j=1

f2j−1(x;n,N, h)

(1.9)

for N even. Note that Ramanujan’s formula (1.1) is the special case h = 1, N = 2
of the above result.

2There is a minor typo in the statement of this theorem in [21] in that the variable of summation
in both the series representations for S(x) there begins from n = 0. See (1.8) and (1.9) here for
the corrected expressions.
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Now the surprising thing that we came across while going over page 332 of the
Lost Notebook [31] is that, at the end of this page Ramanujan starts writing the
exact same series considered by Kanemitsu, Tanigawa and Yoshimoto in their above
result, that is, the series on the left side of (1.6), but with more general condi-
tions on the associated parameters subsuming the ones given by Kanemitsu et al.
The precise sentence at the end of this page, in Ramanujan’s own words, reads

1r

e1sx − 1
+

2r

e2sx − 1
+

3r

e3sx − 1
+ · · · (1.10)

where s is a positive integer and r − s is any even integer.
Note that Ramanujan is taking r and s such that r − s is any even integer,

whereas for the series on the left side of (1.6), Kanemitsu et al., in Ramanujan’s
notation, take r − s to be a negative even integer only.

Ramanujan does not give any expression for this series like the one in (1.6), so
it is not clear what he had in his mind. Was there a page after page 332 in the
Lost Notebook that went missing? While this question may remain unanswered
forever and while some may call our speculation as wishful thinking, from the
fact that the left-hand side of (1.1) is merely a special case of (1.10), it is clear
that Ramanujan had recognized the importance of the latter. Perhaps if he had
completed his formula, he would have ended up with an expression consisting of
the Riemann zeta function at rational arguments.

Even though Ramanujan did not give any expression for the series in (1.10), he is
right in making the assumption that r − s is any even integer, for, the series on the
left-hand side of (1.6) is convergent not just for 0 < h � N/2 but for any integer
h. This, in Ramanujan’s notation, is equivalent to saying r − s can be any even
integer. This observation has two fruitful consequences that went unnoticed in the
paper [21] of Kanemitsu et al.

Indeed, if we allow h to be any negative integer, then the case N = 1, h = 1 − m,
where m > 1 is a natural number, of (1.6) gives an interesting result of Ramanujan
[32, vol. 1, p. 259, no. 14], [29, p. 269], [30, p. 190], namely, for α, β > 0 with
αβ = π2,

αm
∞∑

n=1

n2m−1

e2αn − 1
− (−β)m

∞∑
n=1

n2m−1

e2βn − 1
= (αm − (−β)m)

B2m

4m
, (1.11)

where Bm is the mth Bernoulli number defined by

x

ex − 1
=

∞∑
n=1

Bnxn

n!
, (|x| < 2π),

whereas the case N = 1, h = 0 of (1.6) gives another result of Ramanujan [32,
chapter 14, § 8, corollary (i)], [31, p. 318, formula (2.2)], namely, for α, β > 0 such
that αβ = π2,

α

∞∑
n=1

n

e2nα − 1
+ β

∞∑
n=1

n

e2nβ − 1
=

α + β

24
− 1

4
. (1.12)

However, (1.11) and (1.12) are but special cases of Ramanujan’s following famous
formula for ζ(2m + 1) [32, p. 173, chapter 14, Entry 21(i)], [31, p. 319–320, formula
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(3.5)], [7, p. 275–276], when m is a negative integer less than −1 and m = −1
respectively.

For α, β > 0 with αβ = π2 and m ∈ Z,m �= 0,

α−m

{
1
2
ζ(2m + 1) +

∞∑
n=1

n−2m−1

e2αn − 1

}
= (−β)−m

{
1
2
ζ(2m + 1) +

∞∑
n=1

n−2m−1

e2βn − 1

}

− 22m
m+1∑
j=0

(−1)jB2jB2m+2−2j

(2j)!(2m + 2 − 2j)!
αm+1−jβj .

(1.13)

As a special case, this formula gives the following result of Lerch [26] for m odd.

ζ(2m + 1) + 2
∞∑

n=1

1
n2m+1(e2πn − 1)

= π2m+122m
m+1∑
j=0

(−1)j+1B2jB2m+2−2j

(2j)!(2m + 2 − 2j)!
.

(1.14)

For the history, discussion and reference to works on Ramanujan’s beautiful formula
(1.13), we refer the reader to [6] and to the more recent paper [10]. A modern inter-
pretation of this formula is that it encodes fundamental transformation properties
of Eisenstein series on SL2(Z) and their Eichler integrals [18].

Gun, Murty and Rath [18] define Ramanujan polynomials by

R2m+1(z) :=
m+1∑
j=0

B2jB2m+2−2j

(2j)!(2m + 2 − 2j)!
z2j .

The finite sum on the right-hand side of (1.13) is easily seen to be αm+1R2m+1

(i
√

β/α). As noted by Murty, Smyth and Wang in [28], these polynomials are
of tremendous interest in their own right. They are reciprocal polynomials with
rational coefficients. Another beautiful property obtained in [28] is that all of their
non-real zeros lie on the unit circle.

In view of (1.11) and (1.12) both resulting from (1.6), the natural question that
arises now is - does (1.6) also give (1.13) for the remaining integer values of m? The
answer is no. This motivated us to look for an extension of (1.6) for other values
of h that may answer the above question affirmatively. Our extension of (1.6) for
N − 2h �= −1 is given below. The remaining case when N − 2h = −1 is dealt with
separately in theorem 1.3.

Theorem 1.1. Let N ∈ N and h be any integer. Let aj,N , bj,N and AN (y) be defined
in (1.3), f0(x;n,N), fj(x;n,N, h), j � 1, be defined in (1.4) and (1.5). Let x > 0
and let P (x) be defined in (1.7) and S(x) in (1.8) and (1.9). Then for N − 2h �= −1,

∞∑
n=1

nN−2h

enN x − 1
= P1(x) + S(x),
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where

P1(x) = P1(x;N,h) = P (x) + (−1)h+122h−1π2h

�h/N�∑
j=1

( −1
4π2

)jN
B2jB2h−2jNx2j−1

(2j)!(2h − 2jN)!
.

(1.15)

We note here that Kanemitsu, Tanigawa and Yoshimoto [22, theorem 2.1] have
obtained the above extension but only in the case when N is even and h � N/2.
They do not obtain the above extension when N is odd. Nor do they obtain the
result for N even and h < 0. But for N even and h � N/2, they obtain a result not
only for the Riemann zeta function but also for the multiple Hurwitz zeta function
ζk(s, a). Later [23, p. 32], they also obtain a character analogue of this result, but
again for N even and h � N/2. (We note that the results in [22, theorem 2.1] and
[23, p. 32] contain two more variables � and a apart from h and N , however, for
a = 1, which is what corresponds to ζ(s), we can rephrase the conditions for the
validity of their results in the form we have given, namely, N even and h � N/2.)
Katsurada [24] also obtains similar results but which do not contain any power
of n.

Our extension in theorem 1.1, on the other hand, allows us to have no restrictions
on h and N except that N be any natural number and h be any integer. As we
show in this paper, our theorem 1.1 for N odd, and h � 0 or h > N/2, not only
gives Ramanujan’s famous formula (1.13) as a special case but also its new elegant
generalization stated in theorem 1.2 below. An important thing about this general-
ization is that it gives a relation between ζ(2m + 1) and ζ(2Nm + 1) for any odd
positive integer N and any non-zero integer m. Such a relation between these odd
zeta values has been missing from the literature.

Theorem 1.2. Let N be an odd positive integer and α, β > 0 such that αβN =
πN+1. Then for any non-zero integer m,

α−(2Nm/(N+1))

(
1
2
ζ(2Nm + 1) +

∞∑
n=1

n−2Nm−1

exp ((2n)Nα) − 1

)

=
(
−β2N/(N+1)

)−m 22m(N−1)

N

(
1
2
ζ(2m + 1) + (−1)(N+3)/2

(N−1)/2∑
j=(−(N−1))/2

(−1)j

∞∑
n=1

n−2m−1

exp
(
(2n)1/Nβe(iπj)/N

)− 1

)
+ (−1)m+((N+3)/2)22Nm

×
�((N+1)/2N)+m�∑

j=0

(−1)jB2jBN+1+2N(m−j)

(2j)!(N + 1 + 2N(m − j))!

α2j/(N+1)βN+(2N2(m−j))/(N+1). (1.16)

It is easy to see that Ramanujan’s formula for ζ(2m + 1), that is (1.13), is the
special case N = 1 of the above result. Thus theorem 1.2 gives an infinite family of
Ramanujan-type identities for odd zeta values.
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The famous result of Euler, namely,

ζ(2m) = (−1)m+1 (2π)2mB2m

2(2m)!
(1.17)

implies that for all m � 1, the even zeta values ζ(2m) are rational multiples of π2m,
and hence transcendental. However, the arithmetic nature of the odd zeta values
ζ(2m + 1) is mysterious. Till date we know, thanks to Apéry [2,3], that ζ(3) is
irrational. But we do not know whether ζ(3) is transcendental or not. Moreover,
even though it is known, due to Rivoal [33] and Ball and Rivoal [5], that there
exist infinitely many odd zeta values ζ(2m + 1), m � 1, which are irrational, it is
not known, as of yet, whether ζ(2m + 1) is transcendental or irrational if m is any
specific natural number greater than or equal to 2. Currently the best result in
this area, due to Zudilin [35], states that at least one of ζ(5), ζ(7), ζ(9) or ζ(11)
is irrational. We note that very recently Hančl and Kristensen [19] have obtained
some criteria for irrationality of odd zeta values and Euler’s constant.

As applications of the above theorem, we derive Zudilin- and Rivoal-type results
on transcendence of odd zeta values and generalized Lambert series in § 5.

We next give a one-parameter generalization of the following well-known trans-
formation formula [32, chapter 14, § 8, corollary (ii); chapter 16, Entry 27(iii)],
[7, p. 256], [8, p. 43], [31, p. 320, Formula (3.6)] for the logarithm of Dedekind eta
function η(z):

For α, β > 0 and αβ = π2,

∞∑
n=1

1
n(e2nα − 1)

−
∞∑

n=1

1
n(e2nβ − 1)

=
β − α

12
+

1
4

log
(

α

β

)
. (1.18)

This generalization corresponds to the special case N − 2h = −1, that is,
h = (N + 1)/2, of the series

∑∞
n=1[(n

N−2h)/(enN x − 1)] and is given below.

Theorem 1.3. Let N be an odd positive integer and α, β > 0 such that
αβN = πN+1. Let γ denote Euler’s constant. Then

∞∑
n=1

1
n (exp ((2n)Nα) − 1)

− (−1)(N+3)/2

N

(N−1)/2∑
j=(−(N−1))/2

(−1)j

∞∑
n=1

1
n
(
exp

(
(2n)1/Nβe(iπj)/N

)− 1
)

=
(N − 1)(log 2 − γ)

2N
+

log(α/β)
2(N + 1)

+ (−1)(N+3)/2

�(N+1)/2N�∑
j=0

(−1)jB2jBN+1−2Nj

(2j)!(N + 1 − 2Nj)!
α2j/(N+1)βN−((2N2j)/(N+1)). (1.19)
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Remark 1.4. Note that

�(N+1)/2N�∑
j=0

(−1)jB2jBN+1−2Nj

(2j)!(N + 1 − 2Nj)!
α2j/(N+1)βN−((2N2j)/(N+1))

=

{
β−α
12 , if N = 1,

BN+1βN

(N+1)! , if N > 1.

It is easy to see that when N = 1, the above theorem reduces to (1.18).
As mentioned before, Kanemitsu, Tanigawa and Yoshimoto [22, theorem 2.1]

obtained our extension in theorem 1.1, but only in the case when N is even and
h � N/2. Our extension in theorem 1.1 not only covers the remaining case, that
is, N even and h � 0 but also the case when N is odd and h is any integer. Also,
in theorem 1.1, if we let N be an even positive integer and if h = (m + (1/2))N ,
where m is any integer, we obtain the following result which is complementary to
theorem 1.2, and which generalizes Wigert’s formula (1.2).

Theorem 1.5. Let N be an even positive integer and m be any integer. For any
α, β > 0 satisfying αβN = πN+1,

α−((2Nm−1)/(N+1))

(
1
2
ζ(2Nm) +

∞∑
n=1

n−2Nm

exp ((2n)Nα) − 1

)

= β−((2Nm−1)/(N+1)) (−1)m

N
2(N−1)(2m−(1/N))

(
ζ (2m + 1 − (1/N))

2 cos (π/2N)

− 2(−1)(N/2)

(N/2)−1∑
j=0

(−1)j
∞∑

n=1

1
n2m+1−(1/N)

Im

(
e(iπ(2j+1))/2N

exp
(
(2n)1/Nβe(iπ(2j+1))/2N

)− 1

))

+ (−1)(N/2)+122Nm−1
m∑

j=0

B2jB(2m+1−2j)N

(2j)!((2m + 1 − 2j)N)!

α2j/(N+1)βN+((2N2(m−j)−N)/(N+1)). (1.20)

Wigert’s formula (1.2) for real x > 0 can be proved from theorem 1.5 simply by
taking m = 0 and α = x/2N , β = (πN+1/α)1/N and simplifying the resultant. At
one point in the proof, one also needs to use the functional equation for ζ(s) in the
form

ζ(s) = 2sπs−1Γ(1 − s)ζ(1 − s) sin
(

1
2πs

)
. (1.21)

This formula of Wigert, which could have been derived just from (1.6) in the special
case h = N/2, was missed by the authors in [21]. The reason we put it in the above
form is to compare it with theorem 1.2. Letting N = 2, in turn, in Wigert’s formula
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leads us to (1.1) after redefining the variables α and β to satisfy the condition on
them given by Ramanujan.

An application of theorem 1.5 towards transcendence of certain values is discussed
in § 5.

This paper is organized as follows. In § 2, we prove theorem 1.1. Section 3 is
devoted to proving the generalization of Ramanujan’s formula for odd zeta val-
ues, that is, theorem 1.2. We also prove theorem 1.3 in this section. Theorem 1.5,
which is a generalization of Wigert’s formula, is proved in § 4. Section 5 is devoted
to proving interesting results on the transcendence of certain values as a result
of applications of our transformations obtained in the previous sections. In § 6,
we point out an error in a result of Chandrasekharan and Narasimhan, which when
corrected, results in nothing but Ramanujan’s formula for ζ(2m + 1) for m > 0. We
conclude the paper with some remarks and future directions in § 7.

2. An extension of the Kanemitsu-Tanigawa-Yoshimoto theorem

We prove theorem 1.1 here. Even though some details in the proof are the same as
in the proof of (1.6) given in [21], we repeat them here for the sake of completeness.

Theorem 1.1 in the case 0 < h � N/2 is already proved in [21]. As remarked in
the introduction, their proof extends to h � 0 without much further effort. Now
assume h > N/2. For Re(s) = c0 > max((N − 2h + 1)/N), 1) = 1, it is easy to see
that

∞∑
n=1

nN−2h

enN x − 1
=

1
2πi

∫
(c0)

Γ(s)ζ(s)ζ (Ns − (N − 2h)) x−s ds. (2.1)

Here, and throughout the sequel,
∫
(c)

denotes the line integral
∫ c+i∞

c−i∞ .
We now shift the line of integration from Re(s) = c0 to Re(s) = −c, where c >

(2h/N) − 1. The reason to choose this lower bound for c is now explained.
It is well-known that Γ(s) has simple poles at s = 0 and at negative integers. The

simple trivial zeros of ζ(s) cancel the poles of Γ(s) at all negative even integers.
The pole of ζ(Ns − (N − 2h)) is at s = (N − 2h + 1)/N whereas the trivial zeros
of ζ(Ns − (N − 2h)) are at s = (N − 2h − 2j)/N, j ∈ N. The pole of Γ(s) at s = 0
does not get cancellled with any zero of ζ(Ns − (N − 2h)), for if (N − 2h − 2j)/
N = 0 for some j ∈ N, then this implies h = N/2 − j < N/2, which is a contradic-
tion. Similarly, the pole of ζ(s) at s = 1 does not cancel with any zero of ζ(Ns −
(N − 2h)). Since the trivial zeros of ζ(s) are simple and they are already used in
the poles of Γ(s) at the negative even integers, the pole of ζ(Ns − (N − 2h)) at
s = (N − 2h + 1)/N does not get cancelled.

We next find out which poles of Γ(s) at the negative odd integers get cancelled
with the trivial zeros of ζ(Ns − (N − 2h)). Suppose j is the minimum positive
integer such that the zero (N − 2h − 2j)/N of ζ(Ns − (N − 2h)) cancels with the
pole s = −(2� − 1) of Γ(s). Then note that � will also be the minimum positive
integer for which this occurs. Now we show that all the poles of Γ(s) at negative
odd integers after −(2� − 1) also get cancelled. Note that this would happen only
if (N − 2h − 2j′)/N = −(2� + f) for f an odd positive integer and j′ some natural
number. This would then imply 2h + 2j′ = N(2� + f + 1), which, indeed, is valid for
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some natural number j′. Thus, all of the poles −(2� − 1),−(2� + 1),−(2� + 3), . . .
of Γ(s) get cancelled by the zeros of ζ(Ns − (N − 2h)).

So the only poles of Γ(s) which remain to be investigated are −1,−3,−5, . . . ,
−(2� − 3). Since � depends on N and h, we now need to find an expression for it
in terms of h and N . According to the definition, j (and hence �) is the minimum
positive integer such that (N − 2h − 2j)/N = −(2� − 1), that is, j = �N − h. Since
j > 0, we must have � > h/N , and since � is the minimum positive integer for which
this occurs, we see that � = �h/N� + 1. This implies that −(2� − 3) = −(2 �h/N� −
1). Thus, the only poles of Γ(s) which contribute are −1,−3,−5, . . . ,−(2 �h/N� −
1).

This suggests that we shift the line of integration from c0 > 1 to
Re(s) = −c, where c > 2 �h/N� − 1, so that s = 0, 1, (N − 2h + 1)/N and
s = −1,−3,−5, . . . ,−(2 �h/N� − 1) all turn out to be the poles of the integrand
on the right side of (2.1). However, we need to shift the line a little further to the
left, that is, to Re(s) = −c, where c > (2h/N) − 1, the reason for which is two-fold.
Firstly, even though h > N/2, we can still have �h/N� = 0. So if the line of inte-
gration were shifted such that c > 2 �h/N� − 1, this would allow c to take negative
values also. But this is undesirable as we would like to capture the pole of the
integrand at s = 0. The second reason for taking c > (2h/N) − 1 will be clear soon.

Take the contour C determined by the line segments [c0 − iT, c0 + iT ],
[c0 + iT,−c + iT ], [−c + iT,−c − iT ] and [−c − iT, c0 − iT ]. By Cauchy’s residue
theorem,

1
2πi

[∫ c0+iT

c0−iT

+
∫ −c+iT

c0+iT

+
∫ −c−iT

−c+iT

+
∫ c0−iT

−c−iT

]
Γ(s)ζ(s)ζ (Ns − (N − 2h)) x−s ds

= R0 + R1 + R(N−2h+1)/N +
�h/N�∑
j=1

R−(2j−1), (2.2)

where Ra denotes the residue of the integrand at the pole s = a.
As T → ∞, the integrals along the horizontal segments [c0 + iT,−c + iT ],

[−c − iT, c0 − iT ] approach zero which is readily seen using Stirling’s formula for
Γ(s) and elementary bounds on the Riemann zeta function. So let T → ∞ in (2.2)
and use (2.1) to deduce that

∞∑
n=1

nN−2h

enN x − 1
= J(x) + R0 + R1 + R(N−2h+1)/N +

�h/N�∑
j=1

R−(2j−1),

where

J(x) :=
∫

(−c)

Γ(s)ζ(s)ζ (Ns − (N − 2h)) x−s ds.

As shown in [21],

R0 + R1 + R(N−2h+1)/N = P (x),
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where P (x) is defined in (1.7). Thus, the sum of residues at all of the poles is

P1(x) := P1(x;N,h) := P (x) +
�h/N�∑
j=1

R−(2j−1).

Now

R−(2j−1) = lim
s→−(2j−1)

(s + 2j − 1)Γ(s)ζ(s)ζ(Ns − (N − 2h))x−s

=
−1

(2j − 1)!
ζ(−(2j − 1))ζ(2h − 2jN)x2j−1

=
(−1)h−jN+1(2π)2h−2jNB2jB2h−2jN

2(2j)!(2h − 2jN)!
x2j−1.

In the penultimate step above, we used the fact [13, p. 179, equation (7.10)]
that lims→−n(s + n)Γ(s) = ((−1)n)/n!, and in the ultimate step we used the fact
[4, p. 266, equation (1.20)] ζ(−n) = −((Bn+1)/(n + 1)) along with (1.17).

This verifies the expression for P1(x) as given in (1.15). The only other thing to
be done is to show that J(x) = S(x) for c > (2h/N) − 1, where S(x) is defined in
(1.8) and (1.9).

Much of the remainder of the proof is exactly the same as in [21], and relies on
making the change of variable s → 1 − s in the integral J(x), using the functional
equation satisfied by the resulting integrand to simplify it. To avoid duplication of
this part of the proof, we refer the reader to [21, p. 14]. Thus for Re(s1) = c1 =
N(1 + c) − 2h + 1, we obtain

J(x) = (−1)h+1

(
2π

x

)(N−2h+1)/N

× 1
2πi

∫
(c1)

(
(2π)N+1

x

)−(s1/N)

Γ(s1)ζ(s1)ζ
(

s1 + 2h − 1
N

)

× CN

(
π(s1 + 2h − 1)

2N

)
ds1

N
,

where CN (z) is defined by

CN (z) =
sin(Nz)
sin(z)

.

Now we would like to, as in [21], expand ζ(s1)ζ((s1 + 2h − 1)/N) as a Dirich-
let series. However, this does not follow the argument in [21] for, in the proof
in there, the authors considered 0 < h � N/2, whereas in our case, we have
h > N/2. This is where it helps to have the line of integration shifted in the ear-
lier part of the proof from Re(s) = c0 to Re(s) = −c, where c > (2h/N) − 1. Hence
Re(s1) = c1 > 1 and also Re((s1 + 2h − 1)/N) = 1 + c > 1. Thus we can expand
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ζ(s1)ζ((s1 + 2h − 1)/N) as

ζ(s1)ζ
(

s1 + 2h − 1
N

)
=

∞∑
m,n=1

n−((2h−1)/N)
(
mn1/N

)−s1

.

The remainder now follows exactly as in [21] and hence avoiding the repetition, we
see that J(x) indeed is equal to S(x) defined in (1.8) and (1.9). This completes the
proof.

3. Proof of the generalization of Ramanujan’s formula for ζ(2m + 1)

We begin with an elementary lemma which will be used several times in the sequel.

Lemma 3.1. For a, u, v ∈ R, we have

cos(a sin(u) + uv) − e−a cos(u) cos(uv)
cosh(a cos(u)) − cos(a sin(u))

= 2Re
(

eiuv

exp (ae−iu) − 1

)
.

Proof. Note that the right-hand side can be simplified to

2Re
(

eiuv

exp (ae−iu) − 1

)
= 2Re

(
cos(uv) + i sin(uv)

ea cos(u) (cos(a sin(u)) − i sin(a sin(u))) − 1

)
.

Multiply the numerator and the denominator by the conjugate of the denominator
so that the right side becomes

2Re

(
(cos(uv) + i sin(uv))

(
ea cos(u) cos(a sin(u)) − 1 + iea cos(u) sin(a sin(u))

)
e2a cos(u) − 2ea cos(u) cos(a sin(u)) + 1

)

=
2
(
ea cos(u) cos(a sin(u) + uv) − cos(uv)

)
e2a cos(u) + 1 − 2ea cos(u) cos(a sin(u))

=
cos(a sin(u) + uv) − e−a cos(u) cos(uv)

cosh(a cos(u)) − cos(a sin(u))
. �

Proof of theorem 1.2. We first show that all of the generalized Lambert series
occurring in theorem 1.2 converge. This is easily seen to be true for∑∞

n=1((n
−2Nm−1)/(exp((2n)Nα) − 1)) since α > 0 and N > 0. For the remaining

ones, it suffices to show that Re((2n)1/Nβe(iπj)/N ) > 0, that is, Re(e(iπj)/N ) > 0
for −((N − 1)/2) � j � (N − 1)/2. This is obvious since

−π

2
< −π(N − 1)

2N
� πj

N
� π(N − 1)

2N
<

π

2

implies that cos(πj/N) > 0 for −((N − 1)/2) � j � (N − 1)/2.
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Let N be an odd positive integer. In theorem 1.1, let h = (N + 1)/2 + Nm, where
m ∈ Z\{0}. Upon simplification, this gives

1
2
ζ(2Nm + 1) +

∞∑
n=1

n−2Nm−1

exp (nNx) − 1

=
(−1)m

2N

( x

2π

)2m

ζ(2m + 1) +
1
x

ζ(N + 1 + 2Nm)

+
1
2
(−1)m+((N+3)/2)(2π)N+1+2Nm

�((N+1)/2N)+m�∑
j=1

(−1)jB2jBN+1+2N(m−j)

(2π)2jN (2j)!(N + 1 + 2N(m − j))!
x2j−1

+
(−1)m+((N+3)/2)

N

( x

2π

)2m ∞∑
n=1

1
n2m+1⎧⎨

⎩ 1
ea − 1

+
(N−1)/2∑

j=1

cos(a sin(u) + uv) − e−a cos(u) cos(uv)
cosh(a cos(u)) − cos(a sin(u))

⎫⎬
⎭ , (3.1)

where a = 2AN (n/x), u = πj/N and v = 2h − 1 = (2m + 1)N .
Let x = 2Nα and let αβN = πN+1 so that β = 2π(π/x)1/N , and hence

a = (2n)1/Nβ.
We write

( x

2π

)2m

=
(

2Nα

2α1/(N+1)βN/(N+1)

)2m

= 22m(N−1)α2Nm/(N+1)β−(2Nm/(N+1)),

(3.2)

and

(2π)N+1+2Nm−2jNx2j−1 = (2π)N+1+2Nm−2jN
(
2Nα

)2j−1

= 22Nm+1α2j−1

((
πN+1

α

)1+(2N/(N+1))(m−j)

×α1+(2N/(N+1))(m−j)

)

= 22Nm+1α2j+(2N/(N+1))(m−j)βN+(2N2/(N+1))(m−j).
(3.3)

Now substitute (3.2) in the first and the last expressions on the right side of (3.1),
and (3.3) in the third expression. (Since N + 1 + 2Nm is even, using (1.17), the
second expression ζ(N + 1 + 2Nm)/x in (3.1) can be absorbed into the third one
as its j = 0 term.) Then divide both sides of the resulting equation by α2Nm/(N+1)
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and invoke lemma 3.1 for simplifying the last expression on the right of (3.1) to
arrive at

α−(2Nm/(N+1))

(
1
2
ζ(2Nm + 1) +

∞∑
n=1

n−2Nm−1

exp ((2n)Nα) − 1

)

=
(
−β2N/(N+1)

)−m 22m(N−1)

N

(
1
2
ζ(2m + 1) + (−1)(N+3)/2

∞∑
n=1

1
n2m+1

{
1

exp
(
(2n)1/Nβ

)− 1

+
(N−1)/2∑

j=1

2Re

(
eiπj(2m+1)

exp
(
(2n)1/Nβe(−iπj)/N

)− 1

)})

+ (−1)m+((N+3)/2)22Nm

�((N+1)/2N)+m�∑
j=0

(−1)jB2jBN+1+2N(m−j)

(2j)!(N + 1 + 2N(m − j))!

α2j/(N+1)βN+((2N2(m−j))/(N+1)). (3.4)

Note that eiπj(2m+1) = (−1)j . Thus,

∞∑
n=1

1
n2m+1

{
1

exp
(
(2n)1/Nβ

)− 1
+

(N−1)/2∑
j=1

2Re

(
eiπj(2m+1)

exp
(
(2n)1/Nβe(−iπj)/N

)− 1

)}

=
∞∑

n=1

n−2m−1

exp
(
(2n)1/Nβ

)− 1
+

(N−1)/2∑
j=1

(−1)j

( ∞∑
n=1

n−2m−1

exp
(
(2n)1/Nβe(iπj)/N

)− 1

+
∞∑

n=1

n−2m−1

exp
(
(2n)1/Nβe(−iπj)/N

)− 1

)

=
(N−1)/2∑

j=(−(N−1))/2

(−1)j
∞∑

n=1

n−2m−1

exp
(
(2n)1/Nβe(iπj)/N

)− 1
. (3.5)

Substituting (3.5) in (3.4) leads to (1.16), thereby completing the proof of theorem
1.2. �

The following corollary of theorem 1.2 gives a nice relation between ζ(3) and
ζ(7).
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Corollary 3.2. Let ω := (−1 +
√

3i)/2 denote a cube-root of unity. Let α, β > 0
such that αβ3 = π4. Then

α−(3/2)

(
1
2
ζ(7) +

∞∑
n=1

1
n7(exp (8n3α) − 1)

)

=
β15/2

748440
+

α1/2β3

135
− 16

3
β−(3/2)

(
1
2
ζ(3) −

∞∑
n=1

n−3

exp
(
(2n)1/3β

)− 1

+
∞∑

n=1

n−3

exp
(− (2n)1/3βω

)− 1
+

∞∑
n=1

n−3

exp
(− (2n)1/3βω2

)− 1

)
. (3.6)

Proof. Let N = 3 and m = 1 in theorem 1.2. This gives

α−(3/2)

(
1
2
ζ(7) +

∞∑
n=1

1
n7(exp (8n3α) − 1)

)

= −16
3

β−(3/2)

⎛
⎝1

2
ζ(3) −

1∑
j=−1

(−1)j
∞∑

n=1

n−3

exp
(
(2n)1/3βe(iπj)/3

)− 1

⎞
⎠

+ 26
1∑

j=0

(−1)jB2jB10−6j

(2j)!(10 − 6j)!
αj/2β3+((9(1−j))/2).

This gives (3.6) upon simplification. �

3.1. A generalization of the transformation for log η(z)

Proof of theorem 1.3. Since the proof is essentially similar to that of theorem 1.2,
we only indicate the places where it differs from that of the latter. To that end, we
let h = (N + 1)/2 in theorem 1.1. This gives for Re(s) = c0 > 1,

∞∑
n=1

1
n
(
enN x − 1

) =
1

2πi

∫
(c0)

Γ(s)ζ(s)ζ (Ns + 1) x−s ds. (3.7)

We then shift the line of integration from Re(s) = c0 to Re(s) = −c, where c > 1/N .
In the shifting process, we encounter a simple pole of the integrand at s = 1 with
the residue R1 = ζ(N + 1)x−1. The pole at s = 0 is of order two, as both Γ(s) and
ζ(Ns + 1) have simple poles at s = 0. The residue R0 at this simple pole can be
calculated to be

R0 =
1

2N
(γ(1 − N) − log(2π) + log(x)) .

The only other pole of the integrand that we encounter is at s = −1, and that too
only when N = 1. Its residue is R−1 = −x/24. Now proceeding exactly along the
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similar lines of the proof of theorem 1.2, one obtains
∞∑

n=1

1
n
(
enN x − 1

) = − 1
2N

((N − 1)γ + log(2π) − log(x)) +
ζ(N + 1)

x
+ g(x,N)

+
1
N

(−1)(N+3)/2

(N−1)/2∑
j=−((N−1)/2)

(−1)j

×
∞∑

n=1

1

n
(
exp

(
2π ((2πn)/x)1/N

e(iπj)/N
)
− 1
) , (3.8)

where

g(x,N) :=

{
− x

24 , if N = 1,

0, otherwise.
(3.9)

Note that

g(x,N) = (−1)(N+3)/22NπN+1

�((N+1)/2N)�∑
j=1

( −1
4π2

)jN
B2jBN+1−2Nj

(2j)!(N + 1 − 2Nj)!
x2j−1.

Using the above form of g(x,N) in (3.8), letting x = 2Nα, αβN = πN+1 and using
(3.3) with m = 0, we arrive at (1.19). �

The case N = 3 of theorem 1.3 gives the following new result:

Corollary 3.3. Let ω := (−1 +
√

3i)/2 denote a cube-root of unity. For α, β > 0
such that αβ3 = π4, we have

∞∑
n=1

1
n(exp (8n3α) − 1)

+
1
3

( ∞∑
n=1

1
n
(
exp ((2n)1/3β) − 1

)
−

∞∑
n=1

1
n
(
exp

(−(2n)1/3βω
)− 1

) − ∞∑
n=1

1
n
(
exp

(−(2n)1/3βω2
)− 1

)
)

=
1
3

(log 2 − γ) +
1
8

log
(

α

β

)
+

β3

720
.

4. Proof of the generalization of Wigert’s formula for ζ(1/N)

In this section, we prove the counterpart of theorem 1.2 for N even.

Proof of theorem 1.5. Note that the series
∑∞

n=1(n
−2Nm)/(exp((2n)Nα) − 1) con-

verges since α > 0 and N > 0. It suffices to show for the remaining Lambert series
that
Re(exp ((iπ(2j + 1))/2N)) > 0 for 0 � j � (N/2) − 1. To that end, note that

0 <
π

2N
� π(2j + 1)

2N
� π(N − 1)

2N
<

π

2
,

so that cos((π(2j + 1))/2N) > 0 and hence the series converge.
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Let N be an even positive integer. In theorem 1.1, let h = N/2 + Nm, where
m ∈ Z. After some simplification, this gives

1
2
ζ(2Nm) +

∞∑
n=1

n−2Nm

enN x − 1

=
1
x

ζ((2m + 1)N) +
1
N

Γ
(

1 − 2Nm

N

)
ζ

(
1 − 2Nm

N

)
x−((1−2Nm)/N)

+
(−1)(N/2)+1

N

(
2π

x

)(1−2Nm)/N ∞∑
n=1

1
n2m+1− 1

N

×
(N/2)−1∑

j=0

cos(a sin(u) + uv) − e−a cos(u) cos(uv)
cosh(a cos(u)) − cos(a sin(u))

+ (−1)(N/2)+12(2m+1)N−1π(2m+1)N
m∑

j=1

B2jB(2m+1−2j)N

(2j)!((2m + 1 − 2j)N)!
(2π)−2jNx2j−1,

(4.1)

where a = 2AN (n/x), u = (π(2j + 1))/2N and v = 2h − 1 = (2m + 1)N − 1.
Note that (2m + 1)N is even. Hence applying (1.17), it is easy to see that the

expression ζ((2m + 1)N)/x can be absorbed into the last expression in (4.1) as its
j = 0 term.

Let x = 2Nα and let αβN = πN+1 so that β = 2π(π/x)1/N , and hence a =
(2n)1/Nβ.
Consider the second expression on the right side of (4.1). Since x = 2Nα =
π(2π/β)N , we get

x−((1−2Nm)/N) = π−((1−2Nm)/N)

(
2π

β

)2Nm−1

;

use the functional equation (1.21) in the form π−sΓ(s)ζ(s) = 2s−1ζ(1 − s)/
cos(πs/2) to get

1
N

Γ
(

1 − 2Nm

N

)
ζ

(
1 − 2Nm

N

)
x−((1−2Nm)/N)

=
(−1)m

N

2(1/N)−(2m+1)

cos
(

π
2N

) ζ

(
2m + 1 − 1

N

)(
2π

β

)2Nm−1

. (4.2)

From (3.3),

(2π)(2m+1)N−1−2jNx2j−1 =
22Nm−1

π2
α2j+(2N/(N+1))(m−j)βN+(2N2/(N+1))(m−j),

(4.3)
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We now want to write the third expression in (4.1) in terms of generalized Lambert
series. Firstly using (3.2), we see that(

2π

x

)(1−2Nm)/N

= 2(N−1)(2m−(1/N))α(2Nm−1)/(N+1)β(1−2Nm)/(N+1). (4.4)

Secondly, invoking lemma 3.1 and using the fact that exp ((1/2)(iπ(2j + 1)(2m + 1)))
= i(−1)j+m in the second step below, we deduce that

(N/2)−1∑
j=0

cos(a sin(u) + uv) − e−a cos(u) cos(uv)
cosh(a cos(u)) − cos(a sin(u))

= 2
(N/2)−1∑

j=0

Re

(
exp ((iπ/2N)(2j + 1)((2m + 1)N − 1))

exp
(
(2n)1/Nβe−((iπ(2j+1))/2N)

)
)

= 2(−1)j+m+1

(N/2)−1∑
j=0

Im

(
exp (−((iπ(2j + 1))/2N))

exp
(
(2n)1/Nβe−((iπ(2j+1))/2N)

)
)

= i(−1)j+m+1

(N/2)−1∑
j=0

(
exp ((iπ(2j + 1))/2N)

exp
(
(2n)1/Nβe(iπ(2j+1))/2N

)

− exp (−((iπ(2j + 1))/2N))
exp

(
(2n)1/Nβe−((iπ(2j+1))/2N)

)
)

(4.5)

Thus from (4.4) and (4.5), the third expression in (4.1) can be written as

(−1)(N/2)+1

N

(
2π

x

)(1−2Nm)/N ∞∑
n=1

1

n2m+1−(1/N)

(N/2)−1∑
j=0

cos(a sin(u) + uv) − e−a cos(u) cos(uv)

cosh(a cos(u)) − cos(a sin(u))

= i
(−1)(N/2)+m

N
2(N−1)(2m−(1/N))α(2Nm−1)/(N+1)β(1−2Nm)/(N+1)

(N/2)−1∑
j=0

(−1)j

×
(

e(iπ(2j+1))/2N
∞∑

n=1

n(1/N)−(2m+1)

exp
(
(2n)1/Nβe(iπ(2j+1))/2N

) − 1
− e(−iπ(2j+1))/2N

∞∑
n=1

n(1/N)−(2m+1)

exp
(
(2n)1/Nβe−((iπ(2j+1))/2N)

) − 1

)
. (4.6)

Now substitute 2Nα for x on the left side of (4.1) and rewrite its right side as
follows. Absorb ζ((2m + 1)N)/x as the j = 0 term of the last expression, substitute
(4.2) and (4.3) in the second and the last expressions respectively, and substitute
(4.6) for the third expression. Upon doing this, divide both sides of the resulting
equivalent of (4.1) by α(2Nm−1)/(N+1). This gives (1.20) after simplification and
thus completes the proof. �
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5. Applications

This section is devoted to applications of our theorems 1.2, 1.3 and 1.5 towards
proving results on transcendence of certain expressions. It is important to note
that these transcendence results might have been exceedingly difficult to prove if
we did not have our transformations to begin with. We start with a Zudilin-type
result.

Corollary 5.1. Let N and m be any two fixed odd natural numbers. Then at least
one of the expressions

ζ(2m + 1), ζ(2Nm + 1),
∞∑

n=1

n−2Nm−1

exp ((2n)Nπ) − 1
, and

∞∑
n=1

1
n2m+1

Re
(

1
exp
(
(2n)1/Nπe(iπj)/N

)− 1

)
,

where j takes every value from 0 to (N − 1)/2, is transcendental. The above con-
clusion also holds for any fixed even natural number m so long as N is any fixed
odd number strictly greater than 1.

Proof. We prove only the case when m is an odd natural number. Let α = β = π
in theorem 1.2 and multiply both sides by 2π2Nm/(N+1). For m odd, this gives

ζ(2Nm + 1) +
22m(N−1)

N
ζ(2m + 1) + 2

∞∑
n=1

n−2Nm−1

exp ((2n)Nπ) − 1

+
1
N

(−1)(N+3)/222m(N−1)+1

×
⎛
⎝ ∞∑

n=1

n−2m−1

exp
(
(2n)1/Nπ

)− 1
+ 2

(N−1)/2∑
j=1

∞∑
n=1

1
n2m+1

Re

(
1

exp
(
(2n)1/Nπe(iπj)/N

)− 1

))

= (−1)(N+5)/222Nm+1πN(2m+1)

�((N+1)/2N)+m�∑
j=0

(−1)jB2jBN+1+2N(m−j)

(2j)!(N + 1 + 2N(m − j))!
π2j(1−N)

(5.1)

upon simplification. This, by the way, is a generalization of a Lerch’s result (1.14)
for N odd such that N � 1. For N = 1 and m odd, the result stated in the corollary
can be obtained from (1.14) since the resulting right-hand side is a non-zero rational
multiple of π2m+1 so that either ζ(2m + 1) or

∑∞
n=1(n

−2m−1)/(e2πn − 1) in (1.14)
must be transcendental as π is known to be transcendental. Now for N > 1, note
that the right-hand side of (5.1) is nothing but a polynomial in π with rational
coefficients. The conclusion then follows again from the transcendence of π.
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The case when m is an even natural number can be proved in a very similar way
and hence, a proof is omitted. It is nice to see in this case, however, that while
substituting N = 1 after letting α = β = π in theorem 1.2 and multiplying both
sides by π2Nm/(N+1) leads to

m+1∑
j=0

(−1)jB2jB2m+2−2j

(2j)!(2m + 2 − 2j)!
= 0,

and hence no information on the arithmetic nature of ζ(2m + 1), m even, we do get a
transcendence result for N > 1 precisely because the expression involving Bernoulli
numbers again turns out to be a polynomial in π with rational coefficients. Thus, the
case N > 1 gives information on the arithmetic nature of ζ(2m + 1) for m even. �

Remark 5.2. Let N ∈ N be odd and m = 2k + 1, k ∈ N ∪ {0}. Let

SN,k :=

{
ζ(4k + 3),

∞∑
n=1

aN,k(n),
∞∑

n=1

bN,k(n, j) : 0 � j � N − 1
2

}
,

where

aN,k(n) :=
n−2N(2k+1)−1

exp ((2n)Nπ) − 1
,

bN,k,j(n) :=
1

n4k+3
Re
(

1
exp
(
(2n)1/Nπe(iπj)/N

)− 1

)
.

An interesting question that arises from corollary 5.1 is, for a fixed odd positive
integer N , does the set

⋃∞
k=0 SN,k contain infinitely many transcendental numbers?

A sufficient condition to answer this question affirmatively would be to show that
for any k1, k2 ∈ N ∪ {0} such that k1 �= k2, we have SN,k1

⋂
SN,k2 = ∅. While we

are unable to prove the claim in general for any odd N > 1, we have been successful
in proving it for N = 1, the proof of which is given in the corollary below.

Corollary 5.3. The set ∪∞
k=0S1,k contains infinitely many transcendental num-

bers.

Proof. Note that for a fixed k, we have a1,k(n) = b1,k,j(n) as in this case j = 0. As
mentioned in remark 5.2, we show that for any k1, k2 ∈ N ∪ {0}, k1 �= k2, we have
S1,k1

⋂
S1,k2 = ∅. Without loss of generality, let k1 < k2. We divide the proof into

four different cases.
Case 1: ζ(4k1 + 3) �= ζ(4k2 + 3).
This follows trivially as k1 < k2 implies ζ(4k1 + 3) > ζ(4k2 + 3).
Case 2: ζ(4k1 + 3) �=∑∞

n=1 a1,k2(n).
Since k1 < k2 and exp(2nπ) − 1 > exp(2π) − 1 > 1, we have

n−4k2−3

exp (2nπ) − 1
<

n−4k1−3

exp (2nπ) − 1
< n−4k1−3.

This proves that
∑∞

n=1 a1,k2(n) < ζ(4k1 + 3).

https://doi.org/10.1017/prm.2018.146 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.146


Generalized Lambert series and arithmetic nature of odd zeta values 761

Case 3:
∑∞

n=1 a1,k1(n) �= ζ(4k2 + 3).
We show

∑∞
n=1 a1,k1(n) < 1 < ζ(4k2 + 3). The second inequality is obvious. To

obtain the first, it suffices to show that for all n � 1, we have a1,k1(n) < 2−n,
which amounts to proving n4k1+3(exp(2nπ) − 1) > 2n. To that end, we use a
well-known result that for all k � 1, ex − 1 > xk/k! so as to get, in particular,
exp (2nπ) − 1 > ((2n)nπn)/n!. Thus we must show n4k1+3(2n)nπn > 2nn!, which
can be easily proved by induction on n.

Case 4:
∑∞

n=1 a1,k1(n) �=∑∞
n=1 a1,k2(n).

Since k2 > k1, this readily implies that
∑∞

n=1 a1,k1(n) >
∑∞

n=1 a1,k2(n).
These four cases imply that S1,k1

⋂
S1,k2 = ∅, which establishes the result. �

For any odd N > 1, we have a heuristic argument for showing that

SN,k1

⋂
SN,k2 = ∅ (k1 �= k2), (5.2)

but, as mentioned in remark 5.2, we are unable to rigorously prove this claim.
However, corollary 5.3 motivates us to give the following result conditional on the
assumption that (5.2) holds.

Corollary 5.4. Let N > 1 be any fixed odd positive integer. Assume that (5.2)
holds. Then the set ∪∞

k=1SN,k contains infinitely many transcendental numbers.
Similarly, for k1 �= k2, if TN,k1

⋂
TN,k2 = ∅, where

TN,k :=

{
ζ(4k + 1),

∞∑
n=1

cN,k(n),
∞∑

n=1

dN,k(n, j) : 0 � j � N − 1
2

}

with

cN,k(n) :=
n−4Nk−1

exp ((2n)Nπ) − 1
, dN,k,j(n) :=

1
n4k+1

Re
(

1
exp
(
(2n)1/Nπe(iπj)/N

)− 1

)
,

then the set ∪∞
k=1TN,k contains infinitely many transcendental numbers.

Finding if Euler’s constant γ is algebraic or transcendental is a famous unsolved
problem in Mathematics. In fact, it is not even known whether γ is irrational. Note
that when N = 1, the expression involving γ in theorem 1.3 vanishes. However, when
N is any odd number greater than 1, theorem 1.3 gives the following interesting
result on transcendence:

Corollary 5.5. For every odd positive integer N > 1, at least one of

γ,

∞∑
n=1

1
n(exp (2πnN ) − 1)

, and
∞∑

n=1

1
n

Re

(
1

exp
(
2πn1/Ne(iπj)/N

)− 1

)
,

where j takes every value from 0 to (N − 1)/2, is transcendental.
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Proof. Let α = 21−Nπ and β = 21−(1/N)π in theorem 1.3. Upon using remark 1.4,
this gives

(N − 1)γ
2N

+
∞∑

n=1

1
n(exp (2πnN ) − 1)

− (−1)(N+3)/2

N

(N−1)/2∑
j=−((N−1)/2)

(−1)j

∞∑
n=1

1
n

1(
exp

(
2πn1/Ne(iπj)/N

)− 1
) =

2N−1(−1)(N+3)/2BN+1 πN

(N + 1)!
. (5.3)

The important thing to note here is that the expressions involving logarithm vanish.
Due to this, we can now argue in a similar way as in the proofs of some of the earlier
results on transcendence that the right side of the above equation, being a rational
multiple of πN , implies that at least one of

γ,

∞∑
n=1

1
n(exp (2πnN ) − 1)

, and
∞∑

n=1

1
n

Re

(
1

exp
(
2πn1/Ne(iπj)/N

)− 1

)
,

where j takes every value from 0 to (N − 1)/2, is transcendental. �

Note that the above result holds for every odd positive integer N > 1. Let
N = 2� + 1, � ∈ N. Consider the set

U� :=

{ ∞∑
n=1

α�(n),
∞∑

n=1

β�,j(n) : 0 � j � �

}
,

where

α�(n) :=
1

n(exp (2πn2�+1) − 1)
,

β�,j(n) :=
1
n

Re

(
1

exp
(
2πn1/(2�+1)e(iπj)/(2�+1)

)− 1

)
.

Then an important criterion on transcendence of Euler’s constant γ can be obtained
conditionally based on the assumption that for any �1, �2 ∈ N, we have

U�1 ∩ U�2 = ∅ (�1 �= �2). (5.4)

This criterion is given below.

Corollary 5.6. Assume that (5.4) holds. If the set ∪∞
�=1U� contains only finitely

many transcendental numbers, then γ must be transcendental.

Theorem 1.5 also gives the following result on transcendence.
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Corollary 5.7. Let N be any even positive integer and m any integer. At least
one of

ζ

(
2m + 1 − 1

N

)
,

∞∑
n=1

n−2Nm

exp ((2n)Nπ) − 1
,

and
∞∑

n=1

Im

(
e(iπ(2j+1))/2Nn(1/N)−(2m+1)

exp
(
(2n)1/Nπe(iπ(2j+1))/2N

)− 1

)
,

where j takes every value from 0 to (N/2) − 1, is transcendental.

Proof. Let α = β = π in theorem 1.5. This gives us an analogue of Lerch’s formula
(1.14):

∞∑
n=1

n−2Nm

exp ((2n)Nπ) − 1

− (−1)m

N
2(N−1)(2m−(1/N))

(
ζ (2m + 1 − (1/N))

2 cos (π/2N)

+ 2(−1)(N/2)+1

(N/2)−1∑
j=0

(−1)j
∞∑

n=1

1
n(2m+1)−(1/N)

Im

(
e(iπ(2j+1))/2N

exp
(
(2n)1/Nπe(iπ(2j+1))/2N

)− 1

))

= −1
2
ζ(2Nm) + (−1)(N/2)+122Nm−1π(2m+1)N−1

m∑
j=0

B2jB(2m+1−2j)N

(2j)!((2m + 1 − 2j)N)!
π2j(1−N).

Using (1.17), the right side is seen to be a polynomial in π with rational coefficients.
Thus we see that at least one of

ζ (2m + 1 − (1/N))
cos (π/2N)

,

∞∑
n=1

n−2Nm

exp ((2n)Nπ) − 1
,

and
∞∑

n=1

Im

(
e(iπ(2j+1))/2Nn(1/N)−(2m+1)

exp
(
(2n)1/Nπe(iπ(2j+1))/2N

)− 1

)
,

where 0 � j � (N/2) − 1, is transcendental. Along with the fact that cos(π/4) =
1/
√

2 is an algebraic number, if we apply the double angle formula cos θ =√
(1 + cos 2θ)/2 repeatedly, we see that cos(π/2N) is an algebraic number too.

Thus we obtain the result in corollary 5.7. �

From corollaries 5.1–5.7, it is clear that the arithmetic nature of ζ(2m + 1), ζ(2m +
1 − 1/N) for m > 0 and N even, and Euler’s constant occurring in them is inex-
tricably linked to that of the generalized Lambert series, and hence it may be
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worthwhile studying the latter from this perspective. That being said, this may
be a difficult task. We note that there have been many studies on irrationality of
certain Lambert series, for example, by Erdös [15] and by Luca and Tachiya [27].

6. A result of Chandrasekharan and Narasimhan

We take this opportunity to correct here an error in one of the results in a paper
of Chandrasekharan and Narasimhan [12]. The corrected version is then seen to be
nothing but Ramanujan’s formula (1.13) for m > 0. This corrected version of their
result actually appears in two papers of Guinand [16, theorem 9] and [17, equation
(1.9)] written many years before [12] appeared, however, the error has not been
pointed out in the papers that refer to [12]. The result of Chandrasekharan and
Narasimhan, as given in [12, equation (58)], is stated below.

Let δm,n denote Kronecker’s symbol. For y > 0, and k an odd integer,

∞∑
n=1

σk(n)e−ny =
(

2π

y

)k+1 ∞∑
n=1

(−1)(k+1)/2σk(n)e−((4π2n)/y) + P(y), (6.1)

where P(y) is the sum of the residues of the function Γ(s)ζ(s)ζ(s − k)y−s. If k > 0,
then

P(y) =
(−1)(k−1)/2B(k+1)/2

2(k + 1)
− δ1,k

2y
+

(2π)k+1B(k+1)/2

2(k + 1)yk+1
;

if k = −1, then

P(y) =
π2

6y
− 1

2
log 2π +

1
2

log y − y

24
;

and if k < −1 then

P(y) = −1
2
ζ(−k). (6.2)

The expression for P(y) in the case k > 0 in the above result is correct and, in
the cases k > 1 and k = 1, it leads to (1.11) and (1.12) respectively. The expression
corresponding to the case k = −1 is also correct. However, we would like to draw
reader’s attention to the fact that the convention for the Bernoulli numbers used by
Chandrasekharan and Narasimhan is not the same as the standard notation. Their
Bm would be (−1)m+1B2m in the standard notation. (They do not define Bm in
their paper, hence the need for clarification.)

The main thing we would like to emphasize, however, is that the expression in
the case k < −1, that is, the expression in (6.2), is incorrect. We now show that if it
were correct, it would readily imply that ζ(2m + 1) is transcendental for each m, a
positive integer! This is, as of yet, an unjustified conclusion. To see this implication,
let k = −(2m + 1), n ∈ N, and y = 2α, β = π2/α in (6.1), then divide both sides of
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the resulting identity by (4α)m and use (6.2) to arrive at

1
(4α)m

∞∑
n=1

σ−(2m+1)(n)e−2nα +
1

(4β)m
(−1)m+1

∞∑
n=1

σ−(2m+1)(n)e−2nβ

=
−ζ(2m + 1)

2(4α)m
.

Invoke Ramanujan’s formula (1.13) in the above equation to obtain

1
2
(−1)m+1 ζ(2m + 1)

(4β)m
=

m+1∑
k=0

(−1)k−1 B2k

(2k)!
B2m+2−2k

(2m + 2 − 2k)!
αm+1−kβk.

If we now let α = β = π, this gives

ζ(2m + 1) = (−1)m+1(2π)2m+1
m+1∑
k=0

(−1)k−1 B2k

(2k)!
B2m+2−2k

(2m + 2 − 2k)!
,

which implies that all odd zeta values are transcendental.
In this section, we obtain the correct expression for P(y) in (6.2) and thereby

obtain a proof of (1.13) for the sake of completeness. However, our exposition will
be very brief as the technique of Mellin transforms for deriving such identities is
well-known, and since this result is just a special case of theorem 1.2 which, in
turn, is a special case of theorem 1.1 of which a proof is derived using a similar
technique in § 2. Chandrasekharan and Narasimhan derived (6.1) by an application
of a general result of Bochner [12, lemma 4], and Bochner’s result is also proved
using Mellin transforms.

Let k = −(2m + 1) in (6.1), where m ∈ N. Using the inverse Mellin transform
representation of the exponential function, we see that for λ =Re(s) > 1,

∞∑
n=1

σ−(2m+1)(n)e−ny =
1

2πi

∫ λ+i∞

λ−i∞
Γ(s)ζ(s)ζ(s + 2m + 1)y−s ds. (6.3)

Take the contour C determined by the line segments [λ − iT, λ + iT ],
[λ + iT, μ + iT ], [μ + iT, μ − iT ] and [μ − iT, λ − iT ], where −(2m + 2) < μ <
−(2m + 1). The integrand on the right side of (6.3) has simple poles at s =
0, 1,−1,−3,−5, . . . ,−(2m + 1), and also at s = −2m. The error in Chandrasekha-
ran and Narasimhan’s paper while deriving (6.2) occurs because they consider s = 0
to be the only pole of the integrand.

By the Cauchy residue theorem, we have

1
2πi

[∫ λ+iT

λ−iT

+
∫ μ+iT

λ+iT

+
∫ μ−iT

μ+iT

+
∫ λ−iT

μ−iT

]
Γ(s)ζ(s)ζ(s + 2m + 1)y−s ds

= R−2m + R0 + R1 +
m∑

i=0

R−(2i+1).

(6.4)
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The above residues are easily calculated to

R−2m = (−1)m ζ(2m + 1)y2m

22m+1π2m
, R0 = −1

2
ζ(2m + 1),

R1 = (−1)m (2π)2m+2B2m+2

2(2m + 2)!y
,

m∑
i=0

R−(2i+1) = (−1)m+1
m∑

i=0

(−1)iB2i+2B2m−2i(2π)2m−2iy2i+1

2(2i + 2)!(2m − 2i)!
. (6.5)

As T → ∞, the integrals along the horizontal segments [λ + iT, μ + iT ], [μ − iT,
λ − iT ] are easily seen to approach zero using Stirling’s formula for Γ(s) and ele-
mentary bounds on the Riemann zeta function. Hence from (6.3), (6.4) and (6.5),
we find that

∞∑
n=1

σ−(2m+1)(n)e−ny +
1

2πi

∫ μ−i∞

μ+i∞
Γ(s)ζ(s)ζ(s + 2m + 1)y−s ds

= (−1)m ζ(2m + 1)y2m

22m+1π2m
− 1

2
ζ(2m + 1) + (−1)m (2π)2m+2B2m+2

2(2m + 2)!y

+ (−1)m+1
m∑

i=0

(−1)iB2i+2B2m−2i(2π)2m−2iy2i+1

2(2i + 2)!(2m − 2i)!
. (6.6)

In the line integral on the left side, which we denote by V (m), we now employ the
functional equation (1.21) twice to obtain

V (m) =
1

2πi

∫ μ−i∞

μ+i∞
(−1)m(2π)2s+2mΓ(−s − 2m)ζ(−s − 2m)ζ(1 − s)y−s ds,

and then make the change of variable S = −(s + 2m) so that upon employing again
the inverse Mellin transform representation for the exponential function, we have

V (m) = (−1)m+1
( y

2π

)2m ∞∑
n=1

σ−(2m+1)(n)e−((4π2n)/y). (6.7)

Ramanujan’s formula (1.13) can now be obtained by first substituting (6.7) in
(6.6), then letting y = 2α and αβ = π2, multiplying throughout by (4α)−m and
then simplifying the resulting equation.

7. Concluding remarks

By the principle of analytic continuation all of our results involving x, or α and β
are also valid for complex values satisfying Re(x) > 0, Re(α) > 0 and Re(β) > 0.

The nice thing about our generalization of Ramanujan’s formula for ζ(2m + 1)
is that it gives a relation between any two odd zeta values of the form ζ(4� + 3).
To see this, let N = 2j + 1, j � 0 and m = 2� + 1, l � 0, then theorem 1.2 gives a
relation between ζ(4� + 3) and ζ(4(2j� + j + �) + 3). If we now let � = 0, then we
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get a relation between ζ(3) and ζ(4j + 3). Thus any two distinct values of j, for
example, j1 and j2, by way of the relations that ζ(4j1 + 3) and ζ(4j2 + 3) have with
ζ(3), imply a relation between ζ(4j1 + 3) and ζ(4j2 + 3).

However, theorem 1.2 gives a similar relation between only some odd zeta values
of the form ζ(4� + 1), but not between any two such odd zeta values. For example,
one does not get a relation between ζ(5) and ζ(33) from our theorem 1.2. To see
this, note that if N = 2j + 1, j � 1 and m = 2�, � � 1, and there exists a relation
between ζ(2m + 1) and ζ(2Nm + 1) governed by theorem 1.2, that is, a relation
between ζ(4� + 1) and ζ(4�(2j + 1) + 1), then in the special case when � = 1 and
4�(2j + 1) + 1 = 33, it would imply 2j + 1 = 8, which is obviously false for any
positive integer j. Also, two odd zeta values, one of the form ζ(4� + 1) and other
of the form ζ(4� + 3) do not satisfy the relation in theorem 1.2.

Table 1 below lists some odd zeta values obeying the relation in theorem 1.2.
Its complement, theorem 1.5, covers cases not handled in [21,22]. For example,

if we let N = 2 and m = −1 in theorem 1.5, we obtain a transformation of the
generalized Lambert series

∑∞
n=1 n4/(en2x − 1) which cannot be obtained from the

results in [21,22]. We would also like to emphasize that theorem 1.1 allows us
to obtain transformations beyond those given by theorems 1.2 and 1.5 since h is
permitted to take any integral value other than the values (N + 1)/2 + Nm and
N/2 + Nm it takes for theorems 1.2 and 1.5 respectively.

Corollaries 5.1, 5.5 and 5.7 suggest that the key to studying questions on tran-
scendence of γ and odd zeta values might lie in the study of the generalized Lambert
series occurring in these results for N > 1.

Ramanujan’s formula (1.13) can be interpreted [10,18] as the formula encoding
the fundamental transformation properties of Eisenstein series of level 1 and their
Eichler integrals. This interpretation has been extended in [9, § 5] to weight 2k + 1
Eisenstein series of level 2. In light of this, it is important to see what is encoded by
theorem 1.2, a generalization of Ramanujan’s formula. Kirschenhofer and Prodinger
[25] have found applications of Ramanujan’s formula in the analysis of special data
structures and algorithms. More specifically, they use these identities to achieve
certain distribution results on random variables related to dynamic data structures
called ‘tries’, which are of importance in theoretical computer science. Thus it

Table 1. Odd zeta values related by theorem 1.2

m N ζ(2m + 1) ζ(2Nm + 1)
1 1 ζ(3) ζ(3)
1 3 ζ(3) ζ(7)
1 5 ζ(3) ζ(11)
1 7 ζ(3) ζ(15)

m N ζ(2m + 1) ζ(2Nm + 1)
2 3 ζ(5) ζ(13)
2 5 ζ(5) ζ(21)
2 7 ζ(5) ζ(29)
2 9 ζ(5) ζ(37)

m N ζ(2m + 1) ζ(2Nm + 1)
3 1 ζ(7) ζ(7)
3 3 ζ(7) ζ(19)
3 5 ζ(7) ζ(31)
3 7 ζ(7) ζ(43)

m N ζ(2m + 1) ζ(2Nm + 1)
4 3 ζ(9) ζ(25)
4 5 ζ(9) ζ(41)
4 7 ζ(9) ζ(57)
4 9 ζ(9) ζ(73)
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may be of interest to see whether theorem 1.2 has any implications in theoretical
computer science. Moreover, theorem 1.5 being a natural complement of theorem
1.2, suggests similar studies when N is even.

As remarked in the introduction, Ramanujan’s formula (1.13) has given rise to
a beautiful theory of Ramanujan polynomials [18,28]. Since theorem 1.2 gives a
natural generalization of these polynomials, it may be worthwhile studying their
properties.

Our results in theorems 1.2 and 1.5, and more generally in theorem 1.1, can
be generalized in the context of Hurwitz zeta function and Dirichlet L-functions.
In fact, as mentioned before, Kanemitsu, Tanigawa and Yoshimoto have already
obtained a generalization of theorem 1.1 for Hurwitz zeta function [22], and later
for Dirichlet L-function [23], but they only consider the case when N is even and
h � N/2. Thus, these results could be further generalized when N is any positive
integer and h is any integer.

Lastly, we would like to mention that the behaviour of the Lambert series∑∞
n=1[(n

N−(2h+1))/(enN x − 1)] seems to be quite different from the one studied
here. This will be studied in a forthcoming paper [14].
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