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The calculus of Mobile Ambients was proposed by Cardelli and Gordon as a foundational

calculus for mobile computing. Since its introduction, the computational strength and the

decidability of properties have been investigated for several fragments and variants of the

standard calculus. We consider the problem of reachability and characterise a public (that is,

restriction-free) fragment for which it is decidable. This fragment is obtained by removing

the open capability and restricting the application of the replication operator to guarded

processes only. This decidability result may appear surprising in combination with the fact

that the same fragment was shown to be Turing complete by Maffeis and Phillips. Finally,

we extend our decidability result in two ways: we first prove the decidability of a more

general property called target reachability (according to which the target of interest for the

reachability analysis consists of a possibly infinite set of processes) and then show that our

decidability results also hold for a more general calculus, which includes the sophisticated

communication mechanisms of Boxed Ambients, which is the most relevant variant of

Mobile Ambients without the open capability.

1. Introduction

The calculus of Mobile Ambients (Cardelli and Gordon 2000a), MA for short, is a well-

known formalism for describing distributed and mobile systems in terms of ambients. An

ambient is a named collection of active processes and nested sub-ambients. In the pure

(that is, without communication) version of MA, only three mobility primitives are used

for ambient and process interaction: in and out for ambient movement, and open to

dissolve ambient boundaries.

More precisely, a process performs an inm primitive to instruct its surrounding ambient

to move inside a sibling ambient named m, outm to exit its parent ambient named m, and

openm to dissolve the boundary of an ambient named m located in the same ambient as

the process.

Since its introduction, the calculus of Mobile Ambients has attracted widespread interest,

and it has been used as a starting point for investigating the foundations of a great variety

of mobile computing models. Consider, for example: Mobile Safe Ambients (Levi and

Sangiorgi 2003), which were used to investigate security issues in mobile systems; the Push

and Pull Ambient Calculus (Phillips and Vigliotti 2002), which formalises objective rather
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Fig. 1. Overview of the results for Turing completeness and the (un)decidability of reachability in

pure Mobile Ambients (arrows represent the sublanguage relation).

than subjective mobility; Boxed Ambients (Bugliesi et al. 2004), which were used to model

systems in which ambient boundaries cannot be dissolved and a direct communication

between parent and child ambients is permitted; and BioAmbients (Regev et al. 2004),

which were defined to model the behaviour of biological system.

Following in the tradition of process calculi, MA and its dialects have been equipped

with a rich variety of formal tools for reasoning about and verifying properties of

systems specified with these calculi. Just to mention a few of these tools, there are the

behavioural semantics investigated in Merro and Hennessy (2002) or the type system

(Cardelli et al. 2002) and logics (Cardelli and Gordon 2000b) used to reason about both

the behaviour and spatial structure of ambients. Another line of research looks at the

expressiveness of these calculi to distinguish between necessary and redundant features.

The computational strength of MA has been investigated in several papers. The most

interesting result is that many of the MA operators are not required in the proof of

Turing completeness for the calculus. Figure 1 shows a history of the main results on

Turing completeness for fragments of MA. In their first paper on MA (Cardelli and

Gordon 2000a), Cardelli and Gordon showed how to model Turing machines in MA.

This encoding of Turing machines made use of all the capabilities of MA (in , out

and open ), as well as the restriction operator. Subsequently, Busi (2000) proved that

restriction is unnecessary. This result was proved by showing how to model Random

Access Machines (Shepherdson and Sturgis 1963) (which are a well-known register-based

Turing-complete formalism) in MA without using the restriction operator. More recently,

Maffeis and Phillips (2004) proved that the open capability is unnecessary by presenting

an improved modelling of Random Access Machines without using open ; moreover, the

replication operator !P is only applied to prefixed processes of the form M.P .

The proofs of Turing completeness mentioned above have as a direct consequence

that termination is not decidable in the fragments of MA considered. Another property

of processes, which is in some cases even more interesting than termination, is process
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reachability: the reachability problem consists of verifying whether a target process can be

reached from a source process. As an example of the relevance of reachability analysis,

consider the system

intruder[P ] | firewall[Q]

where an intruder running the program P attacks a firewall executing the program Q. It

would clearly be of interest if we could check whether the system

firewall[ intruder[P ′] | Q′],

where the intruder has succeeded in entering the firewall (for some residual program P ′

and Q′), can be reached.

To the best of our knowledge, the first work devoted to investigating reachability in

MA was Boneva and Talbot (2003), which proved that reachability is undecidable even in

a minimal fragment of pure MA where both the restriction operator and open capability

are removed.

Figure 1 shows the lattice of fragments of MA considered in the papers mentioned

above, and indicates the known results for their Turing completeness and the undecidability

of reachability. These papers left as an open problem the (un)decidability of reachability

for the fragment at the bottom of the lattice (the one considered by Maffeis and Phillips)

and its extension having the open capability. In this paper we close these two open

problems by showing that reachability is undecidable in the latter case, but turns out

to be decidable in the former. In this way we completely characterise the fragments

in Figure 1 as far as their Turing completeness and (un)decidability of reachability are

concerned.

The decidability of reachability in the fragment at the bottom of the lattice in

Figure 1 may appear surprising in light of the result on Turing completeness proved by

Maffeis and Phillips. Intuitively, the decidability of reachability follows from the following

monotonicity property deriving from the absence of the open capability (and from the

impossibility of applying the replication operator to ambients): during a computation,

the number of active ambients cannot decrease. According to this property, all possible

computations from a given source process P to a given target process T traverse processes

with a known bounded number of active ambients. The existence of this bound allows us

to model all these possible computations as computations in finite Petri nets, a formalism

in which the reachability problem is decidable.

An additional contribution of the current paper is a generalisation of the above

decidability result to a more general problem, called target reachability, which we have

defined to cope with a lack of expressiveness in traditional reachability in the context of

MA. Returning to the example of the intruder and the firewall, traditional reachability

allows us to check whether the source process

intruder[P ] | firewall[Q]

has a computation leading to the target process

firewall[ intruder[P ′] | Q′]

for some instantiated processes P ′ and Q′. However, we may only be interested in the

structure of the target process (that is, the intruder is inside the firewall), so in order to
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abstract away from the specific residual programs within those ambients (that is, abstract

away from P ′ and Q′), we should universally quantify the reachability analysis on all

possible processes P ′ and Q′.

These considerations led us introduce the target reachability problem. The idea is to

consider an entire (possibly infinite) set of targets rather than just one specific target

process. This set is specified by means of a finite expression that indicates a precise

structure of ambient nesting that all the processes belonging to this set should have, and

expresses constraints on the kind of processes residing in these ambients. Such constraints

allow us to define lower and upper bounds on the number of instances of some given

processes. In the above example of the intruder and the firewall, we can express the target

processes of interest by

firewall[ intruder[any] | any]

where any indicates the possibility of any process residing in the ambients under

consideration, that is, every process P ′ (respectively, Q′) could reside in the ambient

intruder (respectively, firewall).

As another example of target reachability analysis, consider the following modelling of

a drug delivery system:

TransportMolecule[P ] | Blood[ Muscular[Q] | Connective[R] | S ].

Here we assume that a transport molecule is prepared to be injected into the bloodstream

of a patient for the delivery of some drug molecules to the muscle tissue, but not to the

connective tissue. We could express this requirement by specifying that at least one of the

target processes described by the following expressions should be reachable:

Blood[ Muscular[10 � Drug � 20] | Connective[0 � Drug � 0] |
TransportMolecule[any] | any ].

According to this expression, between 10 and 20 drug molecules should be delivered to

the muscle tissue but none to the connective tissue. We could also take into consideration

the final contents of the transport molecule by considering the target processes associated

with the expression

Blood[ Muscular[10 � Drug � 20] | Connective[0 � Drug � 0] |
TransportMolecule[0 � BadResidual � 5 | 0 � GoodResidual � ∞] | any ],

which additionally requires that only two kinds of residuals (that is, good and bad

residuals) can be left inside the transport molecule, and also fixes a precise upper bound

on the number of bad residuals.

As a final contribution, we show how to apply our technique for analysing target

reachability to Boxed Ambients (Bugliesi et al. 2004), which is the most relevant open -

free variant of MA for us. In Boxed Ambients the possibility of dissolving ambient

boundaries is replaced by a sophisticated form of parent–child communication. We show

how to limit this form of communication, and how to extend our technique so that we

can also do reachability analysis in this non-pure (that is, with communication) dialect of

MA.
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Structure of the paper

In Section 2 we present the syntax and semantics of the calculi considered. In Section 3 we

give the proof of the undecidability of reachability in the fragment of pure MA without re-

striction but with guarded replication, and in Section 4 we give the proof of the decidability

of reachability in the fragment in which the open capability is also removed. In Section 5

we introduce the target reachability problem and prove that this more general problem is

decidable too. In Section 6 we address the problem of applying the techniques we have

developed to Boxed Ambients. Finally, we present some concluding remarks in Section 7.

Preliminary versions of this paper appeared in Busi and Zavattato (2005a; 2005b): in

Busi and Zavattato (2005a) we discussed the (un)decidability of reachability for fragments

of MA; and in Busi and Zavattaro (2005b) we introduced the target reachability problem

and discussed its decidability for (a fragment of) Boxed Ambients. In the current paper

we present these results in a uniform and incremental way, and give details of the proofs

that were merely sketched in the previous papers.

2. Pure public Mobile Ambients

The pure public Mobile Ambients calculus, pMAfor short, corresponds to the restriction-

free fragment of the version of Mobile Ambients without communication defined in

Cardelli and Gordon (2000a).

Definition 2.1 (pMA). Let Name, ranged over by n, m, . . . , be a denumerable set of ambient

names. The terms of pMA are defined by the grammar

P ::= 0 | M.P | n[P ] | P |P | !P

M ::= in n | out n | open n.

We use
∏

k P to denote the parallel composition of k instances of the process P (if k = 0,

then
∏

k P = 0), and
∏

i∈1...k Pi to denote the parallel composition of the indexed processes

Pi.

The term 0 represents the inactive process (and is usually omitted). M.P is a process

guarded by one of the three mobility primitives (which were discussed in the Introduction):

after the execution of the primitive, the process behaves like P . The processes M.P are

referred to as guarded processes in the rest of the paper. We use the term n[P ] to denote an

ambient named n containing process P . A process may also be the parallel composition

P |P of two subprocesses. Finally, the replication operator !P is used to create in parallel

an unbounded number of instances of the process P .

The operational semantics of pMA is defined in terms of a structural congruence plus

a reduction relation.

Definition 2.2 (Structural congruence). The structural congruence ≡ is the smallest con-

gruence relation satisfying:

P | 0 ≡ P

P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R

!P ≡ P | !P .
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Definition 2.3 (Reduction relation). The reduction relation is the smallest relation →
satisfying the following axioms and rules:

(1) n[inm.P | Q] | m[R] → m[n[P | Q] | R].

(2) m[n[outm.P | Q] | R] → n[P | Q] | m[R].

(3) open n.P | n[Q] → P | Q.

(4)
P → Q

P | R → Q | R .

(5)
P → Q

n[P ] → n[Q]
.

(6)
P ′ ≡ P P → Q Q′ ≡ Q

P ′ → Q′ .

As usual, we use →∗ to denote the reflexive and transitive closure of →. If P →∗ Q, we

say that Q is a derivative of P . The reachability problem consists of checking, given two

processes P and Q, whether Q is a derivative of P , that is, checking if P →∗ Q.

Axioms (1), (2) and (3) describe the semantics of the three primitives in , out and open ,

respectively. A process inside an ambient n can perform an inm operation in the presence

of a sibling ambient m; if the operation is executed, the ambient n moves inside m. If

inside an ambient m there is an ambient n with a process performing an outm action, the

effect is to move the ambient n outside the ambient m. Finally, a process performing an

open n operation can remove the boundary around an ambient n[Q] composed in parallel

with it.

Rules (4) and (5), respectively, are the contextual rules that indicate that a process can

also move when it is in parallel with another process and when it is inside an ambient.

Finally, rule (6) is used to ensure that two structurally congruent terms have the same

reductions.

In this paper we consider three fragments of pMA, namely pMAg!, pMA−open and

pMA
−open
g! – we show that reachability is undecidable for pMAg! and pMA−open , but

decidable for pMA
−open
g! .

Definition 2.4. We define the folowing fragments of pMA:

— pMAg! permits only guarded replication, that is, it restricts the application of the

replication operator to guarded processes:

P ::= 0 | M.P | n[P ] | P |P | !M.P

M ::= in n | out n | open n.

— pMA−open removes the open capability:

P ::= 0 | M.P | n[P ] | P |P | !P

M ::= in n | out n.
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— pMA
−open
g! combines the restrictions imposed by the previous fragments:

P ::= 0 | M.P | n[P ] | P |P | !M.P

M ::= in n | out n.

The structural congruence for pMAg! and pMA
−open
g! is obtained by replacing the axiom

for replication by !M.P ≡ M.P | !M.P and the congruence rule for the replication

operator !P by the congruence rule for the operator of restricted replication !M.P .

3. Undecidability results

In this section we discuss the undecidability of reachability for the fragments pMA−open

and pMAg!.

As far as pMA−open is concerned, we resort to an equivalent result proved by Boneva

and Talbot for a slightly different calculus (see Boneva and Talbot (2003, Theorem 3)).

The only difference between that calculus, which was originally proposed in Cardelli and

Gordon (2000b; 2005), and pMA−open is that it has three extra rules in the definition of

the structural congruence relation:

!0 ≡ 0

!!P ≡ !P

!(P | Q) ≡ !P | !Q.

The undecidability of reachability was proved by Boneva and Talbot by showing how

to encode two-counter machines (Minsky 1961), which are a well-known Turing powerful

formalism. Even though the calculus in Boneva and Talbot (2003) is slightly different

from pMA−open , the encoding of two-counter machines presented in that paper can also

be used in our calculus. This is because the encoding does not exploit the possibility

of applying the replication operator to the empty process, to replicated processes or to

parallel composition of processes (that is, the cases in which the three extra structural

congruence rules come into play).

As far as pMAg! is concerned, we will present a modelling of Random Access Machines

(RAMs) (Shepherdson and Sturgis 1963), which are similar to two-counter machines. The

encoding we present here is an enhancement of the RAM modelling we used in Busi and

Zavattaro (2004) for proving the undecidability of termination in the fragment of Mobile

Ambients without restriction.

One of the main innovations of the new encoding is that it does not apply replication

to ambients: this modification is necessary because replication is guarded in pMAg!. A

more significant difference concerns the production of garbage, that is, processes that do

not play any further role in the computation. The encoding in Busi and Zavattaro (2004)

produces garbage whose shape depends on the number and type of executed instructions.

The production of garbage was not problematic in Busi and Zavattaro (2004) because

the RAM modelling was used there to prove the undecidability of process termination,

that is, the reachability of any deadlocked process independently of the garbage it
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contains. Here, we need a more sophisticated RAM modelling that keeps control over the

garbage produced so that we can prove the undecidability of reachability for a specific

process.

In the new encoding, at the end of the RAM computation, an activity is started that

formats the garbage into a predefined form. Thus, we can conclude that a RAM terminates

if and only if the encoding of the final state of the RAM plus the formatted garbage is

reachable from the encoding of the initial state of the RAM. This is enough for us to

conclude that reachability is undecidable.

The rest of this section begins with a brief description of RAMs; we then discuss the

modelling of RAMs.

3.1. Random Access Machines

RAMs are a computational model based on finite programs acting on a finite set of

registers. More precisely, a RAM R is composed of the registers r1, . . . , rn, which can

hold arbitrarily large natural numbers, and by a sequence of indexed instructions (1 :

I1), . . . , (m : Im). Minsky (1967) showed that the following two instructions are sufficient

for modelling every recursive function:

— (i : Succ(rj)): add 1 to the contents of register rj and go to the next instruction;

— (i : DecJump(rj , s)): if the contents of the register rj is not zero, decrease it by 1 and

go to the next instruction, otherwise jump to the instruction s.

The computation starts from the first instruction and continues by executing the other

instructions in sequence, unless a jump instruction is encountered. The execution stops

when an instruction number higher than the length of the program is reached. For our

purposes, we can assume without loss of generality that the instruction number reached

at the end of the computation is always m + 1, and that all the registers are empty when

the computation starts and when it terminates.

3.2. Modelling RAMs in pMAg!

We model instructions and registers independently. We model the program counter i

using an ambient pci[], and each instruction Ii is represented by a replicated process

guarded by the capability open pci, which is able to open the corresponding pro-

gram counter ambient pci[]. The processes modelling the instructions are replicated

because each instruction could be performed an unbounded number of times during the

computation.

The key idea underlying the modelling of the registers is to represent natural numbers

with a corresponding nesting of ambients. We use an ambient named zj to represent the

register rj when it is empty. When the register is incremented, we move the ambient zj
inside an ambient named sj , and on register decrement, we dissolve the outer sj ambient

boundary. In this way, for instance, the register rj with content 2 is modelled by the

nesting sj[sj[zj[]]] (plus some other processes hosted by these ambients, which will be

discussed in the following).
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Definition 3.1 (RAM encoding). Given the RAM R with the instructions (1 : I1), . . . , (m :

Im) and registers r1, . . . , rn, we define [[R]] as the process

pc1[] |
∏

i∈1...m!open pci.Ci |
∏

j∈1...n R
0
j |

open pcm+1.GC | !openmsg | garbage[open gc]

where Ci (modelling the ith instruction), R0
j (modelling register rj holding the value zero)

and GC (the garbage collector, which is started at the end of the computation) are

shorthand notations defined below.

Note the use of two extra processes: !openmsg, which is used to open ambients

containing messages produced during the computation, and the ambient garbage[open gc],

which is a container for the garbage produced. The process open gc is used at the end

of the computation to allow the garbage collector to act inside the ambient garbage, as

described below.

The register rj , which initially has content 0, is represented by the process R0
j defined

by

R0
j = zj[ !open incj .

( msg[ out zj .sj[ REGj ] ] |
in sj .ackij[ out zj .!out sj] ) |

!open zeroj .ackzj[ out zj .in djj ] |
open gc ]

where REGj is a shorthand notation defined by

REGj = open decj .ackdj[ out sj .in djj ] | !openmsg.

The process open gc is used again, in this case to allow the garbage collector to act

inside the ambient zj . We will discuss the behaviour of the term REGj , and of the other

processes inside the ambient zj , after we have discussed the encoding of the instructions.

Before formalising the modelling of the instructions, we may mention that the names

incj , zeroj and decj will be used to model requests for increment, test for zero and

decrement of register rj , respectively, and the names ackij , ackzj and ackdj will model

the corresponding acknowledgements produced by the registers to notify the fact that a

request has been managed.

The instructions are modelled as follows. If the ith instruction is Succ(rj), its encoding

is

Ci = increqj[ !in sj | in zj .incj[out increqj] ] |
open ackij .pci+1[].

In this case, Ci consists of two processes. The first is the ambient increqj , which

represents a request to increment the register rj . The second process blocks, waiting

for an acknowledgement that will be produced after the increment of the register has

actually occurred. When the acknowledgement is received, the process increments the

program counter by spawning pci+1[].

The ambient increqj has the ability to enter the boundary of the ambient modelling

the register rj , to move through the nesting of ambients, and, finally, to enter the inner

ambient zj . After that, a new ambient incj exits the ambient increqj and is executed in
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parallel with the processes of the ambient zj . One of these processes (see the definition

of R0
j ) detects the arrival of the new ambient and reacts by producing sj[REGj]. The

ambient zj then moves inside this new ambient. In this way, the nesting of ambients sj is

incremented by one. Afterwords, the acknowledgement is produced through an ambient

named ackij , which moves outside the register boundary.

If the ith instruction is DecJump(rj , s), the encoding is

Ci = zeroj[in zj] | decj[in sj] |
djj[ ACKZjs | ACKDji ]

where

ACKZjs = open ackzj .in garbage.

msg[ out djj .out garbage.open decj .pcs[] ]

ACKDji = open ackdj .in garbage.

msg[ out djj .out garbage.open zeroj .open sj .pci+1[] ].

In this case, Ci consists of three processes: the first is an ambient named zeroj , which

represents a request for a test for zero of the register rj; the second is an ambient named

decj , which represents a request for decrement of the register rj; the third is an ambient

named djj , which is in charge of managing the acknowledgement produced by the register

rj . The acknowledgement indicates whether the decrement or the test for zero request has

succeeded.

We first consider the test for zero request. The ambient zeroj[in zj] has the ability to

move inside the ambient zj . This can occur only if the register rj is currently empty. In

fact, if rj is not empty, the ambient zj is not at the outer level. If the request enters the

zj ambient boundary, the processes inside the ambient zj (see the definition of R0
j ) react

by producing an acknowledgement modelled by an ambient named ackzj , which moves

inside the ambient djj .

Now consider the request for decrement. The ambient decj[in sj] has the ability to enter

the boundary of the process modelling the register rj . This can occur only if the register

is not empty (otherwise there is no ambient sj). Inside the ambient sj , the process REGj

reacts by producing an acknowledgement modelled by an ambient named ackdj , which

moves inside the ambient djj .

The processes inside the ambient djj have the ability to detect which kind of acknow-

ledgement has been produced, and react accordingly:

— If it is ackzj , the reaction is to move the ambient djj inside the ambient garbage and

to dissolve the boundary of the outer ambient decj . This is required in order to remove

the decrement request that has failed.

— If it is ackdj , the process also dissolves one of the boundaries sj so that it actually

decrements the register.

In both cases, the program counter is finally updated: in the first case by jumping to

instruction s and in the second case by activating the next instruction i + 1.

This way of modelling RAMs produces additional processes during the simulation

of each instruction. We refer to these additional processes as garbage processes. More
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precisely, the following garbage processes are produced:

— Each increment operation leaves an ambient increqj[!in sj] inside the ambient zj , plus

the process !out sj at the outer level.

— Each decrement operation leaves an ambient djj inside the ambient garbage, plus the

two processes in zj and !openmsg at the outer level.

— Each test for zero operation leaves an ambient djj inside the ambient garbage, plus

the process in sj at the outer level.

Summarising, the garbage processes can be classified into three categories: those left at

the outer level; those left inside the ambient garbage; and those left inside the zj ambients.

We define these three sets of possible garbage processes formally as follows:

Garbouter = {
( ∏

j∈1...n(
∏

k1
!out sj |

∏
k2
in zj |

∏
k3
in sj)

)
|

∏
k4

!openmsg

| k1, k2, k3, k4 ∈ IN}
Garbgarbage = {

∏
j∈1...n

∏
i∈1...m+1(

∏
k1
djj[ACKZji]|

∏
k2
djj[ACKDji])

| k1, k2 ∈ IN}
Garbzj = {

∏
k increqj[!in sj] | k ∈ IN}

Because of the presence of the garbage processes, a given configuration of a RAM can

be represented by more than one term of pMAg!, which differ from each other in the

number of garbage processes they contain. Formally, given a RAM R with the instructions

(1 : I1), . . . , (m : Im) and registers r1, . . . , rn, we use (i, c1, . . . , cn) to denote the state of the

computation of R in which the next instruction to be executed is (i : Ii), and the contents

of the registers r1, . . . , rn are c1, . . . , cn, respectively. This state can be represented by a

set of processes, which we denote using [[i, c1, . . . , cn]]R , that differ only in the number of

garbage processes.

Definition 3.2 (encoding of RAM states). Given a RAM R with the instructions (1 :

I1), . . . , (m : Im) and registers r1, . . . , rn, we use [[i, c1, . . . , cn]]R to denote the minimal set of

processes closed under structural congruence and including at least the following set of

processes of pMAg!:

{ G1 | pci[] |
∏

i∈1...m!open pci.Ci |
∏

j∈1...n Reg
cj
j |

open pcm+1.GC | !openmsg | garbage[open gc | G2]

| G1 ∈ Garbouter, G2 ∈ Garbgarbage, Reg
cj
j ∈ Register

cj
j }

where the processes Ci and GC are as previously discussed, and the set of processes

Register
cj
j is defined inductively on cj by

Register0j = { zj[ G3 | !open incj .

( msg[ out zj .sj[ REGj ] ] |
in sj .ackij[ out zj .!out sj] ) |

!open zeroj .ackzj[ out zj .in djj ] |
open gc ]

| G3 ∈ Garbzj }
Registerl+1

j = { sj[ REGj | Reglj ] | Reglj ∈ Registerlj }

where REGj is as previously defined.
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Now consider a RAM R that terminates its computation in the state (m + 1, 0, . . . , 0).

The precise shape of the garbage in the corresponding process reached by the encoding

[[R]] is unpredictable because it depends on the exact number of instructions executed.

However, we can use the garbage collector process GC , which is activated by the process

pcm+1[] on program termination, to reshape the garbage into a predefined format.

The key idea underlying the garbage collection process is to exploit the structural

congruence rule !P ≡ P |!P , which is used to unfold (and fold) replication. Consider an

unpredictable number of processes P in parallel, that is,
∏

n P with n unknown. If we add

the process !P in parallel, we have
∏

n P | !P ≡ !P , thus reshaping the process into a

known format.

We can now define the garbage collector process formally:

GC = !!out sj | !in zj | !!openmsg | !in sj |∏
j∈1...n(gc[ in zj .(!open increqj | !!in sj) ]) |

gc[ in garbage |∏
j∈1...n( !open djj |

∏
i∈1...m!ACKDji |∏

s∈1...m+1!ACKZjs ) ].

The process GC has the ability to reshape any process in the set [[m + 1, 0, . . . , 0]]R into

the following final state [[R]]final .

Definition 3.3 (final state). Given a RAM R with the instructions (1 : I1), . . . , (m : Im) and

registers r1, . . . , rn, we use [[R]]final to denote the following pMAg! process:∏
i∈1...m!open pci.Ci |∏
j∈1...n( zj[ !open incj .

( msg[ out zj .sj[ REGj ] ] |
in sj .ackij[ out zj .!out sj] ) |

!open zeroj .ackzj[ out zj .in djj ] |
!open increqj | !!in sj] ) |

!!out sj | !in zj | !!openmsg | !in sj |
garbage[

∏
j∈1...n( !open djj |

∏
i∈1...m!ACKDji |∏

s∈1...m+1!ACKZjs ) ].

In the following proposition, which formalises the correctness of our encoding of RAMs

into pMAg!, we use the following notation and terminology:

— (i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n) means that the state of the RAM R changes from

(i, c1, . . . , cn) to (i′, c′
1, . . . , c

′
n) due to the execution of the ith instruction.

— A deterministic computation is a sequence of reduction steps P0 → P1 → . . . → Pk such

that, for each 0 � i < k, if Pi → Q, then Q ≡ Pi+1.

Proposition 3.4. Consider a RAM R with the instructions (1 : I1), . . . , (m : Im) and registers

r1, . . . , rn. Given the state (i, c1, . . . , cn) of R and a process P ∈ [[i, c1, . . . , cn]]R , we have:

— If i � m, then (i, c1, . . . , cn) →R (i′, c′
1, . . . , c

′
n) and there exists k > 0 such that P →

P1 → . . . → Pk is a deterministic computation with Pk ∈ [[i′, c′
1, . . . , c

′
n]]R and, for every

1 � j < k, we have Pj 	∈ [[i′′, c′′
1 , . . . , c

′′
n]]R , for every i′′, c′′

1 , . . . , c
′′
n .
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— If i = m + 1, then there exists k > 0 such that P → P1 → . . . → Pk with Pk = [[R]]final .

Proof. Assuming that i � m, it is easy to see that the first item of the proposition

holds by case analysis on the three possible instructions: increment, decrement or jump.

In each of the three cases, we can show that all of the computations of P proceed

deterministically, traversing processes that are not in the set [[i′′, c′′
1 , . . . , c

′′
n]]R for every

i′′, c′′
1 , . . . , c

′′
n , and leading to a process Pk such that Pk ∈ [[i′, c′

1, . . . , c
′
n]]R .

If i = m+1, as we have restricted our interest to RAMs that terminate with all registers

empty, we have (i, c1, . . . , cn) = (m + 1, 0, . . . , 0). Given any P ∈ [[m + 1, 0, . . . , 0]]R , we have

already observed (see the paragraphs before Definition 3.3) that the garbage collector

process GC , which can be activated in P due to the presence of pcm+1[], performs a

computation whose effect is to reshape the process to the final state [[R]]final .

We are now finally ready to prove that our encoding of RAMs reduces the termination

problem for RAMs to the reachability problem for pMAg! processes.

Theorem 3.5. Given the RAM R with instructions (1 : I1), . . . , (m : Im) and registers

r1, . . . , rn, we have that R terminates if and only if [[R]]final is reachable from [[R]].

Proof. Assume that the RAM R terminates. This means that the computation of R,

starting from (1, 0, . . . , 0), leads to the state (m + 1, 0, . . . , 0). We now consider the process

[[R]]. It is easy to see that [[R]] ∈ [[1, 0, . . . , 0]]R . Applying the first item of Proposition 3.4,

we can prove that [[R]] has a computation leading to a process P ∈ [[m + 1, 0, . . . , 0]]R .

Applying the second item of Proposition 3.4, we can conclude that P has a computation

leading to [[R]]final .

Assume now that [[R]] has a computation [[R]] → P1 → . . . → Pk = [[R]]final . As

[[R]] ∈ [[1, 0, . . . , 0]]R , we can apply the first item of Proposition 3.4 to conclude that some

of the processes P1, . . . , Pk belong to sets [[i, c1, . . . , cn]]R , for some i, c1, . . . , cn. Let Pl be

the last of these processes, that is, the process of this kind with the greatest index l.

Applying Proposition 3.4, we can observe that Pl ∈ [[m + 1, c1, . . . , cn]]R . In fact, if, in order

to show a contradiction, we assume that Pl ∈ [[i, c1, . . . , cn]]R with i � m, we can apply

the first item of Proposition 3.4 to conclude that a computation starting from Pl cannot

terminate until a new process Q ∈ [[i′, c′
1, . . . , c

′
n]]R is reached. But Pl has the terminating

computation Pl → Pl+1 → . . . → [[R]]final , which never traverses a process like Q. Thus Pl ∈
[[m + 1, c1, . . . , cn]]R . We can conclude that [[R]] → P1 → . . . → Pl ∈ [[m + 1, c1, . . . , cn]]R ,

hence, by applying the first item of Proposition 3.4, we also have that the RAM R has a

terminating computation.

The undecidability of the reachability problem for pMAg! is a trivial corollary of the

above theorem, which reduces the termination problem for RAMs to the reachability

problem for pMAg! processes.

Corollary 3.6. The reachability problem is undecidable in pMAg!.
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4. Deciding reachability in pMA
−open
g!

In this Section we show that reachability is decidable in pMA
−open
g! . We reduce reachability

in pMA
−open
g! to reachability in Place/Transition Petri nets (P/T nets). As reachability is

decidable on this class of Petri nets (Reutenauer 1988), we obtain the decidability result

for reachability on pMA
−open
g! . We start by recalling some basic definitions for Petri nets.

4.1. P/T nets

We begin by recalling the notion of Place/Transition nets with unweighted flow arcs

(see, for example, Reisig (1985)). Here we provide a characterisation of this model that is

convenient for our purposes.

Definition 4.1. Given a set S , a finite multiset over S is a function m : S → IN such that

the set dom(m) = {s ∈ S |m(s) 	= 0} is finite. The multiplicity of an element s in m is given

by the natural number m(s). The set of all finite multisets over S , denoted by Mfin(S), is

ranged over by m. A multiset m such that dom(m) = � is said to be empty. The set of all

finite sets over S is denoted by ℘fin(S).

Given the multisets m and m′, we write m ⊆ m′ if m(s) � m′(s) for all s ∈ S , and we use

⊕ to denote their multiset union:

m ⊕ m′(s) = m(s) + m′(s).

We use the operator \ to denote multiset difference:

(m \ m′)(s) =

{
m(s) − m′(s) if m(s) � m′(s)

0 otherwise.

The scalar product, j · m, of a number j with a multiset m is (j · m)(s) = j · (m(s)).

To simplify the notation, we sometimes use the following abbreviations. If m is a multiset

containing only one occurrence of an element s (that is, dom(m) = {s} and m(s) = 1), we

just use s to denote m. Multiset union is also represented by comma, that is, m,m′ = m⊕m′.

Let m be a multiset over S and m′ be a multiset over S ′ ⊇ S , such that (m′(s′) = 0) for

each s′ ∈ S ′ \S; with abuse of notation, we sometimes use m in place of m′, and vice versa.

Definition 4.2. A P/T net is a pair (S, T ) where S is the set of places and T ⊆ Mfin(S) ×
Mfin(S) is the set of transitions.

Finite multisets over the set S of places are called markings. Given a marking m and a

place s, we say that the place s contains m(s) tokens.

A P/T net is finite if both S and T are finite.

A P/T system is a triple N = (S, T , m0) where (S, T ) is a P/T net and m0 is the initial

marking.

A transition t = (c, p) is usually written in the form c → p. The marking c, usually

denoted by •t, is called the preset of t and represents the tokens to be consumed by t; the

marking p, usually denoted by t•, is called the postset of t and represents the tokens to be

produced by t.
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A transition t is enabled at a marking m if •t ⊆ m. The execution of a transition t

enabled at m produces the marking m′ = (m \ •t) ⊕ t•. This is written as m
t→ m′, or

simply m → m′ when the transition t is not relevant. We use σ, τ to range over sequences

of transitions. The empty sequence is denoted by ε. If σ = t1, . . . , tn, we write m
σ→ m′ to

mean the firing sequence m
t1→ · · · tn→ m′.

We say that m′ is reachable from m if there exists some σ such that m
σ→ m′.

Definition 4.3. Let N = (S, T , m0) be a P/T system. The reachability problem for marking

m consists of checking if m0 →∗ m.

The reachability problem is known to be decidable for P/T systems (Mayr 1981).

4.2. Reducing reachability on processes to reachability on Petri nets

Given two processes P and R, we show how to construct a (finite) Petri system SysP ,R

satisfying the following property: the check of P →∗ R is equivalent to checking the

reachability of a finite set of markings on SysP ,R .

The intuition behind this result relies on a monotocity property of pMA
−open
g! : because

it lacks the open capability, the number of ‘active’ ambients in a process (that is, ambients

that are not guarded by a capability) cannot decrease during the computation. Moreover,

as the applicability of replication is restricted to guarded processes, the number of ‘active’

ambients in a set of structurally equivalent processes is finite (this is not the case in, for

example, the pMA process !n[0]). Thanks to the properties explained above, it is sufficient

to take into account a subset of the derivatives of P : namely, those derivatives whose

number of active ambients is no greater than the number of active ambients in R.

Unfortunately, this subset of derivatives is, in general, not finite, since the processes

inside an ambient can grow without limited. Consider, for example, the process

P = m[!in n.out n.Q] | n[].

It is easy to see that, for each l, we have that

m[
∏
l

Q | !in n.out n.Q] | n[]

is a derivative of P .

On the other hand, note that the set of ‘sequential’ subprocesses of (the derivatives of)

a process P (namely, the subterms of kind M.P or !M.P ) is finite. In the light of this

observation, we can borrow a traditional technique for mapping process algebras onto

Petri nets. A process P is decomposed in the (finite) multiset of its sequential subprocesses

that appear unguarded in P ; this multiset is then considered to be the marking of

a Place/Transition Petri net. The execution of a computational step in a process will

correspond to the firing (execution) of a transition in the corresponding net. Thus, we

reduce the reachability problem for pMA
−open
g! processes to reachability of a finite set of

markings in a Place/Transition Petri net, which is a decidable problem.

We need to consider a finite set of possible reachable markings, rather than just one,

because the technique we use to represent processes with P/T nets associates with each
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process a finite set of corresponding markings. This follows from the fact that (unlike

the case for classical process algebras where processes can be faithfully represented by a

multiset of subprocesses) pMA
−open
g! processes have a tree-like structure, which is a poor

fit to a flat model such as a multiset. The solution is to consider pMA
−open
g! processes as

composed of two kinds of component: the tree-like structure of ambients and the family

of multisets of sequential subterms contained in each ambient. As an example, consider

the process

in n.P | m[in n.P | out n.Q | n[0] | k[0] | in n.P ] | n[in n.P ].

Its tree-like structure is m[n[] | k[]] | n[]. Moreover, there is a multiset corresponding to

each ‘node’ of the tree: the multiset {in n.P } is associated with the root; the same multiset

is associated with the n-labelled son of the root; the multiset {in n.P , in n.P , out n.Q} is

associated with the m-labelled son of the root; and so on.

The Petri net we construct is composed of the following parts. The first part is basically

a finite state automaton, where the marked place represents the current tree-like structure

of the process, and a set of identical subnets: the marking of each subnet represents the

multiset associated with a particular node of the tree. In order to keep the correspondence

between the nodes of the tree and the multiset associated with that node, we make use of

labels. A distinct label is associated with each subnet; this label will be used in the tree-

like structure to label the node whose contents (that is, the set of sequential subprocesses

contained in the ambient corresponding to the node) is represented by the subnet.

The set of possible tree-like structures we need to consider is finite for the following

reasons. First, the set of ambient names in a process is finite. Moreover, to verify

reachability, we only need to take into account those processes whose number of active

ambients is limited by the number of ambients in the process we want to reach.

The upper bound on the number of nodes in the tree-like structures also provides an

upper bound to the number of identical subnets we need to decide reachability.

In general, the number of active ambients grows during the computation, so we need

a mechanism for remembering which subnets are currently in use and which are not.

When a new ambient is created, a correspondence between the node corresponding to

such an ambient in the tree-like structure and a not yet used subnet is established, and

the places of the ‘fresh’ subnet are filled with the marking corresponding to the sequential

subprocesses contained in the newly created ambient. To this end, each subnet is equipped

with a place called unused, which contains a token for as long as the subnet does not

correspond to any node in the tree-like structure.

Because of the structural congruence rule (6), determining the reachability of a process

R actually corresponds to deciding whether it is possible to reach a process that is

structurally congruent to R. Since we are reducing the reachability in pMA
−open
g! to

marking reachability in Petri nets, the set of markings, corresponding to the set of

processes structurally congruent to R, must be finite. Let us concentrate on the markings

of the subnets. The top-level applications of the monoidal laws for parallel composition

are automatically dealt with since processes that are structurally congruent because of such

laws are mapped to the same marking. Unfortunately, the application of the replication

law allows the generation of an infinite set of markings corresponding to structurally
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congruent processes. Take, for example,

!in n.P ≡ in n.P | !in n.P ≡ in n.P | in n.P | !in n.P ≡ . . .

and the corresponding set of markings

{!in n.P }, {in n.P , !in n.P }, {in n.P , in n.P , !in n.P } . . . .

The top-level application of the law for replication can be dealt with easily by adding,

for example, the transitions !in n.P → !in n.P | in n.P and !in n.P | in n.P → !in n.P ,

respectively, allowing us to spawn a new copy of a replicated process and to absorb a

process that also appears in a replicated form in the marking.

The final problem to be dealt with is the application of the laws in combination with

the congruence law for prefix and ambient. Consider, for example, the reachability of

process R = m[in n.!inm.0]. For the subnet corresponding to the m-labelled son of the

root, we must check reachability of an infinite set of markings, namely, {in n.!inm.0},
{in n.(inm.0 | !inm.0)}, {in n.(inm.0 | inm.0 | !inm.0)}, . . . .

To this end, we introduce canonical representations of the equivalence classes of

structural congruence, consisting roughly of nested multisets where the presence of a

replicated version of a sequential term forbids the presence of any occurrence of the

non-replicated version of the same term. For example, the normal form of process

in n.(!outm.0) | !in n.(outm.0 | !outm.0) | n[in n.0]

is the nested multiset

!in n.(!outm.0) | n[in n.0].

We will now start the technical part by providing a definition of ambient multisets –

which are the canonical representations of the equivalence classes of the structural

congruence relation – and of the function α that maps a process to its canonical

representation. The function α behaves as a homomorphism for all process operations

apart from parallel composition, where some care has to be taken to avoid the presence

of both the replicated and the unreplicated versions of a guarded process.

Definition 4.4. An index set is a set I ⊆ IN such that I = {1, 2, . . . , k} for some natural

number k.

The set A of ambient multisets is the least set closed with respect to the equation

a =
⊕
i∈I

Mi.ai ⊕
⊕
j∈J

!M ′
j .a

′
j ⊕

⊕
k∈K

nk[a
′′
k ]

where I, J, K are index sets, ai, a
′
j , a

′′
k ∈ A and Mi = M ′

j implies ai 	= a′
j for all i ∈ I , j ∈ J

and k ∈ K .

The function α : pMA
−open
g! → A maps a process to the corresponding ambient multiset

and is defined inductively by

α(0) = �
α(M.P ) = M.α(P )

α(!M.P ) = !M.α(P )

α(n[P ]) = n[α(P )].
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Let

α(Ph) =
⊕
i∈Ih

Mih.aih ⊕
⊕
j∈Jh

!M ′
jh.a

′
jh ⊕

⊕
k∈Kh

nkh[a
′′
kh]

for h = 1, 2. We define

α(P1 | P2) =
⊕
h=1,2

(
⊕
i∈Ih

μih ⊕
⊕
j∈Jh

!M ′
jh.a

′
jh ⊕

⊕
k∈Kh

nkh[a
′′
kh])

where

μi1 =

{
Mi1.ai1 if ∀j ∈ J2 : Mi1 = M ′

j2 ⇒ ai1 	= a′
j2

� otherwise,

and define the μi2 symmetrically.

The tree-like structure of the ambients of a process is represented by an ambient tree,

which is basically a tree with edges labelled by ambient names and nodes decorated with

labels. We also define the set of ambient trees whose number of ambients is bounded by

an upper limit.

Definition 4.5. Let L be a denumerable set of labels (that is, L = l0, l1, l2, . . .), with L
ranged over by l, l′, l′1, . . .. Sequences of labels, that is, elements of L∗, are ranged over by

λ, λ′, . . . .

The set T of ambient trees is the least set closed with respect to the equation

t = l ·
⊕
i∈I

ni[ti]

where I is an index set and ti ∈ T for all i ∈ I .

The number of ambients in an ambient tree t = l ·
⊕

i∈I ni[ti] is defined by

#amb(t) = |I | +
∑
i∈I

#amb(ti).

The set of labels and the set of ambient names in an ambient tree t = l ·
⊕

i∈I ni[ti] is

defined by

labels(t) = {l} ∪
⋃

i∈I labels(ti)

names(t) = {ni | i ∈ I} ∪
⋃

i∈I names(ti).

The set of ambient trees of size at most h defined on the set of ambient names N is

TN
h = {t ∈ T | #amb(t) � h ∧ labels(t) ∈ {l0, . . . , lh} ∧ names(t) ⊆ N}.

In the following, we will consider ambient trees containing distinct labels.

Now we are almost ready to construct the net that will enable us to decide the

reachability of a process R starting from a process P . Recall that the markings of the net

can represent the processes whose number of active ambients is no greater than the

number of active ambients in R. We consider a set of labels equal to the number of active

ambients of R plus one.

The part of the net representing the tree-like structure contains a place for each ambient

tree of size no greater than the number of active ambients in R. Each of the subnets

contains a place for each sequential and replicated subprocess of process P , and a place
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Fig. 2. A portion of the net corresponding to process n[outm] | m[in n.k[!out k]].

named ‘unused’, which remains filled until the subnet does not correspond to any node in

the tree-like structure. Moreover, we associate a distinct label with each subnet, and all

the places of the subnet will be decorated with such a label.

The net has two sets of transitions: the first enables us to model the execution of the

in and out capabilities, and the second is used to handle the structural congruence rule

for replication.

Let us concentrate on the first set of transitions. A capability in n can be executed when

the following conditions are fulfilled: the tree-like structure must have a specific structure,

and a place corresponding to a sequential subprocess in n.Q is marked in a subnet whose

label appears in the correct position in the tree-like structure. Moreover, the number

of active ambients created by the execution of the capability, added to the number of

currently active ambients, must not exceed the number of active ambients in the process R

we want to reach. This condition is checked by requiring that there are a sufficient number

of ‘unused’ places that are currently marked. The execution of the capability causes the

following changes to the marking of the net: the place corresponding to the new tree-like

structure is now filled and the marking of the subnet performing the in n operation is

updated (by adding the tokens in the places corresponding to the active sequential and

replicated subprocesses in the continuation Q). Moreover, a number of subnets equal to

the number of active ambients in the continuation Q become active: their places will be

filled with the tokens corresponding to the active sequential and replicated subprocesses

contained in the corresponding ambient, and the tree-like structure is updated accordingly.

For example, consider the process n[outm] | m[in n.k[!out k]]. The relevant part of the

corresponding net is shown in Figure 2: a subset of the places, representing the tree-like

structure, is shown in the left-hand part of the figure, while the subnets are shown in

the right-hand part. We only consider the subnets labelled l2 and l3, and omit the two

subnets labelled l0 (with empty marking) and l1 (whose marking consists of a token in
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place l1 : outm). The computation step

n[outm] | m[in n.k[!out k]] → n[outm | m[k[!out k]]]

corresponds to the firing of transition t in the net.

The transitions for the execution of a capability out n are dealt with similarly by

checking a different tree-like structure.

To define the transitions formally, we need some auxiliary notation.

Ambient tree contexts will be used to model the requirement that the tree-like structure

has a specific form, and to update this structure. An ambient tree context is essentially an

ambient tree with a hole, which can be fulfilled using a set of trees, each labelled with an

ambient name. The set of ambient tree contexts is generated by the grammar

C[] = l · [] ⊕
⊕

i∈I ni[ti] |
l · n[l′ · C[] ⊕

⊕
j∈J n

′
j[t

′
j]] ⊕

⊕
i∈I ni[ti].

We now introduce some notions related to the features of ambient multisets.

Definition 4.6. Let

a =
⊕
i∈I

Mi.ai ⊕
⊕
j∈J

!M ′
j .a

′
j ⊕

⊕
k∈K

nk[a
′′
k ]

be an ambient multiset.

The set of sequential and replicated subprocesses of a is defined by

sub(a) = {Mi.ai | i ∈ I} ∪
{M ′

j .a
′
j , !M

′
j .a

′
j | j ∈ J} ∪⋃

i∈I sub(ai) ∪
⋃

j∈j sub(a
′
j) ∪

⋃
k∈K sub(a′′

k ).

The number of active ambients in a is defined by

#amb(a) = |K| +
∑
k∈K

#amb(a′′
k ).

The number of active ambients in a process P is defined by

#amb(P ) = #amb(α(P )).

To define the set of transitions, we need some preliminary definitions, which will enable

us to construct the new part of the ambient tree (generated by the active ambients in the

continuation) and the marking of the newly activated subnets.

Definition 4.7. Let

a =
⊕
i∈I

Mi.ai ⊕
⊕
j∈J

!M ′
j .a

′
j ⊕

⊕
k∈K

nk[a
′′
k ]

be an ambient multiset†.

† To be precise, at this point we have to fix an order on the elements of the multiset a, that is, instead of a,

we must consider the sequence a = M1.a1 . . .M|I |.a|I |!M
′
1.a

′
1 . . .!M|J|.a

′
|J|n1[a

′′
1] . . . n|K|[a

′′
|K|]. We need to fix the

ordering of the elements to obtain the correct correspondence between the labels in the ambient tree and the

labels of the active nets.
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(in)

C[m[lm · μm] ⊕ n[ln · μn]], lm : in n.a,
⋃

l∈λ l : unused

↓
C[n[ln · μn ⊕ m[lm · μm ⊕ tree(a, λ)]], lm : actproc(a), proc(a, λ)

(out)

C[n[ln · μn ⊕ m[lm · μm]], lm : out n.a,
⋃

l∈λ l : unused

↓
C[m[lm · μm ⊕ tree(a, λ)] ⊕ n[ln · μn]], lm : actproc(a), proc(a, λ)

(fold)

l : M.a, l :!M.a

↓
l :!M.a

(unfold)

l :!M.a

↓
l : M.a, l :!M.a

Table 1. The transition schemata. For axioms (in) and (out), we assume that λ is a

sequence of distinct labels such that |λ| = #amb(a).

Take a sequence of labels λ = l′1 . . . l
′
|K|λ1 . . . λ|K| such that |λi| = #amb(a′′

i ) for all i ∈ K .

The function tree(a, λ) constructs a portion of the ambient tree representing the active

ambients in a, where nodes are labelled with the elements of λ taken in breadth first,

left-to-right order:

tree(a, λ) =
⊕
k∈K

nk[l
′
k · tree(a′′

k , λk)].

The function actproc(a) gives the portion of a corresponding to the active (unguarded)

sequential and replicated subprocesses:

actproc(a) =
⊕
i∈I

Mi.ai ⊕
⊕
j∈J

!M ′
j .a

′
j .

For each active ambient in a, the function proc(a, λ) constructs the marking for the

places of the corresponding subnet:

proc(a, λ) =
⊕
k∈K

l′k : actproc(a′′
k ) ⊕

⊕
k∈K

proc(a′′
k , λk).

The set Trans contains all the instances of the transition schemata listed in Table 1:

axioms (in) and (out) deal with the execution of a capability, and axioms (fold) and

(unfold) enable us to apply the structural congruence law for replication to unguarded

processes.

The P/T net used to decide rechability is constructed as follows (where the number n

is used to represent the maximal number of active ambients to be considered in the P/T

net).

Definition 4.8. Let P be a pMA
−open
g! process, let N denote the set of ambient names

occurring in P and let n be a natural number such that #amb(P ) � n. We define the net
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Net(P , n) = (S, T ), where

S =
⋃n

i=0({li : Q | Q ∈ sub(α(P ))} ∪ {li : unused}) ∪ TN
n

T = {(c, p) ∈ Trans | c, p ⊆ S}.

Note that Net(P , n) is a finite P/T net.

The following definition describes how to map a derivative of P to a marking of the

net.

Definition 4.9. Let P be a pMA
−open
g! process and Q be a process such that P →∗ Q.

Consider a natural number n such that #amb(Q) � n.

Let λ be a sequence of distinct labels in {l1, . . . , ln} such that |λ| = #amb(Q), and let the

set of labels not in λ be Cλ = {li | i = 1, . . . , n ∧ li 	∈ λ}.
The decomposition of Q with respect to λ is defined as†

dec(Q, l0λ) = l0 · tree(α(Q), λ),

l0 : actproc(α(Q)),

proc(α(Q), λ),⋃
l∈Cλ

l : unused.

The decomposition of Q turns out to be a marking of Net(P , n) because the following

property holds.

Proposition 4.10. Let P ,Q be a pMA
−open
g! process. If P →∗ Q, then sub(α(Q)) ⊆ sub(α(P ))

Proof. We use induction on the length of the computation P →∗ Q. If the length is 0,

the proposition holds trivially. If we consider P →∗ Q′ → Q, by the induction hypothesis,

sub(α(Q′)) ⊆ sub(α(P )). Proceeding by induction on the length of the proof of Q′ → Q, it

is easy to prove that sub(α(Q)) ⊆ sub(α(Q′)).

We now prove two Propositions: the first relates the P/T net semantics to the structural

congruence ≡, and the second is concerned with the reduction relation → for processes.

Proposition 4.11. Let P be a pMA
−open
g! process and Q be a process such that P →∗ Q.

Consider a natural number n such that #amb(Q) � n. Given a pMA
−open
g! process Q′,

we have Q ≡ Q′ if and only if there exists a sequence λ of distinct labels in {l0, . . . , ln}
such that |λ| = #amb(Q) = #amb(Q′) and dec(Q, λ)

σ→ dec(Q′, λ) in Net(P , n) where σ is a

sequence that includes an arbitrary number (possibly 0) of transitions that are instances

of (fold) or (unfold).

Proof. The proof is by induction on the length of the proof of Q ≡ Q′.

Proposition 4.12. Let P be a pMA
−open
g! process and Q be a process such that P →∗ Q.

Consider a natural number n such that #amb(Q) � n. Given a pMA
−open
g! process Q′

such that #amb(Q′) � n, we have Q → Q′ if and only if there exist two sequences λ

† To be precise, in this case we again have to fix an order on the elements of the ambient multiset α(Q), as in

Definition 4.7.
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and λ′ of distinct labels in {l0, . . . , ln} such that |λ| = #amb(Q), λ′ = #amb(Q′), and

dec(Q, λ)
σ→ dec(Q′, λ′) in Net(P , n) where σ is a sequence of transitions that includes an

arbitrary number (possibly 0) of transitions that are instances of (fold) or (unfold)

and exactly one transition which is an instance of (in) or (out).

Proof. The proof is by induction on the length of the proof of Q → Q′, where

Proposition 4.11 is used for the case where the last rule applied to prove Q → Q′ is rule

(6) of Definition 2.3.

We conclude this section by defining the P/T system that can be used to solve the

reachability problem for pMA
−open
g! processes.

Definition 4.13. Let P be a pMA
−open
g! process and n be a natural number such that

#amb(P ) � n. We define Sys(P , n) = (S, T , m0), where (S, T ) = Net(P , n) and the initial

marking is

m0 = dec(P , l0 . . . l#amb(P )).

In order to prove that we can actually use a P/T system to check the reachability of

process R from process P , we need another preliminary result.

Proposition 4.14. Let P , R be pMA
−open
g! processes such that P →∗ R. If Q is a process

traversed by the sequence of reductions P →∗ R, that is, P →∗ Q →∗ R, then #amb(Q) �
#amb(R).

Proof. The proof is by induction on the length of Q →∗ R. If the length is 0, the

proposition holds trivially. If Q → Q′ →∗ R, by the induction hypothesis, #amb(Q′) �
#amb(R). Proceeding by induction on the length of the proof of Q → Q′, it is easy to prove

that #amb(Q) � #amb(Q′) (due to the absence of the open capability in pMA
−open
g! ).

Theorem 4.15. Let P , R be pMA
−open
g! processes such that #amb(P ) � #amb(R). Then

P →∗ R if and only if there exists a sequence λ of distinct labels in {l0, . . . , l#amb(R)} such

that |λ| = #amb(R) + 1 and dec(R, λ) is a marking of Sys(P ,#amb(R)) that is reachable.

Proof. By Proposition 4.14, we know that each computation P →∗ R traverses processes

with a number of active ambients smaller than or equal to #amb(R). The theorem

follows from the fact that, by Proposition 4.12, the P/T system Sys(P ,#amb(R)) faithfully

reproduces these computations.

We have the following trivial corollary.

Corollary 4.16. The reachability problem is decidable in pMA
−open
g! .

Proof. By Theorem 4.15, we have that in order to solve the reachability problem for the

pMA
−open
g! processes P and R, we can check the reachability of one of the markings in

the set {dec(R, λ) | λ is a sequence of distinct labels in {l0, . . . , l#amb(R)}} in the P/T system

Sys(P ,#amb(R)). As this set of markings is finite, the decidability of this problem follows

directly from the decidability of reachability for P/T systems.
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5. Target reachability in pMA
−open
g!

In this section we prove that for the calculus pMA
−open
g! , an extension of the reachability

problem, which we call target reachability, also turns out to be decidable. Target reach-

ability generalises classical reachability by allowing a generic description of the target

process. More precisely, we can impose constraints on the number of occurrences of

guarded processes inside each active ambient in the target process. Such constraints are

both lower bounds (for example, there must be at least one instance of the guarded

process M.P in a given ambient) and upper bounds (for example, there can be at most

two occurrences of the guarded process M.P in a given ambient).

We need to introduce some additional notation for describing target processes.

We introduce a notion of normal form for processes that forbids the presence of both

the unreplicated and replicated versions of a guarded term in a parallel composition.

Each process can be transformed in a structurally congruent process into the normal

form by using the monoidal axioms for parallel composition and applying the axiom for

replication from right to left (that is, M.P |!M.P can be rewritten as !M.P ).

Definition 5.1 (normal form). A pMA
−open
g! process P is in normal form if

P =
∏
i

Mi.Pi |
∏
j

!M ′
j .P

′
j |

∏
k

nk[P
′′
k ]

and the following conditions hold:

— Pi, P
′
j , P

′′
k are in normal form for all i, j, k;

— if Mi = M ′
j , then Pi 	= P ′

j .

Proposition 5.2. Let P be a pMA
−open
g! process. Then there exists a process Q in normal

form such that P ≡ Q.

Proof. The proof is by induction on the structure of P .

Definition 5.3 (target). The set of targets is defined by the grammar

T ::= 0 | any | q � M.P � q′ | T |T | !M.P | n[T ]

where q ∈ IN and q′ ∈ IN ∪ {∞}†.

The target any requires the presence of zero or more occurrences of any process. The target

q � M.P � q′ requires the presence of k occurrences of process M.P , with q � k � q′

(if q′ = ∞ there is no upper bound to the number of occurrences). And the target !M.P

requires the presence of one or more occurrences of process !M.P . Since the behaviour

of processes
∏

k!M.P is the same for any k � 1, we prefer just to require the presence –

or absence – of a replicated process rather than to provide upper and lower bounds to

the number of its occurrences. Targets can be composed in parallel, and can be nested in

ambients.

† We assume that q � ∞ for all q ∈ IN.
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As an example, consider the target

n[1 � inm.P � 2] | m[!in n.Q | k[any | 3 � outm.R � ∞]].

This target requires that ambient n contains one or two occurrences of process inm.P ,

ambient m contains only occurrences of process !in n.Q (at least one occurrence is

required) plus an ambient k that contains at least three occurrences of the process

outm.R. Moreover, this target also requires that there is no process at top level.

We will only consider a proper subset of well-formed targets defined as follows.

Basically, a target is well formed if the upper and lower bounds on guarded terms

are satisfiable (that is, target 3 � M.P � 2 is not well formed) and if the presence of

a replicated version of a guarded process prevents the occurrence of the non-replicated

version of the same process in a parallel composition (that is, target M.P | !M.P is

not well formed). We also require that at most one occurrence of a replicated process is

present in a parallel composition (that is, target !M.P | !M.P is not well formed).

In the formal definition of a well-formed target we make use of a structural congruence

≡T for targets, which is defined as the least congruence satisfying the following axioms:

T |0 ≡T T

T1|T2 ≡T T2|T1

T1|(T2|T3) ≡T (T1|T2)|T3.

Definition 5.4 (well-formed target). A target T is well formed if there exists a target

S =
∏

i qi � Mi.Pi � q′
i |

∏
j!M

′
j .P

′
j |

∏
k nk[T

′′
k ] such that the following conditions hold:

— processes Pi, P
′
j are in normal form for all i, j;

— either T ≡T S or T ≡T S | any;
— qi � q′

i for all i;

— if Mi = M ′
j then Pi 	= P ′

j ;

— if Mi = Mj and Pi = Pj , then i = j;

— if M ′
i = M ′

j and P ′
i = P ′

j , then i = j;

— T ′′
k is well formed for all k.

We now define the set of processes set(T ) that satisfy the constraints imposed by a

target T . Basically, we require the presence of the required number of occurrences of a

prefixed process in each ambient; if the upper bound is ∞, the presence of a replicated

version of the process satisfies the target (that is, process n[!in n.0] satisfies the target

n[3 � in n.0 � ∞]). If the target any is present, other (different) processes may be present

also. As previously discussed, if there is a replicated process in the target, we just require

the presence of at least one occurrence of the replicated process.

Definition 5.5 (set(T)). Let T be a well-formed target. A pMA
−open
g! process P is in set(T )

if

P ≡
∏
h

Lh.Ph |
∏
g

!L′
g.P

′
g |

∏
k

nk[P
′′
k ]
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and there exists a target

S =
∏
i

qi � Mi.Qi � q′
i |

∏
j

!M ′
j .Q

′
j |

∏
k

nk[T
′′
k ]

such that the following conditions hold:

— either T ≡T S or T ≡T S | any;
— for all i, either qi � |{h | Lh.Ph = Mi.Qi}| � q′

i or q′
i = ∞ and there exists g such that

L′
g.P

′
g = Mi.Qi;

— for all j there exist g such that L′
g.P

′
g = M ′

j .Q
′
j;

— if T ≡T S , then for every h there exists i such that either Lh.Ph = Mi.Qi or Lh.Ph =

M ′
i .Q

′
i and for every g there exists j such that L′

g.P
′
g = M ′

j .Q
′
j;

— for every k, we have P ′′
k ∈ set(T ′′

k ).

It is worth noting that set(T ) is compatible with the structural congruence relation as

formalised by the following Proposition.

Proposition 5.6. Let T be a target and P and Q two pMA
−open
g! processes such that P ≡ Q.

Then P ∈ set(T ) if and only if Q ∈ set(T ).

We are now ready to formalise the notion of target reachability.

Definition 5.7. Let P be a pMA
−open
g! process and T be a target. We say that T is a

target reachable from P (denoted by TReach(P , T )) if there exists a process Q such that

P →∗ Q and Q ∈ set(T ).

5.1. Target marking reachability on P/T nets

The proof of decidability of target reachability in pMA
−open
g! follows from the encoding

of pMA
−open
g! into P/T nets discussed in the previous section. However, in this case the

P/T net semantics does not reduce the target reachability problem for processes to some

problem that is already known to be decidable for P/T nets. In fact, target reachability

is not reduced to classical reachability due, for example, to the presence of any, which

allows for the presence of any additional process in a given ambient.

The coverability problems for P/T nets allows for the presence of any additional token

with respect to the given target.

Definition 5.8. Let N = (S, T , m0) be a P/T system. The coverability problem for marking

m consists of checking if there exists m′ such that m0 →∗ m′ and m′ covers m, that is,

m ⊆ m′.

Coverability is known to be a decidable problem for P/T nets (Karp and Miller 1969).

However, once again, target reachability for processes is not mapped to coverability

on P/T nets by the P/T net semantics presented in the previous section. Consider, for

example, the target 2 � M.P � 2, which requires the presence of exactly 2 instances of

the process M.P (and no other additional processes).

For the reasons discussed above, we need to introduce a new problem for P/T nets,

which we call target marking reachability, that allows us to specify both a lower and upper
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bound to the number of tokens in each place of the net, and consists of checking if it is

possible to reach a marking that satisfies these constraints.

Definition 5.9 (target marking). Let N = (S, T ) be a P/T net. A target marking of N

is a pair of functions (inf, sup) ∈ (S → IN) × (S → IN ∪ ∞) such that, for all s ∈ S ,

inf(s) � sup(s).

Definition 5.10 (target marking satisfiablity). Let N = (S, T ) be a P/T net. A marking m

of N satisfies a target marking (inf, sup) of N if, for all s ∈ S , inf(s) � m(s) � sup(s).

Definition 5.11 (target marking reachability). Let N = (S, T , m0) be a P/T system. A

target marking (inf, sup) is reachable if there exists a marking m such that m0 →∗ m and

m satisfies (inf, sup).

Note that reachability and coverability are special cases of target marking reachability.

Checking the reachability of marking m is equivalent to checking reachability of the

target marking (m,m), while checking the coverability of m is equivalent to checking the

reachability of the target marking (m, {(s,∞) | s ∈ S}).
As the target marking reachability problem is more general than both reachability and

coverability and, to the best of our knowledge, it is not included in any other decidable

problem for P/T systems, we have to prove that it is indeed decidable. The proof shows

how to reduce this problem to the verification of the reachability of at least one marking

in a finite set of markings in a transformed P/T system. Formally, given a P/T system N

and a target marking (inf, sup), we define the P/T system TMSys(N, (inf, sup)) as follows.

Definition 5.12. Let N = (S, T , m0) be a P/T system and (inf, sup) be a target marking

of N. The P/T system TMSys(N, (inf, sup)) = (S ′, T ′, m′
0) is defined as follows. Let

normal, ending 	∈ S .

S ′ = S ∪ {normal, ending}
T ′ = {(c ∪ normal, p ∪ normal) | (c, p) ∈ T } ∪

{(normal, ending)} ∪
{(s ∪ ending, ending) | sup(s) = ∞}

m′
0 = m0 ∪ normal.

The P/T system TMSys(N, (inf, sup)) extends the P/T system N with the two places

normal and ending. These places are used to divide the computation of the net into two

phases. During the first phase the place normal holds one token and each computation

of the P/T system N can be executed. The second phase is started non-deterministically

by moving the token in the place normal to the place ending. During this second phase,

tokens can be removed from the places having the ∞ upper bound.

We now characterise a finite set of markings for TMSys(N, (inf, sup)), which we call

TMMark(N, (inf, sup)), such that the target marking (inf, sup) is reachable in N if and

only if one of the markings in TMMark(N, (inf, sup)) is reachable in the P/T system

TMSys(N, (inf, sup)).
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Definition 5.13. Let N = (S, T , m0) be a P/T system and (inf, sup) be a target mark-

ing of N. We use TMMark(N, (inf, sup)) to denote the following set of markings of

TMSys(N, (inf, sup)):

TMMark(N, (inf, sup)) = {m | ∀s ∈ S :
(
(sup(s) = ∞ ⇒ m(s) = inf(s)) ∧
(sup(s) 	= ∞ ⇒ inf(s) � m(s) � sup(s))

)
∧ m(normal) = 0 ∧ m(ending) = 1 }.

Proposition 5.14. Let N = (S, T , m0) be a P/T system and (inf, sup) be a target marking

of N. The set of markings TMMark(N, (inf, sup)) is finite.

Proof. Consider a place p in a marking m ∈ TMMark(N, (inf, sup)). If p ∈ S with

sup(p) = ∞ or p ∈ {normal, ending}, we have that m(p) is uniquely defined by TMMark(N,

(inf, sup)). The only case in which we could have multiple possible values for m(p) is if

p ∈ S with sup(p) 	= ∞. But in these cases there is a finite number of possible values for

m(p), that is, the values in the finite interval [inf(p), sup(p)].

Proposition 5.15. Let N = (S, T , m0) be a P/T system and (inf, sup) be a target marking

of N. The target marking (inf, sup) is reachable in N if and only if one of the markings

in the set TMMark(N, (inf, sup)) is reachable in TMSys(N, (inf, sup)).

Proof. Assume that the target (inf, sup) is reachable in N = (S, T , m0). This means that

there exists a sequence of transitions m0 →∗ m in N such that inf(s) � m(s) � sup(s). The

same sequence of transitions leads to the computation m0 ⊕ normal →∗ m ⊕ normal in

TMSys(N, (inf, sup)). This computation can be extended in such a way that a marking

m′ ∈ TMMark(N, (inf, sup)) is reached. Namely, consider m⊕normal → m⊕ending →∗ m′

such that in the last part of the computation m ⊕ ending →∗ m′ tokens are removed from

each place s such that sup(s) = ∞, until the number of tokens become equal to inf(s).

Assume now that any marking m′ ∈ TMMark(N, (inf, sup)) is reachable in the P/T

system TMSys(N, (inf, sup)). This means that there exists a sequence of transitions m0 ⊕
normal →∗ m′ in TMSys(N, (inf, sup)) such that m′ ∈ TMMark(N, (inf, sup)). By the

definition of TMMark(N, (inf, sup)), we have m′(ending) = 1 and m′(normal) = 0. We now

separate the sequence of transitions m0 ⊕ normal →∗ m′ into two parts, m0 ⊕ normal →∗

m →∗ m′, where m is the last traversed marking having one token in the place normal

(and no token in ending). Now consider the projections projm and projm′ of the markings

m and m′ on places in S (the places in the initial P/T system N = (S, T , m0)). We first

observe that the sequence of transitions m0 ⊕ normal →∗ m can also be fired in N, that

is, m0 →∗ projm. We conclude the proof by observing that for each s ∈ S we have

inf(s) � projm(s) � sup(s). In fact, it is easy to see that projm and projm′ differ only in

the fact that projm′ has fewer tokens in those places s ∈ S such that sup(s) = ∞, and,

moreover, m′ ∈ TMMark(N, (inf, sup)) guarantees that inf(s) � projm′ (s) � sup(s) for

each s ∈ S .

As a consequence of the two propositions above and of the decidability of reachability

on P/T systems, we get the following theorem.

Theorem 5.16. Target marking reachability is decidable for P/T systems.
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Proof. By Proposition 5.15, in order to verify the reachability of a target (inf, sup)

in the P/T system N, it is sufficient to check the reachability of one of the markings

in the set TMMark(N, (inf, sup)) in the P/T system TMSys(N, (inf, sup)). The theorem

then follows from the decidability of reachability in P/T nets and the finiteness of

TMMark(N, (inf, sup)), which was proved in Proposition 5.14.

5.2. Reducing target reachability on processes to target marking reachability on P/T nets

We complete this section by showing how to use the P/T net semantics for pMA
−open
g!

defined in Section 4 to reduce the target reachability problem for pMA
−open
g! processes to

target marking reachability in the corresponding P/T system.

Consider a pMA
−open
g! process P and a well-formed target T . We proceed as follows.

We first define how to extract the number of active ambients in T , which we denote with

#amb(T ). Then we consider the P/T system Sys(P ,#amb(T )). Finally, we show how to

define a finite set of target markings TargMark(P , T , λ), parameterised by a sequence of

labels λ, having the following property: the target T is reachable from the process P if

and only if there exists a sequence of labels λ such that there exists a target marking in

TargMark(P , T , λ) that is reachable in the P/T system Sys(P ,#amb(T )).

Definition 5.17. Consider the well-formed target T and let

S =
∏
i∈I

qi � Mi.Pi � q′
i |

∏
j∈J

!M ′
j .P

′
j |

∏
k∈K

nk[T
′′
k ]

be a corresponding target such that either T ≡T S or T ≡T S |any†.

The number of active ambients in T is defined by

#amb(T ) = |K| +
∑
k∈K

#amb(T ′′
k ).

It is easy to see that all the processes belonging to set(T ) have a number of active

ambients corresponding to #amb(T ).

We now define the tree associated with a target T for a given sequence of labels λ.

Definition 5.18. Consider the well-formed target T and let

S =
∏
i∈I

qi � Mi.Pi � q′
i |

∏
j∈J

!M ′
j .P

′
j |

∏
k∈K

nk[T
′′
k ].

Take a sequence of labels λ = l′1 . . . l
′
|K|λ1 . . . λ|K| such that |λi| = #amb(T ′′

i ) for all i ∈ K .

The function tree(T , λ) is defined by

tree(T , λ) =
⊕
k∈K

nk[l
′
k · tree(T ′′

k , λk)].

† The existence of such a target S is guaranteed by the definition of well formedness (see Definition 5.4)
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In the following definition of TargMark(P , T , λ), we overload the operator ⊕ by

applying it to target markings also: given two target markings (inf1, sup1) and (inf2, sup2)

defined on disjoint sets of places, we use (inf1, sup1) ⊕ (inf2, sup2) to denote the target

marking (inf, sup) where inf is the disjoint union of the functions inf1 and inf2, and sup

is the disjoint union of the functions sup1 and sup2.

Definition 5.19 (TargMark(P,T,λ)). Let P be a pMA
−open
g! process and T be a well-formed

target reachable from P , that is, TReach(P , T ). Let

S =
∏
i∈I

qi � Mi.Pi � q′
i |

∏
j∈J

!M ′
j .P

′
j |

∏
k∈K

nk[T
′′
k ]

be a target such that either T ≡T S or T ≡T S |any†.

Take a sequence of labels λ = l′0λ1 . . . λ|K| such that |λk| = #amb(T ′′
k ) for all k ∈ K . We

define TargMarkSub(P , T , λ) as the following set of target markings:

TargMarkSub(P , T , λ) = {(infT , supT ) ⊕
⊕

k∈K (infT ′′
k
, supT ′′

k
) |

(infT ′′
k
, supT ′′

k
) ∈ TargMarkSub(P , T ′′

k , λk) ∧
(infT , supT ) satisfes the property below}

where (infT , supT ) is a target marking defined on the set of places {l′0 : Q | Q ∈ sub(α(P ))}
such that:

— for all i ∈ I , one of the following holds:

– inf(l′0 : Mi.Pi) = qi and sup(l′0 : Mi.Pi) = q′
i;

– q′
i = ∞, inf(l′0 : Mi.Pi) = 0, sup(l′0 : Mi.Pi) = ∞, inf(l′0 :!Mi.Pi) = 1, and sup(l′0 :

!Mj.Pj) = ∞;

— for all j ∈ J , we have inf(l′0 :!M ′
j .P

′
j ) = 1 and sup(l′0 :!M ′

j .P
′
j ) = ∞;

— for all other places l′0 : Q not considered in the previous items, inf(l′0 : Q) = 0 and

either sup(l′0 : Q) = 0 if T ≡T S , or sup(l′0 : Q) = ∞ if T ≡T S |any.

We define the set of target markings associated with the source process P , the target T

and the sequence of labels l0λ as follows:

TargMark(P , T , l0λ) = {(infTree, supTree) ⊕ (inf, sup) |
(inf, sup) ∈ TargMarkSub(P , T , l0λ) ∧
(infTree, supTree) satisfes the property below}

where (infTree, supTree) is a target marking defined on the set of places TN
#amb(T ) ∪⋃

l∈l0λ l : unused (where N is the set of ambient names occurring in P ) such that:

— infTree(l0 · tree(T , λ)) = 1 and supTree(l0 · tree(T , λ)) = 1;

— if p 	= l0 · tree(T , λ), then infTree(p) = 0 and supTree(p) = 0.

Note that, given a process P , a target T and a sequence of labels λ, the set of target

markings TargMark(P , T , λ) is finite.

We are now ready to formalise the correspondence between the satisfiability of a target

for processes and the satisfiability of a target marking for P/T nets.

† In this case also, the existence of S is guaranteed by Definition 5.4.
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Proposition 5.20. Let P , R be pMA
−open
g! processes such that P →∗ R. Let T be a well-

formed target reachable from P , that is, TReach(P , T ). Then R ∈ set(T ) if and only if for

every sequence λ of distinct labels in {l1, . . . , l#amb(T )} such that |λ| = #amb(R), we have

dec(R, l0λ) satisfies at least one target marking in TargMark(P , T , l0λ).

Proof. The proof is by induction on the maximal depth of the nesting of ambients in

the target T , and is based on the simple observation that the definition of set(T ) (see

Definition 5.5) imposes on processes the same constraints as are imposed on markings in

the definition of TargMarkSub(P , T , λ) (see Definition 5.19).

We can now complete the formalisation of the reduction of target reachability of

processes to target marking reachability problem on P/T nets.

Theorem 5.21. Let P be a pMA
−open
g! process and T be a well-formed target such that

#amb(P ) � #amb(T ).

Then T is reachable from P , that is, TReach(P , T ), if and only if there exists a sequence

λ of distinct labels in {l0, . . . , l#amb(T )} such that |lambda| = #amb(T ) + 1 and at least one

of the target markings in TargMark(P , T , λ) is reachable in Sys(P ,#amb(T )).

Proof. By definition, the target T is reachable by the process P if and only if there

exists a process R such that:

(i)R ∈ set(T ) and

(ii)R is reachable from the process P .

By Proposition 5.20, part (i) holds if and only if for every sequence of labels λ = l0λ
′

we have that dec(R, λ) satisfies at least one of the target markings in TargMark(P , T , λ).

By Theorem 4.15, part (ii) holds if and only if there exists a sequence of labels λ such

that dec(R, λ) is reachable in Sys(P ,#amb(T )).

We have the following as a trivial corollary.

Corollary 5.22. The target reachability problem is decidable in pMA
−open
g! .

Proof. By Theorem 5.21, the target reachability problem for the pMA
−open
g! process P

and the target T can be solved by checking the reachability of one of the target markings

in the set ⊕λTargMark(P , T , l0λ), where λ ranges over the set of sequences of distinct

labels in {l1, . . . , l#amb(T )}, in the P/T system Sys(P ,#amb(T )).

As the above set of sequences of labels is finite, and for each sequence λ we have that

TargMark(P , T , l0λ) is finite (see the observation after Definition 5.19), we can conclude

that the set of target markings ⊕λTargMark(P , T , l0λ) to be considered is finite also.

Hence, the decidability result follows directly from the decidability of target marking

reachability for P/T systems proved in the Theorem 5.16.

6. Boxed Ambients

In this section we show how the target reachability analysis presented in the previous

section for pMA
−open
g! can also be applied to richer non-pure versions of MA that
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include communication. As a testbed, we decided to consider Boxed Ambients (Bugliesi

et al. 2004), which is the most relevant dialect of Mobile Ambients that omits the open

capability (which is the operator we had to remove from Mobile Ambients to prove the

decidability of reachability) and introduces a fairly rich set of communication capabilities

that allow communication both between processes residing in the same ambient and

between processes residing in parent–child ambients.

The Boxed Ambients model was developed for the formalisation and analysis of security

aspects related to access control policies. In this particular context, we consider target

reachability to be an interesting tool for the analysis of the correctness of a specified

system with respect to policies described in terms of capabilities for ambients to enter

other ambients (for instance, see the example in the Introduction where we discussed the

case of a virus entering a notebook using a trojan ambient as a means of transport).

We will need to simplify the calculus if we are going to be able to apply target

reachability to Boxed Ambients. The simplified calculus we consider is called BA−.

Definition 6.1 (BA−). Let Name, ranged over by n, m, . . . , be a denumerable set of ambient

names and Var, ranged over by x, y, . . . , be a denumerable set of variables, such that

Name ∩Var = �. The set of sequences of capabilities is defined by

C ::= in n | out n | in x | out x | C.C.

The set of expressions is defined by the grammar

e ::= n | x | C.

The set of locations, ranged over by η, is Name ∪Var ∪{↑, 	}. The set of processes is defined

by the grammar

P ::= 0 | M.P | P |P | !M.P | n[P ] | x[P ]

M ::= C | x | (x)η | 〈e〉η.

The main differences between Boxed Ambients and pure Mobile Ambients is the

elimination of the open capability, which is compensated for by the introduction of a

fairly rich communication mechanism. Processes residing in the same ambient or in two

different ambients that are in a parent–child relation, can communicate with each other.

The expressions that can be communicated can be variables, ambient names or sequences

of capabilities.

The capabilities in a sequence are either on a fixed ambient name or on a variable,

which will be subsequently instantiated by a communication. Expressions, representing

the contents of messages, may be ambient names, variables or sequences of capabilities.

More precisely, communication primitives make use of locations: location n denotes

communication with a process in a child ambient with name n; location x will be

instantiated with an ambient name by a previous communication; location ↑ denotes

communication with a process in the parent ambient; and location 	 (which is often

omitted) denotes local communication. The input process (x)η.P and the output process

〈e〉η.P allow us to model communication, where η denotes the location. Both input and

output processes are guarded processes, and (x)η acts as a binder for the occurrences of
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variable x in P . The notions of free and bound variables (denoted by fv(P ) and bv(P )),

and of closed processes are defined as usual. In the following we assume that BA− is

restricted to the set of closed processes.

We will now discuss the differences between the original Boxed Ambients proposal

(Bugliesi et al. 2004) and the fragment BA− that we consider in this paper. In particular,

BA− imposes the following restrictions on Mobile Ambients:

— Replication is guarded, that is, it can only be applied to prefixed processes having the

form !M.P .

— There is a constrained use of variables in sequences of capabilities. Namely, variables

in Boxed Ambients can be included in a sequence of capabilities. As the following

example shows, this allows the production of sequences of capabilities of unbounded

length:

〈in n〉 | !(x).〈in n.x〉.
In fact, after i synchronisations, the above process becomes

〈in n.in n. · · · .in n〉︸ ︷︷ ︸
sequence of length i+1

| !(x).〈in n.x〉.

To ensure that the number of sequential subprocesses that can be generated from an

initial BA− process remains finite (which is necessary if we are going to represent the

behaviour of the initial process using a finite Petri net), we require that a variable

cannot be a proper subsequence of a sequence of capabilities, thus excluding from the

calculus the above process.

Moreover, for simplicity, we will consider a monadic version of the calculus.

We will now present the operational semantics, defined in terms of a structural

congruence plus a reduction relation.

Definition 6.2 (structural congruence). The structural congruence ≡ is the smallest con-

gruence relation satisfying:

P | 0 ≡ P

P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R

!M.P ≡ M.P | !M.P .

Definition 6.3 (reduction relation). The reduction relation is the smallest relation →
satisfying the following axioms and rules:

(1) n[inm.P | Q] | m[R] → m[n[P | Q] | R].

(2) m[n[outm.P | Q] | R] → n[P | Q] | m[R].

(4)
P → Q

P | R → Q | R .
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(5)
P → Q

n[P ] → n[Q]
.

(6)
P ′ ≡ P P → Q Q′ ≡ Q

P ′ → Q′ .

(7) (x).P | 〈e〉.Q → P {e/x} | Q.

(8) (x)n.P | n[〈e〉.Q | R] → P {e/x} | n[Q | R].

(9) n[(x)↑.P | Q] | 〈e〉.R → n[P {e/x} | Q] | R.

(10) n[(x).P | Q] | 〈e〉n.R → n[P {e/x} | Q] | R.

(11) (x).P | n[〈e〉↑.Q | R] → P {e/x} | n[Q | R].

We use P {e/x} to denote the process obtained by substituting each free occurrence of x in

P with e. Note that, as we restricted ourselves to closed processes, there is no need to use

alpha-conversion to avoid name captures when a variable is replaced with an expression.

Axioms (1) and (2) and rules (4)–(6) are the same as those considered in Definition 2.1.

The new axioms, (7)–(11), define the communication mechanisms. Axiom (7) describes

local communication. The input prefix (x)n.P in axiom (8) represents a request to read

a datum sent by a process located in one of the child ambients n. In axiom (9), (x)↑.P

is a request to read a datum sent by a process located in the parent ambient. Dually,

〈e〉n.P in axiom (10) (respectively, 〈e〉↑.P in axiom (11)) is a request to send e to a process

located in the child ambient n (respectively, the parent ambient). Note that a direct

remote communication between sibling ambients is not possible: either mobility or the

intervention of the sibling ambients’ parent is required.

Note that variables can be used with two different meanings: either as (sequence of)

capabilities or as ambient names. Expressions can also have these two different meanings.

For this reason, the substitution of one variable with an expression could generate a

wrong process if the variable and expression have two different meanings. Consider, for

instance, the process

(x).x[P ] | 〈in n〉.

If there is a communication, the substitution of in n for x, could generate the wrong process

in n[P ]. In this paper we assume that only reductions that generate correct processes can

be executed, thus avoiding the above reduction. Bugliesi et al. (2004) presented a typed

version of Boxed Ambients that allows the absence of wrong reductions to be verifed

statically.

The target reachability problem is defined for BA− in the same way as we did for

pMA
−open
g! in Section 5: the only difference is that the syntax of targets is enriched with

the new capabilities and the possibility of using variables as names for ambients.
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Definition 6.4 (Target). The set of targets is defined by the grammar

T ::= 0 | any | q � M.P � q′ | T |T | !M.P | n[T ] | x[T ]

M ::= C | x | (x)η | 〈e〉η

where q ∈ IN and q′ ∈ IN ∪ {∞}.

We conclude this section by showing how to use target reachability to analyse a simple

example of an access control system. Consider two agents a and b and a resource r:

P = a[Pa] | b[Pb] | r[R | 〈M〉].

The processes Pa and Pb control the behaviour of agents a and b, respectively. Process R

is a monitor controlling access to the resource r, which contains a message 〈M〉. Assume

that agent a has the right to consume the messages inside the resource r, while b does not.

Formally, this means that it is possible that the configuration

Q′ = b[Pb] | r[R′ | a[P ′
a]]

can be reached for any processes P ′
a and R′ such that R′ does not contain any message

〈M〉. Formally, we accept TReach(P , T ′) with

T ′ = b[Pb] | r[any | 0 � 〈M〉 � 0 | a[any]].

Note that we assume that the agent b is not involved in the computation.

Moreover, we want to avoid the possibility of starting from P and reaching a

configuration of the form

Q′′ = a[P ′′
a ] | r[R′′ | b[P ′′

b ]]

for any processes P ′′
a , P ′′

b and R′′ such that R′′ does not contain any message 〈M〉.
Formally, we assume that TReach(P , T ′′) with

T ′′ = a[any] | r[any | 0 � 〈M〉 � 0 | b[any]]

cannot hold.

Note that we formalise the absence of the message 〈M〉 by using the upper bound

〈M〉 � 0, and that we add any in the specification of the contents of those ambients for

which we do not impose any limitation besides those explicitly indicated. The ambient b

in the target T ′ is the only ambient that does not make use of any, since we assume that

the agent a should be able to access the resource r without any intervention from the

agent b.

6.1. Deciding target reachability in BA−

We now show how to enhance the technique presented in Section 5 to decide target

reachability for pMA
−open
g! processes, so that we can also apply it to the more expressive

calculus BA−.

The first and main question we need to address is how to deal with variables and

expressions. In fact, by substituting variables with expressions we can generate new

sequential and replicated subprocesses, or ambients with a new name, that were not
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present in the initial process. Consider, for instance, the process

(x).(x.P |!x.Q) | (y).y[R] | 〈in n〉 | 〈m〉,

which, after two reduction steps, can be transformed into

in n.P | !in n.Q | m[R],

which includes the new sequential subprocess in n.P , the new replicated subprocess !in n.Q

and the new named ambient m[R].

Nevertheless, the limitations we have imposed on the calculus (namely, the impossibility

of using a variable as a proper subsequence of a sequence of capabilities) allows us to

define a finite set of possibly reachable sequential and replicated subprocesses, as well as

a finite set of reachable named ambients.

Formally, we first have to extend the Definitions 4.4, 4.5, 4.6 and 4.7 by also considering

the ambients x[P ] with variables as their names. This is achieved by simply assuming

that in those definitions, nk and ni are used to range over variables also, and not just over

ambient names.

Hence, we introduce the set of expressions of an ambient multiset.

Definition 6.5. Let a be an ambient multiset. The set of expressions of a, denoted with

exp(a), is defined as the least set satisfying the following properties:

— exp(a) includes the expressions 〈e〉 occurring in a.

— exp(a) is closed with respect to variable substitution, that is, given the expressions

〈e〉, 〈e′〉 ∈ exp(a), where e is an expression including the variable x, then 〈e{e′/x}〉 ∈
exp(a).

Note that for every ambient multiset a, the set exp(a) is finite. This follows from the

fact that the expressions in exp(a) are defined on a finite set of variables and ambient

names, and the length of expressions representing sequences of capabilities is smaller than

the maximal length of a sequence occurring in a (this follows from the fact that variable

substitution cannot increase the length of a sequence of capabilities).

We are now ready to associate with an ambient multiset a richer finite set of

sequential and replicated subprocesses, which also includes processes that can be produced

dynamically.

Definition 6.6. Let a be an ambient multiset. We define the set of its potentially reachable

sequential and replicated subprocesses, denoted reachSub(a), as the least set satisfying the

following properties:

— reachSub(a) includes the sequential and replicated subprocesses in sub(a) (as defined

in Definition 4.6).

— reachSub(a) is closed with respect to variable substitution: that is, given the expression

〈e〉 ∈ exp(a) and the sequential or replicated subprocess P ∈ reachSub(a), where x

occurs free in P , we have P {e/x} ∈ reachSub(a).

Note that because of the finiteness of the sets exp(a) and sub(a), the set reachSub(a) is

finite also.
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(local)

D[l · μ], l : 〈e〉.a, l : (x).a′,
⋃

l∈λλ′ l : unused

↓
D[l · μ ⊕ tree(a, λ) ⊕ tree(a′, λ′)], l : actproc(a), l : actproc(a′{e/x}),

proc(a, λ), proc(a′, λ′)

(rp2c)

D[l · μ ⊕ n[ln · μn]], l : (x)n.a, ln : 〈e〉.a′,
⋃

l∈λλ′ l : unused

↓
D[l · μ ⊕ tree(a, λ) ⊕ n[ln · μn ⊕ tree(a′, λ′)]], l : actproc(a{e/x}), ln : actproc(a′),

proc(a, λ), proc(a′, λ′)

(rc2p)

D[l · μ ⊕ n[ln · μn]], ln : (x)↑.a, l : 〈e〉.a′,
⋃

l∈λλ′ l : unused

↓
D[l · μ ⊕ tree(a′, λ′) ⊕ n[ln · μn ⊕ tree(a, λ)]], ln : actproc(a{e/x}), l : actproc(a′),

proc(a, λ), proc(a′, λ′)

(wp2c)

D[l · μ ⊕ n[ln · μn]], ln : (x).a, l : 〈e〉n.a′,
⋃

l∈λλ′ l : unused

↓
D[l · μ ⊕ tree(a′, λ′) ⊕ n[ln · μn ⊕ tree(a, λ)]], ln : actproc(a{e/x}), l : actproc(a′),

proc(a, λ), proc(a′, λ′)

(wc2p)

D[l · μ ⊕ n[ln · μn]], l : (x).a, ln : 〈e〉↑.a′,
⋃

l∈λλ′ l : unused

↓
D[l · μ ⊕ tree(a, λ) ⊕ n[ln · μn ⊕ tree(a′, λ′)]], l : actproc(a{e/x}), ln : actproc(a′),

proc(a, λ), proc(a′, λ′)

Table 2. The transition schemata for communication. We assume that λλ′ is a sequence of

distinct labels such that |λ| = #amb(a) and |λ′| = #amb(a′).

We now consider the net transitions. For pMA
−open
g! , we defined the transitions Trans

as the set of all the instances of the transition schemata in Table 1. These transitions

are still valid for BA−, but we need to add new transitions to deal with communication.

In the definition of these additional transition schemata, we make use of ambient tree

contexts D[] that are different from those used in Table 1:

D[] = [] | l · n[D[]] ⊕
⊕

i∈I ni[ti]

where n and ni also range over variables since variables can be used as ambient names in

BA−.

The set TransBA contains all the transitions obtained as instances of the transition

schematas in Tables 1 and 2.

We are now ready to define the P/T net that we can use to decide target reachability

for processes in BA−.
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Definition 6.7. Let P be a BA− process, let N denote the set of ambient names and

variables occurring in P , and let n be a natural number such that #amb(P ) � n. We define

the net NetBA(P , n) = (S, T ), where

S =
⋃n

i=0({li : Q | Q ∈ reachSub(α(P ))} ∪ {li : unused}) ∪ TN
n

T = {(c, p) ∈ TransBA | c, p ⊆ S}.

We define SysBA(P , n) = (S, T , m0), where (S, T ) = NetBA(P , n) and the initial marking

is m0 = decBA(P , l0 . . . l#amb(P )), where decBA( ) is defined as the function dec( ) in

Definition 4.9 assuming that ambients can also be named using variables.

Note that NetBA(P , n) is a finite P/T net.

We conclude this section by observing that the decidability of the target reachability

problem for BA− processes can be proved in the same way as we did for pMA
−open
g! by

considering the new P/T net semantics defined above. In particular, we need to consider

the function TargMarkBA(P , T , λ), which is defined in the same way as the function

TargMark(P , T , λ) in Definition 5.19, but assuming that ambients can also be named

using variables. Finally, it is sufficient to observe that, given a target T and a BA− process

P , we have that T is reachable from P if and only if there exists a sequence λ of distinct

labels in {l0, . . . , l#amb(T )} such that |λ| = #amb(T ) + 1 and at least one of the target

markings in TargMarkBA(P , T , λ) is reachable in SysBA(P ,#amb(T )).

7. Conclusion

We have discussed the decidability of reachability in Mobile Ambients. We have char-

acterised a fragment of the pure and public Mobile Ambients, namely the open -free

fragment with guarded replication, for which reachability is decidable. We call this

fragment pMA
−open
g! . Our decidability result also holds for a variant of reachability, called

target reachability, which enables us to specify a class of target processes characterised

by a common structure of ambient nesting. We have also extended our results to

cope with (local and parent–child) communication primitives, as provided by Boxed

Ambients (Bugliesi et al. 2004).

The fragment pMA
−open
g! has already been investigated in Maffeis and Phillips (2004),

where it was called Lio. They showed that such a small fragment is Turing complete by

providing an encoding of Random Access Machines. The encoding they presented enabled

them to conclude that the existence of a terminating computation is an undecidable

problem, while the decidability of reachability was raised as an open problem. Our

decidability result provides a positive answer to this problem.

In order to prove the minimality of pMA
−open
g! , we have made use of (a slight

adaptation of) Boneva and Talbot’s undecidability result (Boneva and Talbot 2003).

They proved that reachability is undecidable for the open -free fragment equipped with a

structural congruence that is slightly different from the standard one (see the discussion in

Section 3). Instead of getting decidability by imposing syntactical restrictions (as we do for

pMA
−open
g! ), they moved to a weaker version of the operational semantics. In particular,

they showed that reachability becomes decidable when the structural congruence law

!P ≡ P | !P is replaced by the reduction axiom !P → P | !P .
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An additional contribution of this paper is contained in Section 5.1, where we introduced

a new problem for Petri-nets, called target marking reachability, and showed how to reduce

it to the reachability problem (thus proving it is decidable). Target marking reachability

is a generalisation of the well-known reachability and coverability problems for Petri nets.

This new problem, even though it was defined and analysed specifically to prove the

decidability of target reachability for pMA
−open
g! , may also be of interest in other contexts.

For instance, Delzanno et al. (2009) used the decidability of target marking reachability in

Petri nets to prove the decidability of a reachability problem (called the simple coverability

problem) that is of interest for the κ-calculus (Danos and Laneve 2004) – the κ-calculus

is a model for systems biology based on graphs for the representation of the structure of

bio-molecules, and graph rewriting for the formalisation of their evolution.

Delzanno and Montagna (2006) and Zavattaro (2008) applied the techniques presented

in (preliminary versions of) this paper to carry out a form of reachability analysis in

BioAmbients (Regev et al. 2004), which is a dialect of Mobile Ambients used for the

modelling of biological systems. The main differences between the calculi considered in

this paper and the fragment of BioAmbients considered in Delzanno and Montagna (2006)

and Zavattaro (2008) are:

(i) Monotonicity is obtained in the current paper by removing the open capability, but in

Delzanno and Montagna (2006) and Zavattaro (2008) it was obtained for BioAmbients

by removing the merge capability used to fuse the boundaries of two sibling ambients.

(ii) Unlike the case for Mobile Ambients, where a single process can execute its capability

to move its hosting ambient, in BioAmbients two distinct processes located at different

ambients must synchronise to allow their hosting ambients to change the nesting

structure.

(iii) Communication in BioAmbients also includes communication between processes in

sibling ambients, but in Boxed Ambients communication is just local or parent–child.

(iv) BioAmbients also includes a choice operator (which is guarded on either communic-

ation actions or capabilities), but there is no choice operator in the calculi considered

in this paper.

As future work, we plan to investigate the relationship between our reachability analysis

results and model-checking techniques for the ambient logic. A first result along these

lines can be achieved with a slight modification of Theorem 3.5, which shows the

undecidability of reachability for pMAg!, which is the fragment obtained by limiting

replication to guarded processes. Using this approach, we can prove the undecidability of

name convergence (Gordon and Cardelli 2002) for pMAg!: a process P converges to a

name n if P →∗ n[Q1] | Q2 for some Q1 and Q2. As discussed in Boneva and Talbot (2003),

name convergence can be reduced to an instance of the model checking problem. This

provides a proof of the undecidability of model checking for pMAg!.

Another area that deserves further investigation is a complexity analysis of the problems

we have proved to be decidable in this paper. In particular, we leave as an open problem

the definition of lower bounds for the target marking reachability problem that we have

defined for P/T nets as a generalisation of the well-known reachability and coverability
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problems. For instance, it might be interesting to characterise lower bounds that are

strictly greater than those that are already known for reachability and coverability.
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