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Boundary integrals for oscillating bodies in
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The theoretical foundations of the boundary integral method are considered for inviscid
monochromatic internal waves, and an analytical approach is presented for the solution
of the boundary integral equation for oscillating bodies of simple shape: an elliptic
cylinder in two dimensions, and a spheroid in three dimensions. The method combines
the coordinate stretching introduced by Bryan and Hurley in the frequency range of
evanescent waves, with analytic continuation to the range of propagating waves by
Lighthill’s radiation condition. Not only are the waves obtained for arbitrary oscillations of
the body, with application to radial pulsations and rigid vibrations, but also the distribution
of singularities equivalent to the body, allowing later inclusion of viscosity in the theory.
Both a direct representation of the body as a Kirchhoff–Helmholtz integral involving
single and double layers together, and an indirect representation involving a single layer
alone, are considered. The indirect representation is seen to require a certain degree of
symmetry of the body with respect to the horizontal and the vertical. As the surface of the
body is approached the single- and double-layer potentials exhibit the same discontinuities
as in classical potential theory.
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1. Introduction

Internal gravity waves in density-stratified fluids, inertial waves in rotating fluids and
inertia–gravity waves in rotating stratified fluids, all share a common pattern under
localized monochromatic excitation: a St Andrew’s cross in two dimensions, and a double
cone in three dimensions. The first experimental studies of this pattern used oscillating
bodies to generate the waves, such as a circular cylinder (Mowbray & Rarity 1967) and
a sphere (McLaren et al. 1973). The first theoretical studies were modelled after these
experiments, and considered cylinders either circular (Hurley 1972; Appleby & Crighton
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B. Voisin

1986) or elliptic (Hurley 1997; Hurley & Hood 2001), and spheres (Hendershott 1969;
Appleby & Crighton 1987; Voisin 1991; Rieutord, Georgeot & Valdetarro 2001; Davis
2012) or spheroids (Krishna & Sarma 1969; Sarma & Krishna 1972; Lai & Lee 1981). The
free oscillations of a sphere, displaced from its neutral buoyancy level then released, were
also considered (Larsen 1969).

The theory combined coordinate stretching and analytic continuation; an equivalent
formulation involving the Laplace transform for impulsively started oscillations was also
used. The problem was solved first in the frequency range where the waves are evanescent
and their equation elliptic, by stretching the coordinates so as to turn the wave equation
into the Laplace equation when the Boussinesq approximation is made, and a Helmholtz
equation otherwise; the solution was then continued analytically to the frequency range
where the waves are propagating and their equation hyperbolic, based on the causality
requirement that, for time dependence as exp(−iωt) say, with t the time and ω the
frequency, the solution be analytic in the upper half of the complex ω-plane.

Several origins have been invoked for this approach: Hendershott (1969) traced it back
to Stewartson (1952), for the formation of Taylor columns; Appleby & Crighton (1986)
traced it back to Hurley (1972), who combined it with conformal mapping to devise a
general approach of two-dimensional monochromatic internal waves; and Voisin (1991)
traced it back to Pierce (1963), for the Green’s function of acoustic–gravity waves. But
Rieutord et al. (2001) pointed out that the approach is actually much older, having been
introduced first by Bryan (1889) for the determination of the inertial modes of a rotating
spheroid, a problem to which it is still applied to this day (Rieutord & Noui 1999; Ivers,
Jackson & Winch 2015; Backus & Rieutord 2017).

As pointed out by Ermanyuk (2002), the approach also allows the determination of the
added mass of a rigid body oscillating in a stratified fluid, based on the added mass of the
stretched version of the same body oscillating in a homogeneous fluid. The outcome has
been compared with experiment for a spheroid (Ermanyuk 2002), a sphere (Ermanyuk &
Gavrilov 2003), a cylinder with diamond-shaped (Ermanyuk & Gavrilov 2002) or circular
(Brouzet et al. 2017) cross-section, a vertical plate and a flat-topped hill (Brouzet et al.
2017).

In nature, the main manifestation of monochromatic internal waves is the internal
or baroclinic tide, generated in the ocean by the oscillation of the barotropic tide over
bottom topography. The necessity of dealing with arbitrary topography has led to the
development of a variety of theoretical approaches (Garrett & Kunze 2007). Among
them is the boundary integral method, and its numerical implementation the boundary
element method. The forcing, typically a free-slip condition at a solid boundary, is
replaced by a distribution of singularities on the boundary. The waves are expressed
as the convolution of the distribution with the Green’s function of the problem, and
the boundary condition is reduced to an integral equation for the distribution. Once
the distribution is known, the waves are obtained immediately in the whole fluid
domain.

The boundary integral method is not specific to internal waves, or even to fluid
mechanics. A review of its early history has been given by Cheng & Cheng (2005), and
a recent review with extensive bibliography by Martin (2006, chapter 5). The numerical
development of the method dates back to the 1960s, and the method is now used routinely
for Stokes flow (Pozrikidis 1992), potential flow (Pozrikidis 2002) and acoustic waves
(Crighton et al. 1992, chapter 10), having reached the status of textbook topic (Hinch 2020,
chapter 12). It is also commonly used in elasticity, heat transfer and electromagnetism; see,
among many others, Brebbia, Telles & Wrobel (1984), Gaul, Kögl & Wagner (2003) and
Gibson (2014).
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Boundary integrals in stratified fluids

For internal and inertial waves, the boundary integral method has been introduced
first for the diffraction at a horizontal strip (Barcilon & Bleistein 1969), a vertical strip
(Robinson 1969), a wedge (Hurley 1970; Robinson 1970) and a shelf break (Hurley 1972).
It was not pursued further in the Western literature at the time. In Russia, however, the
derivation of Kirchhoff–Helmholtz integrals by Sobolev (1954) for inertial waves and
Miropol’skii (1978) for internal waves, originally to solve the initial-value problem, led
to investigation of the application of the same integrals to the boundary-value problem.
This was done by Kapitonov (1980) and Skazka (1981) for inertial waves in three and two
dimensions, respectively, Gabov & Shevtsov (1983, 1984) for Boussinesq internal waves in
three and two dimensions, respectively, and Gabov & Orazov (1986) for non-Boussinesq
internal waves in one dimension, Pletner (1991) and Sundukova (1991) in three dimensions
and Pletner (1992) and Allakhverdiev & Pletner (1993) in two dimensions.

A long series of papers followed, initiated by Gabov and continued by his collaborators
after his death in 1989 (Sveshnikov, Shishmarev & Pletner 1989). The series is presented
in table 1, together with two separate papers by Korobkin (1990) and Davydova (2006a),
employing the same approach. The problem was considered for impulsive switch-on, and
the steady state investigated in the large-time limit. Only the first papers in the series
provided explicit solutions, while the later papers focused on the existence and unicity of a
solution. The papers are largely derivative, exploring small variations of a limited number
of configurations. Some results were published twice, in full form in regular journals and in
summary form in Doklady. Some papers are identical (Kharik & Pletner 1990a,b), or only
differ from each other by minute details (Krutitskii 1996a,d, and also 1996e, 1997b), or
adapt word-for-word an earlier study of inertia–gravity waves (Krutitskii 2000) to inertial
waves (Krutitskii 2001) and internal waves (Krutitskii 2003b). In spite of these limitations,
and because this body of work seems mostly unknown in the Western literature, it has felt
useful to present it here.

Finally, three decades after its introduction for diffraction problems, the boundary
integral method was brought back into the Western literature for generation problems,
by Llewellyn Smith & Young (2003) for the oscillations of a vertical barrier, considered
analytically, and Pétrélis, Llewellyn Smith & Young (2006) for the oscillations of several
topographies, considered numerically. Further analytical application was performed by
Nycander (2006) and Musgrave et al. (2016) to one or several vertical barriers, and
further numerical application by Balmforth & Peacock (2009), Echeverri & Peacock
(2010) and Echeverri et al. (2011) to a variety of topographies. The scattering at a
Gaussian topography was also considered numerically by Mathur, Carter & Peacock
(2014). The mathematical foundations of the method, for both generation and scattering,
were discussed by Martin & Llewellyn Smith (2012).

In parallel, Sturova applied the boundary integral method to the oscillations of circular
or elliptic horizontal cylinders, both analytically (2001) and numerically (2006, 2011),
while Davydova & Chashechkin (2004) and Davydova (2004, 2006b) discussed how the
method can be combined with multiple scale analysis to calculate the waves and boundary
layer generated by the oscillations of a vertical cylinder of arbitrary cross section in a
slightly viscous fluid.

The aim of the present paper is twofold: first, to show how the method of coordinate
stretching and analytic continuation can be combined with the boundary integral method,
to solve the problem of internal wave generation by an oscillating body in an inviscid
fluid; and second, to investigate the peculiarities of boundary integrals for monochromatic
internal waves, compared with their usual properties for the Laplace and Helmholtz
equations.
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B. Voisin

Single source Multiple sources

2D Horizontal segment Gabov (1985)
Gabov & Krutitskii (1989)

Inclined segment Gabov (1984a) Krutitskii (1992a,b, 1994,
1995, 1996b, 1997c)Gabov & Pletner (1985,

1987a)
Pletner (1988)
Kharik (1993)
Krutitskii (1996e, 1997b)

Vertical segment Gabov & Krutitskii (1987)
Krutitskii (1988)
Korobkin (1990)

Arbitrary curve Gabov (1984b) Krutitskii (1996a,c,d,
1997a, 1998, 2003a)Gabov & Pletner (1987b,c)

Kharik & Pletner (1990a,b)

3D Horizontal disk Gabov & Pletner (1988)
Pletner & Tverskaya (1989,

1991)
Pletner (1990a,b)

Arbitrary horizontal Gabov & Simakov (1989)
domain Simakov (1989)

Vertical cylinder Davydova (2006a)
Arbitrary surface Krutitskii (2000, 2001,

2003b)

NB Arbitrary curve Korpusov, Pletner &
Sveshnikov (1997a,b,c)

Korpusov, Pletner &
Sveshnikov (1998)

Table 1. Publications based on the work of S.A. Gabov on the boundary integral method for internal and/or
inertial waves, in two dimensions (2D) or three dimensions (3D). Unless stated otherwise (NB), the Boussinesq
approximation is made throughout.

Boundary integrals have been considered by Martin & Llewellyn Smith (2012)
already. We focus accordingly on two aspects complementary to their investigations:
the equivalence (or lack thereof) between a direct formulation based on a
Kirchhoff–Helmholtz integral involving both single and double layers, and indirect
formulations based on single or double layers alone; and the discontinuities of the
boundary integrals at the boundary.

The derivation of the waves is accompanied by that of a distribution of singularities
equivalent to the body, with two consequences. First, once the spatial spectrum of the
distribution is known, additional phenomena, like viscosity and unsteadiness, that affect
the propagation of the waves and set their local structure, can be added into the analysis;
this approach has been pioneered by Lighthill (1978, § 4.10) and Hurley & Keady (1997),
and recently developed by Voisin (2020). Second, for a rigid body, the added mass of
the body follows directly from the first moment of the distribution, providing immediate
access to the radiated energy (called ‘conversion rate’ within the context of internal tides)
and to the forces exerted on the body, without requiring the actual calculation of the waves;
this aspect will be reported separately, and has been presented in summary form by Voisin
(2009).

The problem of internal wave generation by an oscillating body is stated in § 2 and its
direct formulation as a boundary integral in § 3. It is solved in §§ 4 and 5 for an elliptic
cylinder and a spheroid, as prototypal two- and three-dimensional bodies, respectively.
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Boundary integrals in stratified fluids

Arbitrary oscillations are considered first, and the results applied to the two simplest
types of oscillations: radial pulsations and rigid vibrations. The indirect formulation of
the problem as a single-layer integral is presented in § 6 and shown to lead to a simple
representation of the body. The representations of a vibrating sphere in Voisin, Ermanyuk
& Flór (2011) and a vibrating elliptic cylinder in Voisin (2020) are recovered as particular
cases. Sections 7 and 8 discuss the behaviour of the boundary integrals at the boundary
and in the far field, respectively. They are followed by a conclusion in § 9.

2. Statement of the problem

We consider linear internal waves in an inviscid uniformly stratified Boussinesq fluid of
buoyancy frequency N, and use the generalized potential introduced by Sobolev (1954)
for inertial waves and Gorodtsov & Teodorovich (1980), Hart (1981), Gray, Hart & Farrell
(1983), Gabov & Mamedov (1983), Gabov, Malysheva & Sveshnikov (1983), Gabov et al.
(1984), Voisin (1991, 2003) and Gorodtsov (2013) for internal waves, with specifics listed
in table 2. Gauge invariance, ensuring the completeness of the representation, has been
discussed by Sobolev (1954), Gray et al. (1983) and Gabov et al. (1983). A different but
related representation based on the toroidal/poloidal decomposition has been introduced
by Kistovich & Chashechkin (2001). Denoting the potential, called ‘internal’ by Voisin
(1991), as ψ , the wave equation takes the form(

∂2

∂t2
∇2 + N2∇2

h

)
ψ = q, (2.1)

with z the vertical coordinate, x = (x, y, z) the position, ∇ = (∂/∂x, ∂/∂y, ∂/∂z) the del
operator and ∇h = (∂/∂x, ∂/∂y, 0) its horizontal projection. The forcing is represented as
a source of mass releasing the volume q = ∇ · u of fluid per unit volume per unit time.
The disturbances u in velocity, p in pressure and ρ in density are expressed in terms of ψ
as

u =
(
∂2

∂t2
∇ + N2∇h

)
ψ, p = −ρ0

(
∂2

∂t2
+ N2

)
∂

∂t
ψ, ρ = ρ0

N2

g
∂2

∂t∂z
ψ, (2.2a–c)

with ρ0 the density at rest and g the acceleration due to gravity.
We are interested in monochromatic waves of frequency ω, varying in time through the

factor exp(−iωt) which is suppressed in the following. The wave equation becomes

(N2∇2
h − ω2∇2)ψ = q, (2.3)

and the fluid dynamical quantities become

u = (N2∇h − ω2∇)ψ, p = iρ0ω(N2 − ω2)ψ, ρ = −iρ0ω
N2

g
∂

∂z
ψ. (2.4a–c)

An oscillating body of surface S and outward normal n generates waves by imposing a
normal velocity Un at S, through the free-slip boundary condition

n · u = Un (x ∈ S). (2.5)

The boundary integral method replaces this condition by a source term q in the wave
equation.
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Rotation Stratif. Viscosity Non-Bouss. Compress. Heat cond.

Sobolev (1954) ×
Gorodtsov & Teodorovich (1980) ×
Hart (1981) × ×

× ×
Gray et al. (1983) ×
Gabov & Mamedov (1983) × ×
Gabov et al. (1983) × ×
Gabov et al. (1984) × × ×
Voisin (1991) × ×
Voisin (2003) × ×
Gorodtsov (2013) × ×

× × ×
Table 2. Introduction of generalized potentials for waves in rotating and/or stratified fluids with or without

viscosity, non-Boussinesq effects, compressibility and heat conduction.

3. Direct approach

3.1. Kirchhoff–Helmholtz integral
For this, we adapt the approach used for the Laplace and Helmholtz equations; see, for
example, Lighthill (1986, § 8.1), Jackson (1999, § 1.8), Martin (2006, § 5.6) and Pierce
(2019, § 4.6). For two arbitrary functions f and g we write

f (N2∇2
h − ω2∇2)g − g(N2∇2

h − ω2∇2)f = ∇ · [ f (N2∇h − ω2∇)g − g(N2∇h − ω2∇)f ], (3.1)

which upon integration inside a volume V delimited by the surface S of outward normal
n, and application of the divergence theorem, gives∫

V
[ f (N2∇2

h − ω2∇2)g − g(N2∇2
h − ω2∇2)f ] d3x

=
∫

S

[
f
(

N2 ∂

∂nh
− ω2 ∂

∂n

)
g − g

(
N2 ∂

∂nh
− ω2 ∂

∂n

)
f
]

d2S, (3.2)

where ∂/∂n = n · ∇ and ∂/∂nh = n · ∇h.
We apply this Green’s theorem to the volume V+ exterior to the oscillating body,

delimited internally by the surface S of the body (with outward normal −n) and externally
by a surface S∞ at infinity, as shown in figure 1. The volume interior to the body is denoted
as V−. We choose a fixed observation point x in either V+ or V−, and denote the variable
integration point in V+ as x′. We take for f the internal potential ψ(x′) at x′, and for g the
propagator G(x − x′) from x′ to x. Here, G is the Green’s function of the wave equation,
corresponding to unit point forcing and satisfying

(N2∇2
h − ω2∇2)G(x) = δ(x), (3.3)

with δ the Dirac delta function, together with the causality condition that G be analytic in
the upper half of the complex ω-plane. We assume that both G and ψ decay fast enough at
infinity for the contribution of S∞ to vanish, and will come back to this assumption later
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Boundary integrals in stratified fluids

S

S∞

n

V–

V+

Figure 1. Surfaces for the derivation of the Kirchhoff–Helmholtz integral.

in § 8. We obtain the Kirchhoff–Helmholtz integral∫
S

[
G(x − x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
ψ(x′)− ψ(x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′)

]
d2S′

= ψ(x) (x ∈ V+), (3.4a)

= 0 (x ∈ V−), (3.4b)

where ∂/∂n′ = n′ · ∇′ and ∂/∂n′
h = n′ · ∇′

h, with n′ = n(x′).
Letting now x approach S from within V+, we obtain

Ψ (x)+
∫

S
Ψ (x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′) d2S′ =

∫
S

Un(x′)G(x − x′) d2S′, (3.5)

an integral relation between the surface values Ψ of the internal potential (hence the
pressure) and Un of the normal velocity, to be satisfied for all x on the outer side S+
of S. Given the pressure this provides an integral equation of the first kind for the velocity,
and given the velocity an equation of the second kind for the pressure. Once it is solved,
the waves are expressed through the fluid, for x ∈ V+, as

ψ(x) =
∫

S

[
Un(x′)G(x − x′)− Ψ (x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′)

]
d2S′. (3.6)

This expression combines two terms: a single-layer potential

ψs(x) =
∫

S
σ(x′)G(x − x′) d2S′, (3.7)

generated by the surface distribution of monopoles

qs(x) = σ(x)δS(x), (3.8)

with density
σ(x) = Un(x), (3.9)
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B. Voisin

where δS is the Dirac delta function of support S, such that, if S(x) = 0 is the equation of
the surface, δS(x) = |∇S|δ[S(x)]; and a double-layer potential

ψd(x) =
∫

S
μ(x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′) d2S′, (3.10)

generated by the surface distribution of dipoles

qd(x) = −
(

N2 ∂

∂nh
− ω2 ∂

∂n

)
[μ(x)δS(x)], (3.11)

with density

μ(x) = −Ψ (x). (3.12)

See, for example, Jackson (1999, § 1.6) for the introduction of such potentials in
electrostatics, and Martin (2006, § 5.3) for non-dispersive waves.

The forcing is thus represented by the equivalent source

q(x) = Un(x)δS(x)+
(

N2 ∂

∂nh
− ω2 ∂

∂n

)
[Ψ (x)δS(x)]. (3.13)

Such representation allows the extension of (3.6) to a viscous fluid, once the spectrum

q(k) =
∫

q(x) exp(−ik · x) d3x (3.14)

is known, namely

q(k) =
∫

S
[Un(x)+ in · (N2kh − ω2k)Ψ (x)] exp(−ik · x) d2S, (3.15)

with k the wave vector and kh its horizontal projection. The extension follows the lines laid
by Lighthill (1978, § 4.10), Hurley & Keady (1997) and Voisin (2020); it will be discussed
further in § 6.2.

3.2. Green’s function
To determine the Green’s function we use the technique introduced by Bryan (1889) for
inertial waves and Hurley (1972) for internal waves. In the frequency range ω > N of
evanescent waves, (3.3), rewritten as[

(ω2 − N2)
∂2

∂x2 + (ω2 − N2)
∂2

∂y2 + ω2 ∂
2

∂z2

]
G(x) = −δ(x), (3.16)

is elliptic. Stretching the coordinates according to

x	 = ω

N
x, y	 = ω

N
y, z	 =

(
ω2

N2 − 1
)1/2

z (3.17a–c)

transforms it into a Poisson equation, of known Green’s function (Bleistein 1984, § 6.2).
Causality allows the continuation of the solution to the frequency range 0 < ω < N of
propagating waves. Continuation is implemented via Lighthill’s (1978, § 4.9) radiation
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Boundary integrals in stratified fluids

condition, namely by adding to the frequency a small positive imaginary part ε which is
later allowed to tend to 0; in other words, by performing the replacement

ω → ω + i0 = lim
ε→0+

(ω + iε). (3.18)

The Green’s function is obtained in three dimensions as

G(x) = 1
4πN(ω2 − N2)1/2|x	| , (3.19)

that is in unstretched coordinates

G(x) = 1
4π(ω2 − N2)1/2(ω2r2 − N2z2)1/2

, (3.20)

with associated velocity

uG(x) = (N2∇h − ω2∇)G = ω2(ω2 − N2)1/2x
4π(ω2r2 − N2z2)3/2

. (3.21)

Similarly, in two dimensions, when the waves are independent of the horizontal coordinate
y, the Green’s function is

G(x) = − ln |x	|
2πω(ω2 − N2)1/2

. (3.22)

Knowing the Green’s function we can now solve (3.5) for prototypal oscillating bodies,
namely an elliptic cylinder in two dimensions and a spheroid in three dimensions, in the
next two sections.

4. Elliptic cylinder

An elliptic cylinder of horizontal semi-axis a, vertical semi-axis b and equation

x2

a2 + z2

b2 = 1, (4.1)

is transformed by the stretching (3.17) into another elliptic cylinder, of semi-axes

a	 = ω

N
a, b	 =

(
ω2

N2 − 1
)1/2

b, (4.2a,b)

respectively. For (a/b)2 + (N/ω)2 > 1, corresponding to an original ellipse which either
has its major axis horizontal and operates at any frequency ω > N, or has its major axis
vertical and operates in the frequency range N < ω < N/[1 − (a/b)2]1/2, the stretched
ellipse has its major axis horizontal. We consider this situation first, and will deal with the
other situations by analytic continuation.
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B. Voisin

4.1. Solution for ω > N and (a/b)2 + (N/ω)2 > 1
For (a/b)2 + (N/ω)2 > 1, the stretched ellipse has its foci along the horizontal axis, at
(x	 = ±c, z	 = 0), with

c = (a2
	 − b2

	)
1/2 =

[
ω2

N2 a2 +
(

1 − ω2

N2

)
b2
]1/2

. (4.3)

We introduce elliptic coordinates (ξ, η) defined by

x	 = c cosh ξ cos η, z	 = c sinh ξ sin η, (4.4a,b)

with 0 � ξ < ∞ and 0 � η < 2π. This definition is inverted in terms of the distances to
the foci,

r± = [(x	 ± c)2 + z2
	]

1/2 = c(cosh ξ ± cos η), (4.5)

as

cosh ξ = r+ + r−
2c

, cos η = r+−r−
2c

; (4.6a,b)

see Happel & Brenner (1983, Appendix A) or Landau & Lifshitz (1984, § 4). The spatial
derivatives become

c
∂

∂x	
= 1

sinh2 ξ + sin2 η

(
sinh ξ cos η

∂

∂ξ
− cosh ξ sin η

∂

∂η

)
, (4.7a)

c
∂

∂z	
= 1

sinh2 ξ + sin2 η

(
cosh ξ sin η

∂

∂ξ
+ sinh ξ cos η

∂

∂η

)
, (4.7b)

where sinh2 ξ + sin2 η = sinh(ξ + iη) sinh(ξ − iη).
At the ellipse, ξ = ξ0 with

a	 = c cosh ξ0, b	 = c sinh ξ0, (4.8a,b)

so that

ξ0 = arctanh
(

b	
a	

)
= arctanh

[
b
a

(
1 − N2

ω2

)1/2]
. (4.9)

There, η reduces to the eccentric angle for the original ellipse, such that

x = a cos η, z = b sin η; (4.10a,b)

see Sommerville (1933, § IV.10) or Milne-Thomson (1968, § 6.32). The arc length element
follows as

dl = (a2 sin2 η + b2 cos2 η)1/2 dη, (4.11)

and the outward normal as

n = bex cos η + aez sin η

(a2 sin2 η + b2 cos2 η)1/2
, (4.12)

where ex and ez are unit vectors along the x- and z-axes, respectively. The boundary integral
equation (3.5) becomes

2πΨ (η)+
∫ 2π

0

[
Ψ (η′)

∂

∂ξ ′ + (a2 sin2 η′ + b2 cos2 η′)1/2

ω(ω2 − N2)1/2
Un(η

′)

]
ln |x	−x′

	| dη′ = 0,

(4.13)
where ξ = ξ0 + 0 > ξ ′ = ξ0.
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Boundary integrals in stratified fluids

To solve it, we adapt the procedure used by Gorodtsov & Teodorovich (1982) for the
potential flow around a circular cylinder. The normal velocity Un(η) is expanded in circular
functions as

(a2 sin2 η + b2 cos2 η)1/2Un(η) = c
∞∑

m=0

[U(c)
m cos(mη)+ U(s)

m sin(mη)], (4.14)

with

cU(c,s)
m = εm

2π

∫ 2π

0
(a2 sin2 η + b2 cos2 η)1/2Un(η)(cos, sin)(mη) dη, (4.15)

and the surface potential Ψ (η) as

Ψ (η) =
∞∑

m=0

[Ψ (c)
m cos(mη)+ Ψ (s)

m sin(mη)], (4.16)

with

Ψ (c,s)
m = εm

2π

∫ 2π

0
Ψ (η)(cos, sin)(mη) dη. (4.17)

Here, εm = 1 for m = 0 and 2 for m � 1 is the Neumann factor. The Green’s function has
been shown by Morse & Feshbach (1953, p. 1202) to admit of the expansion

ln |x	−x′
	| = ξ> + ln

( c
2

)
−

∞∑
m=1

2
m

exp(−mξ>)[cosh(mξ<) cos(mη) cos(mη′)

+ sinh(mξ<) sin(mη) sin(mη′)], (4.18)

where ξ< = min(ξ, ξ ′) and ξ> = max(ξ, ξ ′). Use of these expansions turns (4.13) into a
diagonal (infinite) linear system, of solution

Ψ
(c)
0 = − c

ω(ω2 − N2)1/2
ξ0U(c)

0 , Ψ
(s)
0 = 0, (4.19a)

Ψ (c,s)
m = c

ω(ω2 − N2)1/2
U(c,s)

m

m
(m /= 0). (4.19b)

Evaluation of the convolution integral (3.6), followed by differentiation according to
(2.4), yields

p = iρ0c(ω2 − N2)1/2

{
U(c)

0 ξ − 1
2

∑
±

∞∑
m=1

[U(c)
m ± iU(s)

m ]
exp[−m(ξ − ξ0 ± iη)]

m

}

(4.20)
for the pressure, and

u = 1
2

∑
±

(ω2 − N2)1/2ex ± iωez

N sinh(ξ ± iη)

∞∑
m=0

[U(c)
m ± iU(s)

m ] exp[−m(ξ − ξ0 ± iη)] (4.21)

for the velocity.
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B. Voisin

4.2. Solution for ω > N and (a/b)2 + (N/ω)2 < 1
These results are continued analytically to (a/b)2 + (N/ω)2 < 1 by applying (3.18). The
stretched ellipse has its foci along the vertical axis, at (x	 = 0, z	 = ±c′), with

c′ = ic =
[(
ω2

N2 − 1
)

b2 − ω2

N2 a2
]1/2

. (4.22)

This prompts the introduction of elliptic coordinates (ξ ′, η), defined by

x	 = c′ sinh ξ ′ cos η, z	 = c′ cosh ξ ′ sin η, (4.23a,b)

where 0 � ξ ′ < ∞ and 0 � η < 2π. Writing

x	 = c cosh
(
ξ ′ + i

π

2

)
cos η, z	 = c sinh

(
ξ ′ + i

π

2

)
sin η, (4.24a,b)

the solution of the problem is seen to follow immediately from that in § 4.1, by replacing
ξ by ξ ′ + iπ/2 and c by −ic′ throughout.

4.3. Solution for ω < N
In the frequency range 0 < ω < N, the waves propagate at the angle θ0 = arccos(ω/N) to
the vertical. The semi-focal distance of the stretched ellipse becomes

c = (a2 cos2 θ0 + b2 sin2 θ0)
1/2, (4.25)

a quantity interpreted by Hurley (1997) as the half-width of the wave beams delimited by
the critical wave rays tangential to the ellipse on either side. The semi-axes become

a	 = a cos θ0 = c cos η0, b	 = ib sin θ0 = ic sin η0, (4.26a,b)

where

η0 = arctan
(

b
a

tan θ0

)
(4.27)

is the eccentric angle of the critical points at which the critical rays are tangential to the
ellipse. Both definitions are illustrated in figure 2.

The stretched elliptic coordinates ξ and η become complex, with ξ taking the value
ξ0 = iη0 at the ellipse. The greatest difficulty here is the expression of ξ and η in
more comprehensible coordinates. For a sphere or spheroid, Sarma & Krishna (1972)
expressed the associated stretched spheroidal coordinates in terms of algebraic functions
of the Cartesian coordinates, but did not consider the determination of these multivalued
functions explicitly. Hendershott (1969) and Voisin (1991) set the determination in the far
field. Appleby & Crighton proceeded differently, for both the circular cylinder (1986) and
the sphere (1987), decomposing the wave field into zones delimited by the critical rays, and
investigating the properties of the stretched coordinates in each zone, concluding for the
sphere that ‘this illustrates the difficulty of working in more comprehensible coordinates’.
Davis (2012) combined the two approaches together for the sphere, expressing, in each
zone, the stretched coordinates in terms of real algebraic functions of the Cartesian
coordinates.
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Boundary integrals in stratified fluids

θ0

z

z+

x+

x

2c

ζ+

ξ+

χ0
2d

η0

θ0

z

z–

x–

x

2c
ζ–

ξ–

χ0 2d

η0

(a)

(b)

Figure 2. Geometry for the beams of waves propagating (a) upward to the right and downward to the left, and
(b) downward to the right and upward to the left.

In actuality, Lighthill’s radiation condition (3.18) allows both the stretched coordinates
to be expressed in terms of the characteristic coordinates

x± = x cos θ0 ∓ z sin θ0, z± = ±x sin θ0 + z cos θ0, (4.28a,b)

shown in figure 2, and the associated multivalued functions to be determined
unequivocally. The inversion formulae (4.5)–(4.6) are not convenient for this purpose. We
proceed instead from (3.17), (4.3) and (4.4), writing

cosh ξ cos η = ωx
[ω2a2 + (N2 − ω2)b2]1/2 , sinh ξ sin η = (ω2 − N2)1/2z

[ω2a2 + (N2 − ω2)b2]1/2 .

(4.29a,b)
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B. Voisin

Expanding these for ω = N cos θ0 + iε, with 0 < ε/N � 1, we get

cosh ξ cos η ∼ x
c

(
cos θ0 + i

ε

N
b2

c2

)
, sinh ξ sin η ∼ i

z
c

(
sin θ0 − i

ε

N
a2

c2 cot θ0

)
,

(4.30a,b)

so that

cosh(ξ ± iη) ∼ x±
c

± i
ε

N
ζ±
c

d
c sin θ0

. (4.31)

In addition to the quantities associated with the wave beams, namely their angle θ0 to the
vertical, their half-width c and the coordinates (x±, z±) perpendicular to and along them,
respectively, this expression involves also quantities associated with the critical segments
joining, for each beam, the opposite critical points on either side of the ellipse, namely
their angle

χ0 = arctan
(

b2

a2 tan θ0

)
(4.32)

to the horizontal, their half-length

d = (a4 cos2 θ0 + b4 sin2 θ0)
1/2

c
, (4.33)

and the coordinates

ξ± = x cosχ0 ∓ z sinχ0, ζ± = ±x sinχ0 + z cosχ0 (4.34a,b)

along and perpendicular to them, respectively. These quantities, introduced by Voisin
(2020), are represented in figure 2.

We may then write

ξ ± iη = arccosh
x±
c

= ln

⎡
⎣x±

c
+
(

x2±
c2 − 1

)1/2
⎤
⎦ , (4.35)

on the understanding that the determination of the square roots is set by the replacement

x± → x± ± i0 sign ζ±, (4.36)

so that, in particular,

(x2
± − c2)1/2 = |x2

± − c2|1/2 sign x± (|x±| > c), (4.37a)

= ±i|x2
± − c2|1/2 sign ζ± (|x±| < c). (4.37b)

This determination, shown in figure 3, coincides with those in figures 3–4 of Hurley (1972)
for a circular cylinder and figure 3 of Hurley (1997) for an elliptic cylinder.
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Boundary integrals in stratified fluids

x +
 = –c

–|x+
2 – c2|1/2 i|x+

2 – c2|1/2

–i|x+
2 – c2|1/2 |x+

2 – c2|1/2

|x–
2 – c2|1/2

x +
 = c

ζ
+  = 0

x
–  = –c

–i|x–
2 – c2|1/2

–|x–
2 – c2|1/2 i|x–

2 – c2|1/2

x
–  = cζ –

 = 0

(a)

(b)

Figure 3. (a) Determinations of (x2+ − c2)1/2 and (b) determinations of (x2− − c2)1/2.

It thus follows that

ξ = 1
2

ln

⎡
⎣x−

c
+
(

x2−
c2 − 1

)1/2
⎤
⎦+ 1

2
ln

⎡
⎣x+

c
+
(

x2+
c2 − 1

)1/2
⎤
⎦ , (4.38)

η = i
2

ln

⎡
⎣x−

c
+
(

x2−
c2 − 1

)1/2
⎤
⎦− i

2
ln

⎡
⎣x+

c
+
(

x2+
c2 − 1

)1/2
⎤
⎦ , (4.39)
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B. Voisin

leading for the pressure to the expansion

p = 1
2
ρ0Nc sin θ0

∑
±

⎧⎨
⎩U(c)

0 ln

⎡
⎣x±

c
−
(

x2±
c2 − 1

)1/2
⎤
⎦

+
∞∑

m=1

exp(imη0)

m

[
U(c)

m ± iU(s)
m

]⎡⎣x±
c

−
(

x2±
c2 − 1

)1/2
⎤
⎦

m⎫⎬
⎭ , (4.40)

and for the velocity to

u = −1
2

∑
±

ez±
(x2±/c2 − 1)1/2

∞∑
m=0

exp(imη0)
[
(U(s)

m ∓ iU(c)
m

]⎡⎣x±
c

−
(

x2±
c2 − 1

)1/2
⎤
⎦

m

,

(4.41)

with ez± = ±ex sin θ0 + ez cos θ0 a unit vector along the z±-axis. Both expansions are
of the form anticipated by Barcilon & Bleistein (1969) and Hurley (1972) for a circular
cylinder.

At the ellipse (of contour C with outer side C+), the pressure becomes

p(x ∈ C+) = ρ0Nc sin θ0

[
−iU(c)

0 η0 +
∞∑

m=1

U(c)
m cos(mη)+ U(s)

m sin(mη)
m

]
, (4.42)

and the velocity becomes

u(x ∈ C+) = 1
2

{[
ez+

sin(η + η0)
+ ez−

sin(η − η0)

] ∞∑
m=0

[U(c)
m cos(mη)+ U(s)

m sin(mη)]

+i
[

ez+
sin(η + η0)

− ez−
sin(η − η0)

] ∞∑
m=0

[U(s)
m cos(mη)− U(c)

m sin(mη)]

}
.

(4.43)

Both the pressure and the normal velocity are regular, the latter being equal to its
prescribed value Un. The tangential velocity is singular at the critical points η = η0,
π − η0, π + η0 and 2π − η0; there, even at vanishingly small viscosity, the actual no-slip
boundary condition will come into play, giving rise to the boundary-layer eruption
predicted by Kerswell (1995) and Le Dizès & Le Bars (2017).

4.4. Particular cases
We consider now, as is usually done in acoustics, the simplest types of oscillations,
associated with the lowest values of m; see Lighthill (1978, § 1.11) or Pierce (2019,
§§ 4.1–2).
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Boundary integrals in stratified fluids

Monopolar oscillations, for which m = 0, correspond to radial pulsations at the velocity
U = Ux/c, such that

U(c)
0 = U

ab
c2 , U(s)

0 = 0. (4.44a,b)

The associated pressure is uniform at the cylinder, with value

p(x ∈ C+) = −iρ0NU
ab
c

sin θ0 arctan
(

b
a

tan θ0

)
. (4.45)

This mode of oscillation, which in the presence of viscosity gives the lowest rate of
decrease of the wave amplitude with distance away from the cylinder, is the least studied
in the laboratory, having only been considered by Makarov, Neklyudov & Chashechkin
(1990) and Machicoane et al. (2015) for a circular cylinder.

Dipolar oscillations, for which m = 1, correspond to back-and-forth vibrations of a rigid
cylinder at the velocity U = Uex + Wez, such that

U(c)
1 = U

b
c
, U(s)

1 = W
a
c
. (4.46a,b)

The pressure varies linearly with the Cartesian coordinates at the cylinder, in the form

p(x ∈ C+) = ρ0N sin θ0

(
b
a

Ux + a
b

Wz
)
. (4.47)

This configuration is the most studied in the laboratory, from the visualizations of
Mowbray & Rarity (1967) up to the quantitative measurements of Sutherland et al. (1999)
and Zhang, King & Swinney (2007) for a circular cylinder and Sutherland & Linden (2002)
for elliptic cylinders of aspect ratios a/b = 1, 2 and 3.

The expressions of the pressure and velocity at propagating frequencies 0 < ω < N are
given in table 3. For the vibrating cylinder they involve the notation

α± = exp(iη0)

2

(
W

a
c

∓ iU
b
c

)
= (a cos θ0 + ib sin θ0)(aW ∓ ibU)

2c2 , (4.48)

introduced by Hurley (1997). They are accompanied by the limits a → 0, corresponding
to the horizontal vibrations of a vertical knife edge, considered theoretically by Llewellyn
Smith & Young (2003) and experimentally by Peacock, Echeverri & Balmforth (2008),
and b → 0, corresponding to the vertical vibrations of a horizontal knife edge.

5. Spheroid

We move on to a spheroid of horizontal semi-axis a, vertical semi-axis b and equation

x2

a2 + y2

a2 + z2

b2 = 1. (5.1)

The approach remains the same as for the elliptic cylinder, but the exposition is made more
intricate by the switch from hyperbolic functions to Legendre functions, and from circular
functions to spherical harmonics. The relevant properties of these functions are recalled in
Appendices A and B; they will be used silently in the following.
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B. Voisin

Pulsating cylinder p = ρ0NU
ab
2c

sin θ0

⎧⎨
⎩ln

⎡
⎣ x+

c
−
(

x2+
c2 − 1

)1/2
⎤
⎦+ ln

⎡
⎣ x−

c
−
(

x2−
c2 − 1

)1/2
⎤
⎦
⎫⎬
⎭

u = iU
ab
2c

[
ez+

(x2+ − c2)1/2
− ez−
(x2− − c2)1/2

]

Vibrating cylinder p = iρ0N sin θ0{α+[x+ − (x2
+ − c2)1/2] − α−[x− − (x2

− − c2)1/2]}

u = α+ez+

[
1 − x+

(x2+ − c2)1/2

]
+ α−ez−

[
1 − x−

(x2− − c2)1/2

]

Vertical knife edge p = i
2
ρ0NU[x+ − (x2

+ − b2 sin2 θ0)
1/2 + x− − (x2

− − b2 sin2 θ0)
1/2]

u = U
2 sin θ0

{
ez+

[
1 − x+

(x2+ − b2 sin2 θ0)1/2

]
− ez−

[
1 − x−

(x2− − b2 sin2 θ0)1/2

]}

Horizontal knife edge p = i
2
ρ0NW tan θ0[x+ − (x2

+ − a2 cos2 θ0)
1/2 − x− + (x2

− − a2 cos2 θ0)
1/2]

u = W
2 cos θ0

{
ez+

[
1 − x+

(x2+ − a2 cos2 θ0)1/2

]
+ ez−

[
1 − x−

(x2− − a2 cos2 θ0)1/2

]}

Table 3. Pressure and velocity in the propagating frequency range 0 < ω < N. The determination of the
square roots is set according to (4.36), becoming x± → x± + i sign x and x± → x± ± i sign z for vertical and
horizontal knife edges, respectively.

5.1. Solution for ω > N and (a/b)2 + (N/ω)2 > 1
For (a/b)2 + (N/ω)2 > 1, the coordinate stretching (3.17) transforms the original spheroid
into an oblate one, of semi-axes a	 and b	 given by (4.2), and focal circle (r	 = c, z	 = 0).
Here, rh = (x2 + y2)1/2 is the horizontal radial distance, stretched as r	 = (x2

	 + y2
	)

1/2,
and c is given by (4.3). We introduce oblate spheroidal coordinates (ξ, η, φ) defined by

r	 = c cosh ξ sin η, z	 = c sinh ξ cos η, (5.2a,b)

where 0 � ξ < ∞ and 0 � η � π, with 0 � φ < 2π the usual azimuthal angle, such that

x	 = r	 cosφ, y	 = r	 sinφ. (5.3a,b)

In a given azimuthal plane, this definition is inverted in terms of the distances to the two
foci in this plane,

r± = [(r	 ± c)2 + z2
	]

1/2 = c(cosh ξ ± sin η), (5.4)

as

cosh ξ = r+ + r−
2c

, sin η = r+ − r−
2c

; (5.5a,b)
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Boundary integrals in stratified fluids

see Happel & Brenner (1983, Appendix A) or Landau & Lifshitz (1984, § 4).
Differentiation is expressed as

c
∂

∂x	
= cosφ

sinh2 ξ + cos2 η

(
sinh ξ sin η

∂

∂ξ
+ cosh ξ cos η

∂

∂η

)
− sinφ

cosh ξ sin η
∂

∂φ
, (5.6a)

c
∂

∂y	
= sinφ

sinh2 ξ + cos2 η

(
sinh ξ sin η

∂

∂ξ
+ cosh ξ cos η

∂

∂η

)
+ cosφ

cosh ξ sin η
∂

∂φ
, (5.6b)

c
∂

∂z	
= 1

sinh2 ξ + cos2 η

(
cosh ξ cos η

∂

∂ξ
− sinh ξ sin η

∂

∂η

)
, (5.6c)

where sinh2 ξ + cos2 η = cosh(ξ + iη) cosh(ξ − iη).
At the spheroid, ξ = ξ0 with ξ0 given by (4.9), and

rh = a sin η, z = b cos η, (5.7a,b)

implying that π/2 − η is Legendre’s (1806) reduced latitude and Cayley’s (1870)
parametric latitude. The surface area element follows as

d2S = a(a2 cos2 η + b2 sin2 η)1/2 dΩ, (5.8)

with dΩ = sin η dη dφ the solid angle element, and the outward normal as

n = berh sin η + aez cos η

(a2 cos2 η + b2 sin2 η)1/2
, (5.9)

where erh = ex cosφ + ey sinφ and eφ = −ex sinφ + ey cosφ are unit vectors along the
radial and azimuthal horizontal directions, respectively, with ey a unit vector along the
y-axis. The boundary integral equation (3.5) becomes

4π
N
ω
Ψ (η) =

∫ [
Ψ (η′, φ′)

∂

∂ξ ′ + (a2 cos2 η′ + b2 sin2 η′)1/2

ω(ω2 − N2)1/2
Un(η

′, φ′)

]
a dΩ ′

|x	−x′
	|
,

(5.10)

where ξ = ξ0 + 0 > ξ ′ = ξ0.
To solve it, we adapt the procedure used by Gorodtsov & Teodorovich (1982) for the

potential flow around a sphere. The normal velocity Un(η, φ) is expanded in spherical
harmonics as

(a2 cos2 η + b2 sin2 η)1/2Un(η, φ) = c
∞∑

l=0

l∑
m=−l

UlmYm
l (η, φ), (5.11)

with

cUlm =
∫
(a2 cos2 η + b2 sin2 η)1/2Un(η, φ)Ym

l (η, φ) dΩ, (5.12)

where an overbar denotes a complex conjugate, and the surface potential Ψ (η, φ) as

Ψ (η, φ) =
∞∑

l=0

l∑
m=−l

ΨlmYm
l (η, φ), (5.13)

with

Ψlm =
∫
Ψ (η, φ)Ym

l (η, φ) dΩ. (5.14)

The expansion of the Green’s function has been given by Morse & Feshbach (1953, p.
1296) and Hobson (1931, § 251), in both cases with typos: an extraneous factor 2 for the
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B. Voisin

former, and a missing factor i for the latter. Accordingly, the expansion has been rederived
by an adaptation of the procedure of Jackson (1999, § 3.9), to get

c
|x	−x′

	|
= 4iπ

∞∑
l=0

l∑
m=−l

(−1)m
(l − m)!
(l + m)!

Pm
l (i sinh ξ<)Qm

l (i sinh ξ>)Ym
l (η, φ)Y

m
l (η

′, φ′),

(5.15)

where ξ< = min(ξ, ξ ′) and ξ> = max(ξ, ξ ′). The solution of (5.10) is then straightforward,
in the form

Ψlm = − c
ω(ω2 − N2)1/2

UlmQm
l (i sinh ξ0)

Qm+1
l (i sinh ξ0)+ m tanh ξ0Qm

l (i sinh ξ0)
. (5.16)

Convolution according to (3.6), followed by differentiation according to (2.4), yields

p = iρ0c(ω2 − N2)1/2
∞∑

l=0

l∑
m=−l

UlmQm
l (i sinh ξ)Ym

l (η, φ)

Qm+1
l (i sinh ξ0)+ m tanh ξ0Qm

l (i sinh ξ0)
(5.17)

for the pressure, and

u =
∞∑

l=0

l∑
m=−l

UlmQm
l (i sinh ξ)Ym

l (η, φ)

Qm+1
l (i sinh ξ0)+ m tanh ξ0Qm

l (i sinh ξ0)

{
m
(

1 − N2

ω2

)1/2 erh + ieφ
cosh ξ sin η

+ 1
2

∑
±

(ω2 − N2)1/2erh ∓ iωez

N cosh(ξ ± iη)

[
Pm+1

l (cos η)
Pm

l (cos η)
± i

Qm+1
l (i sinh ξ)
Qm

l (i sinh ξ)

]}
(5.18)

for the velocity.

5.2. Solution for ω > N and (a/b)2 + (N/ω)2 < 1
For (a/b)2 + (N/ω)2 < 1, we proceed as in § 4.2. The stretched spheroid becomes prolate,
having foci at (r	 = 0, z	 = ±c′), with c′ given by (4.22). This leads to the introduction of
prolate spheroidal coordinates (ξ ′, η, φ) defined by

r	 = c′ sinh ξ ′ sin η, z	 = c′ cosh ξ ′ cos η, (5.19a,b)

with 0 � ξ ′ < ∞ and 0 � η � π, so that

r	 = c cosh
(
ξ + i

π

2

)
sin η, z	 = c sinh

(
ξ + i

π

2

)
cos η. (5.20a,b)

Accordingly, the waves follow from those in § 5.1, by replacing ξ by ξ ′ + iπ/2 and c by
−ic′ throughout.

5.3. Solution for ω < N
For 0 < ω < N, the waves propagate in beams inclined at the angle θ0 = arccos(ω/N) to
the vertical. The beams have half-width c given by (4.25), and are delimited by the critical
rays tangential to the spheroid above and below, forming two double cones grazing the
spheroid at critical circles of reduced latitude η0 given by (4.27). The spheroid becomes
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Boundary integrals in stratified fluids

the surface ξ = iη0, and the waves are deduced by applying the transformation (3.18) to
(5.17)–(5.18), writing ξ0 → iη0 + 0 so that

Pm
l (i sinh ξ0) → Pm

l (− sin η0 + i0) = (−1)lim Pm
l (sin η0), (5.21)

Qm
l (i sinh ξ0) → Qm

l (− sin η0 + i0) = (−1)l+1im
(

Qm
l +i

π

2
Pm

l

)
(sin η0). (5.22)

For the complex coordinates ξ and η we proceed as in § 4.3, writing

cosh ξ sin η ∼ rh

c

(
cos θ0 + i

ε

N
b2

c2

)
, sinh ξ cos η ∼ i

z
c

(
sin θ0 − i

ε

N
a2

c2 cot θ0

)
,

(5.23a,b)

and thence

sin(η ± iξ) ∼ x±
c

± i
ε

N
ζ±
c

d
c sin θ0

, (5.24)

where
x± = rh cos θ0 ∓ z sin θ0, z± = ±rh sin θ0 + z cos θ0 (5.25a,b)

are the characteristic coordinates associated with the wave beams, and

ξ± = rh cosχ0 ∓ z sinχ0, ζ± = ±rh sinχ0 + z cosχ0 (5.26a,b)

are the coordinates associated with the truncated double cone joining the two critical
circles at the surface of the spheroid. Here, χ0, given by (4.32), is the angle of the
generatrices of the double cone to the horizontal (in other words, the critical latitude),
and d, given by (4.33), their half-length.

We then write

ξ ± i
(π

2
− η

)
= arccosh

x±
c

= 2 ln

[(
x± + c

2c

)1/2

+
(

x±−c
2c

)1/2
]
, (5.27)

where the determination of the square roots is set by the replacement (4.36), yielding the
combinations

cosh ξ = 1
2

[(x+
c

+ 1
)1/2 (x−

c
+ 1

)1/2 +
(x+

c
− 1

)1/2 (x−
c

− 1
)1/2

]
, (5.28)

sinh ξ = 1
2

[(x+
c

+ 1
)1/2 (x−

c
− 1

)1/2 +
(x+

c
− 1

)1/2 (x−
c

+ 1
)1/2

]
, (5.29)

cos η = i
2

[(x+
c

+ 1
)1/2 (x−

c
− 1

)1/2 −
(x+

c
− 1

)1/2 (x−
c

+ 1
)1/2

]
, (5.30)

sin η = 1
2

[(x+
c

+ 1
)1/2 (x−

c
+ 1

)1/2 −
(x+

c
− 1

)1/2 (x−
c

− 1
)1/2

]
, (5.31)

consistent with the determinations in § 4 of Davis (2012). The pressure is obtained as

p = −iρ0Nc sin θ0

×
∞∑

l=0

l∑
m=−l

(−1)l(−i)mUlmQm
l (i sinh ξ)Ym

l (η, φ)(
Qm+1

l +i
π

2
Pm+1

l

)
(sin η0)+ m tan η0

(
Qm

l +i
π

2
Pm

l

)
(sin η0)

, (5.32)
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B. Voisin

and the velocity as

u = − i
2

∞∑
l=0

l∑
m=−l

(−1)l(−i)mUlmQm
l (i sinh ξ)Ym

l (η, φ)(
Qm+1

l +i
π

2
Pm+1

l

)
(sin η0)+ m tan η0

(
Qm

l +i
π

2
Pm

l

)
(sin η0)

×
∑
±

{
m

eφ sin θ0 ∓ iez±
cosh ξ sin η

+ ez±
(x2±/c2 − 1)1/2

[
Pm+1

l (cos η)
Pm

l (cos η)
∓ i

Qm+1
l (i sinh ξ)
Qm

l (i sinh ξ)

]}
,

(5.33)

where ez± = ±erh sin θ0 + ez cos θ0 is a unit vector along the z±-axis. The three-
dimensional geometry breaks the relative simplicity of two-dimensional waves: the waves
can no longer be separated into two components, one depending exclusively on x+ and the
other on x−; instead, they are expressed in terms of the combinations (5.28)–(5.31), each
of which involves both x+ and x−.

5.4. Particular cases
The simplest mode of oscillation of the spheroid is radial pulsations at the velocity U =
Ux/c. Such monopolar forcing is of degree l = 0, with

U00 =
√

4πU
ab
c2 . (5.34)

The expressions of the pressure and velocity at propagating frequencies 0 < ω < N are
given in table 4. They are consistent with Hendershott (1969), Appleby & Crighton (1987),
Voisin (1991), Martin & Llewellyn Smith (2012) and Davis (2012) for a sphere. The
pressure is uniform at the spheroid,

p(x ∈ S+) = ρ0NU
a2b
c2 sin θ0 cos θ0

[
π

2
− i arcsinh

(
b
a

tan θ0

)]
, (5.35)

as is expected for pulsations.
When the spheroid is rigid and vibrates back-and-forth with velocity U = Uex + Vey +

Wez, the forcing is dipolar and of degree l = 1, with

U10 =
√

4π

3
W

a
c
, U1,±1 =

√
2π

3
(iV ∓ U)

b
c
. (5.36a,b)

Introducing the ratio Υ = tanh ξ0, that is

Υ = b
a

(
1 − N2

ω2

)1/2

(ω > N), i
b
a

tan θ0 (0 < ω < N), (5.37a,b)

and the combination D(Υ ) = cosh2 ξ0(1 − sinh ξ0 arccot sinh ξ0), that is

D(Υ ) = 1
1 − Υ 2

[
1 − Υ

(1 − Υ 2)1/2
arccosΥ

]
(ω > N and Υ < 1), (5.38a)

= 1
1 − Υ 2

[
1 − Υ

(Υ 2 − 1)1/2
arccoshΥ

]
(ω > N and Υ > 1), (5.38b)

= 1
1 + |Υ |2

[
1 − |Υ |

(1 + |Υ |2)1/2
(

i
π

2
+ arcsinh |Υ |

)]
(0 < ω < N), (5.38c)

the pressure and velocity become as given in table 4 for 0 < ω < N. They are consistent
with Sarma & Krishna (1972) and Lai & Lee (1981) for a spheroid, and Appleby
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Boundary integrals in stratified fluids

Pulsating
spheroid

p = ρ0NU
a2b
c2 sin θ0 cos θ0 arccot sinh ξ

u = iU
a2b
2c2

cos θ0

cosh ξ

[
ez+

(x2+ − c2)1/2
− ez−
(x2− − c2)1/2

]

Vibrating
spheroid

p = ρ0N
a2b
c2 sin θ0 cos θ0

[
U cosφ + V sinφ

1 + D(Υ )
cos θ0(cosh ξ arccot sinh ξ − tanh ξ) sin η

− i
W

1 − D(Υ )
sin θ0(sinh ξ arccot sinh ξ − 1) cos η

]

u = i
a2b
c3 cos θ0

{
U sinφ − V cosφ

1 + D(Υ )
eφ sin θ0 cos θ0

(
arccot sinh ξ − sinh ξ

cosh2 ξ

)

+ 1
2

∑
±

∓U cosφ + V sinφ
1 + D(Υ )

ez± cos θ0

[
arccot sinh ξ − 1

cosh2 ξ

x± cosh ξ + c sin η
(x2± − c2)1/2

]

+ 1
2

∑
±

W
1 − D(Υ )

ez± sin θ0

[
arccot sinh ξ − 1

cosh ξ
x±

(x2± − c2)1/2

]}

D(Υ ) = a2

c2 cos2 θ0

{
1 − b

c
sin θ0

[
i
π

2
+ arcsinh

(
b
a

tan θ0

)]}

Horizontal
circular
disc

p = − 2
π
ρ0NaW sin θ0(sinh ξ arccot sinh ξ − 1) cos η

u = W
π cos θ0

∑
±

ez±

[
arccot sinh ξ − 1

cosh ξ
x±

(x2± − a2 cos2 θ0)1/2

]

Table 4. Pressure and velocity in the propagating frequency range 0 < ω < N. The determination of the
square roots is set according to (4.36), becoming x± → x± ± i sign z for the horizontal disc.

& Crighton (1987), Martin & Llewellyn Smith (2012) and Davis (2012) for a sphere.
Their relation to the experiments of Flynn, Onu & Sutherland (2003), King, Zhang &
Swinney (2009), Voisin et al. (2011) and Ghaemsaidi & Peacock (2013) for a sphere will
be discussed in § 6.2. At the spheroid, the pressure exhibits linear variations with the
Cartesian coordinates,

p(x ∈ S+) = −iρ0N sin θ0

[
1 − D(Υ )
1 + D(Υ )

(Ux + Vy) cot θ0 − D(Υ )
1 − D(Υ )

Wz tan θ0

]
. (5.39)

The limit a → 0 of the vibrating spheroid corresponds to a vertical needle, which
generates no waves, and the limit b → 0 to the heaving oscillations of a horizontal circular
disc, considered theoretically by Sarma & Krishna (1972), Martin & Llewellyn Smith
(2011) and Davis (2012) in an inviscid fluid and Davis & Llewellyn Smith (2010) in a
viscous fluid, and experimentally by Bardakov, Vasil’ev & Chashechkin (2007). For the
disc, we have

D(Υ ) ∼ 1 − π

2
b
a

(
1 − N2

ω2

)1/2

, (5.40)

yielding the pressure and velocity in table 4.
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B. Voisin

6. Indirect approach

6.1. Layer potentials
Investigations so far have been based on the Kirchhoff–Helmholtz integral (3.4),
combining the single-layer potential (3.7) and the double-layer potential (3.10). All the
quantities involved are physically meaningful, either internal potential (hence pressure)
inside the fluid in V+, or internal potential and normal velocity on the side S+ of the
surface S of the body in contact with the fluid. By contrast, the layer potentials are purely
mathematical entities, defined not only in the fluid but also inside the oscillating body in
V−. For each potential, the associated source density involves values of the potential and
its derivative on both sides of S, inner for S− and outer for S+.

Specifically, the single-layer potential satisfies the differential equation

(N2∇2
h − ω2∇2)ψs = σδS, (6.1)

implying (Schwartz 1966, § II.2.3) continuity of the potential and discontinuity of its
modified normal derivative at S, namely

ψs(x ∈ S+) = ψs(x ∈ S−), (6.2a)(
N2 ∂

∂nh
− ω2 ∂

∂n

)
ψs(x ∈ S+)−

(
N2 ∂

∂nh
− ω2 ∂

∂n

)
ψs(x ∈ S−) = σ(x). (6.2b)

As a consequence, the monopole density

σ(x) = [us(x ∈ S+)− us(x ∈ S−)] · n (6.3)

is equal to the discontinuity of the normal velocity at S, going from S− to S+. Similarly,
the double-layer potential satisfies

(N2∇2
h − ω2∇2)ψd = −

(
N2 ∂

∂nh
− ω2 ∂

∂n

)
(μδS), (6.4)

implying its discontinuity and the continuity of its modified normal derivative at S, with

ψd(x ∈ S+)− ψd(x ∈ S−) = −μ(x), (6.5a)(
N2 ∂

∂nh
− ω2 ∂

∂n

)
ψd(x ∈ S+) =

(
N2 ∂

∂nh
− ω2 ∂

∂n

)
ψd(x ∈ S−). (6.5b)

As a consequence, the dipole density

μ(x) = −[ψd(x ∈ S+)− ψd(x ∈ S−)] (6.6)

is opposite to the discontinuity of the internal potential at S, going from S− to S+.
By imagining the oscillating body to be filled with fluid, it is possible to give physical

meaning to each layer potential and to consider representing the motion of the whole fluid
by this potential alone, without the other. For this, we adapt the procedure described for the
Laplace and Helmholtz equations by Lamb (1932, §§ 57, 58 and 290) and Copley (1968).
The volume V− of the body is replaced by fictitious stratified fluid, of the same buoyancy
frequency N as the real fluid outside. Applying Green’s theorem (3.2) inside V−, we obtain
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Boundary integrals in stratified fluids

for the internal potential ψf the Kirchhoff–Helmholtz integral

∫
S

[
G(x − x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
ψf (x′)− ψf (x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′)

]
d2S′

= 0 (x ∈ V+), (6.7a)

= −ψf (x) (x ∈ V−), (6.7b)

which combined with (3.4) gives

∫
S

[
G(x − x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
(ψ − ψf )(x′)

−(ψ − ψf )(x′)
(

N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′)

]
d2S′ = ψ(x) (x ∈ V+), (6.8a)

= ψf (x) (x ∈ V−). (6.8b)

The imposition of the boundary condition ψf = ψ at S yields a single-layer field of
monopole density

σ(x) = [u(x ∈ S+)− uf (x ∈ S−)] · n, (6.9)

and similarly the condition uf · n = u · n yields a double-layer field of dipole density

μ(x) = −[ψ(x ∈ S+)− ψf (x ∈ S−)]. (6.10)

In both cases the wave field is described by ψ outside S and ψf inside it.
A calculation of the waves based on the Kirchhoff–Helmholtz integral (3.4) is called

direct, and a calculation based on the single-layer potential (3.7) or double-layer potential
(3.10) is called indirect. The legitimacy of direct approaches follows from the derivation
of the Kirchhoff–Helmholtz integral in § 3.1, but the legitimacy of indirect approaches
remains to be seen. Paraphrasing Lamb (1932, § 290), it would be wrong to assume that,
as in the case of the ordinary potential, a function ψf necessarily exists which satisfies
the wave equation (2.3) throughout the finite region V−, and also fulfils the condition that
ψf or its modified normal derivative shall assume arbitrarily prescribed values over the
boundary S.

6.2. Equivalent source
We consider the single layer (3.7), associated with the equivalent source (3.8). The
boundary condition (2.5) yields for this source the integro-differential equation

Un(x) =
(

N2 ∂

∂nh
− ω2 ∂

∂n

)∫
S
σ(x′)G(x − x′) d2S′, (6.11)

to be satisfied for all x ∈ S+.
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B. Voisin

In two dimensions, for the elliptic cylinder of § 4, the equation becomes

2πUn(η) = ∂

∂ξ

∫ 2π

0

(
a2 sin2 η′ + b2 cos2 η′

a2 sin2 η + b2 cos2 η

)1/2

σ(η′) ln |x	−x′
	| dη′, (6.12)

where ξ = ξ0 + 0 > ξ ′ = ξ0. Expanding the source density σ(η) as

(a2 sin2 η + b2 cos2 η)1/2σ(η) = c
∞∑

m=0

[
σ (c)m cos(mη)+ σ (s)m sin(mη)

]
, (6.13)

and the normal velocity Un(η) as (4.14), the solution is obtained immediately as

σ (c)m = [1 + tanh(mξ0)]U(c)
m , σ (s)m = [1 + coth(mξ0)]U(s)

m . (6.14a,b)

The waves (4.20)–(4.21) then follow from (3.7) and (2.4).
The cylinder is thus equivalent to the source

q(x) = c
ab
δ

[(
x2

a2 + z2

b2

)1/2

− 1

] ∞∑
m=0

[σ (c)m cos(mη)+ σ (s)m sin(mη)], (6.15)

of spectrum

q(k) = 2πc
∞∑

m=0

(−i)m Jm[(k2
xa2 + k2

z b2)1/2][σ (c)m cos(mηk)+ σ (s)m sin(mηk)], (6.16)

where Jm denotes a cylindrical Bessel function, k = (kx, kz) the wave vector and ηk the
angle such that

kxa =
(

k2
xa2 + k2

z b2
)1/2

cos ηk, kzb =
(

k2
xa2 + k2

z b2
)1/2

sin ηk. (6.17a,b)

The knowledge of this spectrum provides an alternative expression of the waves, into
which the effect of viscous attenuation can be added following Lighthill (1978, § 4.10)
at large distance from the source, and Voisin (2020) at arbitrary distance from it.

We use the latter. In an inviscid fluid, the velocity outside a source of mass q(x, z) of
support the elliptic domain x2/a2 + z2/b2 < 1 is given in the propagating frequency range
0 < ω < N by

u = 1
4π

∑
±

ez± sign ζ±
∫ ∞

0
q±(kx± = ±κ sign ζ±, kz± = 0) exp(±iκx± sign ζ±) dκ,

(6.18)
where

kx± = kx cos θ0 ∓ kz sin θ0, kz± = ±kx sin θ0 + kz cos θ0, (6.19a,b)

and q±(kx±, kz±) = q(kx, kz). For the cylinder, the spectrum (6.16) becomes

q±(kx±, kz± = 0) = 2πc
∞∑

m=0

(−i)m exp(imη0)
[
U(c)

m ± iU(s)
m

]
Jm(kx±c), (6.20)
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Boundary integrals in stratified fluids

so that

u = c
∑
±

ez±

∞∑
m=0

(∓i sign ζ±)m exp(imη0)
[
U(c)

m ± iU(s)
m

]

×
∫ ∞

0
Jm(κc) exp(±iκx± sign ζ±) dκ. (6.21)

Using the transform∫ ∞

0
Jm(k) exp(ikx) dk = im+1 {x − [(x + i0)2 − 1]1/2}m

[(x + i0)2 − 1]1/2 , (6.22)

taken from table 5 of Voisin (2003), the velocity (4.41) is recovered. Viscosity, at large
Stokes number ωc2/ν � 1 with ν the kinematic viscosity, adds an exponential attenuation
factor inside the integrand of (6.21), transforming it into

u = c
∑
±

ez±

∞∑
m=0

(∓i sign ζ±)m exp(imη0)
[
U(c)

m ± iU(s)
m

]

×
∫ ∞

0
Jm(κc) exp

(
−βκ3 d

c
|ζ±|

)
exp(±iκx± sign ζ±) dκ, (6.23)

with β = ν/(2N sin θ0).
In three dimensions, for the spheroid of § 5, the integro-differential equation (6.11)

becomes

4π
N
ω

Un(η, φ) = − ∂

∂ξ

∫ (
a2 cos2 η′ + b2 sin2 η′

a2 cos2 η + b2 sin2 η

)1/2

σ(η′, φ′)
a dΩ ′

|x	−x′
	|
, (6.24)

where ξ = ξ0 + 0 > ξ ′ = ξ0. Expanding σ(η, φ) as

(a2 cos2 η + b2 sin2 η)1/2σ(η, φ) = c
∞∑

l=0

l∑
m=−l

σlmYm
l (η, φ), (6.25)

and Un(η, φ) as (5.11), we obtain

σlm = i
(l + m)!
(l − m)!

(−1)m

Pm
l (i sinh ξ0)

Ulm

cosh ξ0Qm+1
l (i sinh ξ0)+ m sinh ξ0Qm

l (i sinh ξ0)
, (6.26)

which leads to the waves (5.17)–(5.18). The spheroid is thus represented by the source

q(x) = c
ab
δ

⎡
⎣( r2

h

a2 + z2

b2

)1/2

− 1

⎤
⎦ ∞∑

l=0

l∑
m=−l

σlmYm
l (η, φ). (6.27)

Its spectrum is obtained using (A14) as

q(k) = 4πac
∞∑

l=0

(−i)l jl[(κ
2
h a2 + k2

z b2)1/2]
l∑

m=−l

σlmYm
l (ηk, φk), (6.28)
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B. Voisin

where jl denotes a spherical Bessel function, k = (kx, ky, kz) the wave vector, of horizontal
modulus κh = (k2

x + k2
y)

1/2, and the angles (ηk, φk) are such that

κha =
(
κ2

h a2 + k2
z b2
)1/2

sin ηk, kzb =
(
κ2

h a2 + k2
z b2
)1/2

cos ηk, (6.29a,b)

and
kx = κh cosφk, ky = κh sinφk, (6.30a,b)

respectively.
The equivalent sources for the particular cases of §§ 4.4 and 5.4 are gathered in table 5.

For line sources in two dimensions, obtained as the limit of an ellipse of zero thickness
perpendicular to the line, and for plane sources in three dimensions, obtained as the limit
of a spheroid of zero thickness perpendicular to the plane, the opposite single layers on
either side of the line or plane collapse into a double layer as the thickness goes to zero.

For a vibrating circular cylinder, adding viscous attenuation according to (6.23), the
same waves are obtained as in Hurley & Keady (1997), compared satisfactorily with
experiment by Sutherland et al. (1999) and Zhang et al. (2007). For a vibrating elliptic
cylinder and a vertical knife edge, the sources have been shown by Voisin (2020) to
be consistent with the measurements of Sutherland & Linden (2002) and Peacock et al.
(2008), respectively. For a vibrating sphere, the source has been used by Voisin et al. (2011)
to propose an expression of the waves which compares successfully with the experiments
of Flynn et al. (2003), King et al. (2009), Voisin et al. (2011) and Ghaemsaidi & Peacock
(2013).

6.3. Relation to the direct approach
Now, the direct approach also leads to an equivalent source (3.13), of spectrum (3.15).
Writing, for the elliptic cylinder,

n · (N2kxex − ω2k) = N2 c2

ab

(
k2

xa2 + k2
z b2

a2 sin2 η + b2 cos2 η

)1/2

(sinh2 ξ0 cos η cos ηk

+ cosh2 ξ0 sin η sin ηk), (6.31)

and using (4.19), we obtain, after some algebra,

q(k) = 2πc
∞∑

m=0

(−i)m Jm[(k2
xa2 + k2

z b2)1/2]

×
{

U(c)
m

[
cos(mηk)− sin ηk cos ηk

sinh ξ0 cosh ξ0
sin(mηk)

]

+ U(s)
m

[
sin(mηk)+ sin ηk cos ηk

sinh ξ0 cosh ξ0
cos(mηk)

]}

+ πc
sinh ξ2

0 + sin2 ηk

sinh ξ0 cosh ξ0
(k2

xa2 + k2
z b2)1/2

{
2 J1[(k2

xa2 + k2
z b2)1/2]ξ0U(c)

0

−
∞∑

m=1

(Jm+1 − Jm−1)[(k2
xa2 + k2

z b2)1/2]
U(c)

m cos(mηk)+ U(s)
m sin(mηk)

m

}
,

(6.32)
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B
oundary

integrals
in

stratified
fluids

Oscillating body q(x) q(k)

Pulsating cylinder
U
c
δ

[(
x2

a2 + z2

b2

)1/2

− 1

]
2πU

ab
c

J0[(k2
x a2 + k2

z b2)1/2]

Vibrating cylinder
[
(1 + Υ )U

x
a2 +

(
1 + 1

Υ

)
W

z
b2

]
δ

[(
x2

a2 + z2

b2

)1/2

− 1

]
−2iπab

[
(1 + Υ )Ukx +

(
1 + 1

Υ

)
Wkz

]
J1[(k2

x a2 + k2
z b2)1/2]

(k2
x a2 + k2

z b2)1/2

Vertical knife edge −2U
(

1 − N2

ω2

)1/2

H(b − |z|)(b2 − z2)1/2δ′(x) −2iπbU
(

1 − N2

ω2

)1/2 kx

kz
J1(kzb)

Horizontal knife edge −2W
(

1 − N2

ω2

)−1/2

H(a − |x|)(a2 − x2)1/2δ′(z) −2iπaW
(

1 − N2

ω2

)−1/2 kz

kx
J1(kxa)

Pulsating spheroid
U
c
δ

⎡
⎣( r2

h

a2 + z2

b2

)1/2

− 1

⎤
⎦ 4πU

a2b
c

j0[(κ2
h a2 + k2

z b2)1/2]

Vibrating spheroid
[

2
1 + D(Υ )

(
U

x
a2 + V

y
a2

)
+ W

1 − D(Υ )
z

b2

]
δ

⎡
⎣( r2

h

a2 + z2

b2

)1/2

− 1

⎤
⎦ −4iπa2b

[
2

Ukx + Vky

1 + D(Υ )
+ Wkz

1 − D(Υ )

]
j1[(κ2

h a2 + k2
z b2)1/2]

(κ2
h a2 + k2

z b2)1/2

Horizontal circular disc − 4
π

W
(

1 − N2

ω2

)−1/2

H(a − rh)(a2 − r2
h)

1/2δ′(z) −8ia2W
(

1 − N2

ω2

)−1/2 kz

κh
j1(κha)

Table 5. Equivalent sources and associated spectra for the oscillating bodies considered in §§ 4.4 and 5.4, with Υ and D(Υ ) defined in (5.37)–(5.38).
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B. Voisin

a result significantly more complicated than (6.16). The two spectra coincide at the wave
vectors satisfying the dispersion relation ω2(k2

x + k2
z ) = N2k2

x , that is sinh ξ2
0 + sin2 ηk =

0, namely ηk = ±iξ0, which alone contribute to wave radiation. Accordingly, the effect
of the indirect approach is to filter out, in the spectrum of the oscillating body, the wave
vectors that do not play a role in its wave radiation.

However, the direct approach is not always possible. This can be seen with the example
of an inclined vibrating elliptic cylinder, of major axis making the angle φ0 to the
horizontal. The results of Hurley (1997), combined with the theory of Voisin (2020),
imply a spectrum of the form given in table 5 for a cylinder of horizontal and vertical
axes, but with the angle θ0 replaced, in the definition (5.37b) of Υ , by θ0 + φ0 for the
beams of waves propagating upward to the right and downward to the left, and θ0 − φ0
for the beams propagating downward to the right and upward to the left. Such different
spectra for the different wave beams cannot be achieved with the indirect approach, and
require the switch to the direct approach.

In a related way, Hurley & Keady (1997, Appendix B) considered the representation
of the cylinder by line distributions of point vortices, and also obtained two different
distributions, one per beam, where the vortices are distributed along the critical segment
ζ± = 0 joining, for this beam, the critical points on either side of the cylinder; see figures 2
and 3.

The limitation of indirect approaches becomes more explicit for an inclined knife edge,
making the angle φ0 to the horizontal. Introducing inclined coordinates

x0 = x cosφ0 + z sinφ0, z0 = −x sinφ0 + z cosφ0, (6.33a,b)

the imposed normal velocity at the knife edge at z0 = 0 induces a pressure discontinuity
across it, 2p0(x0) = p(x0, z0 = +0)− p(x0, z0 = −0). Elementary manipulation of the
equations of motion for 0 < ω < N yields a velocity divergence, hence a source of mass,

q(x) = 2i
p0(x0)δ

′(z0) cos(θ0 + φ0) cos(θ0 − φ0)+ p′
0(x0)δ(z0) sinφ0 cosφ0

ρ0N sin2 θ0 cos θ0
. (6.34)

When the knife edge is either horizontal (φ0 = 0) or vertical (φ0 = π/2), a double layer is
obtained, consistent with table 5. But when the knife edge is truly inclined, a combination
of single and double layers is obtained.

Accordingly, the possibility of using an indirect representation of an oscillating body
for generation problems is seen to require some degree of symmetry of the body with
respect to the horizontal and the vertical. By contrast, Martin & Llewellyn Smith (2012)
showed that a double layer suffices for scattering problems, irrespective of the shape of the
scatterer.

7. Boundary values

The possibility of solving analytically the boundary integral equations for the cylinder
and the spheroid has resulted from the availability of expansions (4.18) and (5.15) of the
Green’s function, allowing the limit to be taken in which x approaches S asymptotically.
When the equations are considered numerically, a procedure is required for which x is
exactly on S. Given the singularity of the Green’s function at x′ = x, this requires the
evaluation of the surface integral as an improper one, in which a vicinity of x is excluded
and the contribution of this vicinity is evaluated separately. Ordinarily, as a result, the
Kirchhoff–Helmholtz integral evaluates to one half the value that would be obtained if x
were just outside S; see, for example, Brebbia et al. (1984, chapter 2), Pozrikidis (1992,
chapter 2; 2002, chapters 2 and 4) or Gaul et al. (2003, chapter 4).
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Boundary integrals in stratified fluids

P rh
′′rh

′′

z′′

h

ε ε

h

P x ′′

z′′

h

ε ε

n
θ

S \ Dε

z ′′ = –x ′′ tan θ

Sε Sε

Dε

(a) (b)

Figure 4. Small cylindrical surface Sε around a point P situated either (a) outside or (b) at the surface S, for
the calculation of the Kirchhoff–Helmholtz integral at P.

For monochromatic internal waves, Martin & Llewellyn Smith (2012) surrounded x, as
is usually done, by a small hemisphere. They obtained, not the usual factor 1/2, but rather
a complicated factor depending on the frequency and on the inclination of the normal to S
at x. This is at apparent odds with Gorodtsov & Teodorovich (1982), who gave the factor
1/2 without justification for the internal waves emitted a body in uniform translation, and
Kapitonov (1980), who obtained the same factor 1/2 for unsteady inertial waves, based on
earlier work by Sobolev (1954), replacing the hemisphere by a small vertical cylinder.

7.1. Kirchhoff–Helmholtz integral
We adapt here Sobolev’s and Kapitonov’s procedure to monochromatic internal waves,
on the implicit assumption that ω > N. For this, we revisit first the Kirchhoff–Helmholtz
integral (3.4), derived in § 3.1 by distribution theory, applying classical function theory
to the volume delimited by the surface S of the body, the surface S∞ at infinity and, if x
is situated outside the body, a circular cylinder Sε of centre at x, vertical axis, height 2h
and horizontal radius ε → 0, shown in figure 4(a). For simplicity all lengths are assumed
non-dimensional, based on some length scale of the forcing. Sobolev (1954) kept h finite,
while Kapitonov (1980) set h = ε3/4; we keep h finite for now, and will see later how the
necessity arises to set h → 0 while preserving ε/h = o(1).

When x is situated inside S, the derivation is exactly the same as before, yielding (3.4b).
When x is situated outside S, we write

(∫
Sε

+
∫

S

)[
G(x − x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
ψ(x′)

−ψ(x′)
(

N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′)

]
d2S′ = 0, (7.1)
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B. Voisin

that is (∫
Sε

+
∫

S

)
[u(x′) · n′G(x′ − x)− ψ(x′)uG(x′ − x) · n′] d2S′ = 0. (7.2)

On Sε we introduce cylindrical polar coordinates (r′′
h , φ

′′, z′′) for the position x′′ = x′ − x
relative to x, as shown in figure 4(a). On the horizontal part S(h)ε of Sε , we have

0 < r′′
h < ε, 0 < φ′′ < 2π, z′′ = ±h, n′ = ±ez′′, d2S′ = r′′

h dr′′
h dφ′′, (7.3a–e)

yielding∫
S(h)ε

G(x′′) d2S′ = h
ω2

[(
1 + ω2

ω2 − N2
ε2

h2

)1/2

− 1

]
∼ ε2

2(ω2 − N2)h
, (7.4a)

∫
S(h)ε

uG(x′′) · n′ d2S′ = 1 −
(

1 + ω2

ω2 − N2
ε2

h2

)−1/2

∼ ω2ε2

2(ω2 − N2)h2 . (7.4b)

With ψ and uz′′ bounded over S(h)ε , the contribution of S(h)ε is seen to vanish as ε → 0. On
the vertical part S(v)ε of Sε , we have

r′′
h = ε, 0 < φ′′ < 2π, −h < z′′ < h, n′ = er′′

h
, d2S′ = ε dφ′′ dz′′, (7.5a–e)

yielding∫
S(v)ε

G(x′′) d2S′ = ε

ω2 − N2 arcsinh
[
(ω2 − N2)1/2

ω

h
ε

]
∼ ε

ω2 − N2 ln
h
ε
, (7.6a)

∫
S(v)ε

uG(x′′) · n′ d2S′ =
(

1 + ω2

ω2 − N2
ε2

h2

)−1/2

∼ 1 − ω2ε2

2(ω2 − N2)h2 . (7.6b)

An additional assumption h → 0 is required, so that not only ψ and ur′′
h

are bounded on

S(v)ε , but also ψ(x′) may be made as close to ψ(x) as desired, while ensuring ε/h = o(1)
so that the preceding derivations remain valid. In other words, we require ε � h � 1, a
possible choice being h = ε3/4, as picked by Kapitonov (1980). The contribution of S(v)ε
reduces to −ψ(x), and we finally obtain

lim
ε→0

∫
Sε

[
G(x − x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
ψ(x′)

−ψ(x′)
(

N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′)

]
d2S′ = −ψ(x), (7.7)

yielding (3.4a).
When x is situated on S, we write(∫

Sε
+
∫

S\Dε

)[
G(x − x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
ψ(x′)

−ψ(x′)
(

N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′)

]
d2S′ = 0, (7.8)

where Sε is the part of the preceding small cylinder situated outside S, up to its intersection
with S, delimiting a small domain Dε on S, and S \ Dε is the rest of S with Dε removed, as
shown in figure 4(b).
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Boundary integrals in stratified fluids

We introduce Cartesian coordinates (x′′, y′′, z′′) on Sε , with the x′′-axis in the vertical
plane containing the line of steepest ascent through x on S, and the y′′-axis along the level
line. Assuming for definiteness the outward normal n at x to be directed upward at the
angle θ the vertical, the tangent plane has the equation z′′ = −x′′ tan θ = −r′′

h tan θ cosφ′′.
The integral over S(h)ε is unchanged, while the integral over S(v)ε comprises two parts: one
for z′′ varying from 0 to h, and the other for z′′ varying from −r′′

h tan θ cosφ′′ to 0. This
second part cancels out by integration over φ′′, and we obtain half the integral over the
complete small cylinder, namely

lim
ε→0

∫
Sε

[
G(x − x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
ψ(x′)

−ψ(x′)
(

N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′)

]
d2S′ = −1

2
ψ(x). (7.9)

Alternatively, we might simply point out, as did Kapitonov (1980), that the tangent plane
divides the complete cylinder into two parts which are mirror images of each other through
the horizontal plane; given the symmetry of the integrand, this implies that the integral
over each part is equal to half its value for the complete cylinder.

To evaluate the integral over S \ Dε , we adapt the procedure of Martin (2006, § 5.5 and
Appendix F). On Dε , we have

0 < r′′
h < ε, 0 < φ′′ < 2π, d2S′ = r′′

h dr′′
h dφ′′

cos θ
. (7.10a–c)

As ε → 0, hence r′′
h → 0, the domain Dε reduces, to leading order, to a small elliptic disc

on the tangent plane to S at x. To the next order, we write

z′′ = −r′′
h tan θ cosφ′′ + O(r′′2

h ), n′ = n + O(r′′
h), x′′ · n′ = O(r′′2

h ), (7.11a–c)

so that
G(x′′) = O(1/r′′

h), uG(x′′) · n′ = O(1/r′′
h). (7.12a,b)

The integral over Dε is seen to converge at r′′
h = 0 and to vanish as ε → 0. The integral

over S \ Dε becomes one over the entirety of S and, though improper, converges at x′ = x.
We thus obtain∫
S

[
G(x − x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
ψ(x′)− ψ(x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′)

]
d2S′

= 1
2
ψ(x) (x ∈ S). (7.13)

Since the integral is convergent, the factor 1/2 on the right-hand side is independent of the
shape of the small vicinity of x involved in its derivation, either hemispherical for Martin
& Llewellyn Smith (2012) or cylindrical here. Indeed, the complicated factor derived by
Martin & Llewellyn Smith may be shown numerically, if not analytically, to evaluate to
0.5 for any values of the frequency ratio ω/N > 1 and inclination θ of the normal n to the
vertical, as seen in Appendix C.

7.2. Layer potentials
This result for the Kirchhoff–Helmholtz integral may be extended to the layer potentials
by the method of Courant & Hilbert (1962, § IV.1.4). For this, we consider the double-layer
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B. Voisin

potential (3.10) and continue the dipole density μ as a twice continuously differentiable
function into V+, subject to the condition that (N2∂/∂nh − ω2∂/∂n)μ = 0 on S; we then
apply Green’s theorem (3.2) inside V+, choosing f = μ(x′) and g = G(x − x′). We obtain∫

V+
G(x − x′)(N2∇′2

h − ω2∇′2)μ(x′) d3x′

= μ(x)+ ψd(x) (x ∈ V+), (7.14a)

= 1
2
μ(x)+

∫
S
μ(x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′) d2S′ (x ∈ S), (7.14b)

= ψd(x) (x ∈ V−). (7.14c)

The volume integral on the left-hand side is a continuous function of x across S, implying,
as x approaches S from either V+ or V−, that

ψd(x ∈ S±) = ∓1
2
μ(x)+

∫
S
μ(x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′) d2S′, (7.15)

consistent with (6.6).
We proceed in the same way for the single-layer potential (3.7), continuing the monopole

density σ as a twice continuously differentiable function into V+, subject to the condition
that (N2∂/∂nh − ω2∂/∂n)σ = 0 on S, then applying (3.2) inside V+ with f = σ(x′) and
g = G(x − x′). Taking the derivative N2∂/∂nh − ω2∂/∂n of both sides of the result, and
letting x approach S from either V+ or V−, we obtain(

N2 ∂

∂nh
− ω2 ∂

∂n

)
ψs(x ∈ S±) = ±1

2
σ(x)

−
∫

S
σ(x′)

(
N2 ∂

∂n′
h

− ω2 ∂

∂n′

)
G(x − x′) d2S′, (7.16)

consistent with (6.3).

8. Far field

At this stage one question remains, the contribution of the surface S∞ at infinity, assumed
to vanish in the derivation of the Kirchhoff–Helmholtz integral (3.4). To answer it, we use
the studies of the far field by Voisin (2003) and Martin & Llewellyn Smith (2012).

Consider a sphere SR of large radius R, with centre within the oscillating body, and
evaluate its contribution∫

SR

[u(x′) · n′G(x′ − x)− ψ(x′)uG(x′ − x) · n′] d2S′ (8.1)

as R → ∞. The Green’s function satisfies

G(x′ − x) = O
(

1
R

)
, uG(x′ − x) = O

(
1

R2

)
. (8.2a,b)

In the evanescent frequency range ω > N, the far-field studies give for the layer potentials
the decay laws

ψ(x′) = O
(

1
R

)
, u(x′) = O

(
1

R2

)
. (8.3a,b)

Provided the waves decay at the same rate, and given the surface area element d2S′ grows
as R2, the contribution of SR is seen to vary as 1/R and to vanish as R → ∞.
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Boundary integrals in stratified fluids

In the propagating frequency range 0 < ω < N, different decay laws are obtained
depending on whether we are inside or outside the wave beams, delimited by the critical
rays tangential to S. Outside the beams the decay laws are the same as before, (8.3) for the
layer potentials. Provided the waves decay at the same rate, the contribution of that part of
SR vanishes as R → ∞. Inside the beams the decay laws become, for the layer potentials,

ψ(x′) = O
(

1
R1/2

)
, u(x′) = O

(
1

R1/2

)
, (8.4a,b)

while the associated part of SR has its area varying as R. Provided the waves decay at the
same rate, the contribution of this part of SR varies as 1/R1/2 and vanishes as R → ∞.

Accordingly, the decay laws (8.3) and (8.4) must be taken as Sommerfeld-type radiation
conditions, to be satisfied by the waves in order to ensure that they all emanate from the
oscillating body and do not come in from infinity.

9. Conclusion

Two boundary integral formulations have been presented for the generation of
monochromatic internal waves by an oscillating body in an inviscid stratified fluid.
One formulation is direct, involves both single and double layers through the
Kirchhoff–Helmholtz integral (3.6), and leads to the integral equation (3.5). The
other formulation is indirect, involves the single layer (3.7) alone, and leads to
the integro-differential equation (6.11). A method for the analytical solution of these
equations has been proposed, in two steps: first, in the frequency range of evanescent
waves, the horizontal and vertical coordinates are stretched according to (3.17),
transforming the wave equation into a Poisson equation to which the usual methods can
be applied; and second, the solution is continued analytically to the frequency range of
propagating waves, using the causality condition that the waves be analytic, for time
dependence as exp(−iωt) say, in the upper half of the complex ω-plane, a continuation
implemented via Lighthill’s radiation condition (3.18).

The method has been applied to the two-dimensional case of an elliptic cylinder in
§ 4 and the three-dimensional case of a spheroid in § 5. Arbitrary oscillations have been
considered, and the results specialized to radial pulsations and rigid vibrations. For these,
the results for the waves are gathered in tables 3 and 4, and those for the distributions
of singularities equivalent to the body in table 5. The success of the method comes
from the existence, in the stretched coordinates, of a separated expansion of the Green’s
function in eigenfunctions for the given geometry: circular functions for the cylinder, and
spherical harmonics for the spheroid. As a result, the boundary integral equation reduces
to a diagonal (infinite) linear system, solved analytically. Sturova (2001), for the cylinder,
used a similar expansion but without coordinate stretching; the circular functions were not
eigenfunctions, yielding a non-diagonal system solved numerically by truncation.

The waves for arbitrary oscillations of the cylinder are obtained as an expansion of the
general form anticipated by Barcilon & Bleistein (1969) and Hurley (1972). They involve
complex stretched coordinates, which Lighthill’s radiation condition allows to be written
as simple combinations of the characteristic coordinates x+ and x−, with the determination
of these multivalued combinations set unequivocally.

The greatest interest of the boundary integral method lies, however, elsewhere; namely,
in the determination of a distribution of singularities equivalent to the oscillating body.
First, this distribution allows the effect of viscosity to be added into the theory. Inviscid
waves are but a web of singular critical rays, at which the amplitude diverges and the phase
jumps; it is viscosity, acting locally to smooth out the singularities, which determines the
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distribution of the waves into space and sets ultimately their amplitude and their phase.
The mathematical description of this process takes place in Fourier space, as shown by
Lighthill (1978, § 4.10) at large distances from the forcing and Voisin (2020) at arbitrary
distance from it. The knowledge of a representation of the body as a distribution of
singularities, and thence of its spectrum, provides the basis for this description; it avoids
the need, as did Hurley (1997) and Hurley & Keady (1997), to calculate the inviscid waves
first, then derive their Fourier representation and finally add viscous attenuation into it.

The representations of the vibrating elliptic cylinder and sphere in table 5 have been
applied by Voisin (2020) and Voisin et al. (2011), respectively, to the calculation of their
waves and compared successfully with experiment. The effect of viscosity is illustrated
in figure 5 for the vertical vibrations at the frequency ω and velocity W = −ωA, with
ω0/N = 0.44 and A = 0.32 cm, of a cylinder of horizontal semi-axis a = 2.52 cm, vertical
semi-axis b = 0.86 cm and aspect ratio a/b ≈ 3 in a fluid of buoyancy frequency N =
0.97 s−1 and kinematic viscosity ν = 1 mm2 s−1, corresponding to the measurements in
figure 8(d) of Sutherland & Linden (2002). The plotted quantity is the amplitude of the
time derivative of the buoyancy frequency disturbance, N2

t = −N2∂uz/∂z, normalized by

AN2
t

= N3 aA
2c2 sin θ0 cos2 θ0. (9.1)

The inviscid expression for this quantity, derived from table 3, is

N2
t

AN2
t

= exp(iη0)

{
c3

[(x– − i0 sign ζ−)2 − c2]3/2 − c3

[(x+ + i0 sign ζ+)2 − c2]3/2

}
, (9.2)

and its viscous expression, derived from (6.23), is

N2
t

AN2
t

= −ic2 exp(iη0)
∑
±

sign ζ±
∫ ∞

0
κ J1(κc) exp

(
−βκ3 d

c
|ζ±|

)

× exp(±iκx± sign ζ±) dκ. (9.3)

Both expressions are plotted in figure 5. To better illustrate the structure of the waves, in
particular the occurrence of singularities at critical points on the cylinder, they are plotted
not only in the fluid but also inside the body. Inviscid dynamics is seen to provide a wave
skeleton, which is then fleshed out by viscous diffusion.

Another application of the distribution of singularities is, for a rigid body, the
determination of the added mass of the body. The added mass follows from the first
moment of the distribution, and provides direct access to the energy radiated by the
body and to the force exerted on it, without requiring the actual calculation of the waves.
The energy is important for oceanic applications, as it characterizes the conversion rate
from the barotropic tide oscillating over bottom topography to the internal tide that this
oscillation generates; and the force is important for the stability of midwater floats, as it
governs their oscillation back to their neutral buoyancy level once displaced away from it
then released. These aspects will be considered separately; a summary presentation may
be found in Voisin (2009).

Coming back to the foundations of the boundary integral method, it must be noted that
the derivations in §§ 3 and 7 have all been made for evanescent waves, of frequencyω > N.
For these, the only singularities in the boundary integrals arise when the observation point
P is on the surface S. For propagating waves, of frequency 0 < ω < N, the situation is
different: singularities are present whenever P is inside a wave beam, delimited by the
critical rays tangential to S, and they take place at one or several closed curves where
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Figure 5. Waves for the elliptic cylinder in figure 8(d) of Sutherland & Linden (2002), as predicted (a) in an
inviscid fluid by (9.2) and (b) in a viscous fluid by (9.3). The predictions are plotted both outside and inside the
cylinder, whose outline is shown dashed.

the double cone with apex at P, vertical axis and semi-aperture θ0 intersects S. Martin
& Llewellyn Smith (2012) considered this frequency range in detail, paying particular
attention to the far field, to which the present § 8 is devoted. It is beyond our scope to
investigate this frequency range further. As a rule, we expect those of our conclusions that
do not involve the frequency explicitly to hold whatever the frequency.

One such conclusion concerns the possibility of replacing the direct approach of § 3,
representing the oscillating body as a combination of single and double layers, by the
indirect approach of § 6, involving a single layer alone. For generation problems, this
possibility requires the existence of a fictitious flow inside the body, imagined to be
filled with fluid, simultaneously satisfying the wave equation throughout the body and
the continuity of the pressure at its boundary. The elliptic cylinder and the spheroid in §§ 4
and 5, symmetric with respect to the horizontal and vertical directions, may be treated
by both approaches; an elliptic cylinder with inclined axes requires, however, the direct
approach. For scattering problems, Martin & Llewellyn Smith (2012) showed that a double
layer always suffices.

Another conclusion concerns the values of the boundary integrals at the boundary. For
the Kirchhoff–Helmholtz integral (7.13), the same arithmetic mean ψ(x)/2 between the
values ψ(x) and 0 of the integral (3.4) on either side of the boundary is obtained as for
the Laplace and Helmholtz equations. Similarly, the same additional term ±μ(x)/2, with
μ(x) the dipole density, is obtained for the double-layer potential (7.15) when the boundary
is approached from either side, and the same additional term ±σ(x)/2, with σ(x) the
monopole density, for the modified normal derivative (7.16) of the single-layer potential.
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It is unclear at this stage how boundary elements would be implemented numerically
for internal waves in a three-dimensional setting. All existing numerical implementations
are two-dimensional and deal with vertically trapped waves, decomposed into a
series of normal modes. Sturova (2006, 2011) considers a cylinder, either circular or
elliptic, and uses an indirect single-layer representation for 0 < ω < N and a direct
Kirchhoff–Helmholtz representation for ω > N; she does not discuss, however, how the
contour of the cylinder is decomposed into elements, nor the way the weak singularities
of the kernels are processed. Pétrélis et al. (2006) consider various topographies and use
straight elements, discretized with respect to the vertical coordinate; Balmforth & Peacock
(2009), Echeverri & Peacock (2010), Echeverri et al. (2011) and Mathur et al. (2014)
do the same but discretize the elements with respect to the horizontal coordinate. The
topographies are represented as single layers and the weak singularities of the kernels
are eliminated by integrating the integral equations along each element. Clearly, the
boundary element method for three-dimensional internal waves remains a topic for further
investigation.
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Appendix A. Legendre functions

The ordinary Legendre functions Pl(z) and Ql(z) of non-negative integer degree l are
defined in the plane of the complex variable z, cut along the real interval [−1, 1], as

Pl(z) = 1
(2l)!!

dl

dzl (z
2 − 1)l, (A1a)

Ql(z) = 1
(2l)!!

dl

dzl

[
(z2 − 1)l ln

(
z + 1
z − 1

)]
− 1

2
Pl(z) ln

(
z + 1
z − 1

)
. (A1b)

The associated Legendre functions Pm
l (z) and Qm

l (z) are defined for non-negative integer
order m as

Pm
l (z) = (z2 − 1)m/2

dm

dzm Pl(z), Qm
l (z) = (z2 − 1)m/2

dm

dzm Ql(z), (A2a,b)

and for negative order as

P−m
l (z) = (l − m)!

(l + m)!
Pm

l (z), Q−m
l (z) = (l − m)!

(l + m)!
Qm

l (z). (A3a,b)
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On the cut [−1, 1], the Legendre functions are also called Ferrers functions. The ordinary
functions Pl(x) and Ql(x) of the real variable x ∈ [−1, 1] are defined for degree l as

Pl(x) = 1
(2l)!!

dl

dxl (x
2 − 1)l, (A4a)

Ql(x) = 1
(2l)!!

dl

dxl

[
(x2 − 1)l ln

(
1 + x
1 − x

)]
− 1

2
Pl(x) ln

(
1 + x
1 − x

)
, (A4b)

and the associated functions Pm
l (x) and Qm

l (x) are defined for positive order m as

Pm
l (x) = (−1)m(1 − x2)m/2

dm

dxm Pl(x), Qm
l (x) = (−1)m(1 − x2)m/2

dm

dxm Ql(x),

(A5a,b)
and for negative order as

P−m
l (x) = (−1)m

(l − m)!
(l + m)!

Pm
l (x), Q−m

l (x) = (−1)m
(l − m)!
(l + m)!

Qm
l (x). (A6a,b)

The two types of functions are related to each other at the cut by

Pm
l (x ± i0) = (∓i)m Pm

l (x), Qm
l (x ± i0) = (∓i)m

(
Qm

l ∓i
π

2
Pm

l

)
(x). (A7a,b)

Several definitions and notations of the Legendre functions exist in the literature. The
above definitions and notations are based on Hobson (1931, chapters 2, 3 and 5),
Abramowitz & Stegun (1972, chapter 8) and Olver et al. (2010, chapter 14).

The derivations in § 5 use the symmetry relations

Pm
l (−z) = (−1)lPm

l (z), Qm
l (−z) = (−1)l+1Qm

l (z), (A8a,b)

and
Pm

l (−x) = (−1)l+m Pm
l (x), Qm

l (−x) = (−1)l+m+1 Qm
l (x), (A9a,b)

the recurrence relations

(z2 − 1)1/2
d
dz

Pm
l (z) = Pm+1

l (z)+ m
z

(z2 − 1)1/2
Pm

l (z), (A10)

and

(1 − x2)1/2
d
dx

Pm
l (x) = − Pm+1

l (x)− m
x

(1 − x2)1/2
Pm

l (x), (A11)

with Qm
l (z) satisfying the same relations as Pm

l (z), and Qm
l (x) as Pm

l (x), and the identities

Pm
l (z)Q

m+1
l (z)− Pm+1

l (z)Qm
l (z) = − (−1)m

(z2 − 1)1/2
(l + m)!
(l − m)!

, (A12)

and

Pm
l (x)Qm+1

l (x)− Pm+1
l (x)Qm

l (x) = − 1
(1 − x2)1/2

(l + m)!
(l − m)!

. (A13)

Gegenbauer’s finite integral in § 12.14 of Watson (1944) is also used, in the form∫ π

0
exp(iz cos θ cosα) Jm(z sin θ sinα)Pm

l (cos θ) sin θ dθ = 2il−m jl(z)Pm
l (cosα),

(A14)

with Jm(z) a cylindrical Bessel function and jl(z) a spherical Bessel function.
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Appendix B. Spherical harmonics

Spherical harmonics are defined in terms of associated Legendre functions as

Ym
l (θ, φ) =

√
2l + 1

4π

(l − m)!
(l + m)!

Pm
l (cos θ) exp(imφ), (B1)

with l a non-negative integer and m an integer such that |m| � l; see for example Jackson
(1999, § 3.5) and Olver et al. (2010, § 14.30). They form a complete orthonormal set over
the surface of the unit sphere, in terms of which an arbitrary function g(θ, φ) may be
expanded as

g(θ, φ) =
∞∑

l=0

l∑
m=−l

glmYm
l (θ, φ), (B2)

with coefficients

glm =
∫

g(θ, φ)Ym
l (θ, φ) dΩ, (B3)

where an overbar denotes a complex conjugate and dΩ = sin θ dθ dφ the solid angle
element.

Appendix C. Another look at boundary values

When x is on S and the Kirchhoff–Helmholtz integral is evaluated on a small surface
surrounding it, Martin & Llewellyn Smith (2012) used a hemisphere Hε of radius ε with its
polar axis along the normal n to S at x. Introducing spherical polar coordinates (r′′, θ ′′, φ′′)
with the same polar axis (so that φ′′ differs from that in § 7.1), we have

r′′ = ε, 0 < θ ′′ < π/2, 0 < φ′′ < 2π, n′ = er′′, d2S′ = ε2 sin θ ′′ dθ ′′ dφ′′,
(C1a–e)

yielding∫
Hε

G(x′′) d2S′ = ε

4πω2(1 − Γ 2)1/2

∫ 2π

0
dφ′′

∫ π/2

0

sin θ ′′ dθ ′′

[Λ(θ ′′, φ′′; θ, Γ )]1/2 , (C2a)

∫
Hε

uG(x′′) · n′ d2S′ = (1 − Γ 2)1/2

4π

∫ 2π

0
dφ′′

∫ π/2

0

sin θ ′′ dθ ′′

[Λ(θ ′′, φ′′; θ, Γ )]3/2 , (C2b)

where Γ = N/ω, with 0 < Γ < 1, and

Λ(θ ′′, φ′′; θ, Γ ) = 1 − Γ 2(sin θ sin θ ′′ cosφ′′ − cos θ cos θ ′′)2. (C3)

As ε → 0 the same result (7.9) is obtained as for the cutoff vertical cylinder Sε in
figure 4(b), but with the factor 1/2 on the right-hand side replaced by the right-hand side
of (C2b).

Now, as seen in § 7.1, the two integrals over Sε and Hε must have the same limit as
ε → 0. Numerically, the right-hand side of (C2b) evaluates to 0.5 whatever the values of
Γ and θ . Analytically, it evaluates to 1/2 for Γ = 0, independent of θ , but the extension
of this result to arbitrary Γ and θ has not been possible. We may, however, remark, as for
Sε following (7.9), that the tangent plane to S at x divides a sphere of radius ε around x
into two hemispheres which are mirror images of each other through the horizontal plane,
and that the symmetry of the integrand is such that each hemisphere gives half the integral
over the complete sphere, shown by Martin & Llewellyn Smith (2012) to evaluate to 1.
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