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Weak convergence results for sample averages of nonlinear functions of~discrete-
time! stochastic processes satisfying a functional central limit theorem~e+g+, inte-
grated processes! are given+ These results substantially extend recent work by Park
and Phillips~1999, Econometric Theory15, 269–298! and de Jong~2002, work-
ing paper!, in that a much wider class of functions is covered+ For example, some
of the results hold for the class of all locally integrable functions, thus avoiding
any of the various regularity conditions imposed on the functions in Park and
Phillips ~1999! or de Jong~2002!+

1. INTRODUCTION

A standard tool in the asymptotic theory of integrated processes and else-
where is a functional central limit theorem+ Typically, a real-valued stochastic
process~xt !t[N is considered such thatn2102x@rn#, 0 # r # 1, converges weakly
to sW~r ! ~in the spaceD@0,1# of cadlag functions!, where W~+! represents
Brownian motion and@x# denotes the integer part ofx+ Frequently, then the
asymptotic behavior of a functional of the formn21 (t51

n T~n2102xt ! is of in-
terest+ Such functionals arise in the construction of test statistics or in the theory
of nonlinear estimation with integrated processes~Park and Phillips, 2001!+
For continuous real-valued functionsT on R an argument based on the con-
tinuous mapping theorem shows that

n21 (
t51

n

T~n2102xt !
d
&& E

0

1

T~sW~r !! dr, (1.1)

where d
&& signifies convergence in distribution; for convenience we include a

formal statement and a proof in Appendix A; cf+ Lemma A+1 and its proof+ For
an important subclass~cf+ Park and Phillips, 1999, Assumption 2+1! of the class
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of all processes satisfying a functional central limit theorem, Theorem 3+2 in
Park and Phillips~1999! shows that property~1+1! actually holds for a class of
functionsT wider than the class of continuous functions+ Functions in that class
are dubbed “regular” in Park and Phillips~1999!+ Apart from continuous func-
tions, this class contains, e+g+, locally bounded monotone functions and piece-
wise continuous functions+1 However, it does not contain, e+g+, every bounded
~measurable! function+ Furthermore, it also does not include~locally! unbounded
functions such asT~x! 5 log6x6 or T~x! 5 6x6a for 21 , a , 0 ~cf+ Park and
Phillips, 1999, Remark 3+3~c!!+ @For functions of this latter kind, Theorem 3+4
of Park and Phillips~1999! presents a modified version of~1+1! with a suitably
“clipped” approximationTn replacingT on the l+h+s+ of ~1+1! under stronger
conditions on the processxt ; cf+ Assumption 2+2 in Park and Phillips, 1999+
However, this theorem does not establish property~1+1! itself+ We also note
that the proof of this theorem, if not the theorem itself, seems to be in error+2#
In a recent paper, de Jong~2002! establishes property~1+1! for a class of func-
tions different from the class of “regular” functions appearing in Theorem 3+2
of Park and Phillips~1999! but covering functions such asT~x! 5 log6x6 and
T~x! 5 6x6a for 21 , a , 0+ Roughly speaking, de Jong~2002! allows T to
have finitely many “poles” and requiresT to be continuous and monotone be-
tween poles; furthermore he requiresT to be locally integrable+3 De Jong’s class
neither contains all bounded~measurable! functions nor all “regular” functions
in the sense of Park and Phillips+ He establishes his result for processes satis-
fying ~the stronger! Assumption 2+2 of Park and Phillips~1999!+

In the present paper we establish the result~1+1! under the minimal condi-
tion thatT is locally integrable~in the Lebesgue sense!+ In contrast to Park and
Phillips ~1999! and de Jong~2002! we thus are able to avoidany regularity
condition onT save the unavoidable local integrability condition+ Note that any
“regular” function in the sense of Park and Phillips~1999! is locally bounded
and thus is a fortiori locally integrable~cf+ also Park and Phillips, 1999, Re-
mark 3+3~a!!+ Thus, apart from covering a wider class of functionsT than in
Park and Phillips~1999! or de Jong~2002!, our results also have the advantage
of relieving one from the nontrivial burden of verifying regularity conditions
as is necessary when using the results of Park and Phillips or de Jong+We first
prove result~1+1! under high-level assumptions on the processxt in Section 2+
In Section 3 we provide sufficient conditions on the processxt that imply these
high-level assumptions, and we obtain corresponding corollaries+ It turns out
that one of these corollaries~Corollary 3+3! contains the result in de Jong~2002!
as a special case in that it covers a much wider class of functionsT ~e+g+, func-
tions with infinitely many “poles,” or functions that are neither piecewise mono-
tone nor piecewise continuous! and at the same time imposes weaker conditions
on xt + Corollary 3+3, in fact, applies to any locally integrable functionT that
satisfies a certain growth condition at the origin+ Corollary 3+2 moreover shows
that this growth condition can be dispensed with if a rather mild condition on
xt , namely, that the innovations drivingxt have a bounded density, is added+
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Corollary 3+2 thus only imposes the minimal condition of local integrability on
T+ Both of these corollaries cover classes of functions much wider than the
class of “regular” functions considered in Theorem 3+2 of Park and Phillips
~1999!+ Although the conditions onxt maintained by these corollaries are some-
what stronger than the corresponding conditions in Theorem 3+2 of Park and
Phillips ~1999!, we believe that the extra conditions onxt in these corollaries
are a small price to pay for the ability to cover much larger function classes+ It
should furthermore be noted that the assumptions onxt in Corollary 3+3 are
strictly weaker than the assumptions onxt employed in Theorem 3+4 of Park
and Phillips~1999!, thus showing that the “clipping” device of that theorem
can be avoided altogether+ Section 4 concludes the main body of the paper and
discusses some generalizations of the results in Sections 2 and 3+ All proofs are
relegated to the Appendixes+

After this paper had been written, the book by Borodin and Ibragimov~1995!
came to my attention+ In this important work results of the form~1+1! and also
many other related results are established for the case when the processxt is a
random walk with increments that are independent and identically distributed
~i+i+d+! and belong to the domain of attraction of a stable law+ Their results al-
ways assume more in terms of the functionT than we do in the present paper+
~For example, one of the results in Borodin and Ibragimov, 1995, is for locally
Riemann integrable functions, which constitute a much smaller class than the
class of locally Lebesgue integrable functions+ In particular, locally Riemann
integrable functions are necessarily locally bounded, thus ruling out functions
with poles+! Contrary to Park and Phillips~1999!, de Jong~2002!, and the present
paper, Borodin and Ibragimov~1995! do not provide results for the case where
the increments ofxt are dependent~e+g+, follow a linear process!+ However, it
should be noted that the results in Borodin and Ibragimov~1995! are more gen-
eral along another dimension, namely, that the limiting behavior ofxt need not
be given by Brownian motion but may be given by some stable process+ A
recent paper by Jeganathan~2002! takes up this issue and extends it to the case
of dependent increments+

2. WEAK CONVERGENCE OF NONLINEAR FUNCTIONALS

Let ~xt !t[N be a stochastic process with values inR+ We shall make use of the
following assumptions+

Assumption 2+1+ The processn2102x@rn#, 0 # r # 1, converges weakly to
sW~r !, whereW~+! is Brownian motion on@0,1# ands Þ 0, s [ R, holds+ ~As
a convention, x@rn# is set equal to zero forr , n21+!4

As usual, it is understood thatW~0! 5 0 a+s+ and thatW~+! has continuous
sample paths a+s+ Furthermore, weak convergence in the preceding assumption
is understood w+r+t+ the Skorohod topology on the spaceD@0,1# +
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Assumption 2+2+ For everyt [ N the distribution oft2102xt possesses a den-
sity, ht , say, w+r+t+ Lebesgue measure onR+ The densitiesht are uniformly
bounded, i+e+, supt[N7ht7` , ` holds, where7+7` denotes the sup-norm+

In light of the fact that the distribution oft2102xt converges to a normal dis-
tribution under Assumption 2+1, the conditions imposed by Assumption 2+2 have
some intuitive appeal; in particular, if a local central limit theorem holds~cf+
Ibragimov and Linnik, 1971, Theorem 4+3+1!, then7ht7` is automatically uni-
formly bounded~at least from some index onward!+ Sufficient conditions for
Assumptions 2+1 and 2+2 will be discussed in the next section+

Let T be a real-valued Borel-measurable function onR+ We say thatT is
locally integrableif and only if5

E
2K

K

6T~x!6 dx , ` for any 0, K , `+ (2.2)

Condition ~2+2! is certainly satisfied if T is locally bounded ~i +e+,
sup6x6#K 6T~x!6 , ` for any 0, K , `! but is much less restrictive because it
allows also for many locally unbounded functions such as, e+g+, T~x! 5 log6x6
and T~x! 5 6x6a, 21 , a , 0+6 ~For T in these latter two examples@or in
similar cases# to be a proper real-valued function defined onall of R, a real
number has to be specified as the value ofT at x 5 0; if one desires to set
T~0! 5 2` or T~0! 5`, respectively, T becomes a function with values in the
extended real line; cf+ Remarks 2+1 and 2+5, which follow+!

The following theorem establishes the main weak convergence result for lo-
cally integrable functions+ It is remarkable in that it does not impose any regu-
larity conditions onT beyond~2+2!+ Its generalization to the case of functions
with values in the extended real line is given in Remark 2+1, which follows+

THEOREM 2+1+ Suppose Assumptions 2.1 and 2.2 hold and T:R r R is
locally integrable. Then

n21 (
t51

n

T~n2102xt !
d
&& E

0

1

T~sW~r !! dr+ (2.3)

We note that the integral in~2+3! exists a+s+ and is finite a+s+ if and only if T
is locally integrable~see Karatzas and Shreve, 1991, Ch+ 3, Proposition 6+27
and Problem 6+29; cf+ also Park and Phillips, 1999, Remark 3+3 ~a!!+7 ~In this
sense the local integrability condition is an unavoidable requirement+!

We note for later use that the integral in~2+3! can equivalently be expressed
in terms of local time+ That is,

E
0

1

T~sW~r !! dr 5E
2`

`

T~sx!L~1, x! dx a+s+, (2.4)

4 BENEDIKT M. PÖTSCHER

https://doi.org/10.1017/S0266466604201013 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604201013


whereL~t, x! denotes Brownian local time~cf+ Chung and Williams, 1990, Cor-
ollary 7+4!+

Remark 2+1+ ~Extended Real Functions!

~a! Theorem 2+1 also holds ifT is a Borel-measurable function fromR to the ex-
tended real lineR ø $2`,`% that is locally integrable~e+g+, if T~x! 5 log6x6
for x Þ 0 and52` for x 5 0 or if T~x! 5 6x6a for x Þ 0 and5` for x 5 0,
21 , a , 0!+ To see this, first note that we may changeT into a locally inte-
grable real-valued function T * by modifying T only on a set of Lebesgue
measure zero+ Because the distribution ofxt is absolutely continuous by Assump-
tion 2+2, n21 (t51

n T~n2102xt ! coincides withn21 (t51
n T *~n2102xt ! a+s+ and,

in particular, is a+s+ well defined+ It hence suffices to show that the integral
*0

1 T~sW~r !! dr is well defined a+s+ and coincides a+s+ with *0
1 T *~sW~r !! dr+

For this it is enough to show that for almost every path of Brownian motion the
set D 5 $r [ @0,1#: T ~sW~r !! Þ T *~sW~r !!% is a Lebesgue null set: Let A
denote the Lebesgue null set$x [ R: T~x! Þ T *~x!% + Then 1D~r ! 5 1A~sW~r !!
and hence*0

1 1D~r ! dr 5 *0
1 1A~sW~r !! dr+ Corollary 7+4 in Chung and Williams

~1990! gives*0
1 1D~r ! dr 5 *0

1 1A~sW~r !! dr 5 *2`
` 1A~sx!L~1, x! dx 5 0 where

L~t, x! denotes local time and where the last equality follows becauseA is a
Lebesgue null set ands Þ 0+ This establishes the claim+

~b! Similar reasoning as in~a! shows that equation~2+4! also holds for locally inte-
grable functionsT:R r R ø $2`,`% +

Remark 2+2+ If T is a function fromR to Rp ~or to ~R ø $2`,`%! p! with
each component being locally integrable, then Theorem 2+1 continues to hold
~where the r+h+s+ of ~2+3! is defined componentwise!+ This follows from Theo-
rem 2+1 ~and Remark 2+1! combined with the Cramér–Wold device+

Remark 2+3+

~a! If xt satisfies the convergence condition in Assumption 2+1 and if Assumption 2+2
holds, then necessarilys Þ 0 holds as is easily seen+

~b! If xt satisfies the convergence condition in Assumption 2+1, but with s 5 0, and
if T is continuous, then ~2+3! continues to hold by Lemma A+1+ However, this is
not necessarily true for arbitrary locally integrable~even “regular”! T as the fol-
lowing example shows+8 Let xt 5 (j51

t ~«j 2 «j21! 5 «t 2 «0 where the random
variables«t are i+i+d+ standard normal+ Then the convergence condition in Assump-
tion 2+1 is satisfied withs 5 0+ Let T~x! 5 1~2`,0!~x! and note thatT is locally
integrable and is even “regular” in the sense of Park and Phillips~1999!+ The
l+h+s+ of ~2+3! is now equal ton21 (t51

n 1~2`,0!~«t 2 «0!, which converges a+s+ to
E~1~2`,0!~«t 2 «0!6«0! 5 F~«0!, which is positive~F denoting the standard nor-
mal cumulative distribution function@c+d+f+# !+ The r+h+s+ of ~2+3!, however, is equal
to T~0! 5 0, becauses 5 0+

Theorem 2+1 is in fact a special case of a more general result that makes use
of a weaker version of Assumption 2+2+
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Assumption 2+2*+ There existsa [ N such that for everyt $ a the distribu-
tion of t2102xt possesses a density, ht , say, w+r+t+ Lebesgue measure onR+ Fur-
thermore, supt$a7ht7` , ` holds+

Assumption 2+2* does not restrict the distribution ofxt ,1 # t , a, at all+ Of
course, under any assumption implying existence and boundedness ofht for
1 # t , a, Assumption 2+2* becomes equivalent to Assumption 2+2+ As with
Theorem 2+1, Theorem 2+2 is formulated for real-valued functions+ Its general-
ization to the case of extended real functions is given in Remark 2+5, which
follows+

THEOREM 2+2+ Suppose Assumptions 2.1 and 2.2* hold and T:R r R is
locally integrable. Then

n21 (
t5a

n

T~n2102xt !
d
&& E

0

1

T~sW~r !! dr+ (2.5)

If, additionally,

n21 (
t51

a21

T~n2102xt ! r 0 in probability, (2.6)

then (2.3) also holds. (In case a5 1 we use the convention that the sum in (2.6)
is zero.)

Of course, Theorem 2+1 is a special case of Theorem 2+2 ~with a 5 1!+ It is
not difficult to see that existence and boundedness ofht for 1 # t , a is a
sufficient condition for~2+6! whenT is locally integrable+9 However, under this
condition onht Assumptions 2+2 and 2+2* coincide+ Theorem 2+2 is therefore
useful as an alternative to Theorem 2+1 in situations where existence and uni-
form boundedness of the densitiesht can only be established from a certain
index onward~cf+ Section 3! and where~2+6! can be verified from some source
other than boundedness ofht for 1 # t , a+ For example, if T is bounded in a
neighborhood ofx 5 0 ~a fortiori if T is continuous atx 5 0!, condition ~2+6!
immediately follows regardless of the distribution ofxt , 1 # t , a+10 More
general sufficient conditions are given in the following proposition+

PROPOSITION 2+3+ For Borel-measurable T:R r R consider the follow-
ing conditions:

(i) T ~x! 5 o~6x622! for x r 0, x Þ 0.
(ii) T is Lebesgue-integrable in a neighborhood of x5 0, 6T~x!6 is increasing on

~2«,0! and decreasing on~0,«! for some« . 0.
(iii) T is Lebesgue-integrable in a neighborhood of x5 0, 6T~x!6 is increasing on

~2«,0! and bounded on~0,«! for some« . 0.
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(iv) T is Lebesgue-integrable in a neighborhood of x5 0, 6T~x!6 is bounded on~2«,0!
and decreasing on~0,«! for some« . 0.

(v) T is bounded on~2«,0! and also on~0,«! for some« . 0.

Then each of conditions (ii)–(v) implies (i), which in turn implies (2.6).11

Simple corollaries to Theorem 2+2 that immediately follow from the preced-
ing discussion are given next+ In the important case wherext has an absolutely
continuous distribution for allt, the conditions in these corollaries can be weak-
ened somewhat; see Remark 2+4, which follows+

COROLLARY 2+4+ Suppose Assumptions 2.1 and 2.2* hold and T:R r R
is locally integrable. If T satisfies T~x! 5 o~6x622! for x r 0, x Þ 0, then the
weak convergence result (2.3) holds.

COROLLARY 2+5+ Suppose Assumptions 2.1 and 2.2* hold and T:R r R
is locally bounded (and Borel-measurable). Then the weak convergence result
(2.3) holds.

As already noted, the “regularity” conditions onT in Park and Phillips~1999!
and de Jong~2002!, respectively, imply local integrability+ Furthermore, their
respective “regularity” conditions imply condition~i! in Proposition 2+3+12 Hence,
these “regularity” conditions also imply~2+6!+ Thus the “regularity” conditions
in Park and Phillips~1999! and also in de Jong~2002! are stronger than the
conditions imposed onT in Theorems 2+1 and 2+2 and Corollary 2+4; cf+ also
Example 3+2 in Section 3+

Remark 2+4+ SupposeT :R r R is Borel-measurable and suppose that each
xt , 1 # t , a, has a~possibly unbounded! density+ Then ~2+6! already follows
if condition ~i! in Proposition 2+3 holds only outside of a set of Lebesgue
measure zero+13 Consequently, given the above assumption onxt , Corol-
lary 2+4 already holds under this weaker form of condition~i!+ We also note
that this weaker form of condition~i! is satisfied if, e+g+, T is essentially
bounded in~2«,0! ø ~0,«! for a suitable« . 0+14 In particular, given the
above assumption onxt , Corollary 2+5 then holds even for essentially locally
boundedT+

Remark 2+5+ ~Extended Real Functions!+

~a! Similarly as in Remark 2+1, the first claim in Theorem 2+2 also holds for locally
integrable functionsT from R to R ø $2`,`% ; the second claim also holds pro-
vided that the expression in~2+6! is well defined~at least on a sequence of sets
Vn with P~Vn! r 1 asn r `!+15 This is, e+g+, the case if eachxt , 1 # t , a, has
a ~possibly unbounded! density+ As another example, the expression in~2+6! is
also always well defined, regardless of the distribution ofxt , 1 # t , a, if T takes
its values only inR ø $`% ~or in R ø $2`%!+

NONLINEAR FUNCTIONS AND CONVERGENCE TO BROWNIAN MOTION 7

https://doi.org/10.1017/S0266466604201013 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604201013


~b! Suppose the functionT in Proposition 2+3 takes now values inR ø $2`,`!+16

Then again each of the conditions~ii !–~v! implies ~i!+ ~Note that under any of the
conditions~i!–~v! the functionT is in fact real-valued on~2«,«! \ $0% for a suit-
able« . 0+! Furthermore, condition ~i! continues to imply~2+6! if T~0! is finite
or if none of the distributions ofxt , 1 # t , a, has positive point mass atx 5 0+
In particular, Corollary 2+4 continues to hold forT :R r R ø $2`,`% if addi-
tionally T~0! is finite or if none of the distributions ofxt , 1 # t , a, has positive
point mass atx 5 0+

~c! Remark 2+4 continues to hold for functionsT :R r R ø $2`,`% + In particular,
Corollary 2+4 also holds forT :R r R ø $2`,`% already under the weaker form
of condition~i!, provided eachxt , 1 # t , a, has a~possibly unbounded! density+
Similarly, Corollary 2+5 already holds for essentially locally boundedT :R r

R ø $2`,`% under the same provision forxt , 1# t , a+ ~If T :R r R ø $2`,`%
is locally bounded, we are back to the case of real-valuedT, and hence Corollary
2+5 directly applies without any further provision onxt , 1 # t , a+!

Remark 2+6+ SupposeT :R r R or T :R r R ø $2`,`% is essentially lo-
cally bounded and suppose that Assumptions 2+1 and 2+2* hold+ Then certainly
~2+5! holds ~evenT locally integrable would suffice!+ We stress, however, that
~2+3! need not follow in general without further assumptions+ Remarks 2+4 and
2+5~c! provide such additional conditions+ Alternatively, it follows from the pre-
ceding discussion that~2+3! also holds if we additionally assume that condition
~i! in Proposition 2+3 holds, and thatT~0! is finite or none of the distributions
of xt , 1 # t , a, has positive point mass atx 5 0+

Remark 2+7+ Similarly as in Remark 2+2, Theorem 2+2 continues to hold for
functionsT with values inRp+ For functionsT with values in~R ø $2`,`%! p

the same is also true for the first claim in Theorem 2+2, and it is true for the
second claim provided~2+6! is well defined for any linear combinationa 'T+ A
corresponding remark applies to Corollaries 2+4 and 2+5, Remark 2+4, and their
extensions discussed in Remark 2+5+

3. SUFFICIENT CONDITIONS AND COROLLARIES

In this section we discuss the important special case whenxt is an integrated
process, which is the case exclusively considered in Park and Phillips~1999!
and de Jong~2002!+ Assume that forn $ 1 the processxn takes the form

xn 5 x0 1 (
t51

n

wt (3.1)

with x0 being independent of the process~wt !t$1 and withwt given by

wt 5 (
j50

`

fj «t2j + (3.2)
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Here ~«j ! are i+i+d+, E~«j ! 5 0, E«j
2 , `, (j50

` 6fj 6 , `, and (j50
` fj Þ 0+

Without loss of generality we shall set the variance of«j equal to one+ Further-
more, it is assumed that«j has a density, say, q+ The preceding assumptions
will be kept throughout Section 3 and will be referred to as the maintained
assumptions of Section 3+

3.1. Sufficient Conditions for Assumptions 2.2 and 2.2*

To begin with, note thatxn can be represented as

xn 5 x0 1 F(
j51

n

cn2j «j 1 (
j50

`

gn, j «2jG, (3.3)

where cn2j 5 (i50
n2j fi and gn, j 5 (i5j11

n1j fi + It immediately follows that
n2102xn has a density for everyn $ 1 ~cf+ Lukacs, 1970, Theorem 3+3+2, and
observe that the term in brackets in~3+3! cannot be identically zero because

(j50
` fj Þ 0!+
To motivate the sufficient conditions for Assumptions 2+2 and 2+2* given in

Lemma 3+1, which follows, we start with a preparatory and informal discus-
sion+ It is easy to see that any distribution given by a convolution has a bounded
density if at least one factor in the convolution has a bounded density+ Conse-
quently, the densityhn of n2102xn is guaranteed to be bounded~for every fixed
n $ 1! if the ~common! densityq of «j is bounded+ We note that a sufficient
condition for boundedness ofq is that c, the characteristic function of«j , is
absolutely integrable~Lukacs, 1970, Theorem 3+2+2!+ However, the densityhn

can be bounded even if the densityq is unbounded+ To see how this can hap-
pen, consider for the moment the special case wherexn is a random walk, i+e+,
wherewt 5 «t and wherex0 5 0 ~for simplicity!+ Becausen2102xn is then the
sum ofn i+i+d+ random variables, its densityhn is the ~scaled! n-fold convolu-
tion of q itself+ Now, for example, if q has a pole, it can happen that this pole is
“smoothed” out by the convolution operation, resulting in a bounded density
hn+ Related to this observation is the fact that in cases where the characteristic
function c~s! of «j is not absolutely integrable, the characteristic function of
n2102xn can be integrable~implying thathn is bounded! from somen onward,
because it is thenth power ofc ~evaluated atn2102s! and because6c6 # 1
holds+ It follows that absolute integrability of a power ofc will imply ~individ-
ual! boundedness ofhn, at least from a certainn onward, and thus will be a
central condition in the following+ As it turns out, this central condition implies
not only individual boundedness ofhn ~from a certainn onward! but alsouni-
form boundedness~from a certainn onward!+ Returning to the case of general
xn as in ~3+1!, we note that~depending on the behavior of the coefficientsfj !
often hn is in fact a convolution of much more thann factors of the formq
~sometimes even of infinitely many factors!+ Not too surprisingly, in this case
the previously mentioned central condition onc will automatically deliver in-
dividual boundedness ofhn for every n$ 1+
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With c denoting the characteristic function of«j , we shall therefore consider
the following integrability condition:

E
2`

`

6c~s!6n ds, ` for somen [ R with 1 # n , `+ (3.4)

Recall that~3+4! with n 5 1 implies boundedness ofq and that~3+4! becomes
less stringent asn increases+ In particular, characteristic functions correspond-
ing to unbounded densities can satisfy~3+4! with n . 1; cf+ Remark 3+1~b!,
which follows+ We mention here that a simple sufficient condition for~3+4! is
6c~s!65 O~s2h! assr ` for someh . n21+ In particular, if 6c~s!65 O~s2h!
for someh . 0, then~3+4! holds for somen $ 1+ The latter condition with “O”
strengthened to “o” is used in Park and Phillips~1999! and de Jong~2002!; see
Section 3+3 for more discussion+

The following lemma provides sufficient conditions for Assumptions 2+2 and
2+2* and is inspired by Section 4+3 of Ibragimov and Linnik~1971!+ Part~i! of
the lemma improves upon Lemma 1 in de Jong~2002!+ Recall thathn denotes
the density ofn2102xn+

LEMMA 3 +1+ Suppose condition (3.4) holds. Then the following statements
are true.

(i) There exist n0 [ N and a real number C such that for n$ n0

7hn7` # C (3.5)

holds; i.e., Assumption 2.2* is satisfied.
(ii) If, for every n$ 1, at leastn coefficients of the innovations«j , 2` , j # n, in

(3.3) are nonzero, then (3.5) holds for n$ n0 5 1.17 That is, Assumption 2.2 is
satisfied.

(iii) If n 5 1, then (3.5) holds for n$ n0 5 1. That is, Assumption 2.2 is satisfied.

(The constants C in (i)–(iii) and also the index n0 depend only onc and the
coefficientsfj .)

The more difficult part in the proof of the preceding lemma is to establish
Assumption 2+2*, i+e+, the uniform boundedness of the densitieshn from a cer-
tain indexn0 onward+ Once Assumption 2+2* is known to hold, Assumption
2+2 then follows underany condition that implies~individual! boundedness of
hn for every n ~in fact for everyn, 1 # n , a, suffices!+ Parts~ii ! and ~iii !
provide such conditions+ The basic observation here is that whenever~3+4! holds
and the distribution ofxn is the convolution of not less thann terms of the
form q ~not counting the factor corresponding tox0!, then 7hn7` is finite ~cf+
Lemma B+2 in Appendix B!+ The additional assumptions in parts~ii ! and ~iii !
precisely imply this for the distribution ofxn+ As already mentioned, bound-
edness ofq, i+e+,

7q7` , `, (3.6)
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implies that7hn7` is finite for everyn $ 1+ Thus~3+6! is an alternative condi-
tion under which Assumptions 2+2 and 2+2* are equivalent+ ~We note that~3+4!
with n 5 1 implies~3+6!; cf+ Lukacs, 1970, Theorem 3+2+2+!18

Note that the conditions in Lemma 3+1~i! and~ii ! allow the densityq of «j to
be unbounded, whereas the conditions for part~iii ! imply boundedness ofq+

Remark 3+1+

~a! The assumption in part~ii ! is certainly satisfied if the coefficientsfj are all pos-
itive ~negative!+

~b! The additional assumption in part~ii ! cannot be removed+ Consider the example
wherewt 5 «t 2 «t21 1 «t22 and a102«t 1 a is gamma-distributed with shape
parametera satisfying 1

3
_ , a , 1

2
_ and scale parameter 1 and wherex0 5 0 ~for

simplicity!+ Then x2 5 «2 1 «21 whereasxn for n Þ 2 is always the sum of at
least three«j ’s+ Consequently, the density ofx2 ~being a shifted and scaled ver-
sion of a gamma~2a,1!-distribution! has a pole, whereas the density ofxn, n Þ 2
~being a shifted and scaled version of a gamma~b,1!-distribution with b $
3a . 1! is bounded+ Note that the characteristic functionc~s! of «j satisfies
6c~s!6 5 ~1 1 a21s2!2a02 and thusc satisfies~3+4! for n . 10a . 2 but not
for n # 10a+

3.2. Sufficient Conditions for Assumption 2.1

Sufficient conditions for Assumption 2+1 abound in the literature+ For the sake
of comparability with Park and Phillips~1999! and de Jong~2002! we shall use
the condition

(
j50

`

j 102 6fj 6 , `, (3.7)

which is also used in Park and Phillips~1999! ~cf+ their Assumption 2+1!+ A
stronger summability condition is used in Assumption 2+2 of Park and Phillips
~1999! and also in de Jong~2002!+ It is well known that—under the maintained
assumptions of Section 3—condition~3+7! implies our Assumption 2+1 with
s 5 (j50

` fj ~cf+, e+g+, Phillips and Solo, 1992, Theorem 3+4 and Re-
marks 2+2~ii ! and 3+5~i!!+

3.3. Corollaries and Comparison with Park and Phillips (1999)
and de Jong (2002)

The following corollary collects some of the results that can be obtained by
combining Theorem 2+1 with the sufficient conditions discussed in Sections 3+1
and 3+2+

COROLLARY 3+2+ Suppose the process xt satisfies the maintained assump-
tions of Section 3 and (3.4) and (3.7) hold. Let T:R r R or T :R r R ø
$2`,`% be locally integrable. Then
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n21 (
t51

n

T~n2102xt !
d
&& E

0

1

T~sW~r !! dr

holds withs 5 (j50
` fj , provided the densities ht are (individually) bounded

for every t$ 1.19 This latter condition is satisfied if any of the following con-
ditions holds.

(i) The density of q of«j is bounded; i.e., (3.6) holds.
(ii) The characteristic functionc of «j is integrable; i.e., (3.4) holds withn 5 1.

(iii) fj . 0 for all j $ 0 or fj , 0 for all j $ 0.

The preceding corollary gives conditions that imply the desired convergence
result for all locally integrable functions+ The next corollary operates under
weaker conditions on the processxt at the expense of imposing a mild growth
condition on the functionT+

COROLLARY 3+3+ Suppose the process xt satisfies the maintained assump-
tions of Section 3 and (3.4) and (3.7) hold. Let T:R r R or T :R r R ø

$2`,`% be locally integrable. Then n21 (t5a
n T~n2102xt !

d
&& *0

1 T~sW~r !! dr
with s 5 (j50

` fj holds for some a$ 1.20 Furthermore,

n21 (
t51

n

T~n2102xt !
d
&& E

0

1

T~sW~r !! dr

holds, provided T~x! 5 o~6x622! for x r 0, x Þ 0, except possibly on a set of
Lebesgue measure zero. This latter condition is satisfied if any of the condi-
tions (ii)–(v) of Proposition 2.3 hold.21

A simple special case of Corollary 3+3 is the following result+

COROLLARY 3+4+ Suppose the process xt satisfies the maintained assump-
tions of Section 3 and (3.4) and (3.7) hold. Let T:R r R or T :R r R ø
$2`,`% be essentially locally bounded (and Borel-measurable). Then

n21 (
t51

n

T~n2102xt !
d
&& E

0

1

T~sW~r !! dr

holds withs 5 (j50
` fj .

Corollary 3+2 is based on Theorem 2+1 and hence on Assumption 2+2, whereas
Corollary 3+3 derives from Theorem 2+2 and Assumption 2+2*+ As already noted,
Assumption 2+2 differs from Assumption 2+2* only in that it additionally re-
quires the first few densitiesht to be ~individually! bounded+ As a conse-
quence, the requirements on the processxt in Corollary 3+2 are only marginally
stronger than in Corollary 3+3; e+g+, adding condition~3+6!, i+e+, that the density
q of «j is bounded, suffices+ The advantage of Corollary 3+2 thus is that it does
not impose any regularity condition on the functionT but delivers the desired
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convergence result forany locally integrable functionT ~at a small cost in terms
of additional conditions onxt !+

It is easy to see that Corollary 3+3 contains the convergence result in de Jong
~2002! as a special case: First, de Jong uses stronger assumptions on the pro-
cessxt ~namely, the stronger summability condition(j50

` j 6fj 6 , `, existence
of moments of«j of order higher than 2, and the stronger condition6c~s!6 5
o~s2h! for someh . 0 on the characteristic functionc!+ Second, the class of
functions considered in Corollary 3+3 is much wider than the class considered
in de Jong~2002! as the discussion subsequent to Corollary 2+5 has shown+

Comparing Corollary 3+3 with Theorem 3+2 in Park and Phillips~1999!, we
observe that Corollary 3+3 ~and a fortiori Corollary 3+2! allows for a much wider
class of functions than Theorem 3+2 in Park and Phillips~1999!+ In particular,
Corollary 3+3 not only covers any~essentially! locally bounded function~cf+
Corollary 3+4! but also allows for locally unbounded functions and extended
real-valued functions+ ~Recall that any function that is “regular” in the sense of
Park and Phillips, 1999, is locally bounded+! With respect to the conditions im-
posed on the processxt , note that Corollary 3+3 makes use of the same assump-
tions as used in Theorem 3+2 in Park and Phillips~1999! plus the additional
condition ~3+4! and the assumption that the innovations«j possess an abso-
lutely continuous distribution+ ~Comparing Corollary 3+2 with Theorem 3+2 in
Park and Phillips~1999! we see that a further mild condition such as, e+g+, bound-
edness of the density of«j has been added+! This seems to be a modest price to
pay for the ability to cover much larger classes of functions+ Finally, we also
point out that the conditions onxt in Corollary 3+3 are strictly weaker than the
assumptions underlying Theorem 3+4 in Park and Phillips~1999! ~cf+ Park and
Phillips, 1999, Assumption 2+2!, which provides a weak convergence result for
“clipped” versions of certain locally unbounded functionsT+ This shows that
the “clipping” device of that theorem can be avoided altogether+ ~Recall from
Section 1 that the proof of this theorem seems to be in error; cf+ also note 2+!

We illustrate the corollaries with some examples+

Example 3.1

Suppose the processxt satisfies the assumptions of Corollary 3+3+ Let T1~x! 5
log6x6 andT2~x! 5 6x6a with 21 , a , 0, whereT1~0! andT2~0! are set to an
arbitrary element ofR ø $2`,`% + It is easy to see that both functions are lo-
cally integrable and satisfyT1~x! 5 o~6x622! andT2~x! 5 o~6x622! for x r 0,
x Þ 0+ Corollary 3+3 then impliesn21 (t51

n Ti ~n
2102xt !

d
&& *0

1 Ti ~sW~r !! dr for
i 5 1,2 with s 5 (j50

` fj +

The functions in the preceding example do not satisfy the “regularity” con-
ditions for Theorem 3+2 in Park and Phillips~1999! but do satisfy the “regular-
ity” conditions of de Jong~2002!+ The following example is covered neither by
the results in Park and Phillips~1999! ~because the functions are not locally
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bounded! nor by the results in de Jong~2002! ~because the functions are not
piecewise monotone!+

Example 3.2

Suppose the processxt satisfies the assumptions of Corollary 3+3+ Let T3~x! 5
~ log6x6!sin~x21! andT4~x! 5 6x6asin~x21! with 21 , a , 0, whereT3~0! and
T4~0! are set to an arbitrary element ofR ø $2`,`% + Again both functions are
locally integrable and satisfyT3~x! 5 o~6x622! andT4~x! 5 o~6x622! for x r 0,
x Þ 0+ Corollary 3+3 then impliesn21 (t51

n Ti ~n
2102xt !

d
&& *0

1 Ti ~sW~r !! dr for
i 5 3,4 with s 5 (j50

` fj + In fact, Corollary 3+3 applies as well to the func-
tions T5~x! 5 ~ log6x6!S~x! and T6~x! 5 6x6aS~x! with 21 , a , 0, where
T5~0! andT6~0! are set to an arbitrary element ofR ø $2`,`% and whereS is
an arbitrary~essentially! local bounded Borel-measurable function+

4. EXTENSIONS

The results in Section 3 allow for dependence in the increments of the process
xt as they are modeled as a linear process+ It is quite natural to ask to what
extent the results in Section 3 can be generalized to other dependence struc-
tures such as mixing, near epoch dependence, and so on+ Observe that the re-
sults in Section 2 are of a generic nature in that they rely only on Assumptions
2+1 and 2+2 ~or 2+2*!, which do not specify a particular dependence structure+
Because functional central limit theorems as expressed in Assumption 2+1 are
widely available for various dependence structures, including those mentioned
previously, the question reduces to whether or not Assumption 2+2 ~or 2+2*!
holds for such dependence structures+ In particular, the validity of a local cen-
tral limit theorem would imply Assumption 2+2*+ Not much seems to be avail-
able in the literature in that regard+

A key feature of the results in this paper is that the random variablest2102xt

have to have uniformly bounded densities~at least from some index onward!+
In view of local central limit theorems this appears to be a quite natural condi-
tion+ Whether or not this condition can be relaxed while retaining the validity
of the convergence result for all locally integrable functions, I do not know+ Of
course, relaxation is certainly possible if the convergence result is to be estab-
lished only for a smaller class of functionsT ~e+g+, Assumption 2+2 or 2+2* can
be completely dropped for continuousT !+

Suppose the convergence result~2+3! holds for a functionH and suppose the
function T satisfiesT~lx! 5 g~l!H~x! for all l . 0 and allx [ R with a
suitable functiong ~e+g+, T is homogenous of degreea andH 5 T !+ Then~2+3!
applied toH can be rewritten as

~ng~n102!!21 (
t51

n

T~xt !
d
&& E

0

1

H~sW~r !! dr+ (4.1)
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Now, if T does not satisfy a decomposition as before but does so approxi-
mately in a suitable sense, relation ~4+1! can still be established+ This then
provides convergence results for nonlinear functions of unnormalized inte-
grated processes+ Section 5 of Park and Phillips~1999! carries through this
program under the assumption that the functionH appearing in the approxi-
mation is “regular” in their sense+ De Jong and Whang~2002! obtain analo-
gous results whenH satisfies the “regularity” conditions of de Jong~2002!+
Based on the results of the present paper, both of these results can be ex-
tended to the situation where the functionH in the approximation is locally
integrable but does not satisfy the regularity conditions in Park and Phillips
~1999! or de Jong~2002!+

NOTES

1+ The last claim is true if one adopts a definition of piecewise continuity such that the l+h+s+
and r+h+s+ limits exist and are finite at each point of discontinuity+

2+ A function T can be constructed that satisfies all the conditions of Theorem 3+4 in Park and
Phillips ~1999! but does not satisfycnT~cn! r 0 as claimed in the proof of that theorem+ It seems
that to salvage that theorem a condition such asT~x! 5 o~6x621! for x r 0, x Þ 0, needs to be
added+

3+ For T to be defined as a real-valued function on all ofR, de Jong~2002! assigns the value
zero to T at the pole locations+ The results in the present paper do not rely on this~arbitrary!
assignment and also work for functions that assume the values` or 2`; cf+ Remarks 2+1 and 2+5+
~The arguments in these remarks also show that an assignment such as the one in de Jong, 2002, is
in fact inconsequential under the assumptions on the process made in that paper+!

4+ If , instead, x@rn# is set equal to an arbitrary random variablex* for r , n21, which is defined
on the probability space supporting~xt !, an equivalent assumption is obtained+ More generally,
Assumption 2+1 is unaffected by any modification made to finitely many elements of~xt !+

5+ The integral in expression~2+2! is to be understood in the sense of Lebesgue+
6+ Condition ~2+2! is of course also satisfied ifT is only essentially locally bounded~i+e+, if

ess-sup6x6#K 6T~x!6 , ` for any 0, K , `, where ess-sup denotes the essential supremum w+r+t+
Lebesgue measure!+

7+ The integral over the positive partT1~sW~r !! and also the integral over the negative part
T2~sW~r !! exist a+s+ for every Borel-measurableT, because almost every sample path ofW~+! is
continuous+ The argument in the proof of Theorem 2+1 then also establishes a+s+ finiteness of both
these integrals under local integrability+

8+ Of course, it is trivially true for any real-valuedT if , e+g+, xt 5 0 with probability one for all
t [ N+

9+ To see this note that for everyt, 1 # t , a, ~and M . 0! we haveP~n216T~n2102xt !6 .
d! # P~n216T~n2102xt !6 . d, 6n2102xt 6 # M ! 1 P~6n2102xt 6 . M ! # ~nd!21*2`

` 6T~~t0n!102x!6 3
1@2M,M #~~t0n!102x!ht ~x! dx 1 o~1! 5 ~nd!21~n0t!102 *2M

M 6T~z!6ht~~n0t!102z! dz 1 o~1! # d21 3
n2102t21027ht7` *2M

M 6T~z!6 dz1 o~1! 5 o~1! by local integrability ofT+
10+ Although ~2+6! is true for such functionsT, we stress that~2+6! is in generalnot true with-

out further conditions even for locally integrableT+
11+ In fact, each one of~ii !–~v! even impliesT~x! 5 o~6x621! for x r 0, x Þ 0+
12+ Observe that any function “regular” in the sense of Park and Phillips~1999! is locally bounded

and thus satisfies~v! of Proposition 2+3+ Furthermore, any function “regular” in the sense of de
Jong~2002! satisfies at least one of~ii !–~v! in Proposition 2+3 as is easily seen+

13+ To see this, note that after suitably modifyingT on a set of Lebesgue measure zero, condi-
tion ~i! in Proposition 2+3 is satisfied for the modified function and that this modification changes
the sum in~2+6! at most on a set of probability zero as a result of the assumption onxt , 1 # t , a+
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14+ More generally, if modifying T on a set of Lebesgue measure zero results in a function that
satisfies one of conditions~ii !–~v! of Proposition 2+3, then condition~i! holds outside a set of
Lebesgue measure zero+

15+ That is, there exists a sequence of setsVn with P~Vn! r 1 as n r ` such that
T~n2102xt~v!! 5 ` and T~n2102xs~v!! 5 2` do not hold simultaneously forv [ Vn and some
1 # s , a, 1 # t , a+

16+ As a point of interest we note that for real-valuedT condition ~v! is in fact equivalent to
boundedness ofT on ~2«,«!, but this is not necessarily so ifT takes its values inR ø $2`,`% +

17+ Lemma B+2 in fact shows that if at leastn coefficients of«j , 2` , j # n, in ~3+3! are
nonzero for agiven n, then7hn7` is finite for this n+

18+ Together with Lemma 3+1~i! this provides an alternative proof of part~iii ! of Lemma 3+1+
19+ In fact, boundedness ofht for 1 # t , n0 suffices, wheren0 is as in Lemma 3+1~i!+
20+ Namely, for a $ n0; cf+ Lemma 3+1~i!+
21+ For a minor generalization of this implication see Remark 2+4 and note 14+
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APPENDIX A: PROOFS FOR SECTION 2
LEMMA A +1+ Suppose T:R r R is continuous and Assumption 2.1 holds with the

requirements Þ 0 omitted. Then (1.1) holds.

Proof. DefineIT~ f ! as*0
1 T~ f ~r !! dr for everyf [ D@0,1# + Because eachf [ D@0,1#

is bounded and measurable~Billingsley, 1968, p+ 110! and becauseT is continuous, IT~ f !
is well defined and finite+ Observe that~1+1! can be rewritten as

IT~n2102x@+n# ! 1 n21 @T~n2102xn! 2 T~0!# d
&& IT~sW~+!!,
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where the second term on the l+h+s+ is op~1! becauseT is continuous andn2102xn con-
verges in distribution+ It hence suffices to establish thatIT~n2102x@+n#! converges to
IT~sW~+!! in distribution+ Suppose now thatfk [ D@0,1# converges tof [ C@0,1# ~the
subset of all continuous functions on@0,1# ! w+r+t+ the Skorohod topology+ Then this con-
vergence is in fact uniform~Billingsley, 1968, p+ 112!+ In particular, it follows that fk
and f are uniformly bounded~w+r+t+ r [ @0,1# andk $ 1! by a finite positive constant,
say, M+ BecauseT restricted to@2M,M # is uniformly continuous, it follows thatT~ fk~r !!
converges toT~ f ~r !! uniformly on @0,1# + Thus, IT~ fk! converges toIT~ f !+ It follows
that the set of continuity points ofIT containsC@0,1# + Because almost every sample
path of Brownian motion is an element ofC@0,1# , it follows that the set of continuity
points ofIT is a set of measure one under the measure induced bysW~+!+ Applying the
continuous mapping theorem in its extended form~e+g+, Billingsley, 1968, Theorem 5+1!
then establishes~1+1!+ n

LEMMA A +2+ Let T:R r R be a locally integrable function. For every« . 0 there
exists a continuous functionET :R r R such that7T 2 ET71 , «, where7T 2 ET71 denotes
*2`
` 6T~x! 2 ET~x!6 dx.

Proof. For anym [ Z define Tm~x! 5 T~x!1@m,m11!~x!+ BecauseT is locally inte-
grable, the functionTm is certainly Lebesgue-integrable over@m,m11# + Hence, there
exists a continuous functionPTm: @m,m 1 1# r R such that*m

m116Tm~x! 2 PTm~x!6 dx ,
~«03!226m621 ~cf+ Bauer, 1978, ~43+6! and ~44+2!!+ Extend PTm to a function on all ofR
by setting PTm~x! 5 0 for x Ó @m,m 1 1# + Obviously then7Tm 2 PTm71 , ~«03!226m621

holds+ Note that PTm is continuous onR except possibly atx 5 m and x 5 m 1 1+ For
0 , h , 1

2
_ let gm,h denote the “trapezoidal” function given bygm,h~x! 5 1 for

m 1 h # x # m 1 1 2 h, gm,h~x! 5 0 for x # m and forx $ m 1 1 and that linearly
interpolates betweenx 5 m and x 5 m 1 h and also betweenx 5 m 1 1 2 h and
x 5 m 1 1+ Then the function PTmgm,h is continuous on all ofR and vanishes out-
side of~m,m 1 1!+ By choosingh~m! small enough~depending onT and«! we obtain
7 PTm 2 PTmgm,h~m!71 , ~«03!226m621+ Define ET 5 (m[Z PTmgm,h~m! and note that ET is
continuous onR+ Since clearly T 5 (m[Z Tm holds, we arrive at 7T 2 ET71 #

(m[Z7Tm 2 PTmgm,h~m!71 # (m[Z ~7Tm 2 PTm71 1 7 PTm 2 PTmgm,h~m!71! ,

(m[Z ~«03!226m6 5 «+ n
Proof of Theorem 2.1. The idea of the proof is to use Lemma A+2 to reduce the case

of locally integrableT to the case of continuousT and then to appeal to Lemma A+1,
which in turn rests on the continuous mapping theorem+

Step 1+ Let « . 0 and let ET be the continuous function guaranteed by Lemma A+2+
Then for alln $ 1 we have

E6n21 (
t51

n

T~n2102xt ! 2 n21 (
t51

n

ET~n2102xt !6 # n21 (
t51

n

E6T~n2102xt ! 2 ET~n2102xt !6

5 n 21 (
t51

n E
2`

`

6T~~t0n!102x! 2 ET~~t0n!102x!6ht ~x! dx

5 n2102 (
t51

n

t2102E
2`

`

6T~z! 2 ET~z!6ht ~~n0t !102z! dz

# n2102 (
t51

n

t21027T 2 ET717ht7`# 2« sup
t$1
7ht7`+ (A.1)
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Step 2+ Let « . 0 and let ET be as in step 1+ Observing that6T~sx! 2 ET~sx!6 is locally
integrable we may apply Corollary 7+4 in Chung and Williams~1990! to obtain

E*E
0

1

T~sW~r !! dr 2E
0

1

ET~sW~r !! dr * # EE
0

1

6T~sW~r !! 2 ET~sW~r !!6 dr

5 EE
2`

`

6T~sx! 2 ET~sx!6L~1, x! dx5E
2`

`

6T~sx! 2 ET~sx!6EL~1, x! dx+ (A.2)

For the last equality in~A+2! we have used Fubini’s theorem+ This is justified because
the functions involved are nonnegative and becauseL~1, x! is a measurable stochastic
process+ ~That is, the map~v, x! r L~1, x!~v! is measurable w+r+t+ the products-field
A J B~R! whereA is thes-field on the probability space supportingW~+! andB~R! is
the Borel-s-field on R+ This is true becauseL has continuous sample paths; cf+ Chung
and Williams, 1990, p+ 146; Karatzas and Shreve, 1991, Remark 1+14+! Now, for every
x [ R, the local timeL~1, x! has a distribution that has point mass 2F~6x6! 2 1 at the
origin and otherwise has a density given byk~ y! 5 ~20p!102 exp@20+5~ y 1 6x6!2# for
y . 0 and k~ y! 5 0 else ~cf+ Borodin and Salminen, 1996, p+ 127, eq+ ~1+3+4!!+
Consequently,

EL~1, x! 5 2@f~6x6! 2 6x6~12 F~6x6!!# # 2f~6x6! # ~20p!102

for all x [ R, and hence the r+h+s+ of ~A+2! is not less than

~20p!102E
2`

`

6T~sx! 2 ET~sx!6 dx 5 ~20p!1026s216 7T 2 ET71 # ~20p!1026s216«+ (A.3)

Step 3+ It follows from steps 1 and 2 that for everyh . 0 we can find a continuous
function ETh :R r R such that

sup
n$1

E6n21 (
t51

n

T~n2102xt ! 2 n21 (
t51

n

ETh~n2102xt !6 , h (A.4)

and

E*E
0

1

T~sW~r !! dr 2E
0

1

ETh~sW~r !! dr * , h (A.5)

hold+ By Lemma A+1 we have

n21 (
t51

n

ETh~n2102xt !
d
&& E

0

1

ETh~sW~r !! dr+ (A.6)

Relations~A+4!–~A+6! establish the result~2+3! by a standard argument~cf+ Anderson,
1971, Theorem 7+7+1!+ n

Proof of Theorem 2.2. The proof of~2+5! is identical to the proof of Theorem 2+1
apart from mainly notational differences+ ~For step 3 observe that because of continuity
of ETh the first a 2 1 terms in~A+6! are op~1! and hence can be omitted+! The second
claim then follows from~2+5! and~2+6!+ n
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Proof of Proposition 2.3. That ~ii ! implies ~i! is seen as follows+ Because of the
monotonicity property we have for 0, x , « the inequality

x6T~x!6 # E
0

x

6T~j!6 dj # E
0

«

6T~j!6 dj , `,

the final integral being finite because of integrability in a neighborhood of zero+ Hence,
x6T~x!6 r 0 for x r 0, x . 0+ A similar argument for2« , x , 0 then shows that
T~x! 5 o~6x621! and hence iso~6x622! for x r 0 andx Þ 0+ The implication~v! n ~i!
is trivial+ The implications~iii ! n ~i! and~iv! n ~i! follow by combining the arguments
for the proofs of~ii ! n ~i! and~v! n ~i!+ It remains to prove~i! n ~2+6!, and for this it
suffices to show thatn21T~n2102xt ! r 0 asn r ` for any givent and any value ofxt +
If xt 5 0, this follows trivially, becauseT~0! is a real number+ Otherwise, we obtain
n21T~n2102xt ! 5 xt

22o~1! 5 o~1! asn r `+ n

APPENDIX B: PROOFS FOR SECTION 3

LEMMA B +1+ Let c be the characteristic function of a distribution with mean zero
and variance 1. Then there existsD, 0 , D , 1, such that6c~s!6 # exp~2s208! holds
for 2D # s # D.

Proof. Theorem 2+3+3 in Lukacs~1970! implies thatc~s! 5 1 2 s202 1 z~s! where
z~s! 5 o~s2! as s r 0 andz~0! 5 0+ Hence, there existsD', 0 , D' , 1, such that
6z~s!6 # s204 for 2D' # s # D' + It follows that 6c~s!6 # 61 2 s2026 1 6z~s!6 # 1 2
s202 1 s204 5 1 2 s204 for 2D' # s # D' + Since c~0! 5 1 andc is continuous, it
follows that there existsD'' , 0 , D'' # D' , such that6c~s!6 . 0 holds for2D'' # s# D'' +
Hence, log6c~s!6 is well defined on2D'' # s # D'' and satisfies log6c~s!6 # log~1 2
s204! on that interval+ A Taylor series expansion of log~1 1 x! aroundx 5 0 then shows
that for 2D'' # s # D''

log6c~s!6 # log~12 s204! 5 2s204 1 j~s!,

wherej~s! 5 o~s2! for s r 0 andj~0! 5 0+ ChoosingD, 0 , D # D'' , 1, small
enough we obtain6j~s!6 # s208 for 2D # s # D+ This implies log6c~s!6 # 2s208 for
2D # s # D+ n

We note that a more careful choice of constant in the preceding proof establishes that
for any 0, d , 1

2
_ there exists aD 5 D~d! as in the lemma such that6c~s!6# exp~2ds2!

holds for2D # s # D+

Proof of Lemma 3.1. It follows from Theorem 3+2+2+ of Lukacs~1970! that7hn7` #
~2p!217Cn71 provided the latter is finite, whereCn denotes the characteristic function of
n2102xn and7+71 denotes theL1-norm w+r+t+ Lebesgue measure onR+ It hence suffices to
bound7Cn71+
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~i! Note thatx0 is independent of the term in brackets in the representation~3+3!
and that both sums in the brackets are independent of each other+ Hence,

Cn~s! 5 E exp~isn2102xn!

5 E exp~isn2102x0!E expSisn2102 (
j51

n

cn2j «jDE expSisn2102 (
j50

`

gn, j «2jD+
Consequently,

6Cn~s!6 # *E expSisn2102 (
j51

n

cn2j «jD* 5 *)
j51

n

E exp~isn2102cn2j «j !*
5 )

j51

n

6c~sn2102cn2j !65 )
j51

n

6c~sn2102 6cn2j 6!6, (B.1)

the final equality following from6c~2s!6 5 6c~s!6+
Now,

E
2`

`

6Cn~s!6 ds5E
6s6#An102

6Cn~s!6 ds1E
6s6.An102

6Cn~s!6 ds, (B.2)

for every A . 0+ Performing the substitutions r sn2102 and using~B+1!, the
first integral on the r+h+s+ of ~B+2! can be bounded by

n102E
6s6#A

)
j51

n

6c~s6cn2j 6!6 ds+ (B.3)

ChooseA 5 ~26c6!21D . 0, where D is as in Lemma B+1 and wherec 5

(i50
` fi , which is nonzero by assumption+ Note that the coefficientsck converge

to c+ Hence there is aK [ N such that6c602 # 6ck6 # 26c6 wheneverk $ K+
Because every characteristic function is bounded by one in absolute value, and
because2A # s # A implies2D # s6cn2j 6# D for n 2 j $ K, the expression in
~B+3! for n . K is in view of Lemma B+1 bounded by

n102E
6s6#A

)
j51

n2K

6c~s6cn2j 6!6 ds# n102E
6s6#A

)
j51

n2K

exp~2s2cn2j
2 08! ds

5 n102E
6s6#A

expS2s2 (
j51

n2K

cn2j
2 08Dds

# n102E
6s6#A

exp~2s2c2~n 2 K !032! ds

# ~32p!102 6c21 6n102~n 2 K !2102 # ~32p!102 6c21 6~K 1 1!102+

Because~B+3! for 1 # n # K is clearly bounded by 2An102 # 6c621DK 102, the
expression in~B+3! is bounded byC1 5 max~~32p!102~K 1 1!102,DK 102!06c6 ,
` for all n $ 1+
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To deal with the second term on the r+h+s+ of ~B+2!, perform the same substi-
tution as before and use~B+1! to obtain

E
6s6.An102

6Cn~s!6 ds# n102E
6s6.A

)
j51

n

6c~s6cn2j 6!6 ds+ (B.4)

With K as defined after~B+3!, we can then forn . K bound~B+4! by

n102E
6s6.A

)
k5K

n21

6c~s6ck6!6 ds, (B.5)

because6c~+!6# 1+ Applying Hölder’s inequality successivelyn 2 K times, ~B+5!
can forn $ K 1 n be bounded by

n102 )
k5K

n21SE
6s6.A

6c~s6ck6!6n2K dsD10~n2K !

# n102 )
k5K

n21S6ck621E
6r 6.A6ck6

6c~r !6n2K drD10~n2K !

# 26c621n102SE
6r 6.A6c602

6c~r !6n2K drD
# 26c621n102~sup$6c~r !6: 6r 6 . A6c602%!n2K2nSE

2`

`

6c~r !6n drD+ (B.6)

BecauseA6c602 5 D04 . 0 andc is the characteristic function of an absolutely
continuous distribution, the supremum in~B+6! is less than one+ In view of ~3+4!,
the r+h+s+ of ~B+6! is therefore bounded by a finite constant forn $ K 1 n+ This
completes the proof of part~i!+

~ii ! In view of part~i! it suffices to show that7Cn71 , ` holds for 1# n , K 1 n+
Note that6Cn~s!6 # 6E exp~isn2102 @(j51

n cn2j «j 1 (j50
` gn, j «2j # !6+ The result

then follows from Lemma B+2, which is given subsequently+
~iii ! This follows from part~ii !, observing that the maintained assumption(j50

` fj Þ
0 implies that at least one coefficient in the representation~3+3! is nonzero for
everyn $ 1+ n

LEMMA B +2+ Suppose Z5 W 1 (j51
m aj «t~ j ! with aj Þ 0 for 1 # j # m and W is

independent of(j51
m aj «t~ j !. Then

E
2`

`

6E exp~isZ!6 ds# ~min6aj 6!21E
2`

`

6c~s!6n ds, `,

provided (3.4) withn # m holds.
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Proof. Observe that6E exp~isZ!6 # 6E exp~is(j51
m aj «t~ j ! !6+ Hence

E
2`

`

6E exp~isZ!6 ds# E
2`

`

)
j51

m

6c~saj !6 ds5E
2`

`

)
j51

m

6c~s6aj 6!6 ds

# )
j51

m SE
2`

`

6c~s6aj 6!6m dsD10m

5 )
j51

m S6aj 621E
2`

`

6c~s!6m dsD10m

# ~min6aj 6!21E
2`

`

6c~s!6m ds# ~min6aj 6!21E
2`

`

6c~s!6n ds, `,

where the second inequality follows from Hölder’s inequality+ n
Proof of Corollary 3.2. This follows from Theorem 2+1, Remark 2+1, and the dis-

cussion in Sections 3+1 and 3+2, in particular, Lemma 3+1 and Remark 3+1+ n
Proof of Corollary 3.3. This follows from Theorem 2+2, Proposition 2+3, Remarks 2+4

and 2+5 ~note that eachxt has an absolutely continuous distribution!, and the discussion
in Sections 3+1 and 3+2, in particular, Lemma 3+1+ n
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