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COVARIANCE EFFECT
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If one drops the strong assumption that firms and households know all of the relevant
parameters, and instead models agents as learning these parameters, the estimated
parameters become random variables. Taking expectations several periods into the future
may then involve taking the expectation of a product of random variables. Because the
resulting problem is difficult, previous research has avoided it. This paper makes some
progress using both analytical and numerical techniques. Focusing especially on
consumption, we find that the resulting covariance terms could account for the
well-documented empirical result that consumption displays excess sensitivity to lagged
income. We show that a similar covariance effect could play a role in many widely used
economic models.
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1. INTRODUCTION

The assumption of rational expectations appeals to economists at least in part
because we prefer to model agents as rational. However, agents with rational ex-
pectations are also assumed to know the true parameters of all relevant stochastic
processes. In view of the difficulty that economists have determining basic eco-
nomic parameters, this is a strong assumption. An alternative is to assume that
agents learn economic parameters using data based on their own experience. Of
course, if we model agents as learning, we can no longer treat all parameters as
known constants. Instead, for the agents in a model, these parameters become
random variables (more specifically, statistics that the agents are estimating).

Fully taking into account that an agent’s parameter estimates are random vari-
ables can significantly affect learning dynamics in a model that has not yet con-
verged to rational expectations equilibrium. Many previous papers have looked at
the implications of learning, but they assume a simplified form of learning to make
the analysis of expectations more tractable.1

In this paper, we focus on models in which an exogenous variable follows
a first-order autoregressive process. The AR(1) case is simple and very widely
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employed in economics. Under rational expectations, the current expectation of
what the exogenous variable will be two periods in the future is the square of
the autoregressive parameter times the current value of the exogenous variable.
In previous work on learning, researchers have treated the agent’s estimate of an
AR parameter as a known constant. This allowed them to write the expectation
as the square of the parameter estimate times the current value of the exogenous
variable.

In contrast, under a full modeling of learning, the expectation of an exogenous
variable two periods in the future can no longer be expressed in this simple way.
Instead, the parameter is unknown, and so, the expectation involves the product of
two random variables—the estimate of the autoregressive parameter and the future
value of the exogenous variable. The expectation of a product of random variables
leads to a covariance, specifically the covariance between the parameter estimate
and the future value of the exogenous variable.2 Since the agent uses realizations
of the exogenous variable to estimate the autoregressive parameter, the covariance
will not be zero.

Taking the covariance effect into account makes models more complex, but it
may also make them more realistic and perhaps more successful in accounting
for what empirical researchers have found in the data.3 To illustrate this possi-
bility, we focus on the well-known rational expectations–permanent income hy-
pothesis model of consumption. This model has a famous implication, namely
that the marginal utility of consumption should follow a random walk (or, more
precisely, a martingale). A variety of empirical studies have shown that lagged
income has predictive power for the first difference of consumption, at both the
aggregate and the household levels, violating the martingale prediction.4 This is
known as the “excess sensitivity” puzzle because, under the rational expectations–
permanent income hypothesis, households incorporate all information into
their current consumption decision and lagged variables should therefore be
irrelevant.5

The simplest example in which the covariance effect enters is in a consumption
problem with a two-period horizon. In this example (which yields the martingale
property under rational expectations), we show that the covariance effect will
make the first difference of household consumption depend on lagged income.
We use closed-form analytical results, simulations based on analytical results, and
numerical solution techniques to show how the short-horizon results extend to a
long-horizon problem.

The paper is organized as follows. Section 2 formally introduces the covari-
ance effect using an asset pricing example. Section 3 presents the short-horizon
consumption model and shows how the covariance effect leads to evidence of
“excess sensitivity.” Section 4 introduces a numerical method that allows us to ex-
tend the horizon further. Section 5 illustrates how the covariance effect enters three
other well-known models (specifically, models of money demand, exchange-rate
dynamics, and fixed investment). Section 6 concludes.
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2. FORMAL INTRODUCTION OF THE COVARIANCE EFFECT

To illustrate some basic ideas, we begin with a simple asset pricing model. Consider
the special case of the Lucas (1978) model with a single asset and risk-neutral
agents. The first-order condition for the household’s problem implies

Pt+ j =
(

1

1 + r

)
Ê t+ j [Pt+ j+1 + Dt+ j+1], (1)

where P is the price of the asset, r is the interest rate, D is the dividend on the asset,
and Ê t+ j is the expectation operator conditional on information in period t + j .
(We use the notation “Ê” here to emphasize that we are considering the subjective
expectation of an agent who is learning. Of course, under rational expectations,
these subjective expectations are replaced by the mathematical expectation.) Let
the timing be such that the agent receives the dividend and then trades the asset.
Suppose that the agent has observed the dividend process for t periods, so that
her information set at time t is It = {D0, D1, . . . , Dt }. For simplicity, we focus
on the last three periods in a finite-horizon problem, and so, the last period will
be period t + 2. Dividends are paid in each period, specifically including periods
t + 1 and t + 2. Since t + 2 is the terminal period, the price in that period (after
the dividend has already been paid) is zero. By successive substitution in (1), it is
straightforward to show that

Pt+1 =
(

1

1 + r

)
Ê t+1 Dt+2 (2)

and

Pt =
(

1

1 + r

)
Ê t Dt+1 +

(
1

1 + r

)2

Ê t Ê t+1 Dt+2. (3)

Suppose that the stochastic process for dividends is6

Dt+1 = ρDt + εt+1, (4)

where ε is i.i.d. N (0, σ 2). Under rational expectations the subjective expecta-
tion, Ê t , is replaced by Et , the mathematical expectation conditional on informa-
tion at time t . In equations (2) and (3), we then have Et+ j Dt+ j+1 = ρDt+ j and
Et Et+1 Dt+2 = Et Dt+2 = ρ2Dt , so that

Pt+1 = ρ

1 + r
Dt+1 (5)

and

Pt =
[

ρ

1 + r
+ ρ2

(1 + r)2

]
Dt . (6)

Now consider what happens if learning plays a role. Suppose that ρ is unknown
and that agents estimate ρ using ordinary least squares, which is the minimum
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mean squared error estimator. The expressions for Pt+1 and Pt are again given
by (2) and (3), except that the agent’s expectation is no longer the mathematical
expectation. This leads to a complication when we consider the expectations terms
in the equation for Pt . Note first that, since Dt is known at time t ,

Ê t Dt+1 = Ê t (ρDt + εt+1) = Dt Ê t (ρ),

and thus
Ê t Dt+1 = ρ̂t Dt , (7)

where Ê t (ρ) = ρ̂ t and ρ̂ t denotes the current parameter estimate. Using (7), the
equation for Pt+1 gives

Pt+1 =
(

ρ̂ t+1

1 + r

)
Dt+1. (8)

In equation (3), equation (7) gives

Ê t+1 Dt+2 = ρ̂ t+1 Dt+1. (9)

Using (9) in the iterated expectation term on the right-hand side of (3) then gives
that Ê t Ê t+1 Dt+2 = Ê t ρ̂ t+1 Dt+1. However, conditional on the agent’s information
set at time t, ρ̂ t+1 Dt+1 is a product of random variables. The expectation of this
product will be the product of the expectations of ρ̂ t+1 and Dt+1 plus a covariance
term:

Ê t Ê t+1 Dt+2 = Ê t ρ̂ t+1 Dt+1 = Ê t ρ̂ t+1 Ê t Dt+1 + Ĉovt (ρ̂ t+1, Dt+1),

and thus, using Ê t ρ̂ t+1 = ρ̂ t and (7),

Ê t Ê t+1 Dt+2 = ρ̂2
t Dt + Ĉovt (ρ̂ t+1, Dt+1), (10)

where

Ĉovt (ρ̂ t+1, Dt+1) ≡ Ê t [(ρ̂ t+1 − Ê t ρ̂ t+1)(Dt+1 − Ê t Dt+1)].

In general, the covariance term will not be equal to zero because a high reali-
zation of D will tend to increase the agent’s estimate of ρ, creating a positive
covariance.7 Thus Ê t Ê t+1 Dt+2 	= ρ̂2

t Dt , and so, Pt cannot be derived from (6) by
simply replacing the parameter ρ with the parameter estimate ρ̂ t .

This is a simple example, but the issue is broad ranging. If agents are learning
an autoregressive parameter in a driving process such as (4), then the expecta-
tions terms are not the same as they would be if the estimated parameter were
nonstochastic: Ê t Dt+ j+1 	= ρ̂

j+1
t Dt for j > 0. Nonetheless, in the learning litera-

ture, expectations typically are resolved by treating the agent’s parameter estimate
as nonstochastic. As noted earlier, Timmermann (1996) makes this assumption to
render tractable an asset pricing model in which agents estimate the parameters
of an autoregressive dividend process. Lewis (1989) studies a monetary model of
exchange rates in which agents are learning the autoregressive parameters of the
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money supply and income processes. She resolves expectations by treating the
estimated AR parameters as known constants. Also, in their influential papers on
the convergence of learning to rational expectations, Marcet and Sargent (1989a,b)
study an application in which firms estimate the autoregressive parameter in the
process governing aggregate capital. In their application, the representative firm
must evaluate expectations of the future aggregate capital stock. To resolve these
expectations, Marcet and Sargent treat the estimate of the AR(1) parameter as a
known constant.

A recent paper in which agents do treat their parameter estimates as random vari-
ables is Guidolin and Timmermann (2000).8 In that paper, learning that explicitly
accounts for future variation in parameter estimates is called “rational learning”
and learning that treats parameter estimates as known constants is called “adaptive
learning.” In a version of the Lucas asset pricing model, Guidolin and Timmermann
establish conditions under which rational learning will increase the expected level
of asset prices and the variance of returns. They show that rational learning may
generate serial correlation and volatility clustering in asset returns. Also, they argue
that learning may cause a martingale test to reject the joint hypothesis of rational
expectations and market efficiency.

The example in this section illustrates that a full analysis of learning introduces
an effect that is missing in both rational expectations models and in models of
learning that treat the estimated parameter as nonstochastic. We refer to this effect
as the covariance effect. In subsequent sections, we show how the covariance
effect can substantially change the predictions of an otherwise standard economic
model.

3. SHORT-HORIZON CONSUMPTION MODEL

In this section, we show how the covariance effect can alter a well-known prediction
of the rational expectations–permanent income hypothesis model of consumption,
namely the prediction that consumption will be a martingale. We begin by setting
up a simple model of consumption that yields the martingale prediction.

Let the household’s problem be to choose a consumption sequence to maximize
the expected present value of future utility subject to the dynamic budget constraint
which governs the evolution of financial assets:

max
{Ct+ j }τj=0

Ê t

τ∑
j=0

β jU (Ct+ j ) (11)

so that
At+1 = R(At + Yt − Ct ), (12)

where β is the discount factor, U is the utility function, C is consumption, A is
assets, R is the gross rate of return on the single, risk-free asset, and Y is labor
income. For notational convenience, we assume R = 1/β. We assume quadratic
utility because this yields closed-form solutions for consumption, which allow us
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to isolate the effects of learning. In addition, quadratic utility implies a coefficient
of relative prudence9 of zero and thus avoids introducing a precautionary savings
motive, which is absent from the standard rational expectations–permanent income
hypothesis formulation. Since the terminal period is t + τ and the current period
is t , τ represents the agent’s horizon.

The solution to this consumption problem will be a set of consumption rules for
each period from t to t + τ :

Ct+τ = At+τ + Yt+τ , (13)

Ct+τ−1 = R

1 + R

[
At+τ−1 + Yt+τ−1 + 1

R
Êt+τ−1Yt+τ

]
, (14)

and, in general,10

Ct = Rτ∑τ
i=0 Ri

[
At + Yt + 1

R
Êt Yt+1 + 1

R2
Ê t Yt+2 + · · · + 1

Rτ
Ê t Yt+τ

]
. (15)

Under rational expectations, consumption in the model described above would
be a martingale. The intuition is simple: Under rational expectations, the agent’s
expectation of a variable is the same as the mathematical expectation of that vari-
able conditional on the information set at the time the expectation is formed.
Consumption changes from one period to the next only if there is news. Based
on current information, the best estimate of next period’s consumption is today’s
consumption.

Empirically, consumption does not appear to be a martingale. In particular,
many empirical studies regress the first difference of log consumption on lagged
income11:

ln Ct+1 − ln Ct = a0 + a1 ln Yt + ut+1. (16)

The typical finding is that the coefficient on lagged income is not zero, as predicted
by the rational expectations–permanent income hypothesis, but instead negative
and significantly different from zero. This is known as the excess sensitivity puzzle
because consumption is more sensitive to lagged income than it should be under
the rational expectations–permanent income hypothesis.

To explore whether this could be due to learning, consider the following stochas-
tic process for labor income:

yt+1 = ρyt + εt+1 (17)

under the assumption that ε is i.i.d. N (0, σ 2).12 Here, yt represents the deviation
of income from its unconditional mean; that is, yt ≡ Yt − ȳ . We assume that the
agent knows the form of the stochastic process for labor income, the unconditional
mean of Y , and the variance of ε but does not know ρ.13 More formally, the agent’s
information set is

It ≡ {yt , yt−1, . . . , y0; ȳ, σ 2
}
. (18)
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This means that, at the beginning of period t , the agent has a sample of size t with
which to estimate ρ. The agent estimates ρ using ordinary least squares; thus,

ρ̂ t =
(

t∑
i=1

yi−1 yi

)/(
t∑

i=1

y2
i−1

)
. (19)

The assumption of OLS is attractive both because of its simplicity and because the
linear projection of y on lagged y yields the MMSE forecast.14 Moreover, if the
agent begins with a diffuse prior, the OLS estimate of ρ is the Bayesian estimate.
That is, ρ̂ t is the mean of the distribution of ρ, posterior to the information set It .15

3.1. Two-Period Horizon

The covariance effect arises when agents take the expectation of a product of
random variables. Therefore, the first place the covariance effect will show up is in
the forecast of yt+2. We therefore set τ equal to 2 for the moment. Using (7), (10),
(14), and (15), we can derive the first difference of consumption under learning16:

(Ct+1 − Ct ) = R

1 + R

(
1 + ρ̂ t+1

R

)
εt+1

+ R

1 + R

[(
1 + ρ̂ t+1

R

)
ρyt −

(
1 + ρ̂ t

R

)
ρ̂ t yt

]
−
(

1

1 + R

)
σ̂ρy(t), (20)

where

σ̂ρy(t) ≡ Ĉovt (ρ̂ t+1, yt+1). (21)

The first term on the right-hand side of (20) represents the annuitized present
value of a shock to labor income. In the absence of learning, the estimated value of
ρ would be replaced with the true value of ρ, σ̂ρy would equal zero, and this would
be the only term. Then, consumption next period would be equal to consumption
this period plus a disturbance orthogonal to this period’s information set. Thus
consumption would be a martingale as suggested by the rational expectations
intuition presented earlier. In particular, in the absence of learning, a regression of
the first difference of consumption on lagged income should yield a coefficient of
zero since εt+1 is orthogonal to yt .

The second term is also an annuitized present value, specifically one that arises
from changes in expected future income due to revisions in the agent’s estimate of
ρ. Under rational expectations, ρ is known and, therefore, new information does
not alter the agent’s beliefs about ρ. Consequently, under rational expectations the
second term does not arise.

The third term reflects the covariance effect. It appears because high realiza-
tions of labor income induce the agent to revise the estimate of ρ upward, leading
to higher expectations of future income and thus higher consumption in the cur-
rent period (compared to the rational expectations–permanent income hypothesis
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benchmark). An increase in current consumption means a smaller first difference
of consumption (smaller Ct+1 − Ct ) and thus a regression of the first difference
of consumption on lagged income should yield a negative coefficient on lagged
income.

More formally, it is possible to show that the covariance effect tends to make
the first difference of consumption a negative function of lagged income using the
following proposition, which is proved in the Appendix.

PROPOSITION 1. Under learning, the expectation of the covariance between
ρ̂ t+1 and yt+1 conditional on current information is an increasing function of yt ,
where the coefficient on yt is σ 2/

∑t−1
0 y2

t :

σ̂ρy(t) = σ 2∑t−1
i=0 y2

i

yt . (22)

Since σ̂ρy enters the right-hand side of (20) with a negative coefficient, the covari-
ance effect will tend to make (Ct+1 − Ct ) negatively correlated with yt .

3.2. Three-Period Horizon

The simple case of τ = 2 shows that the covariance effect could account for empi-
rical evidence of excess sensitivity of consumption to lagged income. Whether this
generalizes as we lengthen the horizon turns out to be a surprisingly complicated
question. We begin by considering the case of τ = 3. Now, from equation (15),
we see that Ct depends on Ê t yt+3. Since the law of iterated expectations gives
Ê t yt+3 = Ê t Ê t+1 Ê t+2 yt+3, we can use (10) to write

Ê t yt+3 = Ê t
(
ρ̂2

t+1 yt+1
)+ Ê t Ĉovt+1(ρ̂ t+2, yt+2). (23)

This expression is harder to evaluate because it involves taking the expectation of a
more complicated nonlinear function of random variables. In particular, compared
to the case of τ = 2, we now must take the expectation of the functions ρ̂2

t+1 yt+1

and Ĉovt+1(ρ̂ t+2, yt+2) rather than taking the expectation of the simple product of
ρ̂ t+1 and yt+1.

One approach is to use a second-order Taylor-series expansion to obtain the
following proposition, which is proved in the Appendix.17

PROPOSITION 2. Under learning, the expectation of ρ̂
j
t+1 yt+1 conditional on

current information is equal to ρ̂
j+1
t yt plus a term that depends on σ̂ρy(t) and a

term that depends on the estimated variance of ρ̂ t+1:

Ê t ρ̂
j
t+1 yt+1

∼= ρ̂
j+1
t yt + j ρ̂ j−1

t σ̂ρy(t) + 1
2 j ( j − 1)ρ̂

j−1
t yt σ̂

2
ρ (t), (24)

where

σ̂ 2
ρ (t) ≡ Ê t

[
(ρ̂ t+1 − Ê t ρ̂ t+1)

2
] = Ê t

[
(ρ̂ t+1 − ρ̂ t )

2
]
.
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The next proposition (proved in the Appendix) establishes that σ̂ 2
ρ (t) is an increas-

ing function of σ̂ρy(t).

PROPOSITION 3. Under learning, the estimated variance of ρ̂ t+1 is equal to
the estimated covariance of ρ̂ t+1 with yt+1 multiplied by the ratio of current income
to
∑t

0 y2
t :

σ̂ 2
ρ (t) = yt∑t

0 y2
i

σ̂ρy(t).

Using (15), (23), and Propositions 2 and 3 to solve for Ct+1 − Ct yields18

(Ct+1 − Ct ) =
(

R2

1 + R + R2

){(
1 + ρ̂ t+1

R
+ ρ̂2

t+1

R2

)
εt+1

+
[(

1 + ρ̂ t+1

R
+ ρ̂2

t+1

R2

)
ρ −

(
1 + ρ̂ t

R
+ ρ̂2

t

R2

)
ρ̂ t

]
yt

+ 1

R2

[
σ̂ρy(t+1) − Ê t σ̂ρy(t+1)

]−
(

1

R
+ 2ρ̂ t

R2
+ ρ̂ t y2

t

R2
∑t

i=0 y2
i

)
σ̂ρy(t)

}
. (25)

The terms in this expression are similar to those in the corresponding expression
for τ = 2. The annuitization factor [R2/(1 + R + R2)] is smaller because the agent
is spreading the effects of any news over more periods. (To see this, note that R
is approximately 1, and so, the annuitization factor here is approximately one-
third, since there are three periods left.) In the τ = 2 case, there was a term arising
from revisions in the agent’s estimate of ρ. That term (the second term above) is
still there, but there is now also a term (the third term above) arising from revisions
in the estimated covariance between ρ̂ and y.

The most interesting term is the covariance term (the last term above). Whether
the covariance effect is stronger as the horizon lengthens from τ = 2 to τ = 3
depends on the coefficient on the covariance term, which is the product of the
annuitization factor and an additional expression in parentheses. The magnitude
of the expression in parentheses depends on R, the estimated value of ρ, and
the ratio of squared income to the sum of squared income. R is close to 1 and
reasonable variations will have only a modest effect on the expression. On average,
the order of magnitude of the ratio of squared income to the sum of squared
income will be approximately 1/t . The estimate of ρ has the most effect on the
expression. For example, for R = 1.05, t = 40, and estimated ρ = 0.9, the product
of the annuitization factor and the expression in parentheses will be 0.91. For
estimated ρ = 0.7 and ρ = 0.5, the product of the annuitization factor and the
expression in parentheses will be 0.78 and 0.65, respectively. In comparison, the
coefficient on the covariance for the τ = 2 case in equation (20) is 0.49. Thus, for
a wide range of parameter values, the coefficient on the covariance is higher in the
τ = 3 case than in the τ = 2 case.
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In analyzing the covariance effect, the simplest case is consumption close to
the terminal period (e.g., τ = 2), but the results above suggest that the covariance
effect will not disappear in a longer-horizon problem. If anything, the foregoing
analysis suggests that the covariance effect may become even stronger as the
horizon lengthens. There is an intuitive explanation for a stronger effect at longer
horizons. If the horizon is extended, changes in tomorrow’s parameter estimates
will matter for more future periods.

The analytical results show that learning and, in particular, the covariance ef-
fect move a standard permanent income hypothesis model in the right direc-
tion by making theoretical consumption behavior qualitatively more similar to
actual consumption behavior. To examine the quantitative impact of learning,
we turn to simulations based on the analytical results above. We set ȳ = 100,
At = 25, R = 1.05, σ = 1, and we vary ρ. We generate a sequence of observations,
yi , i = 0, 1, . . . , t , where y0 is drawn from the unconditional distribution of y, and
where y1 through yt are generated using equation (17). We use these observations
to estimate ρ via OLS. Having obtained ρ̂ t and yt , we obtain Ct from (15), (10),
(23), and Propositions 1–3. We then use (17) and (12) to obtain yt+1, and At+1.
Equations (15) and (10) and Proposition 1 are then used to obtain Ct+1. We thus
have the single observation [Ct+1, Ct , yt ]. We repeat this procedure 10,000 times,
generating a sample of 10,000 observations of [Ct+1, Ct , yt ]. This sample repre-
sents a cross section of consumers, each of whom has observed her own realization
of the income sequence.19 Next, we use this sample to estimate (16). We report
results for the models with τ = 2 and τ = 3 in Table 1. We consider four different
values for ρ (ρ = 0.7, 0.9, 0.95, and 0.99) and several values of t .20 Table 1 clearly
shows that learning can generate evidence of excess sensitivity. All of the coef-
ficients on lagged income are negative and most are significantly different from
zero. To assess the economic significance, it is useful to note that the coefficients
on lagged income are on the same order of magnitude as found, for example, by
Zeldes (1989).

Although the covariance effect decreases as agents have more observations on
which to base their estimate of the unknown parameter (i.e., as t increases), it
still has an effect on consumption even when t is quite large. For example, in
all cases the simulations in Table 1 show that the coefficient on lagged income
is significantly different from zero when agents have 30 years of observations of
their income process.

Another interesting point emerges from Table 1. The covariance effect seems
to become stronger as the horizon lengthens. This is illustrated by the absolute
magnitude of the coefficients on lagged income, which generally tends to increase
as we move from τ = 2 to τ = 3. This reinforces the impression from the analyt-
ical results that the covariance effect is not simply an artifact of a short-horizon
problem.

Proposition 1 shows that the covariance effect will tend to decrease with t
(since the sum of y2

i from i = 0 to i = t − 1 will be increasing in t). The variable t
represents the number of observations of the income process that the agent has,
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TABLE 1. Regressions of simulated consumption growth under full learning on
lagged income: Short-horizon cases

Household’s
years of
previous
observations
(t)

Horizon

τ = 2 τ = 3

α̂1 α̂1

(standard error) t-statistic (standard error) t-statistic

(A) ρ = 0.7

15 −0.050 −8.7 −0.047 −8.8
(0.006) (0.005)

30 −0.021 −3.6 −0.021 −4.2
(0.006) (0.005)

60 −0.003 −0.6 −0.010 −1.9
(0.006) (0.005)

(B) ρ = 0.9

15 −0.049 −12.3 −0.055 −14.0
(0.004) (0.004)

30 −0.023 −6.1 −0.024 −6.4
(0.004) (0.004)

60 −0.006 −1.7 −0.013 −3.4
(0.004) (0.004)

(C) ρ = 0.95

15 −0.030 −10.2 −0.041 −13.8
(0.003) (0.003)

30 −0.016 −5.7 −0.015 −5.3
(0.003) (0.003)

60 −0.008 −3.0 −0.005 −1.7
(0.003) (0.003)

(D) ρ = 0.99

15 −0.011 −8.1 −0.016 −11.1
(0.001) (0.001)

30 −0.010 −7.3 −0.013 −9.5
(0.001) (0.001)

60 −0.006 −4.8 −0.009 −7.1
(0.001) (0.001)

and so, t is most naturally interpreted as the number of years since the agent be-
gan her working life. Thus Proposition 1 implies that the coefficient on lagged
income should decline with age. To the best of our knowledge, no one has tested
whether the coefficient on lagged income is more negative for people early in their
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working life than for people later in their working life. There is some indirect
evidence on this point, however, in Zeldes (1989). Zeldes compares households
with high and low levels of assets relative to income. The ratio of assets to income
is likely to be strongly correlated with age. Zeldes finds that the coefficient on
lagged income is typically more negative for low-asset households, a result that is
consistent with what we would expect if the covariance effect was playing some
role in determining consumption. Of course, an alternative possibility is that some
households (particularly low-assets households) may be liquidity constrained. If
the covariance effect plays a separate role, then the coefficient on lagged income
should be more negative for younger agents (after controlling for liquidity con-
straints). It would be interesting to see if this implication is supported by the
data.

3.3. Asymptotic Convergence and Bounded Memory

Intuitively, we would expect the covariance effect to disappear as the number
of observations increases because the estimated value of ρ will converge to the
true value as the sample size grows. This is confirmed by the simulation results
and by Proposition 1, which shows that the denominator of the coefficient on yt

increases with the sample size t . More formally, since the law of motion for yt ,
equation (17), is independent of the agent’s beliefs, learning ρ is an example of the
estimation of a time-invariant linear stochastic difference equation. As such we can
apply the result of Marcet and Sargent (1989b, p. 354), which gives ρ̂ t → ρ almost
surely as t → ∞. However, although it converges asymptotically, the least-squares
estimator of an AR(1) parameter shows considerable variation even in moderately
large samples. Nankervis and Savin (1988, Table 2) show that, if the true ρ is 0.9,
the standard deviation of the least-squares estimator is 0.31 for a sample of size
30, 0.09 for a sample of size 50, and 0.06 for a sample of size 100. Thus, the
covariance effect can be important for quite large samples.21

Although our results are not invariant to the interpretation of the time period, the
most natural choice for the length of the period in a model of learning about income
is 1 year, since this is the frequency at which many agents receive news (about
raises, promotions, the renegotiation of contracts, etc.). Under this interpretation,
substantial uncertainty about the true parameter is likely to exist throughout the
typical agent’s working life. In this sense the life-cycle model of consumption
provides a natural example of learning with bounded memory. Specifically, the
length of an agent’s memory is limited to the past years of his or her working
life. Since we treat all past income observations as being equally relevant, the
life-cycle hypothesis provides an economic rationale for giving equal weight to a
finite number of observations, one of the types of bounded memory analyzed by
Honkapohja and Mitra (2000).

The life-cycle consumption case assumes agents have only a finite number
of observations. However, learning may also be important asymptotically. For
example, in an infinite-horizon model of consumption, an occasional break in the
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structural parameters of the income process may cause agents to discard or discount
observations from the distant past. This economic justification for learning with
bounded memory is by no means limited to models of consumption. For example,
we have already shown, in Section 2, that the covariance effect will arise in a
present-value model of stock prices with learning. Timmermann (1996, p. 533)
provides the following argument to support learning with bounded memory in an
infinite horizon version of the present-value model:

Learning effects are unlikely to vanish even in the long run . . . . After a structural break
in the data-generating process it is reasonable to assume that agents will attempt to
re-estimate the dividend process using relatively recent data points rather than the
entire historical sample. Similarly, slowly changing nonstationarities in the data-
generating process could be handled by agents’ use of a moving window of the data,
in which case learning effects will persist even asymptotically.

In another example, we show in Section 5 that the covariance effect will arise in
a monetary model of exchange rates. Lewis (1989, p. 92) points out a potential
advantage to bounded memory following a structural break in the parameters of that
model. Analyzing the change in U.S. money demand that occurred at the beginning
of the 1980’s, she states that a market using a diffuse prior, which represents no
confidence in previous estimates of money demand parameters, will “on-average
learn more quickly and make less systematic prediction errors than a market using
a prior based on the past.”

4. EXTENDING THE HORIZON FURTHER

As τ increases, the expressions for consumption become more cumbersome. To
extend the horizon further, we therefore develop a numerical method that does
not require that we resolve analytically the expectations of complicated nonlinear
functions of random variables.

There are some unique features of our problem that make it particularly chal-
lenging. Because we are attempting to capture the agent’s subjective expectations,
in modeling those expectations we must use only information available to the
agent. This means that we need to find functions that express these expectations
in terms of the agent’s current information set.

Let It be given by equation (18). Since each of the expectations that we consider
is an expectation conditional on It , each could, in principle, be written as an
explicit function of It . The object of the method is to find a polynomial function
of It to approximate each of these conditional expectations. Since we wish to
evaluate these functions for t = 15, 30, and 60, we cannot form polynomials in It

directly; its dimension is too large. For example, with t = 15, the set of second-
order polynomials in It has 136 elements. We must therefore find a compact way
of summarizing It . We define the state vector, st = [yt , ρ̂ t , M−1

t ]′, where

Mt ≡ 1

t + 1

t∑
i=0

y2
i ,
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and form polynomials in its elements. Note that yt is the exogenous state variable,
ρ̂ t is the agent’s point estimate, and M−1

t is proportional to the variance of the
agent’s parameter estimate. Thus, st expands the state variable to include the mean
and variance of the agent’s beliefs [(see equation (32)].

We use this vector to summarize It for two reasons. First, having only three
elements, its dimension is manageable—the set of second-order polynomials in st

has 10 elements. Second, we can write next period’s state vector, st+1 = [yt+1, ρ̂ t+1,
M−1

t+1]′, as a function of st and of random variables whose distribution is known to
the agent. Specifically, using the recursive representation of OLS, we have

yt+1 = ρ̂ t yt + νt+1, (26)

ρ̂ t+1 = ρ̂ t + 1

t + 1
M−1

t yt (yt+1 − ρ̂ t yt ), (27)

and

Mt+1 = Mt +
(

1

t + 2

)(
y2

t+1 − Mt
)
, (28)

where νt+1 = (yt+1 − ρ̂ t yt ) = (ρ − ρ̂ t )yt + εt+1. Note that

(ρ − ρ̂ t ) =
(

−
t∑
1

yi−1εi

/
t∑
1

y2
i−1

)
. (29)

Since the εi are i.i.d. N (0, σ 2), νt+1 is N (0, σ 2
ν ), where

σ 2
ν =

[
1 +

(
1∑t

1 y2
i−1

)]
σ 2. (30)

To keep the dimension of the polynomial set manageably small, we form the
approximating functions from the complete set of polynomials of total degree
k, which is described by Judd (1998, pp. 239–240). Briefly, this is the set of
polynomial terms that would appear in the kth-order Taylor-series expansion.
Denote the elements of this set by {φi (st)} for i = 1, 2, . . . , N , where N is the
number of elements in the polynomial set. For example, the set of second-order
polynomials in st is {1, yt , ρ̂ t , M−1

t , y2
t , ρ̂ t yt , M−1

t yt , ρ̂
2
t , ρ̂ t M−1

t , M−2
t }. Thus,

φ1(st) = 1, φ2(st) = yt , φ3(st) = ρ̂ t , . . . , φN (st) = M−2
t . The results we report be-

low are based on this second-order set. Define the polynomial function ψ(aj , st)

as follows:

ψ(aj , st) ≡
N∑

i=1

aji φi (st). (31)

The approximation method finds a vector of coefficients, aj = [a j1, a j2, . . . , a jN ]′

such that ψ(aj , st) is a good approximation to Ê t yt+ j for j = 1, 2, . . . , τ .
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We use a Monte Carlo method22 to fix the parameters aj . Since we seek to
approximate the agent’s expectations, we perform the method using the stochastic
process for yt , as it is perceived by the agent. The method can be described in five
steps.

Step 1. Generate the agent’s information set using the true stochastic process as
follows: Draw y0 from the unconditional distribution for yt , which is N [0, σ 2/(1−
ρ2)], and produce {y1, y2, . . . , yt } using equation (17).

Step 2. Using this information set, It = {yt , yt−1, . . . , y0}, compute the current
state and construct the agent’s posterior probability density23 for ρ. We assume
that the agent’s prior belief about ρ is diffuse, and so, the posterior distribution for
ρ is24

N

ρ̂ t , σ
2

(
t−1∑

0

y2
i

)−1
. (32)

In the next three steps the Monte Carlo procedure is performed from the point
of view of the agent who does not know ρ but has observed It .

Step 3. Draw a value of ρ, ρ A, from the agent’s posterior distribution for ρ. If
the draw of ρ A exceeds the discount rate, R, discard that ρ A and draw again. This
truncates the normal distribution in (32) at the upper bound R and redistributes the
probability mass to draws below R.25 Set y A

0 equal to the y0 obtained in Step 1 and
useρ A to generate a time series of observations, {y A

0 , y A
1 , . . . , y A

t , y A
t+1, . . . , y A

t+τ−1,

y A
t+τ } according to y A

t+1 = ρ A y A
t + εt+1, where εt+1 is i.i.d. N (0, σ 2).

Step 4. Repeat Step 3 a large number, NR , of times. (The results reported below
use NR = 500.) This gives an artificially generated sample of NR observations that
the agent can use to fix the aj coefficients.

Step 5. Regress the NR realizations of y A
t+1, on the polynomials φi (s A

t ) to obtain
the coefficient vector, a1. Repeat, regressing the NR realizations of y A

t+ j on the
polynomials φi (s A

t ) to obtain aj , for j = 2, 3, . . . , τ . Having determined these
coefficient vectors, we can construct the polynomial approximations, which use
the true state from Step 2:

Ê t yt+1 ≈ ψ(a1, st), Ê t yt+2 ≈ ψ(a2, st), . . . , Ê t yt+τ ≈ ψ(aτ , st).

This method produces a set of expectations, Ê t yt+1 through Ê t yt+τ , for the
agent who has observed a single realization of [yt , . . . , y0]. These expectations are
then used in the decision rule, equation (15), to obtain Ct . Next, the true stochastic
process for yt , equation (17), is used to generate st+1. The agent’s expectations in
period t + 1 are obtained from

Ê t+1 yt+1+ j ≈ ψ(aj , st+1), j = 1, 2, . . . , τ − 1. (33)

These expectations are used in the decision rule (15) to determine Ct+1.
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TABLE 2. Regressions of simulated consumption growth under full learning on
lagged income: Long-horizon cases

Household’s
years of
previous
observations
(t)

Horizon

τ = 5 τ = 10 τ = 15

α̂1 α̂1 α̂1

(std. err.) t-statistic (std. err.) t-statistic (std. err.) t-statistic

(A) ρ = 0.7

15 −0.072 −10.6 −0.102 −16.1 −0.130 −15.3
(0.007) (0.006) (0.008)

30 −0.027 −5.8 −0.033 −8.1 −0.038 −9.8
(0.005) (0.004) (0.004)

60 −0.013 −3.0 −0.016 −4.8 −0.015 −5.58
(0.004) (0.003) (0.003)

(B) ρ = 0.9

15 −0.070 −14.9 −0.107 −17.9 −0.152 −18.8
(0.005) (0.006) (0.008)

30 −0.036 −8.8 −0.047 −10.6 −0.059 −12.3
(0.004) (0.004) (0.005)

60 −0.016 −4.2 −0.024 −6.1 −0.030 −7.7
(0.004) (0.004) (0.004)

(C) ρ = 0.95

15 −0.043 −12.3 −0.071 −13.8 −0.102 −15.8
(0.004) (0.005) (0.006)

30 −0.030 −9.0 −0.039 −10.3 −0.049 −11.6
(0.003) (0.004) (0.004)

60 −0.010 −3.4 −0.017 −5.0 −0.022 −6.3
(0.003) (0.003) (0.004)

(D) ρ = 0.99

15 −0.018 −9.5 −0.027 −8.1 −0.037 −7.7
(0.002) (0.003) (0.005)

30 −0.014 −8.8 −0.018 −9.4 −0.022 −9.9
(0.002) (0.002) (0.002)

60 −0.007 −4.8 −0.009 −4.9 −0.010 −5.2
(0.002) (0.002) (0.002)

For a given τ , the foregoing procedure yields a single observation of Ct+1, Ct ,
and Yt . We repeat this procedure 5,000 times to create a simulated cross-sectional
data set.26

Results are presented in Table 2 for τ = 5, τ = 10, and τ = 15.27 The results
are qualitatively similar to those in the simulations of the short-horizon cases
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presented in Table 1. There is strong evidence of excess sensitivity: All of the
estimated coefficients on lagged income are negative and significantly different
from zero. As expected, the magnitude of the covariance effect (as measured by the
coefficient on lagged income) declines as agents have more observations on which
to base their estimate of ρ. If anything, however, the evidence of excess sensitivity
is stronger for the long-horizon cases presented here than for the short-horizon
cases in Table 1. As a result, there is significant evidence of excess sensitivity even
when agents have 60 years of observations of their income process.

5. COVARIANCE EFFECT IN OTHER MODELS

We have shown that, under learning, expectations will include covariance terms
that can help to explain the behavior of consumption. Here we show that our
results have a broad range of possible applications. Specifically, we show that
our results apply to three very widely used macroeconomic models: the Cagan
model of money demand, a monetary model of exchange-rate dynamics, and a
quadratic-linear model of investment under uncertainty.

The following form is common to the three examples that follow: an equilibrium
price or quantity, zt , obeys

zt = aÊ t zt+1 + bxt , (34)

where
xt+1 = ρxt + υt+1. (35)

Here a, b, and ρ are constants (possibly matrices) and υt+1 is i.i.d. N (0, σ 2
υ ).

Repeated substitution for zt+ j in (34) gives

zt = bxt + baÊ t xt+1 + ba2 Ê t xt+2 + · · · (36)

Thus, zt is determined by expectations of xt+ j . If ρ is estimated, the expectations
Ê t xt+ j , for j = 2, 3, . . . , will include covariance terms that do not appear under
rational expectations, and zt will display a correlation with the forcing variable
that appears excessive under the assumption of rational expectations.

Consider first the Cagan money demand function,

Md
t

Pt
= exp

[
−α

(
Ê t Pt+1 − Pt

Pt

)]
. (37)

Let lowercase letters denote logs. Use Ê t pt+1 − pt ≈ (Ê t Pt+1 − Pt )/Pt and md
t =

ms
t to obtain ms

t − pt = −α(Ê t pt+1 − pt ). Rearranging, we have28

pt = aÊ t pt+1 + bms
t , (38)

where a ≡ α/(1 + α) and b ≡ 1/(1 + α). If ms
t follows an AR(1) process,

ms
t+1 = ρms

t + εt+1 (39)

then (38) and (39) are of the same form as (34) and (35).
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Next consider a monetary model of exchange-rate dynamics.29 Meese (1986)
and Lewis (1989) study a version of the monetary model30 which uses the following
money demand function:

mt − pt = δ1 yt − δ2
(
i u
t − i f

t

)
. (40)

Here, mt , pt , and yt denote the logs of relative (U.S. to foreign) money supplies,
price levels, and national incomes (so that pt ≡ pu

t − p f
t , etc.). Letting et denote

the log of the dollar price of foreign exchange, purchasing power parity31 gives
et = pt . Use this together with interest parity, i u

t − i f
t = Ê t (et+1) − et , in (40) to

derive et = mt − δ1 yt + δ2(Ê t et+1 − et ). Rearranging gives

et = aÊ t et+1 + bwt , (41)

where a = δ2/(1 + δ2), b = [1/(1 + δ2) −δ1/(1 + δ2)], and wt = [mt yt ]T . Thus,
repeated substitution for the exchange rate on the right-hand side of (41) would
give et as a function of expectations of future values of the money supply and
income. If the money supply and income are autoregressive processes,[

mt+1

yt+1

]
=
[
ρm 0

0 ρy

][
mt

yt

]
+
[
εmt+1

εyt+1

]
,

where εmt+1 and εyt+1 are uncorrelated white-noise shocks, we again have a
model of the same form as (34) and (35). If agents are learning ρm and/or ρy ,
the equilibrium exchange rate will depend on terms like Ĉovt (ρ̂mt+1, mt+1) and
Ĉovt (ρ̂ yt+1, yt+1).

Finally, in their paper on the convergence of learning, Marcet and Sargent
(1989b) study a quadratic-linear model of investment under uncertainty.32 In that
model, the representative firm chooses a sequence of capital inputs, {k j }∞j=0, to
maximize

Ê0

∞∑
t=0

β t

[
pt f kt − γt kt −

(
d1

2

)
(kt − kt−1)

2

]
. (42)

Here 0 < β < 1, f and d1 are positive constants, γt is the price of capital inputs,
and pt is the price of output. Because it faces an adjustment cost [represented by
the quadratic term in (42)], the optimizing firm must forecast future values of the
output price. Marcet and Sargent (1989b) use pt = −d2 fKt , where Kt denotes the
aggregate or industrywide stock of capital and d2 is a positive constant.33 Thus, to
forecast the output price the firm must forecast Kt+ j . Marcet and Sargent (1989b)
assume the firm believes that Kt follows

Kt+1 = ρKt + ωt+1 ωt+1 is i.i.d.
(
0, σ 2

ω

)
(43)

and that it estimates ρ using OLS.34 They show that, when the model converges
to rational expectations, the belief in (43) is correct.
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To simplify, set γt ≡ 0 for all t . The Euler equation for the problem of maxi-
mizing (42) is

β Ê t kt+1 − (β + 1)kt + kt−1 = f 2d2

d1
Kt . (44)

Using �kt ≡ kt − kt−1, (44) becomes

�kt = β Ê t�kt+1 + bKt , (45)

where

b = −
(

f 2d2

d1

)
,

and the model (45) and (43) is in the form of (34) and (35).
The problem that we address in this paper is not limited to models of the same

general form as (34) and (35) and, even within that form, the three examples we
present are certainly not exhaustive. Still, they suggest the broad range of models in
which equilibrium depends on the expectation of future values of an autoregressive
variable and in which the covariance effect will therefore appear.

6. CONCLUSION

Previous research treats the economic parameters on which agents base their ex-
pectations as nonstochastic. This can be justified in two ways. Under rational
expectations, the strong assumption is made that economic agents know all the
relevant parameters. In previous work on learning, in order to resolve expectations
it is assumed, explicitly or implicitly, that the parameter estimates are not random
variables. It is understandable why previous research has avoided fully treating
parameters as random variables. Doing so is difficult, so difficult that it has the
potential to make some problems intractable.

This paper directly tackles the problem of treating a relevant parameter as a
random variable and makes some progress: We draw attention to some of the rules
that govern the expectation operator in this environment, derive three potentially
useful propositions, and develop a numerical method for approximating the agent’s
subjective expectations.

A key point that emerges from our analysis is what we refer to as the covariance
effect. We illustrate the potential importance of the covariance effect using a con-
sumption example. In the case of consumption, the covariance effect can explain
several previously documented empirical results. We present four other examples
(one in Section 2 and three in Section 5) of how the covariance effect enters a
variety of economic models—asset pricing, money demand, exchange rate, and
fixed investment. These examples suggest that there is much room for further re-
search to explore whether the covariance effect can explain empirical anomalies
in models in which the relevant economic parameters are assumed to be known or
nonstochastic.
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NOTES

1. See, for example, Timmermann (1996, p. 528), who points out that if agents treated the parameter
that they are learning “as a stochastic variable, analysis of the effect of learning on stock price volatility
would be intractable.”

2. Timmermann (1996) considers the contribution of a covariance term to the volatility of stock
prices under learning. To assess the contribution of learning to excess volatility, he [in his eq. (13)] writes
the variance of the stock price as the sum of three terms: the variance of the rational expectations stock
price, the variance of the part reflecting learning, and twice their covariance. This last term, the covari-
ance term, incorporates the covariance between the parameter estimate and the current realization of the
exogenous dividend. However, since the agents in his model treat their parameter estimates as known
constants, their dividend forecasts do not include the covariance effect that is the subject of this paper.

3. However, note that the covariance effect does not alter the fundamental convergence results of
the learning literature as presented, for example, by Evans and Honkapohja (2000).

4. Goodfriend (1992) and Pischke (1995) study how a different type of learning can explain the
correlation of aggregate consumption changes with lagged aggregate income. In their models, agents
cannot (or do not) immediately distinguish aggregate from idiosyncratic shocks to income, but do learn
the true nature of shocks over time. In these models, household consumption will follow a random
walk but measures of aggregate consumption will suffer from an “information aggregation bias,” which
causes lagged aggregate income to predict changes in aggregate consumption.

5. For an extensive review of micro empirical evidence on excess sensitivity, see Browning and
Lusardi (1996).

6. To simplify notation, we abstract from any constant terms.
7. It is easiest to see how the covariance term arises by working from the iterated expectations term,

Ê t Ê t+1 Dt+2. Still, the law of iterated expectations applies here so that Ê t Ê t+1 Dt+2 = Ê t Dt+2, and the
result in (10) can be obtained from a consideration of Ê t Dt+2 instead of Ê t Ê t+1 Dt+2.The somewhat
more complicated derivation that begins from Ê t Dt+2 is available from the authors on request.

8. We thank an anonymous referee for bringing this interesting paper to our attention and the authors
for providing us with a preliminary draft.

9. Blanchard and Mankiw (1988).
10. A brief derivation of (14) and (15) is given in the Appendix.
11. Browning and Lusardi (1996) list six studies that use this specification as well as several

other studies that use the closely related specification in which consumption growth is regressed on
(instrumented) earnings growth.

12. In addition to the reasons mentioned earlier, we focus on the AR(1) specification because a
single-parameter stochastic process helps to make the effects of learning more transparent than does a
stochastic process with more parameters.

13. We focus here on the implications of parameter estimation uncertainty when the correct speci-
fication of the data generating process (DGP) is known. Pesaran and Timmermann (1995) look at the
interesting question of what happens when there is also uncertainty about the DGP. They study the
predictability of stock market returns when investors use a predefined selection criterion to reevaluate
the specification of the DGP in each period. They find an economically significant improvement in
performance when the forecasting model is allowed to change in response to historically available
information.

14. Hamilton (1994, pp. 74–76).
15. Hamilton (1994, pp. 334, 358).
16. The derivation of (20) is given in the Appendix. Timmermann [1996, eq. (14)] derives a similar

expression in an asset pricing model by linearizing the excess rate of return. His result gives the excess
rate of return as a function of the change in parameter estimates and of the deviation of those estimates
from their true value.

17. The Taylor-series approximation of the present value in (15) may be less accurate for large
values of τ . This is because long-horizon present values are sensitive to the persistence parameter ρ.
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This sensitivity may not be fully captured by the Taylor-series expansion. We discuss a second approach,
which relies on numerical methods, later.

18. To derive (25), follow the procedure used to obtain (20), which is given in the Appendix.
19. For comparison, Zeldes (1989) has 9,362 degrees of freedom in the regression reported in the

first column of his Table 2.
20. Variation in σ and the ratio of assets to mean income made little difference, and so, the results

are not reported separately.
21. The learning system considered in this paper satisfies the conditions of the Benveniste et al.

(1990) theorem of the convergence rate, as cited and applied by Marcet and Sargent (1995). Regarding
that theorem, Marcet and Sargent (1995, p. 205) state that “the assertion of the theorem of root-t
convergence seems to be nearly true in samples of about 10,000. It is remarkable, though, that in
samples of smaller size the rate of convergence can be very low.”

22. Judd (1998, p. 394).
23. Guidolin and Timmermann (2000), who study learning when agents explicitly treat their pa-

rameter estimates as random variables, also use a Bayesian approach to evaluate the representative
agent’s beliefs.

24. Hamilton (1994, pp. 354, 358).
25. When we perform the simulations without imposing ρ A ≤ R, there is no qualitative change in

our results.
26. For t = 15, the numerical method occasionally (never more than once in 5,000 repetitions)

generated a negative value of consumption. We discarded these observations and generated new obser-
vations to replace them.

27. To check robustness, we conducted simulations that used NR = 1,000 in Step 4 and that gener-
ated a cross section of 10,000 observations. Each of these changes significantly increased the compu-
tational burden with little or no effect on our results.

28. This presentation of the Cagan model follows Blanchard and Fischer (1989, pp. 216–217),
where it is shown that the OLG model with money has an equilibrium condition similar to (38).

29. See, for example, Mussa (1982).
30. Here we modify Lewis’s (1989) model in order to simplify our exposition. In her model, the

first differences of ms
t and yt follow AR (1) processes, and deviations from purchasing power parity

follow a random walk.
31. Our statement of purchasing power parity assumes a normalization of units such that et + p f

t −
pu

t = 0.
32. Sargent (1987, pp. 407–411) uses a similar model to study endogenous growth.
33. They express all variables as deviations from means to dispense with constant terms.
34. To resolve expectations, they treat ρ̂t as a known constant.
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APPENDIX

Derivation of equations (14) and (15). For quadratic utility with β = 1/R, the solution
to (11) implies that

Ct+ j = Ê t+ j Ct+ j+1 for j = 0, 1, 2, . . . , τ − 1.

Use this condition together with (12) to derive (14) from (13). Repeat recursively to
obtain (15).

Derivation of equation (20). For period t + 1 with τ = 2, equation (14) gives

Ct+1 = R

1 + R

[
At+1 + Yt+1 + 1

R
Êt+1Yt+2

]
,

which we can rewrite as

Ct+1 = ȳ + R

1 + R

[
At+1 + yt+1 + 1

R
ρ̂ t+1 yt+1

]
. (A.1)
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Additionally, for period t with τ = 2, equation (15) gives

Ct = R2

1 + R + R2

[
At + Yt + 1

R
Êt Yt+1 + 1

R2
Ê t Yt+2

]
,

which we can rewrite, using (7), (10), and the definition (21), as

Ct = ȳ + R2

1 + R + R2

[
At + yt + 1

R
ρ̂ t yt + 1

R2
ρ̂2

t yt + 1

R2
σ̂ρy(t)

]
. (A.2)

Use (12) in (A.1) to write

Ct+1 = ȳ + R

1 + R

[
R(At + yt + ȳ − Ct ) +

(
1 + 1

R
ρ̂ t+1

)
yt+1

]
. (A.3)

Note from (A.2) that

At + yt =
(

1 + R + R2

R2

)
(Ct − ȳ) −

(
1

R
ρ̂ t + 1

R2
ρ̂2

t

)
yt − 1

R2
σ̂ρy(t).

Substituting into (A.3) then gives

Ct+1 = Ct + R

1 + R

[(
1 + 1

R
ρ̂ t+1

)
yt+1 −

(
1 + 1

R
ρ̂ t

)
ρ̂ t yt

]
−
(

1

1 + R

)
σ̂ρy(t).

Use (17) to substitute for yt+1 to obtain (20).

Proof of Proposition 1.

σ̂ρy(t) = Ê t {[ρ̂ t+1 − Ê t ρ̂ t+1][yt+1 − Ê t yt+1]}.

Since Ê t ρ̂ t+1 = ρ̂ t and Ê t yt+1 = ρ̂ t yt , we have

σ̂ρy(t) = Ê t {[ρ̂ t+1 − ρ̂t ][yt+1 − ρ̂ t yt ]}. (A.4)

Using equation (29) to substitute for [ρ̂ t+1 − ρ̂ t ] in (A.4) gives

σ̂ρy(t) = 1

t + 1
M−1

t yt Ê t [yt+1 − ρ̂ t yt ]
2. (A.5)

Note that (yt+1 − ρ̂ t yt ) = [(ρ − ρ̂ t )yt + εt+1]. Since

ρ̂ t = ρ +
(∑t−1

0 yiεi+1∑t−1
0 y2

i

)
,

we have

Ê t (yt+1 − ρ̂ t yt )
2 = Ê t

(−∑t−1
0 yiεi+1∑t−1
0 y2

i

)2

y2
t + ε2

t+1 − 2

(∑t−1
0 yiεi+1∑t−1

0 y2
i

)
ytεt+1

.
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Since the ε′
i s are known to be i.i.d., the expectation of the last term on the right-hand side

is zero and the first term on the right-hand side is

Ê t

(−∑t−1
0 yiεi+1∑t−1
0 y2

i

)2

y2
t

 =

(∑t−1
0 y2

i

)
σ 2(∑t−1

0 y2
i

)2 y2
t .

Collecting results and using Ê tε
2
t+1 = σ 2 gives

Ê t (yt+1 − ρ̂ t yt )
2 =


(∑t−1

0 y2
i

)
σ 2(∑t−1

0 y2
i

)2 y2
t + σ 2


=
[

y2
t∑t−1

0 y2
i

+ 1

]
σ 2 =

[
y2

t +∑t−1
0 y2

i∑t−1
0 y2

i

]
σ 2,

which gives

Ê t (yt+1 − ρ̂ t yt )
2 =
[ ∑t

0 y2
i∑t−1

0 y2
i

]
σ 2. (A.6)

Use (A.5), (A.6), and the definition of Mt ,

Mt = 1

t + 1

t∑
i=0

y2
i ,

to write

σ̂ρy(t) =
(

1∑t
0 y2

i

)
yt

( ∑t
0 y2

i∑t−1
0 y2

i

)
σ 2 =

(
σ 2∑t−1
0 y2

i

)
yt .

Proof of Proposition 2. Define f (ρ̂ t+1, yt+1)≡ ρ̂
j
t+1 yt+1. The expectation of the second-

order Taylor-series expansion of this function around (ρ̂ t , ρ̂ t yt ) gives

Ê t

(
ρ̂

j
t+1 yt+1

) ≈ Ê t f (ρ̂ t , ρ̂ t yt ) + ∂ f (·,·)
∂ρ̂ t+1

Ê t (ρ̂ t+1 − ρ̂ t ) + ∂ f (·,·)
∂yt+1

Ê t (yt+1 − ρ̂ t yt )

+ ∂2 f (·,·)
∂ρt+1∂yt+1

Ê t [(yt+1 − ρ̂ t yt )(ρ̂ t+1 − ρ̂ t )] + 1

2

∂2 f (·,·)
(∂ρ̂ t+1)2

Ê t (ρ̂ t+1 − ρ̂ t )
2

+ 1

2

∂2 f (·,·)
(∂yt+1)2

Ê t (yt+1 − ρ̂ t yt )
2 = f (ρ̂ t ρ̂ t yt ) + ∂2 f (·,·)

∂ρ̂ t+1∂yt+1
σ̂ 2

ρy(t)

+ 1

2

∂2 f (·,·)
(∂ρ̂ t+1)2

σ̂ 2
ρ (t) + 1

2

∂2 f (·,·)
(∂yt+1)2

V̂art (yt+1).

Note that f (ρ̂ t , ρ̂ t yt ) = ρ̂
j+1
t yt . Also, evaluating the derivatives at ρ̂ t+1 = ρ̂ t , yt+1 = ρ̂ t yt

gives

∂2 f (·,·)
(∂ρ̂ t+1)2

= j ( j − 1)ρ̂
j−1
t yt ,

∂2 f (·,·)
(∂yt+1)2

= 0, and
∂2 f (·,·)

∂ρ̂ t+1∂yt+1
= j ρ̂ j−1

t .
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Collecting, we haveÊ t (ρ̂
j
t+1 yt+1) ≈ ρ̂

j+1
t yt + j ρ̂ j−1

t σ̂ρy(t) + 1
2 j ( j − 1)ρ̂

j−1
t yt σ̂

2
ρ (t).

Proof of Proposition 3. σ̂ 2
ρ (t) = Ê t [ρ̂ t+1−Ê t ρ̂ t ]2. Using Ê t ρ̂ t+1 = ρ̂ t and equation (27)

gives

σ̂ 2
ρ (t) =

[(
1

t + 1

)
M−1

t yt

]2

Ê t [yt+1 − ρ̂ t yt ]
2.

Using (A.5) then gives

σ̂ 2
ρ (t) =

[(
1

t + 1

)
M−1

t yt

]
σ̂ρy(t).

Since (
1

t + 1

)
M−1

t =
(

1∑t
0 y2

i

)
,

this gives

σ̂ 2
ρ (t) = yt∑t

0 y2
i

σρy(t).
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