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We present a macroscopic model for describing the electrical and thermal behaviour of

silicon devices. The model makes use of a set of macroscopic state variables for phonons

and electrons that are moments of their respective distribution functions. The evolution

equations for these variables are obtained starting from the Bloch–Boltzmann–Peierls kinetic

equations for the phonon and the electron distributions, and are closed by means of the

maximum entropy principle. All the main interactions between electrons and phonons, the

scattering of electrons with impurities, as well as the scattering of phonons among themselves

are considered. In particular, we propose a treatment of the optical phonon decay directly

based on the expression of its transition rate (Klemens 1966 Phys. Rev. 148 845; Aksamija

& Ravaioli 2010 Appl. Phys. Lett. 96, 091911). As an application of the model, we evaluate

the silicon thermopower.
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1 Introduction

The influence of crystal heating on the performances of semiconductor devices and

consequently of ultra-integrated chips [8] is becoming more and more relevant as mini-

aturisation progresses and millions of transistors are assembled on chip areas of the order

of square centimetres. In this paper, we propose a model which takes into account the

presence of hot phonons, which can be reabsorbed by electrons, leading to a much slower

relaxation of the whole system towards equilibrium [11]. So doing we consider thermal

effects important for a correct description of the device and circuit behaviour.

At kinetic level, the energy transport by atomistic oscillations in crystalline solids can

be described by means of a phonon gas which obeys a Boltzmann-like equation. As a

consequence, a complete semi-classical description of device behaviour has to be based

on a system of Boltzmann equations for electrons, holes, and phonons. Numerically

solving the Boltzmann equations is computationally rather expensive [10], and this has

spurred several authors to formulate reduced macroscopic models [30, 32]. As regards

lattice energy transport, these models are usually based on a balance equation for the

crystal lattice energy and differ for the proposed forms of the thermal conductivity and
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the energy production. They are typically introduced by means of heuristic approaches

and are based on ad hoc assumptions, which sometimes do not take into account all

the main physical phenomena occurring in semiconductors. More systematic treatments

based on extended thermodynamics have been given in [24, 25, 28]. The model for silicon

that we propose is also based on extended thermodynamics, but it makes use of more

accurate analytical approximations for the dispersion relationships of both electrons and

phonons. Furthermore, the model takes into account all the main scattering mechanisms

as necessary to describe well as possible the electrothermal properties of silicon devices.

We assess the validity of the model by studying the silicon thermopower.

2 Electron and phonon dispersion relations

For the sake of simplicity, we will consider only cases in which the conductivity is

essentially due to electrons, which happens for unipolar devices of n-type. Extensions to

holes are straightforward [21]. Electrons which mainly contribute to the charge transport

in semiconductors are those in the states in the neighbourhoods of the lowest conduction

band minima, each neighbourhood being called a valley [15].

Here, for silicon, we will consider the six conduction band minima near the equivalent

X symmetry points. In the Kane ellipsoidal approximation, in each valley the dependence

of the electron energy E on the wave vector k is given by

E =
�2

2
γ(E)

3∑
i=1

(ki − κvi)
2

mi
, γ(E) :=

(
1 + αE

)−1
,

where the energy is referred to the minimum of the valley, κvi, i = 1, 2, 3, are the coordinates

of the minimum, α is the non-parabolicity parameter, � is the reduced Planck constant,

and mi, i = 1, 2, 3, are the eigenvalues of the inverse effective valley mass tensor. Both

the non-parabolicity parameter and the effective masses are temperature dependent [27];

moreover, the first Brillouin zone is usually extended to all �3.

As regards the phonon dispersion relations, the following isotropic quadratic approx-

imations will be used

εp = ε
p
0 + �vps |q| + �cp |q|2 , |q| ∈

[
0,

2π

a

]
, p = LA, TA, LO, TO, (2.1)

where ε and q are the phonon energy and wave vector, a is the silicon lattice constant, A,

O, L, and T respectively stay for acoustic, optical, longitudinal, and transversal, and the

coefficients in equation (2.1) can be found in [27].

Models based on such approximations give good results for electric fields less than

100 kV/cm. For higher fields, at which impact ionisation plays an important role, it is

necessary to consider also the L-valleys [19], which implies a straightforward generalisation

of the model presented in this paper. However, the above-written approximations have

been used for models employed in the study of important phenomena which occur

in devices operating at voltages below the silicon bandgap, such as those of future

technologies [27, 29].
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3 The Bloch–Boltzmann–Peierls kinetic system

Since the electrons in the valleys, which correspond to minima lying on the same principal

axis, have the same mass tensor, they can be considered as a unique population. Therefore,

there are three electron populations, depending on which axis the minimum of the valley,

where the electrons live, belongs to. We will label the axes and the populations by x, y, z.

At kinetic level, the state of the electrons and the phonons can be described by their

one-particle distribution functions, which we will indicate by fe and gp respectively,

with e = x, y, z and p = LA, TA, LO, TO. Their time evolution is determined by the

Bloch–Boltzmann–Peierls system (see [6] and references therein)

∂fe

∂t
+ ve · ∇xf

e − q

�
E · ∇kf

e = Cim(fe) +
∑
ι,e′ ,p

Cee′

ι, p(f
e, fe

′
, gp),

∂gp

∂t
+ vp · ∇xg

p =
∑
ι, e, e′

Cp
ι, e′ , e(g

p, fe, fe
′
) +
∑
η

Cp
η(g

p), (3.1)

Δ(εs φ) = q
(
n(x, t) −ND(x)

)
,

where ve = 1
�∇kEe and vp = 1

�∇qεp are the electron and phonon group velocities, q is the

absolute value of the electron charge, εs is the silicon permittivity, φ and E are the electric

potential and field, ι and η label the type of scattering respectively between electrons and

phonons and among phonons themselves (see below), ND is the donor concentration, and

n is the total electron density.

The electron collision operator due to the scattering with impurities, which is intra-valley

and elastic, reads [15]

Cim(fe) =

∫
�3

[
Pim(k′, k)fe(k′) − Pim(k, k′)fe(k)]dk′,

the impurity scattering transition rate being given by

Pim(k, k′) = K(im) 1[
|k − k′|2 + λ2

D

]2 δ(E(k′) − E(k)),

with λ
D

=
√

NDq
2

εskB
TL

the inverse Debye length and K(im) = Z2ND q
4

4π�ε2s
, where Z is the impurity

charge number, TL the lattice temperature and kB the Boltzmann constant.

The electron collision operators due to scatterings with phonons read [6]

Ce e′

ι, p (f
e, fe

′
, gp) =

∫
S

2π
a

∫
�3

[
wee

′+
ι, p (k, k′, q)κ1(g

p, fe, fe
′
)

+wee
′−

ι, p (k, k′, q)κ2(g
p, fe, fe

′
)
]
dk′dq,
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where S
2π
a

is the sphere of radius 2π
a

and

κ1(g
p, fe, fe

′
) :=

(
gp

yp
+ 1

)
fe

′
(k′) − gp

yp
fe(k),

κ2(g
p, fe, fe

′
) :=

gp

yp
fe

′
(k′) −

(
gp

yp
+ 1

)
fe(k),

wee
′±

ι, p (k, k′, q) := see
′

ι, p(q)δ
(
Ee′ (k′) − Ee(k) ∓ εp

)
δ
(
k′ − k ∓ q + G

)
,

yp being the phonon densities of states. The electron–phonon scatterings can be intra-

valley (ι = sv, e = e′, p = LA,TA)1, which involve only acoustic phonons and conserve

the total energy and momentum, or inter-valley [15]. These latter, which are due both to

the acoustic and the optical phonons, in their turn can be distinguished in g-type ones

(ι = dv, e = e′, p = LA,TA, LO), which take electrons between equivalent valleys, that is

valleys which have the transversal mass in the same direction, and f-type ones (ι = dv,

e� e′, p = TA,LA/LO,TO), taking electrons to non-equivalent valleys. Both of them are

umklapp processes, which do not conserve the total momentum and involve a reciprocal

lattice vector G. The phonon wave vectors interested in the inter-valley transitions remain

very close to the vector joining the minima of the initial and final valleys and therefore

they are usually taken as constant and, after reduction to the first Brillouin zone, equal

to 2 π
a

(1, 0.15, 0.15) for f-type scatterings and to 2 π
a

(0.3, 0, 0) for g-type scatterings. The

scattering functions see
′

ι, p are given by [15]

seesv,LO = seesv,TO = 0, see
′

sv,p = 0, e = x, y, z, e� e′, p = LA,TA, LO,TO,

seesv,p =
� |q|2 D2

a,p

8 π2ρ εp
I2(|q|), p = LA,TA, e = x, y, z,

seedv,p =
�(Δeep )2

8 π2ρ ε̄ eep
, p = LA,TA, LO, e = x, y, z,

see
′

dv,p =
�(Δee

′
p )2

4 π2ρ ε̄ ee
′

p

, p = TA,LA/LO,TO, e� e′, e, e′ = x, y, z,

where Da,p, p = LA,TA are the acoustic deformation potentials, I(|q|) is the overlap

integral, ρ is the material density, Δee
′

p , e, e′ = x, y, z, p = LA,TA, LO, TO, are the

inter-valley deformation potentials, and ε̄ee
′

p , e, e′ = x, y, z, p = LA,TA, LO,TO, are the

phonon energies involved in the f-type and g-type transitions. The values of the various

parameters and the expression of the overlap integral appearing in the above-written

scattering functions can be found in [27].

The collision operators relative to the interactions of phonons with electrons read [6]

Cp
ι, ee′ (g

p, fe, fe
′
) =

∫
�3

∫
�3

[
wee

′+
ι, p (k, k′, q)κ1(g

p, fe, fe
′
)]dk′dk.

Phonons can also interact among themselves [13], these interaction processes can

be distinguished into intrinsic ones, arising from the anharmonicity of the interatomic

1 sv and dv respectively stay for same valley and different valleys.
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forces, and extrinsic ones, due to phonon scatterings at the boundaries of the crystal

and at various types of crystal defects and imperfections. In their turn, the anharmonic

scatterings can be normal processes (N-processes), in which the phonon total momentum

after a collision is conserved, and umklapp processes (U -processes) for which the total

momentum changes by a reciprocal lattice vector after a collision. On the other hand,

all extrinsic processes do not conserve the total momentum after a collision and together

with the umklapp ones are usually called resistive processes. For all of them, except the

optical phonon decay, we will use a relaxation time approximation, paying attention to

the phonon distribution function towards which each of these processes drive relaxation.

As regards the optical phonons, the most important process in which they are involved

is their anharmonic decay into one trasversal acoustic phonon and one longitudinal

phonon belonging either to the acoustic or to the optical branch [3]. The expression of

the corresponding collision operator was first given by Klemens [17] and reads

Cp
O

p
O

↔TA+p =
γ2ypO

3π2ρv2s

∫ 2π/a

0

∫
S2

|q′|2εp
O
ω′
p ωTA(q

′′)δ(ωp
O

− ω′
p − ωTA(q

′′))

[(
gpO (q)

ypO

+ 1

)
gp(q′)

yp
gTA(q′′)

yTA
− gpO (q)

ypO

(
gp(q′)

yp
+ 1

)(
gTA(q′′)

yTA
+ 1

)]
dΩ′ d|q′|,

where p
O

= LO,TO, p = LO,LA, q′′ = q − q′ + G (stemming from the generalised

momentum conservation), S2 is the unit sphere surface, γ is the Grüneisen parameter, and

vs is the sound velocity [3].

Analogous collision operators have to be taken into account in the right-hand sides

of the Boltzmann equations relative to the transversal and longitudinal acoustic phonons

which are also involved into the intra-branch transitions described by the following

operators

Cp
A

N = −
gpA − gpA

d−BE (TpA)

τ
p
A

N (εp
A
, TpA)

, normal processes,

Cp
A

U = −
gpA − gpA

BE
(TpA)

τ
p
A

U (εp
A
, TpA)

, umpklapp processes,

Cp
A

i−d = −
gpA − gpA

BE
(TpA)

τ
p
A

i−d(εpA , TpA)
, processes with impurities/defects,

where

gpA
BE

(ε, Tp
A
) =

ypA

exp
(

ε
kBTp

A

)
− 1

,

gpA
d−BE

(TpA ) =
ypA

exp
( εpA
kBTpA

)
− 1

(
1 −

exp
( εpA
kBTpA

)
exp
( εpA
kBTpA

)
− 1

�q · Λ̃PpA

)
,

respectively are the Bose–Einstein acoustic phonon distribution corresponding to their

temperature Tp
A
, and the drifted Bose–Einstein distribution [13,29], with PpA the phonon

momentum and Λ̃PpA , pA = LA,TA, the related Lagrange multiplier such that the produc-

tion of the corresponding momentum density is null. The latter statements will become
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clearer in the next sections. The relaxation towards the drifted distribution in normal

processes is due to the fact that they also conserve the total momentum. Often also the

optical decay is included in the relaxations time approximation [14, 22, 29].

4 Macroscopic model

Macroscopic models can be constructed starting from the Bloch–Boltzmann–Peierls system

by taking the moments of the distribution functions. In particular, we will consider the

following functions of the electron and phonon wave vectors {ψe(k)} := {1, ve,Ee,Eev
e}

and {ψp(q)} := {εp, εpvp}, to which the following macroscopic state variables correspond:

(
ne
We

)
=

∫
�3

(
1
Ee

ne

)
fedk,

(
Ve

Se

)
=

1

ne

∫
�3

(
ve

Eev
e

)
fedk, (4.1)

(
Wp

Qp

)
=

∫
S

2π
a

(
εp
εpv

p

)
gpdq, (4.2)

which respectively are the electron number densities, the average energies, the velocities,

and the energy fluxes per electron, and the phonon average energies and energy fluxes.

The phonon momentum densities are given by

Pp =

∫
S

2π
a

�q gpdq, p = LA,TA, LO,TO.

Here, we have chosen the minimal number of moments necessary for describing the

thermal energy transport, but this number, if required by the physical problem under

study, can be easily extended to cover, for example, an arbitrary number of scalar and

vector moments both for electrons and phonons, by taking into account higher energy

powers [13, 20, 31].

The evolution equations for the state variables (4.1), (4.2) can be obtained directly from

the Boltzmann equations by integration:

∂

∂t

(
ne

neW
e

)
+
∑
j

∂

∂xj

[
ne

(
Ve
j

Sej

)]
+ ne q

(
0∑

j Ej V
e
j

)
= ne

(
Cne
CWe

)
, (4.3)

∂

∂t

[
ne

(
Ve
i

Sei

)]
+
∑
j

∂

∂xj

[
ne

(
F
e(0)
ij

F
e(1)
ij

)]

+ ne q
∑
j

Ej

(
G
e(0)
ij

G
e(1)
ij

)
= ne

(
CVe

i

CSei

)
, i = 1, 2, 3, (4.4)

∂

∂t

(
Wp

Q
p
i

)
+
∑
j

∂

∂xj

(
Q
p
j

T
p
ij

)
=

(
CWp

CQpi

)
, i = 1, 2, 3. (4.5)
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In the above equations, the extra-fluxes and production terms relative to electrons re-

spectively read(
F
e(0)
ij

F
e(1)
ij

)
=

1

ne

∫ (
1

Ee

)
vei v

e
j f

edk,

(
velocity flux,

flux of the energy flux

)
(
G
e(0)
ij

G
e(1)
ij

)
=

1

� ne

∫ ( ∂vei
∂kj

∂Eev
e
i

∂kj

)
fedk,

ne CMψe
=

∫
ψe(k)

[
Cim(fe) +

∑
ι,e′ ,p

Cee′

ι, p(f
e, fe

′
, gp)
]
dk, Mψe-production,

with {Mψe} := {ne,Ve,We, Se}, while for the phonons we have

T
p
ij =

∫
εpv

p
i vpj g

p(q)dq, flux of the energy flux,(
CWp

CQpi

)
=

∫ (
εp
εpv

p
i

)[∑
ι, e′ , e

Cp
ι, e′ , e+

∑
η

Cp
η

]
dq,

(
energy production

energy flux production

)
.

In the evolution equations, the number of the unknowns is greater than that

of the equations, therefore constitutive equations are needed for the extra-variables

F
e(0)
ij , G

e(0)
ij , F

e(1)
ij , G

e(1)
ij , T

p
ij , Cne , CWe , CVe , CSe , CWp, CQp . A systematic way to find these rela-

tions is founded on a universal physical principle: the maximum entropy principle [16,23].

The maximum entropy principle states that, if a certain number of moments is known,

then the least biased distribution functions, which can be used for evaluating the unknown

moments, are those maximising the total entropy functional under the constraint that they

reproduce the known moments. In the case under consideration, neglecting the mutual

interactions among the subsystems, the total entropy is

S = −kB
{∑

e

∫
�3

(
fe ln

fe

ye
− fe
)
dk +

∑
p

∫
S

2π
a

[
gp ln

gp

yp
− yp

×
(

1 +
gp

yp

)
ln

(
1 +

gp

yp

)]
dq

}
,

with ye the electron density of states, while the constraints are given by equations (4.1)–

(4.2). The solution of this maximisation problem, linearised [1,2] with respect to the vector

variables, is given by

feME = exp (−Λe − ΛWeEe)
(
1 − ve · (ΛVe + EeΛSe)

)
,

g
p
ME =

yp

exp (εpΛWp) − 1
− ypεp exp (εpΛWp )

(exp (εpΛWp) − 1)2
vp · ΛQp ,

where the Λ’s are Lagrange multipliers, related to the state variables by means of

the constraint relations (4.1)–(4.2). Inverting these constraints, the dependence of the

distribution functions on (x, t) will be only through the state variables, and substituting
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the distributions into the integrals defining the extra-variables the needed closure relations

can be obtained.

5 Inversion of the constraint relations and the phonon temperature

In this section, we will invert the constraint relations obtained by using the approximate

maximum entropy distribution functions. From the scalar constraints, the densities and

the energies are given by

(
ne

ne W
e

)
=

√
2m0 m0 J0

�3
e

−Λe
(
d0(ΛWe)

d1(ΛWe)

)
, Wp = 4πypdp1(ΛWp),

where

dn(x) :=

∫ ∞

0

tn exp(−xt)
√

t

γ5(t)

(
γ(t) − tγ̇ (t)

)
dt, J0 :=

∫
S2

ψ
3
2 dΩ,

ψ−1 :=

3∑
i=1

m0k
2
i

mi|k|2 , d
p
1(x) :=

∫ 2 π
a

0

t2
εp(t)

exp (εp(t) x) − 1
d t,

m0 being the free electron mass. Thus, one has

Λe = −log

(
�3ne√

2m0 m0 J0 d0

)
, ΛWe = h−1

e (We), ΛWp = h−1
p (Wp), (5.1)

h−1
e and h−1

p being the inverse functions of he(x) := d1(x)
d0(x)

and hp(x) := 4πypdp1(x) respect-

ively. Hereafter, the ΛW ’s will always be regarded as functions of the W ’s.

The vector Lagrange multipliers read

ΛVe
i

=
b11(W

e)

Je1, i
V e
i +

b12(W
e)

Je1, i
S ei , ΛSei =

b12(W
e)

Je1, i
V e
i +

b22(W
e)

Je1, i
S ei , (5.2)

ΛQpi =
3

4πyp

(
∂

∂ΛWp

p1
p(ΛWp)

)−1

Q
p
i , p

1
p(x) :=

∫ 2π
a

0

εp(t) t
2 |vp(t)|2

exp (εp(t)x) − 1
dt. (5.3)

Here, Je1, i :=
∫
S2

m2
0

(mei )
2 ψ

5
2 n2

i dΩ, and the bkl are the elements of the matrix B, which is the

inverse of the symmetric matrix A of elements

akl=− pk+l−2

m0 J0 d0
, k, l = 1, 2, with pn=pn(x) :=

∫ ∞

0

2tn+
3
2 γ

1
2 (t)

γ(t) − tγ̇ (t)
e−x tdt.

We notice that the relations (5.2) depend on the direction, due to the presence of the J1,i,

which in the ellipsoidal approximation are different for different i = 1, 2, 3. Moreover, they

also depend on the electron population, since the transversal mass of each population is

differently directed.

For the results in this and in the following sections, we have used the following
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Property 1 If σ(n) is any integrable even function of its argument, then∫
S2

σ(n) ni dΩ = 0,

∫
S2

σ(n) ni nj dΩ = 0, ∀ i� j ∈ {1, 2, 3},

∫
S2

σ(n) ni nj nk dΩ = 0, ∀ i, j, k = 1, 2, 3.

We close this section by giving, in accordance with extended thermodynamics [23, 29],

the following definition of the phonon temperature T :

Definition 1 T := 1
kBΛW

, where ΛW is the Lagrange multiplier all phonon distributions

would have if they were in the local thermodynamic equilibrium corresponding to the total

energy density

W (ΛW ) =
∑
p

Wp(ΛW ) =
∑
p

Wp(ΛWp).

Partial temperatures of one or more phonon branches are analogously defined.

6 Closure relations for the fluxes and the production terms

6.1 Fluxes

The above-written relations for the Lagrange multipliers allow us to find the constitutive

equations for the fluxes. For the electrons, we obtain(
F
e(0)
ij

F
e(1)
ij

)
=

Je1,i

m0J0 d0

(
p0

p1

)
δij ,

G
e(k)
ij = ΛWe F

e(k)
ij , k = 0, 1,

the latter result can be immediately obtained by integration by parts. The phonon fluxes

are given by

T
p
ij =

4πyp

3
p1
p(W

p)δij ,

where δij is the Kronecker delta.

6.2 Electron production terms

As said, we consider both intra-valley and inter-valley scatterings of electrons with

phonons. Unlike the traditional approach, for the intra-valley scattering we do not use the

elastic approximation and treat the LA and TA modes separately, using equation (2.1) as

dispersion relations [27]. We start from the density and energy productions, which, after

integration with respect to k′, a change of variables in the integral term containing wee−sv, p,
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and the Herring–Vogt transformation to the variables q∗
i =

√
m0
mi
qi, k∗

i =
√

m0
mi
ki, i = 1, 2, 3,

become2

n

(
Cn
CW

)
=
∑
p

(md
m0

)3
∫∫

seesv,p(|q∗|)
(

0

E(|k∗|) − E(|k∗ + q∗|)

)
δ(E(|k∗ + q∗|)

−E(|k∗|) − εp)

[(
gp(q∗)

yp
+ 1

)
fe(k∗ + q∗) − gp(q∗)

yp
fe(k∗)

]
dq∗ dk∗,

with md := (m1m2m3)
1
3 the density of states mass. If θ is the angle between k∗ and q∗,

because of the momentum and the energy conservation [15], it can be expressed in terms

of |q∗| and E as

cos θ =
m0εp(|q∗|)

[
1 + α (εp|q∗| + 2E)

]
− �2|q∗|2

2

�|q∗|
√

2m0E(1 + αE)
=: c̄p(E, |q∗|),

where the Jacoboni–Reggiani approximation |q| ≈
√

md
m0

|q∗| has been used [15]. Passing to

polar coordinates and exploiting the properties of the delta function, one can perform

integration first with respect to the phonon polar angle referred to n∗ := k∗

|k∗| and then

with respect to n∗ itself, and obtain

Cn = 0, CW =
8π2m3

d√
2m

5
2

0 �J0d0

∑
p

∫ ∫
D

seesv, p(|q∗|)γ−1
1 (E)γ−1

1 (E+
p )

×εp(|q∗|)e−ΛWE

eεpΛWp − 1

[
1 − e(ΛWp−ΛW )εp

]
|q∗| dEd|q∗|, (6.1)

where D := {(E, |q∗|) ∈ �+ × [0, 2π
a

√
m0
md

]:−1�c̄p(E,|q∗|)�1}, E+
p := E+εp, and γ1 := γ2

γ−Eγ̇=(1+2αE)−1.

We notice that the energy production is null when ΛWp = ΛWe , as it has to be because of

the energy conservation.

Similarly, one obtains

Ce
Vi

=
∑
p

[
(qeesv,p)11ΛVe

i
+(qeesv,p)12ΛSei + (qeesv,p)13ΛQpi

]

=
∑
p

[
(ceesv,p)11V

e
i +(ceesv,p)12S

e
i +(ceesv,p)13Q

p
i

]
,

Ce
Si

=
∑
p

[
(qeesv,p)21ΛVe

i
+(qeesv,p)22ΛSei + (qeesv,p)23ΛQpi

]

=
∑
p

[
(ceesv,p)21V

e
i + (ceesv,p)22S

e
i +(ceesv,p)23Q

p
i

]
,

where the second equality is obtained by respectively expressing the ΛVe
i
, ΛSei in terms

of the Ve
i , S

e
i by means of equation (5.2), and the ΛQpi in terms of the Qpi by means of

2 Here and whenever there is no possibility of confusion, we omit the electron population index.

Moreover, with a slight abuse of notation we indicate with the same letter the functions depending

on the starred quantities.
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equation (5.3), and

(qeesv,p)ij =
4
√

2π2 m3
d

3m3
0 mi J0d0

∫ ∫
D

seesv, p(|q∗|)e−ΛWE

eΛWpεp − 1
γ1

−1(E+
p )γ1

−1(E)|q∗|

×
{(√

2m0

�
γ2(E)(Ei−1γ1(E) − (E+

p )i−1γ1(E+
p )) − (E+

p )i−1c̄p(E, |q∗|)γ1(E+
p )|q∗|

)
×

√
2
(

Ej−1γ1(E)γ2(E) − e(ΛWp−ΛW )εp (E+
p )j−1γ1(E+

p )γ2(E)
)

−
(√

2m0

�
γ2(E)c̄p(E, |q∗|)(Ei−1γ1(E) − (E+

p )i−1γ1(E+
p )) − (E+

p )i−1γ1(E+
p )|q∗|

)

× �
√
m0
e(ΛWp−ΛW )εp(E+

p )j−1γ1(E+
p )|q∗|

}
dEd|q∗|, i, j = 1, 2,

(qeesv,p)ij =
4
√

2π2 m3
d

3m3
0J0d0

∫ ∫
D

seesv, p(|q∗|)e−ΛWE

eΛWpεp − 1
γ1

−1(E+
p )γ1

−1(E)|q∗|

(√
2m0

�
γ2(E)c̄p(E, |q∗|)(Ei−1γ1(E) − (E+

p )i−1γ1(E+
p )) − (E+

p )i−1γ1(E+
p )|q∗|

))

×
√

1

md

εp

eΛWpεp − 1
|vp(|q∗|)|

(
eΛWpεp − eεp(ΛWp−ΛW )

)}
dEd|q∗|, i = 1, 2, j = 3,

with γ2(x) :=
√

x
γ(x) =

√
x(1+αx).

As regards the inter-valley scatterings, one finds

ne

(
Cne

CWe

)
=

√
2m3

0J0

�3

∑
e′ ,p

see
′

dv, p(|q̄ee′ |)
{

− ne

d0(We)

∫ ∞

0

ζ0(E,E + ε̄ee
′

p )e−ΛWeE

×
[
e−ΛWe ε̄ee

′
p

(
g
p
0(ε̄

ee′
p )

yp
+ 1

)(
1

E + ε̄ee
′

p

)
+
g
p
0(ε̄

ee′
p )

yp

(
1

E

)]
dE +

ne′

d0(We′
)

×
∫ ∞

0

ζ0(E,E + ε̄ee
′

p )e−Λ
We′ E
[(

g
p
0(q̄

ee′
p )

yp
+ 1

)
e−Λ

We′ ε̄
ee′
p

(
1

E

)

+
g
p
0(−q̄ee

′
p )

yp

(
1

E + ε̄ee
′

p

)]
dE
}
,

Ce
Vi

=
∑
p,e′

[
(qee

′

dv,p)11ΛVe
i
+(qee

′

dv,p)12ΛSei

]
=
∑
p,e′

[
(cee

′

dv,p)11V
e
i +(cee

′

dv,p)12S
e
i

]
,

Ce
Si

=
∑
p,e′

[
(qee

′

dv,p)21ΛVe
i
+(qee

′

dv,p)22ΛSei

]
=
∑
p,e′

[
(cee

′

dv,p)21V
e
i + (cee

′

dv,p)22S
e
i

]
,

where

(qee
′

dv,p)ij =
2
√

2m0J1,i

�3 d0(We)
see

′

dv, p(|q̄ee′ |)
{
g
p
0(ε̄

ee′
p )

yp

∫ ∞

0

Ei+j−2ζ1(E,E + ε̄ee
′

p )e−ΛWeEdE

+

(
g
p
0(ε̄

ee′
p )

yp
+ 1

)∫ ∞

0

(E + ε̄ee
′

p )i+j−2ζ1(E + ε̄ee
′

p ,E) e−Λ
We′ (E+ε̄ee

′
p ) dE

}
, i, j = 1, 2,
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with g
p
0 the isotropic part of the phonon distribution functions, ζ0(x, y) :=

γ−1
1 (x)γ−1

1 (y)γ2(x)γ2(y), and ζ1(x, y) := γ1(x)γ
−1
1 (y)γ3

2(x)γ2(y).

6.3 Phonon production terms

It is easy to check that for the intra-valley scattering with electrons, the contribution to

the energy production terms CWp, p = LA,TA, due to the electrons belonging to a certain

population e ∈ {x, y, z} is equal to the opposite of the corresponding addend of the sum

in equation (6.1), multiplied by ne, as it has to be due to the energy conservation. While,

as regards the energy flux production terms, one has

CQp =
∑
e

ne

[
(qpsv,ee)11ΛQpi + (qpsv,ee)12ΛVe

i
+ (qpsv,ee)13ΛSei

]

=
∑
e

ne

[
(cpsv,ee)11Q

p
i + (cpsv,ee)12V

e
i + (cpsv,ee)13S

e
i

]
,

where

(qpsv,ee)ij =
8π2 m2

d mi

3�
√

2m5
0J0d0

∫ ∫
D

εp(|q∗|) |vp(q∗) |2seesv, p(|q∗|)γ−1
1 (E+

p )γ−1
1 (E)

× εpe
−ΛWeE

(eΛWpεp − 1)2
(
eΛWpεp − e(ΛWp−ΛWe )εp

)
|q∗| d|q∗| dE, i, j = 1,

(qpsv,ee)ij =
8π2 m

5
2

d

3�
√

2m5
0J0d0

∫ ∫
D

εp(|q∗|) |vp(q∗) |seesv, p(|q∗|)γ−1
1 (E+

p )γ−1
1 (E)

× e−ΛWeE

eΛWpεp − 1

{
− �

√
m0
e(ΛWp−ΛWe )εp(E+

p )j−2γ1(E+
p )

(√
2m0

�
γ2(E)c̄p(E, |q∗|) + |q∗|

)

+
√

2 Ej−2γ1(E)γ2(E)c̄p(E, |q∗|)
}

|q∗| d|q∗| dE i = 1, j = 2, 3.

For the inter-valley scattering with electrons, one finds

(
CWp

CQpi

)
=

√
2m

3
2

0 J0

�3

∑
ea,e

′
b

(
ε̄ee

′
p

ε̄ee
′

p v
p
i (q̄eae′

b
)

)
see

′

dv, p(|q̄eae′
b
|)
∫ ∞

0

ζ0(E,E + ε̄ee
′

p )

[
ne′

d0(ΛWe′ )
e−Λ

We′ (E+ε̄ee
′

p )

(
gp(q̄eae′

b
)

yp
+ 1

)
− ne

d0(ΛWe)
e−ΛWeE g

p(q̄eae′
b
)

yp

]
dE,

where a, b = +,−, x+, x−, y+, y−, z+, z− refer to the valley centred in the positive x-semi-

axis and so on, and q̄eae′
b

is the wave vector going from the centre of the valley ea to that

of the valley e′
b, reduced to the first Brillouin zone.

It is worth saying more about the optical decay. In this process, energy and crystal

momentum are conserved

�ωp
O = �ω′

p + �ωTA(q
′′), p

O
= LO,TO, p = LA,LO,

�q + �G = �q′ + �q′′,
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where G is a vector of the reciprocal lattice different from zero if q − q′ exceeds the first

Brillouin zone (umklapp processes). Exploiting these conservation laws, where the linear

approximation εTA ≈ vts|q| is used for the transversal acoustic phonon energy, with vts
transverse sound velocity, it is possible to express the angle θ′ between q and q′ by means

of the relation

cos θ′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|q|2+|q′ |2−
(ωp

O
−ω′

p )2

v2ts

2|q||q′ | =: c̄1p
O
p(|q|, |q′|), if q − q′ ∈ B,

|q|2+|q′ |2−
(ωp

O
−ω′

p+ 2π
a vts )

2

v2ts

2|q||q′ | =: c̄2p
O
p(|q|, |q′|), if q − q′ � B,

being, in the spherical approximation used for B in the case of phonons,

G =

⎧⎨
⎩

0, if q − q′ ∈ B,

− 2π
a

q−q′

|q−q′ | , if q − q′ � B.

In this way, passing to polar coordinates, dq′ = |q′|2dΩ′d|q′| = |q′|2 sin θ′dϕ′dθ′d|q′|, where

dΩ′ is the solid angle element and θ′ the polar angle, and exploiting the properties of

the delta function, angular integration can be performed analytically for the production

terms. For example, the production terms relative to the transversal optical phonons can

be expressed as follows:

C
TO↔TA+p
WTO =

∫
B
εTO(|q|)CTO

TO↔TA+pdq

=
8 γ2yTO

3ρv2s

∫ 2π
a

0

∫ 2π
a

0

ε2TO(|q|)ωp(|q′|)
(
ωp

O
− ω′

p

)
|q|2|q′|2gTOBE (εTO, ΛWTO )gpBE(ε′

p, ΛWp)

× gTABE (εTO −ε′
p, ΛWTA)

(
χ
TO,p
1 +χTO,p2

)
(|q|, |q′|)

(
eεTOΛWTO − eε

′
pΛWp+(εTO−ε′

p)ΛWTA

)
d|q| d|q′|,

C
TO↔TA+p
QTO =

∫
B
εTO(|q|)vTO(q)CTO

TO↔TA+pdq

=
8 γ2yTO

9ρv2s

∫ 2π
a

0

∫ 2π
a

0

ε2TO(|q|) |vTO(|q|)|ωp(|q′|)
(
ωp

O
− ω′

p

)
|q|2|q′|2gTOBE (εTO, ΛWTO )

×gpBE(ε′
p, ΛWp)gTABE (εTO − ε′

p, ΛWTA)

×
{

|vTO(|q|)|gTOBE eεTOΛWTO

(
eε

′
pΛWp+(εTO−ε′

p)ΛWTA − 1
)(
χ
TO,p
1 + χ

TO,p
2

)

×ΛQTO +|vp(|q′|)|gpBE
(
eε

′
pΛWp+(εTO−ε′

p)ΛWTA − eεTOΛWTO+ε′
pΛWp

)( 2∑
k=1

c̄kTO,pχ
TO,p
k

)
ΛQp

+

∣∣∣vTA(ωTO−ω′
p

vts

)∣∣∣
ωTO−ω′

p

vts

gTABE

(
eε

′
pΛWp+(εTO−ε′

p)ΛWTA − eεTOΛWTO+(εTO−ε′
p)ΛWTA

)[
|q|
(
χ
TO,p
1 + χ

TO,p
2

)

− |q′|
(
c̄1TO,pχ

TO,p
1 + c̄2TO,pχ

TO,p
2

)
−

2π
a
vts

ωTO − ω′
p + 2π

a
vts

(|q| − c̄2TO,p|q′|)χTO,p2

]
ΛQTA

}
d|q| d|q′|,
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where p = LO,LA, and

χ
pp′

1 (|q|, |q′|) :=
ωp(|q|) − ω′

p(|q′|)
v2ts|q||q′|

1
D
pp′
1

(|q|, |q′|),

χ
pp′

2 (|q|, |q′|) :=
ωp(|q|) − ω′

p(|q′|) + 2π
a
vts

v2ts|q||q′|
1Dpp2 (|q|, |q′|),

with 1 the characteristic function and

D
pp′

1 :=

{
(|q|, |q′|) ∈ B × B : c̄1pp′ �

|q|2 + |q′|2 − 4π2

a2

2|q||q′| ∨ ωp − ω′
p > 0 ∨ −1 � c̄1pp′ � 1

}
,

D
pp′

2 :=

{
(|q|, |q′|) ∈ B × B : c̄1pp′ , c̄2pp′ �

|q|2 + |q′|2 − 4π2

a2

2|q||q′| ∨ ωp − ω′
p > 0 ∨ −1 � c̄2pp′ � 1

}
.

The production terms for the longitudinal optical phonons and for the acoustic phonons,

relative to the decay processes mentioned in Section 3, have analogous expressions. Also

all the other phonon anharmonic third-order processes, which however are less important,

could be treated similarly.

Eventually, for the acoustical normal and resistive scatterings, since they conserve the

energy of the acoustic phonons the energy productions are null, while for the energy flux

productions each process gives the contribution

C
η

Q
p
A
i

=
4πypA

3

(∫ 2π
a

0

ε2pA |vpA |2|q|2eεpAΛWp
A

(eεpAΛWp
A − 1)

2
τ
p
A
η (εpA , TpA )

d|q| − δNη
(IN2,pA)

2

IN1,pA

)
Λ
Q
p
A
i
, η = N,U, i− d,

with

IN1,pA =

∫ 2π
a

0

|q|4eεpAΛWp
A

(eεpAΛWp
A − 1)

2
τ
p
A
η (εpA , TpA )

d|q|, IN2,pA =

∫ 2π
a

0

εpA |vpA ||q|3eεpAΛWp
A

(eεpAΛWp
A − 1)

2
τ
p
A
η (εpA , TpA )

d|q|,

being Λ̃PpA =
IN2,pA
�IN1,pA

ΛQp
A .

7 Thermoelectric power

In this section, as a first validation of the proposed model, we investigate the thermoelectric

power S , which is a measure of the magnitude of a thermoelectric voltage induced by a

temperature difference across the material, and is defined as

S :=
Δφ̂e

ΔTL
|J=0,

where φ̂e = −μe + qφ is the electrochemical potential, with μe the electron chemical

potential, TL is the lattice temperature, and J = nV is the electron flow density. The

thermopower is the sum of a diffusion part Sd and a phonon drag part Sg . The diffusion

part results from the spatial variation of the electron distribution due to the temperature

gradient along the material sample, while the drag part is caused by the momentum
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transfer from the phonon system to the electron one due to the phonon–electron scattering.

In order to find an expression of the thermopower starting from our model, we have

therefore to look for stationary solutions of the system of equations (4.3)–(4.5), under the

presence of a small lattice temperature gradient in a direction which we call x and under

the hypothesis that the circuit is open (V = 0). For simplicity, we consider the case of an

isotropic electron dispersion relation (m1 = m2 = m3 = md), in such a way that the x, y,

and z electron populations can be considered as equivalent. First of all, we rewrite the

equations of the model in a form in which the electrochemical potential explicitly appears.

For this purpose, it is convenient to reformulate the model in the framework of linear

extended thermodynamics as already has been done in [4, 26]. Here, we use a slightly

different approach which allows us to avoid the introduction of integral functions. By

differentiating the kinetic expression of the electron entropy density and the expressions

(4.1)1 for the electron and energy densities, where the maximum entropy distribution

function is substituted, we find3

dSe = −kB
[(
Λe + ln ye

)
nedΛ

e + neW
ed
(
(Λe + ln ye)ΛWe

)
+ neW

e
2ΛWedΛWe

]
,

dne = −nedΛe − neW
edΛWe ,

d(neW
e) = −neWedΛe − neW

e
2dΛWe ,

where neW
e
2 =
∫

�3 E2fedk. From the latter differentials, it is easy to obtain

dSe = kB
(
Λe + ln ye

)
dne + kBΛWed(neW

e),

which compared with the Gibbs relation for the electrons

TedSe = d(neW
e) − μedne

allows us the following identifications

ΛWe
=

1

kBTe
, μe = −kBTe

(
Λe + ln ye

)
.

Using the closure relation (5.1)1, the chemical potential can be rewritten as

μe = kBTe ln

(
�3

√
2 yem

3
2

0 J0

ne

d0(ΛWe)

)
,

from which, by differentiation, we get

dne = −
[
ne

Te
ln

(
�3

√
2 yem

3
2

0 J0

ne

d0(ΛWe)

)
− neW

e

kBT 2
e

]
dTe +

ne

kBTe
dμe. (7.1)

Moreover, from the definition of the electrochemical potential we have

q dφ = dφ̂e + dμe. (7.2)

3 Here and in the following, the index e stays for electrons.
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Now we substitute the latter two expressions in the equations for the x-components of

the electron velocity and the energy flux, written in the stationary case, and we obtain

[
ne

kBT 2
e

Fe(1)
xx + Fe(0)

xx

(
neW

e

kBT 2
e

− ne

Te
ln

(
�3

√
2 yem

3
2

0 J0

ne

d0(ΛWe)

))]
∂Te
∂x

− neΛWeFe(0)
xx

∂φ̂e
∂x

= ne

(
ce11V

e
x + ce12S

e
x + c

e,LA
13 QLAx + c

e,TA
13 QTAx

)
, (7.3)

[
ne

kBT 2
e

Fe(2)
xx + Fe(1)

xx

(
neW

e

kBT 2
e

− ne

Te
ln

(
�3

√
2 yem

3
2

0 J0

ne

d0(ΛWe)

))]
∂Te
∂x

− neΛWeFe(1)
xx

∂φ̂e
∂x

= ne

(
ce21V

e
x + ce22S

e
x + c

e,LA
23 QLAx + c

e,TA
23 QTAx

)
, (7.4)

where the c’s coefficients at the right-hand sides are the sums of the c’s coefficients relative

to the various electron-phonon scatterings taken into account. Equations (7.3)–(7.4) have

to be completed with equation (4.5)2 relative to the energy fluxes of the acoustic phonons

which are those responsible of the thermal energy transport [29]. These equations, in the

stationary case, can be rewritten as follows:

−4π yLA

3kBT
2
L

(
∂

∂ΛWLA

p1
p(ΛWLA)

)
∂TL
∂x

= ne

(
c
LA,e
12 Ve

x + c
LA,e
13 Sex

)
+ cLA11 Q

LA
x , (7.5)

−4π yTA

3kBT
2
L

(
∂

∂ΛWTA

p1
p(ΛWTA)

)
∂TL
∂x

= ne

(
c
TA,e
12 Ve

x + c
TA,e
13 Sex

)
+ cTA11 Q

TA
x , (7.6)

where TL is the lattice temperature, we recall that in the case under study the temperatures

of all the subsystems (electrons and phonons) are the same. Here, as regards the scatterings

involving the acoustic phonons, we use the approximations which can be found in [29],

according to which the forms for normal (N ) and umklapp (U ) phonon–phonon as well

as phonon-impurity/defect (p-i) scattering rates are taken to be of the relaxation type

with

1

τLAp−p,N
= AN,LAω

2
LAT

3
L,

1

τLAp−p,N
= AN,TAωTAT

4
L,

1

τTAp−p,U
=

{
AU,TA/ sinh

(
εTA
kBTL

)
, ω1 < ωTA < ω2,

0, otherwise,

1

τp−i
= (AδM + AδR)ω4,

where the set of A coefficients are given in Table 1 of [29].

Now, we look for solutions of equaions (7.3)–(7.6) with Ve
x = 0. We solve equations

(7.4)–(7.6) with respect to the unknowns Sex, Q
LA
x , QTAx , by writing (Mth

ij )
3
i,j=1 as the matrix
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of the coefficients of these unknowns which has elements

Mth
11 = nec

e
22, Mth

12 = nec
e,LA
23 , Mth

13 = nec
e,TA
23 ,

Mth
21 = nec

LA,e
13 , Mth

22 = cLA11 , Mth
23 = 0,

Mth
31 = nec

e,TA
13 , Mth

32 = 0, Mth
33 = cTA11 .

Substituting this solution into equation (7.3), we obtain the following compatibility

condition

Dφ̂e(ne, Te, TL)
∂φ̂e
∂x

= DTe(ne, Te, TL)
∂Te
∂x

− DTL(ne, Te, TL)
∂TL
∂x

,

where

Dφ̂e = neΛWeFe(0)
xx − n2

eΛWeFe(1)
xx

(
ce12M

th−1
11 + c

e,LA
13 Mth−1

21 + c
e,TA
13 Mth−1

31

)
,

DTe =
ne

kBT 2
e

Fe(1)
xx + Fe(0)

xx

(
neW

e

kBT 2
e

− ne

Te
ln

(
�3

√
2 yem

3
2

0 J0

ne

d0(ΛWe)

))

−
[
n2
e

kBT 2
e

Fe(2)
xx + ne F

e(1)
xx

(
neW

e

kBT 2
e

− ne

Te
ln

(
�3

√
2 yem

3
2

0 J0

ne

d0(ΛWe)

))](
ce12M

th−1
11

+ c
e,LA
13 Mth−1

21 + c
e,TA
13 Mth−1

31

)
,

DTL = −4π ne y
LA

3kBT
2
L

(
∂

∂ΛWLA

p1
p(ΛWLA)

)(
ce12M

th−1
12 + c

e,LA
13 Mth−1

22 + c
e,TA
13 Mth−1

32

)

− 4π ne y
TA

3kBT
2
L

(
∂

∂ΛWTA

p1
p(ΛWTA)

)(
ce12M

th−1
13 + c

e,LA
13 Mth−1

23 + c
e,TA
13 Mth−1

33

)
.

From the compatibility condition, it is easy to obtain

S =
Δφ̂e

ΔTL
= Sd(ne(ND,TL), TL, TL) + Sg(ne(ND,TL), TL, TL)

=
DTe(ne(ND,TL), TL, TL)

Dφ̂e(ne(ND,TL), TL, TL)
− DTL(ne(ND,TL), TL, TL)

Dφ̂e(ne(ND,TL), TL, TL)
.

It remains to express ne as a function of the temperature and the doping concentration.

From equation (5.1)1, we have

ne =
exp (−Λe)

ye
m0

√
2m0y

e

�3
J0 d0(ΛWe),

which compared with equation (6) of [33] allows us the identifications

n0 =
m0

√
2m0y

e

�3
J0 d0(ΛWe),

exp (−Λe)
ye

= exp

(
EF − EC

kBTL

)
,

with n0 the effective density of states in the conduction band, EF the Fermi energy, and EC
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Figure 1. Thermoelectric power S as a function of temperature. The continuous line, the line with

circles, and the line with crosses respectively represent the diffusion part, the drag part, and the

total thermopower.

the edge of the conduction band. The Fermi energy can be determined from the neutrality

condition, which implies that the number of ionised donors must be equal to the electron

concentration [33]

ND

{
1 −
[
1

2
exp

(
Ei − EC

kBTL

)
+ 1

]}
= n0 exp

(
EF − EC

kBTL

)
,

where Ei is the ionisation energy, which in silicon doped with phosphorus is equal to

EC − 0.044 eV [5]. Eventually, we obtain

ne =
1

2

[√
n2

0

4
exp
(
2

Ei − EC

kBTL

)
+ 2n0ND exp

(Ei − EC

kBTL

)
− n0

2
exp
(Ei − EC

kBTL

)]
.

At this point, we can compute the coefficients Dφ̂e , DTe , DTL by numerically evaluating all

the integrals which appear in the production terms and in the extra-fluxes. These integrals

have been computed once and for all for suitable values of the temperatures on which

they depend and the results have been stored to be used in future numerical simulations of

silicon devices. The two contributions to the thermoelectric power are shown in Figure 1,

in the case ND = 2.8 × 1016 cm−3. The total thermopower is in good agreement with the

experimental results which can be found in Figure 4 of [33].

Conclusions

The formal model presented in this paper can be considered as a first step towards

a consistent model of charge transport and heat effects in a semiconductor, phenomena
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which have generally been treated separately. Analytical approximations, valid in a certain

range of the electric field, have been taken for the dispersion relations both of electrons and

phonons, moreover all the main scattering mechanisms between electrons and phonons

and among phonons have been considered. As a first application, the silicon thermopower

has been investigated. Further applications of this model (possibly introducing sub-bands

where required by confined dimensions [7,9]) to the simulation of benchmark devices are

under current investigation and will be presented in future works. The present model can

also be applied in the analysis of anomalous temperature rises due to ballistic phonon

transport near the heat source in a transistor as well as in the study of the time and

dynamical behaviours of the thermal conductivity of semiconductor crystals [14].
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