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We develop predictive formulae for frictional resistance in ducts with complex cross-
sectional shape based on the use of the log law and neglect of wall shear stress non-
uniformities. The traditional hydraulic diameter naturally emerges from the analysis
as the controlling length scale for common duct shapes such as triangles and regular
polygons. The analysis also suggests that a new effective diameter should be used in
more general cases, yielding corrections of a few percent to friction estimates based
on the traditional hydraulic diameter. Fair, but consistent, predictive improvement is
shown for duct geometries of practical relevance, including rectangular and annular
ducts, and circular rod bundles.
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1. Introduction

Internal flows within straight ducts having non-circular cross-section are common in
many applications of mechanical and hydraulic engineering, including water draining
and ventilation systems, nuclear reactors, heat exchangers and turbomachinery. Despite
their practical importance, flows in ‘complex’ ducts are understood to a much lesser
extent compared to canonical flows in plane channels and circular pipes, one of the
main qualitative differences being the occurrence of secondary motions (Prandtl 1926;
Nikuradse 1930). Of primary engineering importance is the prediction of the duct
friction factor, namely

λ=
8τw

ρu2
b
, (1.1)

where τw is the average wall shear stress along the duct perimeter, ρ is the fluid
density and ub is the duct bulk velocity. For that purpose, a widely used pragmatic
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approach is assuming that the same friction relationship can be used as for flow in
circular pipes, provided a suitable Reynolds number is defined, based on a convenient
duct length scale. The most traditional choice, apparently initiated by Schiller (1923),
is the hydraulic diameter, defined as

Dh =
4A
P0
, (1.2)

where A is the duct cross-sectional area and P0 is the duct perimeter. This choice
is frequently justified by the appearance of the area/perimeter ratio in the mean
momentum balance equations, which connects the mean wall friction to the duct
pressure drop, namely

τw =−
A
P 0

dp
dx
, (1.3)

but of course this is a quite tenuous argument. Indeed, limitations of the hydraulic
diameter have emerged, especially in the study of ducts with aspect ratio (here broadly
defined as the ratio of the largest to the smallest dimensions of the duct) significantly
different than unity. Hence, semi-empirical corrections to the basic hydraulic diameter
concept have been proposed over the years, tailored to specific duct geometries – for
instance, rectangular ducts (Jones 1976) – and general geometries have been frequently
handled through ad hoc extrapolation of laminar results (e.g. Maubach 1970; Rehme
1972). More elaborate techniques have sometimes been used relying on application of
the log law in the direction normal to the velocity isolines; however, these require a
cumbersome iterative procedure (Deissler & Taylor 1958).

One of the most robust findings in the (few) detailed quantitative studies of
non-canonical duct flow is the presence of logarithmic layers in the wall-normal
direction (e.g. Jonsson & Sparrow 1966; Cain & Duffy 1971; Nouri, Umur &
Whitelaw 1993). Even more convincing support for the validity of the law of the
wall has come from recent numerical studies dealing with rectangular ducts (Vinuesa
et al. 2014), square ducts (Pirozzoli et al. 2018) and hexagonal ducts (Marin et al.
2016), showing that in its inner form it applies with excellent approximation in the
wall-normal direction up to the nearest corner bisector, even near the duct corners,
provided the local wall friction is used. A formal theoretical analysis of turbulent
flow in ducts with complex shape has been recently developed by Spalart, Garbaruk
& Stabnikov (2018). Extending classical inner–outer layer matching arguments, those
authors deduced the validity of the logarithmic velocity profile, but also arrived at
the interesting prediction that the wall friction should tend towards being uniform all
around the duct except near possible corners, asymptotically as the Reynolds number
Re→∞. This was confirmed by numerical solutions obtained with turbulence models,
and is consistent with recent DNS at moderately high Reynolds number (Pirozzoli
et al. 2018). Hence, a reasonably simple structure of turbulent flow in ducts emerges,
which lends itself to analytical treatment. In the forthcoming § 2 we develop a simple
predictive formula for the friction coefficient for ducts with arbitrary shape, and in
§ 3 we test its predictive capability. Last, in § 4 we outline implications of the present
findings.

2. Friction estimates

The forthcoming discussion pertains to straight ducts with cross-sectional shape D
such that a wall distance y (defined at the normal distance to the closest wall) can

846 R1-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

30
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.303


On turbulent friction in straight ducts with complex cross-section

P(y)

yX

FIGURE 1. Typical duct cross-section (D), with indication of wall distance y, and
associated area density, P(y). X is a generic point and Xw is its wall foot.

be defined for any point X, as depicted in figure 1. This is a generally acceptable
assumption, and counterexamples are difficult to conceive. We hereafter further assume
that:

(i) the inner-layer law of the wall applies with respect to the closest wall, hence

u(X)/uτ = f (yuτ/ν), (2.1)

where u is the mean velocity at X, uτ = (τw/ρ)
1/2 is the local friction velocity

at the corresponding wall point Xw, ν is the fluid kinematic viscosity, and f is a
suitable functional inner form for the wall law;

(ii) the wall shear stress is constant along the duct perimeter, hence τw = τw.

Assumption (i) is supported by all available experimental and numerical data (Cain
& Duffy 1971; Jonsson & Sparrow 1966; Nouri et al. 1993; Marin et al. 2016;
Nikitin 2006). For instance, in square ducts (Pirozzoli et al. 2018), clear logarithmic
layers are found to form at bulk Reynolds number barely exceeding 104. Small
flow-dependent deviations from the strict inner law are present in the core part
of the flow, such as for instance in circular pipes and plane channels, which will
be neglected here for convenience. Assumption (ii) is probably weaker, as direct
detailed measurements of the local wall friction distribution are scarce, and numerical
simulations are limited to relatively low Reynolds numbers. The available data show
that, with the obvious exception of sharp corners where the friction is zero, variations
of the wall shear stress in simply connected ducts are no more that 10 % (Leutheusser
1963; Cain & Duffy 1971; Marin et al. 2016). In the best documented case of square
ducts, variations of local wall friction are further found to very nearly cancel out
as far as their contribution to the mean friction coefficient is concerned (Pirozzoli
et al. 2018). Compelling theoretical arguments (Spalart et al. 2018) do in fact
suggest that flat distributions of the wall shear stress should result in the asymptotic
high-Reynolds-number limit. Larger variations of wall friction have been reported in
multiply connected ducts, as discussed in § 3.2. Although certainly criticizable, the
assumptions (i), (ii) are the only viable pathway to arrive at closed form predictions;
hence their validity may be judged from the outcome. Similar assumptions were
also used by Keulegan (1938) to estimate friction in open channels with trapezoidal
cross-section, and are frequently used in the hydraulics community. However, it
appears that the implications have not been fully pursued in the past, especially
within the context of internal flows.
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A direct consequence of the above assumptions is that the mean streamwise velocity
only depends on the inner-scaled wall distance according to

u∗ = f (y∗), (2.2)

where the star denotes normalization with global wall units, namely u∗ = u/u∗τ , y∗ =
yu∗τ/ν, with u∗τ = (τw/ρ)

1/2. The bulk velocity in the duct is then easily deduced by
integration, yielding

u∗b =
1
A

∫
D

f (y∗) dA. (2.3)

The integration is conveniently carried out by introducing the area density with respect
to the wall distance, P(y) = dA/dy (see figure 1), which may be interpreted as the
perimeter associated with the iso-y lines, with P(0)= P0, thus obtaining

u∗b =
1
A

∫ ym

0
P(y)f (y∗) dy=

∫ 1

0
P̃(η)f (ηy∗m) dη, (2.4)

where ym is the maximum wall distance over the whole duct cross-section, η= y/ym is
the normalized wall distance, y∗m = ymu∗τ/ν is the counterpart of the friction Reynolds
number in canonical flows, and P̃(η)=P(ηym)/P is the normalized perimeter function,
with P = A/ym the mean duct perimeter. Equation (2.4) makes it clear that the
wall-scaled bulk velocity, and hence the friction factor (from equation (1.1), λ=8/u∗b

2),
only depends upon the wall function, which is here assumed to be the same for
all ducts, and on the duct geometry through the inner-scaled maximum distance
y∗m and the normalized perimeter function. For instance, in the case of a circular
pipe with diameter D it is straightforward to verify that ym = D/2, P = πD/2 and
P̃= 2(1− η). Notably, very similar conclusions are obtained for any triangle and for
regular polygons, in which case ym is the apothem of the cross-section, P is half
of the outer perimeter, and again P̃ = 2(1 − η). This observation leads to the first
important conclusion that, based on the previous assumptions, triangles and regular
polygons should share the same friction relation, provided the apothem is used as
length scale in the definition of the Reynolds number. However, it is easy to show
that for all these geometries the hydraulic diameter defined in equation (1.2) is two
times the duct apothem; hence we find that the assumed strict validity of the wall
law yields as a direct, exact consequence, that the hydraulic diameter is the proper
length scale to achieve universality of the friction coefficient distribution.

Additional elaborations can be made by assuming a logarithmic form for the law
of the wall which formally encompasses both the case of smooth and rough walls,
namely

f =
1
k

log(y∗/y∗0)=
1
k

log(y/y0), (2.5)

where k is the von Kármán constant, and y0 is the virtual origin for the wall law,
defined as (Colebrook 1939)

y0 =
αν

u∗τ
+ βε, (2.6)

where ε is the equivalent sand-grain roughness height, α≈ 1/10 and β ≈ 1/33. Partial
integration of (2.4) yields

u∗b =
1
k

log(ym/y0)+
1
k

∫ 1

0
P̃(η) log η dη︸ ︷︷ ︸

C

, (2.7)
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where C is solely a function of the duct geometry. The same asymptotic Reynolds
number trend of u∗b also directly stems from matching arguments (Spalart et al. 2018);
however, the analysis is here completed by integration over the cross-section, thus
yielding full friction predictions.

In the case of flow in a circular pipe, equation (2.7) becomes

u∗b =
1
k

log(D/2/y0)−
3
2k
. (2.8)

Comparing equations (2.7) and (2.8) shows that the two formulae are identical
provided D in equation (2.8) is replaced with

De = 2yme3/2+C, (2.9)

which may then be defined as an effective diameter for the duct, namely the diameter
of a circular pipe yielding the same friction coefficient. As previously pointed out, the
effective diameter herein predicted coincides with the traditional hydraulic diameter in
ducts with triangular and regular polygonal shape, for which C=−3/2. Equation (2.9),
however, highlights that the correct length scale to achieve universality of the friction
law is in general different than the hydraulic diameter. Differences in the prediction
of Cf may be estimated by considering the extreme case of an infinitely wide channel
with height H, whose hydraulic diameter is Dh= 2H, and whose normalized perimeter
function is P̃≡ 1. From equation (2.9) it follows that De =

√
eH ≈ 1.65H, which by

construction returns the log-law based friction law for plane channel flow. Assuming
for simplicity λ∼ Re−1/4

D , with ReD = u∗bD/ν (Blasius 1913), we estimate that use of
the hydraulic diameter in this case yields underestimation of the friction coefficient of
approximately 5 %, as indeed confirmed by the later results.

In the following we verify the predictive power of the traditional hydraulic diameter
and of the effective diameter (2.9) for smooth ducts with relatively complex geometry,
and for which a sufficient amount of experimental measurements is available.

3. Applications

3.1. Rectangular ducts
Rectangular ducts have been extensively studied in the literature because of their wide
range of use. Limited success of the classical hydraulic diameter concept is recognized
in this case, and corrections have been proposed, the most frequently used (Jones
1976) being based on the definition of a laminar-equivalent hydraulic diameter such
that the friction coefficient in the laminar regime is the same for ducts with any aspect
ratio. For a rectangular duct with sides of length a> b, and aspect ratio A= a/b (see
figure 2), the hydraulic diameter is Dh = 4ab/(a+ b), the maximum wall distance is
ym = b, the normalized perimeter function defined in equation (2.4) is given by

P̃=
1+A− 2η
A

, (3.1)

and the geometric factor C defined in equation (2.7) is

C =−1−
1

2A
. (3.2)
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FIGURE 2. Rectangular ducts: (a) cross-section with indication of wall distance y, and
associated area density, P(y); (b) correction factor as a function of duct inverse aspect
ratio.
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FIGURE 3. Experimentally measured friction factor for rectangular ducts with various
aspect ratios (Jones 1976), as from colour scale. Solid symbols denote DNS data
for square duct (Pirozzoli et al. 2018, diamonds) and plane channel flow (Bernardini,
Pirozzoli & Orlandi 2014, squares). (a) Expressed as a function of the hydraulic diameter.
(b) Expressed as a function of the effective diameter, equation (3.3). The solid line denotes
the Kármán–Prandtl friction law for a smooth circular pipe. The relative standard error is
8.1 % in (a) and 5.7 % in (b).

It follows that the effective diameter is

De = 2be(A−1)/2A
=

1+A
2A

Dhe(A−1)/2A, (3.3)

as graphically shown in figure 2. It should be noted that equation (3.3) predicts that
the hydraulic diameter is the correct length scale for square ducts, in line with DNS
data at Reτ ≈ 1000 (Pirozzoli et al. 2018).

Figure 3 shows the measured friction coefficient in rectangular ducts with aspect
ratios up to 31, as collected in the work of Jones (1976), as a function of the
traditional hydraulic diameter (panel a) and as a function of the effective hydraulic
diameter defined in equation (3.3) (panel b). For reference, the Kármán–Prandtl
friction law for smooth circular pipes,

1/λ1/2
= 2 log10(ReDλ

1/2)− 0.8, (3.4)
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FIGURE 4. Annular ducts: (a) cross-section with indication of wall distance y, and
associated area density, P(y), with R1 and R2 the radii of the inner and outer cylinder,
respectively, and L the offset between their centres; (b) correction factor as a function of
the duct eccentricity ε for various duct diameter ratios: δ= 1.33 (solid), δ= 1.78 (dashed),
δ = 3.56 (dot-dashed).

is also shown, as well as DNS data for square ducts and plane channels. As
expected, based on the previous discussion, use of the hydraulic diameter yields
systematic underprediction of the friction factor for ducts with high aspect ratio. This
is particularly true for a subset of the experimental data which even overshoot friction
of plane channel flow, thus raising doubts about their reliability. Despite significant
scatter among the experimental data, it appears that the log-law-based effective
diameter yields better universality of the distributions, especially insofar as it tends to
shift data points corresponding to high-aspect-ratio ducts closer to the circular pipe
case, including the infinite aspect ratio case. The remaining differences between plane
channel and pipe flow, of approximately 2 %, are likely due to differences in the core
velocity profiles, here neglected, and become even thinner at higher Reynolds number
(not shown here). In fact, the wake region in plane channel flow is weaker than in
pipes, hence the friction coefficient is higher, all the rest being the same. Similar
results as shown in figure 3(b) may be obtained from semi-empirical corrections (see
Jones 1976), which however have very tenuous theoretical foundation.

3.2. Annular ducts
Flows in annular passages are common in mechanical engineering, and for instance
they are important in drilling wells, where mud passes through the drill shaft and
the well casing to remove cuttings and friction-generated heat. Let L be the offset
between the inner cylinder with radius R1 and the outer cylinder with radius R2; the
geometry (see figure 4a) is controlled by two parameters, namely the diameter ratio,
δ = R2/R1, and the eccentricity, ε = L/(R2 − R1). The hydraulic diameter is simply
Dh = 2(R2 − R1), having no dependence on δ and ε. It is a simple matter to show
that the maximum wall distance is in this case ym = 1/2(R2 − R1)(1 + ε), and the
mean perimeter is P=A/ym= 2π(R2+R1)/(1+ ε). After some algebra, the following
expression is obtained for the normalized perimeter function

P̃(η)=


1+ ε, for 0 6 η6 η∗

1+ ε
π(δ + 1)

[δθ2 + θ1 + η/2(δ − 1)(1+ ε)(θ1 − θ2)], for η∗ 6 η6 1,
(3.5)
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FIGURE 5. Experimentally measured friction factor for annular ducts with different
eccentricities (Jonsson & Sparrow 1966), as from colour scale, and different diameter
ratios: δ = 1.33 (circles); δ = 1.78 (squares), δ = 3.56 (triangles). (a) Expressed as a
function of the hydraulic diameter. (b) Expressed as a function of the effective diameter,
equation (2.9). The solid line denotes the Kármán–Prandtl friction law for a smooth
circular pipe. The relative standard error for ε 6 0.25 is 3.0 % in (a) and 2.5 % in (b).

where η∗ = (1− ε)/(1+ ε),

cos θ1 =
(δ + 1)[(1+ ε)η− 1] + ε2(δ − 1)
ε(δ − 1)[2+ η(δ − 1)(1+ ε)]

,

cos θ2 =
(δ + 1)[(1+ ε)η− 1] − ε2(δ − 1)
ε(δ − 1)[2δ − η(δ − 1)(1+ ε)]

.

 (3.6)

Numerical integration of function C defined in equation (2.7), with P̃ given in
equation (3.5), yields the result shown in figure 4(b). As in periodic channel flow, the
corrective factor over the hydraulic diameter is

√
e/2 at zero eccentricity, becoming

closer and exceeding unity at increasing values of ε. The dependence on the diameter
ratio is quite weak, and confined to high values of ε, a good fit for the data at
ε . 0.6 being De/Dh =

√
e/2+ 0.217ε2.

Extensive measurements of concentric and eccentric pipe flows were carried out
by Jonsson & Sparrow (1966), in a wide range of duct eccentricities and diameter
ratios. Those authors found that the wall shear stress varies in the circumferential
direction proportionally to the duct eccentricity, with larger shear at the location
of the widest gap. Further difficulties are associated with the occurrence of locally
laminar flow at the smallest gap (Nikitin 2006). Comparison of the classical hydraulic
diameter representation with predictions of equation (2.9) are shown in figure 5. The
classical hydraulic diameter scaling (panel a) shows higher friction than given by the
Kármán–Prandtl friction law at low duct eccentricity, and substantially lower at high
eccentricity, mostly associated with the formation of regions of laminar flow. The
effective diameter (panel b) is partially successful in shifting the friction data for
ducts with low eccentricity (ε. 0.25, see colour scale and figure caption) towards the
universal distribution. Although pointing in the right direction (recalling figure 4b)
the effective diameter does not yield the same satisfactory behaviour also at higher
eccentricity, which is probably not unexpected, as the underlying assumption of
uniform wall stress is invalidated.
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FIGURE 6. Rod bundles in hexagonal arrangement: (a) elementary module with indication
of wall distance y, and associated area density, P(y), with R=D/2 the rod radius, and L
the pitch between neighbouring rods centres; (b) correction factor as a function of pitch
parameter ε = L/D− 1.

3.3. Circular rod bundles
The prediction of friction in bundles of rods with circular cross-section is important
in the cooling channels of nuclear reactors; hence this flow has been extensively
characterized in the past. Although several arrangements of rods are possible, here
we consider an hexagonal arrangement, under the assumption of a nominally infinite
number of rods, so as to neglect boundary effects related to the presence of confining
walls. The relevant geometrical molecule for the study of this flow is shown in
figure 6(a). The geometry of the typical cross-section is identified through a single
parameter, namely the pitch/diameter ratio, L/D = 1 + ε, ε = 0 corresponding to
the limit case of tangent rods. The hydraulic diameter for the typical cross-section
is (Rehme 1973)

Dh =D(1+ ε)2
tan α
α

, (3.7)

with α=π/6. It turns out that the maximum wall distance is ym=R((1+ ε) cosα− 1),
the average perimeter is

P=
3[(1+ ε)2 sin α − α cos α]

(1+ ε)− cos α
, (3.8)

and the normalized perimeter function is

P̃(η)=
6R
P


α(1+ ηym/R), for 0 6 η6 η∗

(1+ η ym/R)
[
α − arccos

(
1+ ε

1+ ηym/R

)]
, for η∗ 6 η6 1,

(3.9)

where η∗ = εR/ym.
Numerical integration of equation (2.7) yields the effective diameter as a function

of the parameter ε, as shown in figure 6(b). The effective diameter is found to be
greater than the hydraulic diameter for small ε, with De/Dh→ 1.281 as ε→ 0, and
decreasing as 1/ε for large ε.

In figure 7 we show experimental data by Rehme (1973) in the range of pitch
parameters 0.0256 ε6 1.320. When normalized with respect to the hydraulic diameter
(panel a), the data show consistently higher friction than expected, the higher is ε. The
effective diameter (panel b) does eliminate most large overshoots, re-establishing the
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FIGURE 7. Experimentally measured friction factor for rod bundles for different pitch
parameters ε (Rehme 1973), as from colour scale, and different numbers of rods: N = 61
(circles), N = 37 (squares), N = 19 (triangles), N = 7 (diamonds). (a) Expressed as a
function of the hydraulic diameter. (b) Expressed as a function of the effective diameter,
equation (2.9). The solid line denotes the Kármán–Prandtl friction law for a smooth
circular pipe. The relative standard error is 6.8 % in (a) and 4.5 % in (b).

universal friction law for all data at sufficiently high pitch ratio (light shades). Data
points corresponding to small values of ε are overestimated, presumably because flow
becomes locally laminar in the presence of narrow gaps, an effect which again cannot
be captured given the initial assumptions.

4. Conclusions

We have derived predictive formulae for friction in ducts with complex shape, under
the assumption that the friction distribution along the duct perimeter is uniform, and
that the velocity at any given point in the cross-section is controlled by the nearest
wall through an assumed inner-layer log law, upon neglect of core deviations. The
leading conclusion is that the classical hydraulic diameter is the proper length for
many common duct shapes such as triangles and regular polygons, thus providing
theoretical support for its widespread use. This finding is supported by a number
of recent DNS in polygonal ducts which with very good precision show collapse
of friction data on the universal Kármán–Prandtl distribution. A second important
conclusion is that deviations from the classical hydraulic diameter scaling should arise
in more general duct shapes, for which the effective diameter defined in equation (2.9)
is expected to be a more accurate choice. The latter can be easily evaluated, either
analytically or numerically, based on the duct cross-sectional geometry. Differences
with respect to friction predictions based on the classical hydraulic diameter are
generally small, but more sensible as the duct aspect ratio is much different from
unity, amounting in practical terms to a few percent. Re-evaluation of classical
experiments in smooth ducts with moderately complex shape, namely rectangular
and annular ducts, and circular rod bundles, supports small but consistent predictive
improvements when the effective diameter is used instead of the traditional hydraulic
diameter, with all due caveats incurred with tracing differences of a few percent
within scattered experimental data. Of course, given the assumptions made in the
derivation, the log-law based effective diameter does not perform well in cases in
which the wall shear stress is far from uniform, such as ducts with narrow gaps or
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acute angles, which may even feature locally laminar flow. Measurements at higher
Reynolds number and/or for rough ducts would be desirable, to be able to more
clearly ascertain the predictive power of the log-law-based effective diameter, and to
compare with existing correlations based on extrapolation of laminar results.
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