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We present the results from numerical simulations of turbulent Rayleigh–Bénard
convection for an aspect ratio (diameter/height) of 1.0, Prandtl numbers of 0.4 and
0.7, and Rayleigh numbers from 1 × 105 to 1 × 109. Detailed measurements of the
thermal and viscous boundary layer profiles are made and compared to experimental
and theoretical (Prandtl–Blasius) results. We find that the thermal boundary layer
profiles disagree by more than 10 % when scaled with the similarity variable (boundary
layer thickness) and likewise disagree with the Prandtl–Blasius results. In contrast,
the viscous boundary profiles collapse well and do agree (within 10 %) with the
Prandtl–Blasius profile, but with worsening agreement as the Rayleigh number
increases. We have also investigated the scaling of the boundary layer thicknesses
with Rayleigh number, and again compare to experiments and theory. We find that the
scaling laws are very robust with respect to method of analysis and they mostly agree
with the Grossmann–Lohse predictions coupled with laminar boundary layer theory
within our numerical uncertainty.
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1. Introduction
Turbulent convection is an important area of study that has applications to diverse

phenomena such as that which takes place in heat exchangers in power plants and
melting processes, as well as natural convection in the Earth’s atmosphere, core and
oceans, and in the Sun and Jupiter.

In Rayleigh–Beńard (RB) convection, a fluid cell is bounded by horizontal parallel
plates and kept at a constant temperature difference 1T . The dimensionless Rayleigh
number, Ra, is proportional to 1T . As the Rayleigh number increases past a critical
value, a buoyancy-driven instability causes the conducting state to bifurcate to a
convection state consisting of straight, parallel rolls. Then if the Rayleigh number is
increased further, these states can bifurcate to spatiotemporal chaotic states. When the
Rayleigh number becomes very large, this system becomes fully turbulent. This fully
turbulent system is very complex and bears little resemblance to the weakly turbulent
system, which is chaotic but still retains a clear and coherent underlying roll structure.

† Email address for correspondence: jscheel@oxy.edu
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The results of experiments (Qiu & Xia 1998; Sreenivasan, Bershadskii & Niemela
2002; Funfschilling & Ahlers 2004; Brown, Nikolaenko & Ahlers 2005; Zhou, Sun
& Xia 2007) and direct numerical simulations (Verzicco & Camussi 2003; Chandra &
Verma 2011; Wagner, Shishkina & Wagner 2012) have found thermal plumes at these
large Rayleigh numbers and shown the presence of a large-scale circulation (LSC)
throughout the entire cell, which carries the plumes in a circular manner. The plane
of the circulation is vertical, but its orientation in a cylindrical cell is arbitrary and
changes with time, as does the strength of the circulation. In addition, there are thin,
thermal and viscous boundary layers on the bottom and top of the cell, and it is not
well understood how the boundary layers interact with the LSC.

In this paper we perform three-dimensional numerical simulations of the Boussinesq
equations for no-slip boundary conditions, for an aspect ratio of 1.0, Rayleigh numbers
between 1 × 105 and 1 × 109, and Prandtl numbers of 0.4 and 0.7. We used the
cases with a Prandtl number of 0.7 to compare to many experiments (Castaing et al.
1989; Wu & Libchaber 1992; Chavanne et al. 1997; Niemela et al. 2000; Ahlers et al.
2009a; Burnishev, Segre & Steinberg 2010; du Puits, Resagk & Thess 2010; Urban,
Musilova & Skrbek 2011). We used the cases with a Prandtl number of 0.4 to observe
the LSC and any possible cessations, since the LSC is stronger and cessations more
likely for a lower Prandtl number at any given Rayleigh number (Breuer et al. 2004).
In this paper, we focus on the boundary layers, which are the key to understanding the
nature of the turbulence in RB convection.

Boundary layer profiles and thicknesses have been measured both experimentally
and numerically, and there is some disagreement as to both the shape of the profiles
and the scaling of boundary layer thickness with Rayleigh number. A comparison
of boundary layer results is given in table 1. For a more comprehensive review, see
Ahlers, Grossmann & Lohse (2009b). The shape of the boundary layers is important,
because it can provide insight into whether or not the boundary layers are laminar
or turbulent, and also predict if and when the boundary layer may become turbulent
as the ‘ultimate regime’ is reached (Funfschilling, Bodenschatz & Ahlers 2009; He
et al. 2012). Theoretically, if the boundary layers are laminar, they should exhibit
self-similarity (van Reeuwijk et al. 2008) and possibly take a Prandtl–Blasius shape
(Schlichting & Gersten 2000). The Prandtl–Blasius theory assumes that there is a
constant horizontal velocity just above the boundary layer, as is true if there is a
constant LSC.

A comparison of scaling results is also shown in table 1 as well as later in table 7.
Theoretically, it is expected that the thermal boundary layer thickness should be
inversely related to the scaling of the Nusselt number with Rayleigh number. Likewise,
the viscous boundary layer thickness should be inversely related to the square root of
the scaling of Reynolds number with Rayleigh number (Schlichting & Gersten 2000).

The rest of the paper is organized as follows. First, we describe the numerical
simulations, including extensive convergence tests. Next, we discuss the scaling of
Nusselt number with Rayleigh number, and of Reynolds number with Rayleigh
number, and compare to other results. Finally, we look at the boundary layers, both in
profile and in terms of their scaling with Rayleigh number.

2. Boussinesq equations
The system is modelled by the Boussinesq equations (Chandrasekhar 1961). The

variables are non-dimensionalized by specifying the length in terms of the cell
height d, the temperature in terms of 1T , and the time in units of the vertical
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thermal diffusion time τv = d2/κ , where κ is the thermal diffusivity. The equations are

σ−1(∂t + u ·∇)u=−∇P+∇2u+ Ra θz, (2.1)

(∂t + u ·∇)θ = ∇2θ, (2.2)
∇ ·u= 0. (2.3)

The variable u(r, t) ≡ (u, v,w) is the velocity field, P(r, t) is the pressure and
θ(r, t) is the temperature field. The symbol ∂t indicates time differentiation, and z is
a unit vector in the vertical direction. The Prandtl number (σ ) is ν/κ , where ν is
the kinematic viscosity. The Rayleigh number (Ra) is αg1Td3/κν, where α is the
thermal expansion coefficient and g is the acceleration of gravity. The aspect ratio (Γ )
is defined for cylindrical cells as the ratio of the diameter to the height.

Our boundary conditions along the top and bottom plates are no-slip and
conducting:

u= 0 at z= 0, 1, θ = 1 at z= 0, θ = 0 at z= 1. (2.4)

For realistic boundary conditions on the sidewalls, we use no-slip velocity boundary
conditions and insulating thermal boundaries:

u= 0,
∂θ

∂r
= 0 at r = Γ. (2.5)

For all our runs and calculations, we used a cylindrical cell of aspect ratio Γ = 1.0.
To solve the Boussinesq equations with rotation, we used the code Nek5000

(Fischer, Lottes & Kerkemeier 2008), a parallel, spectral element code developed
to solve the Navier–Stokes equation. This code is now readily available and is used by
more than two dozen research institutions.

2.1. Convergence tests
It is very important to have a convergent, well-resolved code in turbulent
Rayleigh–Bénard convection to make sure that the experiments are accurately
modelled by the simulations (Shishkina et al. 2010; Stevens et al. 2010).

We will use Nusselt number as a globally averaged quantity to assess convergence
as well as to compare our data with other simulations and experiments. The Nusselt
number is defined as the ratio of the total heat transported across the cell in the
z direction divided by the heat transported via conduction only. For our numerical
simulations, we compute the Nusselt number (Nu) by finding the heat transported out
of the cell:

Nu=

∫
∇T · dA∫
n̂ · dA

, (2.6)

where dA is an area element of the top surface whose normal is parallel to the
direction of heat transport n̂.

For purposes of comparison to other numerical simulations, τν =
√
σRa τ , where τ

is the dimensionless time used by other groups (Shishkina & Thess 2009; Stevens
et al. 2010; Shi et al. 2012) and τν is the dimensionless time we use in our
simulations. We ran our simulations for at least 0.01 τν , and did not start computing
important quantities (Nusselt number, Reynolds number, boundary layer thicknesses,
etc.) until after the system settled into the turbulent state. Then we ran out our
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Spat. resol. dt Nu λsl
θ δλsl

θ (%) λsl
v δλsl

v (%) Total time

9 1× 10−7 19.56 0.0271 3.8 0.0181 9.9 0.027
11 1× 10−7 19.44 0.0272 1.4 0.0179 8.1 0.049
13 1× 10−7 19.39 0.0261 3.9 0.0174 6.4 0.024
15 1× 10−7 19.70 0.0275 2.2 0.0184 8.2 0.022

11 4× 10−7 19.41 0.0262 1.5 0.0178 7.3 0.023
11 1× 10−7 19.44 0.0272 1.4 0.0179 8.0 0.049
11 5× 10−8 19.71 0.0275 5.1 0.0185 7.0 0.020
11 1× 10−8 19.14 0.0283 12.0 0.0198 12.0 0.023

TABLE 2. Demonstration of convergence for σ = 0.4, Γ = 1 and Ra= 2× 107. The spatial
resolution is the number of interpolation points in each dimension. The time step dt is
noted. Also, in this case, 840 elements were used. The Nusselt number Nu is given in the
third column, and the thermal λsl

θ and viscous λsl
v boundary layer thicknesses are also given

(as computed from the slope method for a 50 % cut as discussed in the text). Note that
the relative size of the fluctuations in the boundary layer thickness are also given as δλsl

θ

and δλsl
v (as percentages). The total time is the simulation time in units of thermal diffusion

times, and note here that one turnover time is 0.0012 thermal diffusion times.

simulations for at least 0.04 τν , but often much longer. Roughly this translates into
waiting ∼6 turnover times for transients to settle, and then using at least 30 turnover
times (but often more than 100) for our averages. A turnover time in our case is
defined as σ/Re, approximately the time it takes a fluid element to traverse the cell in
the vertical direction.

We studied our convergence in more detail, by varying our time step dt,
while keeping our resolution N fixed. The variable N refers to the number of
Gauss–Lobatto–Legendre (GLL) interpolation points in each dimension. Since the code
is spectral, the points are not equally spaced, but are more closely spaced near the
boundaries, exactly where more resolution is required. We also kept our dt fixed and
then varied our N. The results are shown in table 2. Note for the convergence cases
that we only ran out for about 20 turnover times, as can be seen by the last column
in table 2. We see that the Nusselt numbers are well converged for all N and dt used.
For our production runs, we typically used an N of 11 and the smallest dt required to
satisfy our Courant–Friedrichs–Levy condition (<1).

By looking at table 2, we see that our Nusselt number varies by at most 3 % (also
roughly true for the standard deviation in our Nusselt number time series). As can be
seen in figure 1, our results agree very well with other numerical simulations (Stevens
et al. 2010) and experiments (Ahlers et al. 2009a).

We also compare our resolution to the Kolmogorov scale as defined by Stevens et al.
(2010):

η = d

(
σ 2

RaNu

)1/4

. (2.7)

In table 3 we compare our maximum grid resolution l to η, and find that the maximum
grid resolution is either smaller than or comparable to the Kolmogorov scale. The
case with a Rayleigh number of 5 × 107 is the least well-resolved, but even that data
point falls very well on most of our data plots, suggesting that this is the poorest
resolution tolerated by our simulations of turbulent RB convection. We also computed
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0.15

0.16

0.17

Ra Ra

0.06

0.08

0.10

105 107 109 105 107 109

(a) (b)

FIGURE 1. (Colour online) (a) Comparison of Nusselt numbers between this paper (◦),
Stevens et al. (2010) (∗) and Ahlers et al. (2009a) (�) for σ = 0.7. Note that Γ = 0.5 for
both Ahlers et al. (2009a) and Stevens et al. (2010), in contrast to our Γ = 1.0. Nonetheless,
there is excellent agreement, suggesting that our simulations are well-converged. Also note
that we computed our error bars by the same method as in Stevens et al. (2010). (b) The same
plot, except that the Grossmann–Lohse predicted scaling exponent of 1/3 is used instead
of 0.29.

Ra Nu Nbl l/η

1× 105 4.38 20 0.28
5× 105 6.91 16 0.47
1× 106 8.37 14 0.58
5× 106 13.78 13 0.99
1× 107 16.94 13 1.24
5× 107 26.19 12 2.07
1× 108 31.54 20 1.27

2.5× 108 41.95 16 1.74

TABLE 3. Demonstration of convergence, based on number of data points in the boundary
layer (Nbl) and the maximum grid scale l compared with the Kolmogorov scale η. The data
here are for σ = 0.7 and Γ = 1.

the number of grid points in the thermal boundary layer Nbl, since we did increase our
resolution there in order to resolve the boundary layers more properly. The quantity
Nbl is computed by taking the thermal boundary layer thickness (λθ ) and dividing
by the resolution in the boundary layer. Again, we find that the boundary layers are
adequately resolved. Also, the requirement on the number of nodes in the thermal and
kinetic boundary layers according to Shishkina et al. (2010) is more than adequately
satisfied.

If we compare the boundary layer thicknesses (see § 3.3 for a description of how the
boundary layer thicknesses were measured) in table 2, we do see results that vary by
2 % for λsl

θ and 5 % for λsl
v when the spatial resolution is varied, and 7 % for λsl

θ and
8 % for λsl

v when the time step is varied. This is more than the variation in Nusselt
number, and this is perhaps not so surprising since boundary layer thicknesses are
less of a globally averaged quantity than Nusselt number. Also, the boundary layer
thicknesses vary quite a bit with time, and we give the size of the relative fluctuations
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Averaging time 〈λsl
θ 〉 〈λsl

v 〉 Sθ Sv

0.005 0.0134 0.0091 2.1651 2.3203
0.010 0.0136 0.0092 2.1568 2.3327
0.015 0.0137 0.0093 2.1591 2.3393
0.020 0.0136 0.0092 2.1693 2.3492
0.025 0.0135 0.0092 2.1814 2.3490
0.030 0.0134 0.0092 2.1815 2.3460
0.035 0.0134 0.0092 2.1835 2.3442
0.040 0.0133 0.0092 2.1753 2.3451
0.045 0.0133 0.0092 2.1777 2.3474
0.050 0.0133 0.0092 2.1867 2.3530
0.054 0.0133 0.0092 2.1958 2.3568

TABLE 4. Tests of simulation time. Various quantities are computed for different
simulation times and for a 10 % cut. One turnover time is 0.0005 thermal diffusion
times for this case of σ = 0.4 and Ra = 2 × 108. See § 3.3 for a description of how 〈λsl

θ 〉
and 〈λsl

v 〉 were measured. See (3.16) and below for definitions of Sv and Sθ .

in table 2 to highlight this. The quantity δλsl
θ is given by the standard deviation in λsl

θ

for our time series, divided by the average value for λsl
θ (and then times 100 to get a

percentage). The same value is computed for our viscous boundary thicknesses as well.
This information is useful, since it gives us a sense of the variation in boundary layer
thicknesses and our uncertainty in these quantities. Also, note that the variation for
our smallest dt (1 × 10−8) is the largest, suggesting that there were some fairly large
fluctuations in the boundary layer for this particular case, which would have benefited
from being run for a longer time.

Finally, we have studied whether or not the averaging time has an effect on the
results as shown in table 4. We find that as long as we average for at least 10 turnover
times, the boundary layer thicknesses vary by at most 3 %. The shape factors also
vary by at most 2 %, but there is a slight trend towards higher values, suggesting
that longer averaging times help for these values. There is more uncertainty in shape
factors partially because this quantity is calculated from the boundary layer profile, so
any error is compounded when computing the integrals in (3.15) and (3.14). An upper
bound of varying by at most 3 % encompasses the uncertainty due to averaging time
for both boundary layer thicknesses and shape factors.

As a result of our uncertainty analysis and convergence testing, we define the term
‘collapse well’ to be a variation of less than 10 % and vice versa.

3. Results
3.1. Scaling of Nusselt number with Rayleigh number

We investigated how the Nusselt number scales with Rayleigh number, as shown in
figure 2, since this scaling suggests different methods of heat transport. The scaling
equation is given as

Nu= Nu0Ra
γNu . (3.1)

There is also a scaling dependence with Prandtl number, but we did not vary our
Prandtl number enough for this to be determined, as can be seen in figure 2. Recent
results for Nusselt number scaling with Rayleigh number show good agreement, at
least for Rayleigh numbers less than 1× 1011, as can be seen in table 5. For simplicity,
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Nu
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FIGURE 2. (Colour online) Nusselt number versus Rayleigh number for σ = 0.7 (solid line,
◦) and σ = 0.4 (dashed line, ∗). The slopes are 0.29 ± 0.01 for σ = 0.7 and 0.284 ± 0.005 for
σ = 0.4. The data point for Ra= 1× 105 was not included in the fits since it was an outlier.

Group Range of
Ra

σ Γ Nu0 γNu

Current work 105–108 0.7 1 0.16 ± 0.04 0.29 ± 0.01
Current work 105–109 0.4 1 0.16 ± 0.02 0.284 ± 0.005

Urban et al. (2011) 107–109 0.7 1 0.156 2/7
Bailon-Cuba, Emran &
Schumacher (2010)∗

107–109 0.7 1 0.145 0.294

Kerr (2001)∗ 106–108 0.7 1 — 0.27 ± 0.02
Belmonte et al. (1994) 107–1011 0.7 1 0.18 0.29
Wu & Libchaber (1992) 106–1010 0.7 1 0.217 0.285

Wagner et al. (2012)∗ 104–109 0.8 1 — 0.298
Burnishev et al. (2010) 108–1012 0.8 1 0.12 ± 0.01 0.304 ± 0.005
Stevens et al. (2010)∗ 106–1011 0.7 1/2 0.12 0.30
Ahlers et al. (2009a) 108–1011 0.67 1/2 0.13 0.30
Niemela et al. (2000) 106–1017 '0.7 1/2 0.12 0.309
Benzi, Toschi &
Tripiccione (1998)∗

106–108 1 1 — 0.283 ± 0.003

Chavanne et al. (1997) 107–1011 0.66–0.73 1/2 — 2/7
Castaing et al. (1989) 107–1011 0.64–1.14 1 0.23 0.282

TABLE 5. Comparison of Nusselt number scaling as given by (3.1). The asterisk ∗
indicates numerical simulations; the others are experiments.

we have presented data for Prandtl numbers and aspect ratios similar to ours. For a
more comprehensive review, see Ahlers et al. (2009b).

Note that our scaling results agree best with experiments in exactly the same range
and parameters, including Belmonte, Tilgner & Libchaber (1994) and Urban et al.
(2011), suggesting that our simulations are well-converged and we are running the
simulations for the appropriate amount of time.

We determined our numerical uncertainties here by first computing instantaneous
quantities, such as the Nusselt number. Our Nusselt number for a particular Rayleigh
number is given by the long time average, and the uncertainty is the standard deviation.
Then, when performing a fit to determine scaling parameters, we propagated that
uncertainty.
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FIGURE 3. (Colour online) Reynolds number versus Rayleigh number for σ = 0.7 (solid line,
◦) and σ = 0.4 (dashed line, ∗). The slopes are 0.518 ± 0.001 for σ = 0.7 and 0.486 ± 0.001
for σ = 0.4. Note in this case that the error bars are smaller than the marker size.

Group Range of
Ra

σ Γ Re0 γRe

Current work 105–108 0.7 1 0.21 ± 0.01 0.518 ± 0.001
Current work 105–108 0.4 1 0.56 ± 0.01 0.486 ± 0.001

Wagner et al. (2012)∗ 104–109 0.8 1 0.187 0.496
Emran & Schumacher
(2008)∗

107–109 0.7 1 0.33 0.475

Kerr (2001)∗ 106–108 0.7 1 — 0.46 ± 0.02
Chavanne et al. (2001) 107–1013 0.7 1/2 0.271 0.488
Verzicco & Camussi
(1999)∗

104–107 0.022 1 — 0.53

TABLE 6. Comparison of Reynolds number scaling as given by (3.3). The asterisk ∗
indicates numerical simulations; the others are experiments.

3.2. Scaling of Reynolds number with Rayleigh number
We can also extract the Reynolds number from our velocity field. We calculated the
magnitude of the horizontal velocity 〈v(t)〉 =

√
u (t)2+v (t)2 for both x–z slices (y= 0)

and y–z slices (x = 0). Then we performed an average in the x or y direction, making
sure to exclude the sidewall boundary layers, by using an average over the inner 50 %
of the cell. We then extracted the maximum 〈v(t)〉 near the top and bottom plates.
Finally, we averaged these 〈v(t)〉 values over time to obtain 〈v〉, from which we can
determine the Reynolds number

Re= 〈v〉
σ
. (3.2)

We then plotted the Reynolds number as a function of Rayleigh number in figure 3.
We determined the scaling exponent

Re= Re0Ra
γRe (3.3)

and included this in table 6 for both Prandtl numbers. We also included results
from other groups (if their parameters were similar to ours). We find there is good
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10 % 30 % 50 % 70 %

FIGURE 4. (Colour online) A representative example of various cuts (70 to 10 %). The colour
density plot is of temperature θ(y, z) for one snapshot in time, and is for σ = 0.7, Ra= 1×108

and a y–z slice (x= 0).

agreement. It is expected theoretically (Kraichnan 1962; Grossmann & Lohse 2000)
that the scaling exponent should be 1/2 and our results certainly support this.

3.3. Scaling of boundary layers with Rayleigh number
3.3.1. Calculating boundary layer thicknesses

After having verified our numerical code in the numerous ways above, we now turn
to the main section of the paper, which is a thorough investigation of boundary layers,
both viscous and thermal. We need to extract boundary layers from our v and θ data,
which are functions of x, y, z and t. For the thermal boundary layers, we find both the
temperature θ(x, z, t) for x–z slices (y = 0) and θ(y, x, t) for y–z slices (x = 0). Then
we performed an average in the x or y direction to obtain θ (z, t)len. It is unclear as
to whether or not an average near the centre of the cell gives the same results as
an average over most of the cell (Ahlers et al. 2009b; Wagner et al. 2012), so we
will vary the region over which we average, starting with only 1 % (len = 1 %) in the
centre and then ramping up to almost all of the cell, but still leaving out the sidewall
jets (len = 70 %). An example of how we performed these averagings is shown in
figure 4. Finally, we averaged these 〈θ (z, t)〉len values over time to obtain 〈θ (z)〉len.
In addition, there is a difference between finding the instantaneous boundary layer
thickness λθ(t) for each time slice 〈θ (z, t)〉len and then finding 〈λθ 〉 versus finding the
boundary layer thickness λθ from the time-averaged 〈θ (z)〉len.

To add to the mix, one can also define three (or even more) different boundary layer
thicknesses (Ahlers et al. 2009b): (a) λsl

θ is found from the slope of the thermal profile
〈θ (z)〉len near the top or bottom plate, and then locating the intersection point between
this line and mean temperature in the bulk of the cell (=1 for our dimensions and
rescaling), as shown in figure 5(a); (b) λ95

θ is found from the distance to 95 % of the
bulk temperature (note that in some cases the distance to 99 % of the bulk is used,
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FIGURE 5. (Colour online) Different methods of measuring boundary layer thicknesses:
(a) the slope method; (b) the 95 % from the mean value method; and (c) the distance to
the maximum of the temperature fluctuation σθ , where the temperature fluctuation is found
from the standard deviation of 〈θ(z)〉.

but for our thermal boundary layer this was not very robust due to the fluctuations
in the bulk temperature, so we chose 95 % instead), as shown in figure 5(b); and (c)
λσθ is found from the distance to the maximal temperature fluctuation, as shown
in figure 5(c). We computed the maximal temperature fluctuation σθ by finding
the standard deviation of 〈θ (z)〉len. Note that we first performed the averages over
x, y and then found the standard deviation of 〈θ (z, t)〉len from our averaged profile
〈θ (z)〉len. The viscous boundary layer thicknesses λv are found in a similar way for the
magnitude of the horizontal velocity 〈v〉, except that λ99

v is found from the distance to
99 % of the maximum velocity here (99 % worked for this case since the maximum in
velocity is very well defined).

We were also careful to be consistent with our slope method of finding boundary
layer thickness, since there is a lot of variation in how this value can be computed
for different Rayleigh numbers (Wagner et al. 2012). For example, we only used the
data points in the linear portion of the boundary layer profile, which for our system
was defined by the interval 0 < z < 0.005. If we use a larger z range, the slope can
be underestimated, as the boundary layer profile is only linear very near to z = 0,
especially for higher Rayleigh numbers. Recent experiments (du Puits et al. 2012)
working at even higher Rayleigh numbers ('5 × 1010) have found that there is no
linear portion for their thermal boundary layer profiles.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.392


292 J. D. Scheel, E. Kim and K. R. White

We used the mean value of θ in the interval between 0.2 < z < 0.8 for our
bulk temperature to determine the intersection point for λsl

θ . Our time-averaged bulk
temperatures differed from the expected value of 1.0 by at most 1 %. However, these
tiny differences can cause the boundary layer thickness to be over- or underestimated.
In addition, for the thermal boundary layer thicknesses, we did not rescale our profiles,
other than setting the mean value to 1.0, instead of 0.5. This translates into

θ(scaled)= 2− 2θ bottom boundary layer, (3.4a)
θ(scaled)= 2θ top boundary layer. (3.4b)

For our viscous boundary layer thickness, we needed to find the maximum velocity
vmax near the top and bottom boundary layer, since we find the intersection of our
linear fit near the boundary with this maximum value. Unfortunately sometimes the
instantaneous boundary layer profiles are not so well-behaved (Zhou et al. 2010), so
finding vmax consistently can be problematic. For consistency we set the interval for
finding vmax to be 0 < z < 0.4 for the bottom boundary layer and 0.6 < z < 1 for
the top layer. This amounts to finding the global maximum in the bottom and top
halves. As investigated by Wagner et al. (2012), varying this interval does not seem
to make much of a difference. However, we did want to be consistent across Rayleigh
numbers, to ensure a robust collapse of the profiles. We did not want to vary our
maximum-finding interval with Rayleigh number, which was necessary for a tighter z
range near the boundaries, since the location of vmax decreases with Rayleigh number.

3.3.2. Scaling laws
We are interested in determining the scaling of the boundary layer thicknesses with

Rayleigh number, i.e.

λθ = λθ0Ra
βθ (3.5)

and

λv = λv0Ra
βv . (3.6)

Our scaling results for 〈λsl〉 for both viscous and thermal boundary layers are given
in table 7 along with the results from other groups. The agreement is fairly good with
some groups, especially for βθ .

We compared the scaling results for the various methods of finding boundary layer
thicknesses in tables 8 and 9, and representative plots are shown in figures 6 and
7. They are all fairly robust, depending very little on the averaging, in terms of
either the cut (70 versus 1 %) or the time averaging (〈λsl〉 versus λsl). The 95–99 %
maximum method, λ95–99, consistently gives the smallest exponent. We also found that
the exponent for this maximum method approached the value of the exponent for the
slope method (λsl) as the percentage of maximum decreased (from 95 to 80 % for
example). We also find that λσ tends to give the largest exponent and also the best
agreement with the theoretical predictions of Grossmann and Lohse coupled with the
laminary boundary layer theory as discussed below.

We also looked at the scaling of the viscous boundary layer thicknesses directly
with Reynolds number,

λv = λv0(Re)Reβv(Re) . (3.7)

These results are presented in table 10. The results are similar to those in
tables 8 and 9, with the best agreement being with the Grossmann–Lohse model for
λσ , but the other methods all give consistent but different results.
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Type Method 70 % 50 % 30 % 10 % 5 % 1 %

βθ λsl
θ −0.25 −0.25 −0.26 −0.25 −0.25 −0.25

βθ 〈λsl
θ 〉 −0.26 −0.26 −0.26 −0.25 −0.25 −0.24

βθ λ95
θ −0.19 −0.19 −0.19 −0.19 −0.19 −0.19

βθ λσθ −0.27 −0.28 −0.28 −0.28 −0.28 −0.28

βv λsl
v −0.18 −0.18 −0.18 −0.18 −0.18 −0.18

βv 〈λsl
v 〉 −0.18 −0.18 −0.18 −0.18 −0.18 −0.17

βv λ99
v −0.15 −0.15 −0.15 −0.15 −0.15 −0.15

βv λσv −0.23 −0.24 −0.24 −0.25 −0.25 −0.25

TABLE 8. Scaling exponents βθ and βv for σ = 0.7 and for different cuts (from 70 to
1 %) and different ways of finding the thicknesses as described in the text. In each case
the boundary layer values were obtained by finding the thickness for the top and bottom
boundary layers for both x and y slices.

Type Method 70 % 50 % 30 % 10 % 5 % 1 %

βθ λsl
θ −0.25 −0.26 −0.26 −0.25 −0.25 −0.25

βθ 〈λsl
θ 〉 −0.26 −0.26 −0.26 −0.26 −0.25 −0.24

βθ λ95
θ −0.18 −0.18 −0.18 −0.18 −0.17 −0.17

βθ λσθ −0.26 −0.27 −0.27 −0.27 −0.29 −0.28

βv λsl
v −0.18 −0.18 −0.19 −0.19 −0.19 −0.19

βv 〈λsl
v 〉 −0.19 −0.19 −0.19 −0.19 −0.18 −0.16

βv λ99
v −0.14 −0.14 −0.15 −0.15 −0.15 −0.15

βv λσv −0.18 −0.20 −0.20 −0.21 −0.21 −0.22

TABLE 9. Same as table 8, but for σ = 0.4

σ Method 70 % 50 % 30 % 10 % 5 % 1 %

0.7 λsl
v −0.34 −0.34 −0.34 −0.34 −0.34 −0.34

0.7 〈λsl
v 〉 −0.35 −0.35 −0.36 −0.35 −0.34 −0.34

0.7 λ99
v −0.32 −0.32 −0.32 −0.32 −0.33 −0.33

0.7 λσv −0.45 −0.45 −0.47 −0.49 −0.48 −0.48

0.4 λsl
v −0.37 −0.38 −0.38 −0.39 −0.39 −0.39

0.4 〈λsl
v 〉 −0.38 −0.39 −0.40 −0.39 −0.37 −0.34

0.4 λ99
v −0.29 −0.30 −0.30 −0.31 −0.32 −0.32

0.4 λσv −0.37 −0.41 −0.42 −0.44 −0.44 −0.46

TABLE 10. Same as table 8, but for σ = 0.7 and σ = 0.4 and for the scaling exponent
βv(Re) of the viscous boundary layer thicknesses with Reynolds number instead of Rayleigh
number as in (3.7).
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Ra
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106 108

FIGURE 6. (Colour online) Comparison of scaling of thermal boundary layer thicknesses
λθ with Ra for a representative 5 % cut and different ways of finding the thicknesses, as
described in the text: λsl

θ (solid line, ∗), 〈λsl
θ 〉 (dashed line, ◦), λ95

θ (dashed-dotted line,
+), and λσθ (dotted line, ×). The scaling exponents are given in table 8. In each case
the boundary layer values were obtained by finding the thickness for the top and bottom
boundary layers for both x and y slices. Note that Ra = 1 × 105 was left out of the fits
since it is an outlier. Error bars are given for 〈λsl

θ 〉 only, since it is the only quantity
that varies with time and the uncertainty is found from the standard deviation of the time
series.

Re

0.01

0.04

0.08

100 1000 5000

FIGURE 7. (Colour online) Same as figure 6, but for viscous boundary layer thicknesses and
scaling with Reynolds number Re instead of Rayleigh number Ra.

Theoretically (Schlichting & Gersten 2000) the boundary layer thicknesses should
be

λθ = d

2Nu
, (3.8a)

λv = d

4
√

Re
. (3.8b)
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Our boundary layer scaling results agree fairly well. If we use our scaling results for
Nusselt number (table 5) and Reynolds number (table 6), we find for σ = 0.7 that

λθ

d
= (3.1± 0.8)Ra−0.29±0.01, (3.9a)

λv

d
= (0.55± 0.01)Ra−0.259±0.001, (3.9b)

and for σ = 0.4 that

λθ

d
= (3.1± 0.4)Ra−0.284±0.005, (3.10a)

λv

d
= (0.33± 0.01)Ra−0.243±0.001. (3.10b)

Looking at tables 8 and 9, we see that the best agreement in exponent with (3.9)
and (3.10) is for λσ , but when the uncertainties are taken into account, even the results
for λsl and 〈λsl〉 in table 7 agree to within two standard deviations (or close to that)
except for the exponent βv. The exponent for λ95–99 does not agree as well in all cases.
Since the boundary layer thickness is a more local property and the Nusselt number
and Reynolds number are global properties, it is not surprising that there is some
variation between these quantities.

We find it noteworthy that the viscous boundary layer thickness scales with a
consistently lower exponent than the thermal boundary layer thickness for most
methods (−0.18±0.01 compared to −0.25±0.01 as in table 7). This is consistent with
findings from some groups (Kerr 2001; van Reeuwijk et al. 2008; Wagner et al. 2012).
However, this is in disagreement with the results of Stevens et al. (2011), who found
the same scaling relation for both the thermal and viscous boundary layers over a wide
range of Rayleigh numbers (107–1012). However, Stevens used a different definition for
the viscous boundary layer thickness, computing the maximum of v ·∇2v instead of
the slope of the horizontal velocity as we do here. If one compares our λsl

θ with λσv , we
do get values for scaling exponents (see table 8) that agree better with one another for
σ = 0.7. However, we think that it is interesting also to compare scaling exponents for
the viscous and thermal boundary layer thicknesses obtained from the same methods.

In figure 8 we have plotted 〈λsl
v 〉 and 〈λsl

θ 〉 together for both σ = 0.7 and 0.4. Since
the viscous boundary layer is thinner than the thermal boundary layer, and it scales
with a smaller exponent, a ‘cross-over’ is expected somewhere between 109 and 1010

for our Prandtl numbers. It is not clear if there will be a cross-over, or if the scaling
exponents will simply change in this range. But it is interesting to note that this
is the range where there is significantly more disagreement between theoretical and
experimentally or numerically determined boundary layer profiles, at least for σ ' 0.7
(du Puits et al. 2009; Stevens et al. 2010; Shi et al. 2012). It makes sense that there
will be disagreement between the theoretical Prandtl–Blasius and the actual curves
if λv and λθ begin to approach one another. The theoretical results (3.11) assume a
constant ratio independent of Rayleigh number.
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FIGURE 8. (Colour online) Comparison of scaling of boundary layer thicknesses 〈λsl〉 with
Ra for a representative 5 % cut and different Prandtl numbers: 〈λsl

θ 〉 and σ = 0.7 (solid line,
◦), 〈λsl

v 〉 and σ = 0.7 (dashed line, ×), 〈λsl
θ 〉 and σ = 0.4 (dashed-dotted line, ∗), and 〈λsl

v 〉 and
σ = 0.4 (dotted line, �). The intersection of 〈λsl

θ 〉 and 〈λsl
v 〉 for σ = 0.7 is 2 × 109, and for

σ = 0.4 it is 9× 109. The error bars were left off this plot for clarity.

3.4. Boundary layer profiles
3.4.1. Theoretical Prandtl–Blasius curves

The theoretical Prandtl–Blasius solutions (Schlichting & Gersten 2000) are self-
similar solutions for the stream function Ψ and the temperature θ :

d3Ψ

dξ 3
+ 0.5Ψ

d2Ψ

dξ 2
= 0, (3.11a)

d2θ

dξ 2
+ 0.5σΨ

dθ

dξ
= 0. (3.11b)

The initial conditions are given by

Ψ (0)= 0,
dΨ
dξ
(0)= 0,

dΨ
dξ
(∞)= 1, (3.12a)

θ(0)= 0, θ(∞)= 1. (3.12b)

The horizontal velocity is found from v = dΨ/dξ , and the similarity variable ξ = z/l,
where l is the length scale, or the boundary layer thickness in this case.

Two points are worth highlighting about the laminar theory. The first is that it is
two-dimensional and assumes that the temperature and velocity rise to some constant
bulk quantity. The second is that it is a self-similar theory, so boundary layer profiles
appropriately scaled with the similarity parameter should all collapse onto the same
curve. There is considerable debate (Shi et al. 2012; Wagner et al. 2012) as to whether
the former is a good assumption for three-dimensional RB convection in a cylindrical
container where the wind can be wildly varying, in both strength and direction. By
averaging over the top and bottom of the container and in the x and y direction, and
looking very near the centre of the cell, we have managed to smooth out much of this
variation. As a result, we see very good agreement, at least for our viscous boundary
layer profiles. However, one of our main interests is in the self-similarity and collapse
of the boundary layer profiles, since ‘a turbulent boundary layer by definition cannot
be universally scaled by outer variables’ (van Reeuwijk et al. 2008).
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FIGURE 9. (Colour online) Collapse of thermal boundary layer profiles for σ = 0.7 and a
representative 1 % cut, plotted against the theoretical profile (solid line) obtained from solving
(3.11). (a) Dynamical rescaling, where each θ(z, t) was scaled by its dynamic boundary layer
thickness λsl

θ (t) and then averaged over time to obtain 〈θ∗(z∗)〉. (b) Average rescaling, where
the average thermal boundary layer 〈θ(z)〉 was first computed. Then the z axis was scaled by
its boundary layer thickness λsl

θ . Also, all profiles were rescaled as in (3.4). These plots pertain
to an average over x and y slices, and to the top and bottom boundary layers. Corresponding
Rayleigh numbers: 1×105 (◦), 5×105 (×), 1×106 (∗), 5×106 (+), 1×107 (�), 5×107 (C),
1× 108 (�), and 2.5× 108 (4).
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FIGURE 10. (Colour online) Same as figure 9, but for viscous boundary layer thicknesses.

We have plotted a representative set of boundary layer profiles for σ = 0.7 in
figures 9 and 10, and likewise for σ = 0.4 in figures 11 and 12. In all cases we have
used a 1 % cut, which gives the best collapse and agreement with Prandtl–Blasius.
For each profile, we also compare the (a) dynamic rescaling method introduced by
Zhou & Xia (2010) as opposed to (b) rescaling after taking the time average of
the boundary layer profiles. For the dynamic rescaling method, we scale each of our
instantaneous profiles with its respective instantaneous boundary layer thickness, i.e.
z∗(t) = z/λsl

θ (t) for the thermal boundary layer, and z∗(t) = z/λsl
v (t) for the viscous.

Then, we find the time-averaged thermal boundary layer profile by performing the
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FIGURE 11. (Colour online) Same as figure 9, but for σ = 0.4. Corresponding Rayleigh
numbers: 1×105 (◦), 5×105 (×), 1×106 (∗), 5×106 (+),1×107 (�), 4×107 (C),1×108 (�),
2× 108 (B), and 1× 109 (4).
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FIGURE 12. (Colour online) Same as figure 11, but for viscous boundary layer thicknesses.

following interpolation:

〈θ∗(z∗)〉 = 〈θ(z, t) | z= z∗λsl
θ (t)〉, (3.13a)

〈v∗(z∗)〉 = 〈v(z, t) | z= z∗λsl
v (t)〉. (3.13b)

For the average method, we first find 〈θ(z)〉 or 〈v(z)〉. Then we find the boundary
layer thickness associated with those profiles, i.e. λsl

θ or λsl
v , and rescale our z axis with

these values to obtain a collapse. We find that (for both thermal and viscous boundary
layers) the dynamic rescaling always gives better agreement with Prandtl–Blasius than
the average method, although collapse is similarly good in both cases.

We have also included the case with a Rayleigh number 1 × 105 in all of our
plots for comparison, even though this system is not turbulent. So, when making
comparisons to Prandtl–Blasius and collapse of data, please ignore these data. It is
interesting, however, that the profile for Ra = 1 × 105 is such an outlier, suggesting
that the existence of a turbulent state can be gleaned from looking at the shape of the
profile. One may even be able to use this shape and the good collapse as a definition
of the transition to turbulence.
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In general, when looking at the velocity boundary layer profiles in figures 10 and 12,
the collapse is very good, and the agreement with the laminar Prandtl–Blasius is quite
good for σ = 0.7 and good for σ = 0.4, except for the highest Rayleigh number
1× 109.

However, the thermal boundary layer profiles in figures 9 and 11 do not collapse as
well, nor do they agree with the Prandtl–Blasius profile, except for the moderate range
of Rayleigh numbers (1 × 106 to 1 × 108). We purposefully did not scale the thermal
profiles to unity by dividing by θmax. This was done by Zhou et al. (2011), and much
better agreement with Prandtl–Blasius is obtained then. However, the temperature
profiles all rise from zero at the plate to one in the bulk, so no rescaling is required.
In contrast, for the viscous profiles, whose maximum velocity increases with Rayleigh
number, one needs to rescale with vmax to test collapse. Hence, minor differences in
thermal boundary layer profiles are highlighted here. We think that they are important
and suggest that the thermal boundary layer profiles do not collapse all that well, and
also do not follow the Prandtl–Blasius shape very well.

3.4.2. Shape factors
We can be more quantitative about our boundary layer profiles by computing shape

factors (Zhou & Xia 2010). For our viscous boundary layer profiles, the shape factor is
a ratio of two quantities, the displacement thickness

δd =
∫ ∞

0

(
1− v(z)

[v(z)]max

)
dz, (3.14)

and the momentum thickness

δm =
∫ ∞

0

(
1− v(z)

[v(z)]max

)(
v(z)

[v(z)]max

)
dz. (3.15)

The shape factor for the viscous boundary layer is then

Sv = δd

δm
, (3.16)

and Sv is found to be 2.59 for the theoretical Prandtl–Blasius curve.
An analogous shape factor Sθ can be defined for the thermal boundary layer, where

v(z) is replaced by θ(z) in (3.14)–(3.16). Since the measured thermal boundary layers
can either over- or undershoot their mean bulk value as they rise and level off
(see figure 9), it is difficult to define a θmax consistently in the analogous thermal
equations. In the case of undershoot, the value for θmax also becomes dependent on
the interval chosen for integration. For consistency, we used the computed mean bulk
value in each case for θmax. We also chose the same interval to integrate over for each
case. The thermal shape factor computed for the theoretical Prandtl–Blasius profiles is
dependent on Prandtl number, and Sθ = 2.58 for σ = 0.7 and Sθ = 2.56 for σ = 0.4. If
our computed shape factors are less than the Prandtl–Blasius values, this indicates that
the curve rises more slowly, and vice versa (Zhou et al. 2010).

As a way of synthesizing all of the information about boundary layer profiles, we
have plotted the shape factors for σ = 0.7 in figure 13 and for σ = 0.4 in figure 14. In
both figures, the top row corresponds to the dynamic rescaling method and the bottom
row corresponds to the average method. We can clearly see that the best collapse and
agreement with Prandtl–Blasius is for the dynamic rescaling method and for a 1 %
cut down the middle of the cell. Even then, one can see that the highest Rayleigh
numbers (as green triangles, 4) tend to fall the lowest below the Prandtl–Blasius
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FIGURE 13. (Colour online) Shape factors as defined by (3.16) for σ = 0.7 and Γ = 1
for various averagings (1, 5, 10, 30, 50, 70 %). The solid line is the shape factor for the
theoretical Prandtl–Blasius curve. (a) Shape factors found from profiles of thermal boundary
layers averaged via the dynamic rescaling method. (b) Shape factors found from profiles
of viscous boundary layers averaged via the dynamic rescaling method. (c) Shape factors
found from time-averaged profiles of thermal boundary layers. (d) Shape factors found
from time-averaged profiles of viscous boundary layers. Corresponding Rayleigh numbers:
1 × 105 (◦), 5 × 105 (×), 1 × 106 (∗), 5 × 106 (+), 1 × 107 (�), 5 × 107 (C), 1 × 108 (�),
and 2.5× 108 (4).

curve, suggesting an increasing disagreement as Rayleigh number increases. Please
ignore the red circles, which are for Ra = 1 × 105, which is not turbulent and so is
expected to be an outlier (and does not even fall on the correct scale for some of our
Sθ values).

There are a few details about our method of finding boundary layer profiles that
should be mentioned here. First of all, we do not find our local boundary layer
thickness as a function of r, the radial distance from the centre of the cell. Instead, we
first obtain the horizontally averaged 〈θ (z, t)〉len and then compute the local boundary
layer thickness from this value. Hence our 1 and 5 % results give better ‘locally’
averaged results if the boundary layer thickness varies with r as found in Zhou et al.
(2011) and Wagner et al. (2012). Owing to the overall noisiness of the large-scale
circulation (LSC) for fully three-dimensional systems, any azimuthal average will not
extract the radial dependence of local boundary layer thicknesses any more correctly
than our horizontal averaging. It would be interesting, however, to extend our local
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FIGURE 14. (Colour online) Same as figure 13, but for σ = 0.4. Corresponding Rayleigh
numbers: 1 × 105 (◦), 5 × 105 (×), 1 × 106 (∗), 5 × 106 (+), 1 × 107 (�), 4 × 107 (C),
1× 108 (�), 2× 108 (B), and 1× 109 (4).

analysis near the centre of the cell (1 %) to other locations as is done in Wagner et al.
(2012). This is something we plan to investigate in the future.

We also did not take the direction of the LSC into account, as has been done
by Shi et al. (2012) and Wagner et al. (2012). Again, owing to the drift, sloshing,
torsional modes of the LSC, it is rather difficult to extract the direction of the LSC,
except instantaneously or for very short time intervals over which the LSC is stable.
Again, this makes our analysis near the centre of the cell the best for comparison
when considering the orientation of the LSC. Since others have found the boundary
layer in relation to the LSC, our analysis done in a different manner makes for a nice
comparison.

The overall conclusion is that a small window near the centre is the best ‘local’
boundary layer analysis, and this is supported by our results. We see in figures 13
and 14 that the differences between the dynamical rescaling and the average method
become less pronounced as more of the cell is included in the average (1 versus
70 %). This is because our dynamical method becomes less ‘local’ as we perform
an average over more of the horizontal extent of the cell. It is also because the
averaging smooths out the fluctuations (to some extent) and so the shape factors
collapse better, independently of method. The agreement with the Prandtl–Blasius
profile is still better for the dynamical rescaling method than the average method
independent of percentage cut.
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4. Conclusion
In conclusion, we find that the boundary layer profiles can give significant

insight into the state of the system. For example, the profiles for non-turbulent RB
convection (Ra = 1 × 105 for our Prandtl numbers of 0.7 and 0.4) have a different
shape than those for a fully turbulent RB convection case. For moderate Rayleigh
numbers (1 × 106 < Ra < 1 × 108), the profiles tend to collapse well, and follow the
Prandtl–Blasius shape, especially for our viscous boundary layer profiles, suggesting
a typical laminar profile and a well-developed large-scale circulation. Our thermal
boundary layer profiles do not collapse as well and do not agree as well with the
Prandtl–Blasius shape. Even for the viscous boundary layer profiles, we see a very
slight disagreement with collapse and Prandtl–Blasius shape for our highest Rayleigh
numbers, suggesting that the trend is to disagree for even higher Rayleigh numbers,
consistent with the results of others. The fact that the thermal and viscous boundary
layer thicknesses also start to approach one another at the same time as in figure 8
further supports a deviation from the Prandtl–Blasius theory.

We find that the scaling of boundary layer thicknesses is fairly robust, and
independent of the method (dynamical versus average) and amount of spatial
averaging. This is consistent with the results of Zhou & Xia (2010). Our results
mostly agree with the laminar boundary layer theory coupled with the Grossmann
and Lohse theory scaling when numerical uncertainties are taken into account. The
fluctuation method λσ (the boundary layer thickness found from the distance to the
maximal fluctuation of the boundary layer) gives the best agreement.

Note that we looked at the x and y slices as well as the top and bottom
boundary layers independently to see if there was any asymmetry, but did not find
any discernible trends; hence in all cases we averaged our data over both x and y
slices as well as top and bottom layers.

We plan to perform simulations at even higher Rayleigh numbers to see if our trends
continue, and to better understand the deviation from Prandtl–Blasius theory that is
seen by other groups in this regime. We also plan to investigate the LSC more fully
in future work. Other groups (Maystrenko, Resagk & Thess 2007; Shi et al. 2012;
Wagner et al. 2012) have looked at boundary layer profiles in the direction of the
mean wind, and they have found more disagreement with Prandtl–Blasius. However,
they also looked at higher Rayleigh number, so it would be interesting to determine if
the deviations at higher Rayleigh number are intrinsic to RB convection at σ = 0.7, or
if it is a function of how the boundary layers are extracted.
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