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NONLINEAR FUNCTIONS AND
CONVERGENCE TO BROWNIAN
MOTION: BEYOND THE
CONTINUOUS MAPPING THEOREM

BENEDIKT M. POTSCHER
University of Vienna

Weak convergence results for sample averages of nonlinear functi¢disafete-
time) stochastic processes satisfying a functional central limit thedeag inte-
grated processgare givenThese results substantially extend recent work by Park
and Phillips(1999 Econometric Theorit5, 269—-298 and de Jong2002 work-

ing papey, in that a much wider class of functions is coverEdr examplesome

of the results hold for the class of all locally integrable functjdhsis avoiding

any of the various regularity conditions imposed on the functions in Park and
Phillips (1999 or de Jong2002.

1. INTRODUCTION

A standard tool in the asymptotic theory of integrated processes and else-
where is a functional central limit theorefypically, a real-valued stochastic
process X )ien iS considered such that ¥/?x;,;, 0 = r = 1, converges weakly

to oW(r) (in the spaceD[0,1] of cadlag functions where W(.) represents
Brownian motion and x] denotes the integer part af Frequently then the
asymptotic behavior of a functional of the form* > ; T(n"Y2x,) is of in-
terest Such functionals arise in the construction of test statistics or in the theory
of nonlinear estimation with integrated proces$Psark and Phillips2001).

For continuous real-valued functiofison R an argument based on the con-
tinuous mapping theorem shows that

n 1
n~1> T(n Y2x,) i>f T(oW(r))dr, (1.1)
t=1 0

where %> signifies convergence in distributipfor convenience we include a
formal statement and a proof in Appendix é. Lemma Al and its proafFor
an important subclagsf. Park and Phillips1999 Assumption 21) of the class
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2 BENEDIKT M. POTSCHER

of all processes satisfying a functional central limit theardimeorem 3 in
Park and Phillipg1999 shows that propertyl.1) actually holds for a class of
functionsT wider than the class of continuous functioRsinctions in that class
are dubbed “regular” in Park and Philli§$999. Apart from continuous func-
tions this class contain®.g., locally bounded monotone functions and piece-
wise continuous functionsHowever it does not containe.g., every bounded
(measurablefunction Furthermoreit also does not includéocally) unbounded
functions such a3 (x) = log|x| or T(x) = |x|* for =1 < a < 0 (cf. Park and
Phillips, 1999 Remark 33(c)). [ For functions of this latter kindTheorem %

of Park and Phillipg1999 presents a modified version ¢f.1) with a suitably
“clipped” approximationT, replacingT on the lh.s. of (1.1) under stronger
conditions on the process; cf. Assumption 22 in Park and Phillips1999
However this theorem does not establish propefiyl) itself. We also note
that the proof of this theorenif not the theorem itselfseems to be in errdi

In a recent papede Jong(2002 establishes propertil.1) for a class of func-
tions different from the class of “regular” functions appearing in Theore2n 3
of Park and Phillipg1999 but covering functions such a¥(x) = log| x| and
T(x) = |x]* for =1 < a < 0. Roughly speakingde Jong(2002 allowsT to
have finitely many “poles” and requirésto be continuous and monotone be-
tween polesfurthermore he requireEto be locally integrablé De Jong’s class
neither contains all boundddeasurablefunctions nor all “regular” functions
in the sense of Park and Phillipde establishes his result for processes satis-
fying (the strongerAssumption 2 of Park and Phillipg1999.

In the present paper we establish the regult) under the minimal condi-
tion thatT is locally integrablgin the Lebesgue sensén contrast to Park and
Phillips (1999 and de Jondg2002 we thus are able to avoidny regularity
condition onT save the unavoidable local integrability conditidiote that any
“regular” function in the sense of Park and Phillid€999 is locally bounded
and thus is a fortiori locally integrableef. also Park and Phillipsl999 Re-
mark 33(a)). Thus apart from covering a wider class of functiofisthan in
Park and Phillipg1999 or de Jong2002, our results also have the advantage
of relieving one from the nontrivial burden of verifying regularity conditions
as is necessary when using the results of Park and Phillips or de\dfenfiyst
prove result(1.1) under high-level assumptions on the procgsis Section 2
In Section 3 we provide sufficient conditions on the procegbat imply these
high-level assumptionsaand we obtain corresponding corollariésturns out
that one of these corollari€¢€orollary 33) contains the result in de Joiig002
as a special case in that it covers a much wider class of funcli¢as., func-
tions with infinitely many “poleg or functions that are neither piecewise mono-
tone nor piecewise continuouand at the same time imposes weaker conditions
on x,. Corollary 33, in fact, applies to any locally integrable functiohthat
satisfies a certain growth condition at the origBorollary 32 moreover shows
that this growth condition can be dispensed with if a rather mild condition on
X, namely that the innovations driving, have a bounded densijtis added
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NONLINEAR FUNCTIONS AND CONVERGENCE TO BROWNIAN MOTION 3

Corollary 32 thus only imposes the minimal condition of local integrability on
T. Both of these corollaries cover classes of functions much wider than the
class of “regular” functions considered in Theorem ®f Park and Phillips
(1999. Although the conditions or, maintained by these corollaries are some-
what stronger than the corresponding conditions in TheorghoBPark and
Phillips (1999, we believe that the extra conditions &nin these corollaries
are a small price to pay for the ability to cover much larger function classes
should furthermore be noted that the assumptionx.oin Corollary 33 are
strictly weaker than the assumptions ynemployed in Theorem.3 of Park
and Phillips(1999, thus showing that the “clipping” device of that theorem
can be avoided altogetheSection 4 concludes the main body of the paper and
discusses some generalizations of the results in Sections 2 AticoBoofs are
relegated to the Appendixes

After this paper had been writtethe book by Borodin and Ibragimdit995
came to my attentiarin this important work results of the forifi.1) and also
many other related results are established for the case when the prxpias
random walk with increments that are independent and identically distributed
(i.i.d.) and belong to the domain of attraction of a stable. [&teir results al-
ways assume more in terms of the functibthan we do in the present paper
(For exampleone of the results in Borodin and Ibragimad®95 is for locally
Riemann integrable functiongvhich constitute a much smaller class than the
class of locally Lebesgue integrable functioirs particular locally Riemann
integrable functions are necessarily locally boundeds ruling out functions
with poles) Contrary to Park and Phillipd 999, de Jong2002, and the present
paper Borodin and Ibragimoy1995 do not provide results for the case where
the increments ok, are dependente.g., follow a linear process However it
should be noted that the results in Borodin and Ibragifi®95 are more gen-
eral along another dimensipnamely that the limiting behavior ok, need not
be given by Brownian motion but may be given by some stable proéess
recent paper by Jeganath@®02 takes up this issue and extends it to the case
of dependent increments

2. WEAK CONVERGENCE OF NONLINEAR FUNCTIONALS

Let (X )rex b€ a stochastic process with valuesknWe shall make use of the
following assumptions

Assumption 21. The process1 ¥2x(,), 0 = r = 1, converges weakly to
oW(r), whereW(.) is Brownian motion ori0,1] ando # 0, o € R, holds (As
a conventionx;,; is set equal to zero far < n1.)*

As usual it is understood thatV(0) = 0 as. and thatW(.) has continuous
sample paths.a Furthermoreweak convergence in the preceding assumption
is understood w.t. the Skorohod topology on the spab¢0,1].
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4 BENEDIKT M. POTSCHER

Assumption 2. For everyt € N the distribution oft ~Y/?x, possesses a den-
sity, h;, say w.r.t. Lebesgue measure dR. The densitiesh, are uniformly
boundedi.e., supex|hil.. < oo holds where|.|., denotes the sup-norm

In light of the fact that the distribution df ¥/2x, converges to a normal dis-
tribution under Assumption. 2, the conditions imposed by Assumptior2have
some intuitive appealin particular if a local central limit theorem holdé&cf.
Ibragimov and Linnik 1971, Theorem 43.1), then | h,|., is automatically uni-
formly bounded(at least from some index onwardSufficient conditions for
Assumptions 2L and 22 will be discussed in the next section

Let T be a real-valued Borel-measurable function ®nWe say thatT is
locally integrableif and only if°

K
f IT(X)|dx< oo forany 0< K < co. (2.2)
K

Condition (2.2) is certainly satisfied if T is locally bounded (i.e,
Supx =k | T(X)| < oo for any 0< K < o) but is much less restrictive because it
allows also for many locally unbounded functions sucheas, T(x) = log|X]
andT(x) = |x]%, —1 < a < 0.° (For T in these latter two examplg®r in
similar casekto be a proper real-valued function defined alh of R, a real
number has to be specified as the valueTodt x = 0O; if one desires to set
T(0) = —o0 or T(0) = oo, respectivelyT becomes a function with values in the
extended real linecf. Remarks 21 and 25, which follow.)

The following theorem establishes the main weak convergence result for lo-
cally integrable functiondt is remarkable in that it does not impose any regu-
larity conditions onT beyond(2.2). Its generalization to the case of functions
with values in the extended real line is given in Remark @hich follows

THEOREM 21. Suppose Assumptions 2.1 and 2.2 hold an@ + R is
locally integrable. Then

n‘liT(n‘l/zxt) < flT((rW(r))dr. (2.3)
t=1 0

We note that the integral i(2.3) exists as. and is finite as. if and only if T
is locally integrable(see Karatzas and ShrevEd91 Ch. 3, Proposition 627
and Problem 29; cf. also Park and Phillips1999 Remark 33 (a)).” (In this
sense the local integrability condition is an unavoidable requirement

We note for later use that the integral(ia3) can equivalently be expressed
in terms of local timeThat is

1 oo
f T(aW(r))dr=f T(ox)L(L,x)dx as., (2.4)
0 —o0
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whereL(t, x) denotes Brownian local timf. Chung and Williams199Q Cor-
ollary 7.4).

Remark 21. (Extended Real Functiohs

(@) Theorem 21 also holds ifT is a Borel-measurable function froik to the ex-
tended real lineR U {—oo,00} that is locally integrablde.g., if T(x) = log|x|
for x # 0 and=—o0 for x = 0 or if T(x) = |x|® for x # 0 and =co for x = 0,
—1 < a < 0). To see thigfirst note that we may changkinto a locally inte-
grable real-valued function T* by modifying T only on a set of Lebesgue
measure zerdecause the distribution of is absolutely continuous by Assump-
tion 22, N1 X, T(n"Y¥2x,) coincides withn™* X, T*(n"Y¥2x,) as. and
in particular is as. well defined It hence suffices to show that the integral
JoT(oW(r)) dr is well defined a. and coincides & with [3 T*(aW(r))dr.
For this it is enough to show that for almost every path of Brownian motion the
setD = {r € [0,1]: T (eW(r)) # T*(eWI(r))} is a Lebesgue null setet A
denote the Lebesgue null spt € R: T(x) # T*(x)}. Then L(r) = 1a(aW(r))
and hencd 1(r) dr = [ 1,(eW(r)) dr. Corollary 74 in Chung and Williams
(1990 gives [y 1p(r) dr = [y La(eW(r))dr = [=_ 1(oX)L(1,x) dx = O where
L(t,x) denotes local time and where the last equality follows bec#use a
Lebesgue null set angt # 0. This establishes the claim

(b) Similar reasoning as ife) shows that equatiof2.4) also holds for locally inte-
grable functionsT:R — R U {—co,00}.

Remark 22. If T is a function fromR to RP (or to (R U {—o0,00})P) with
each component being locally integrabikeen Theorem 2 continues to hold
(where the .h.s. of (2.3) is defined componentwi$eThis follows from Theo-
rem 21 (and Remark 2) combined with the Cramér—Wold device

Remark 23.

(a) If x; satisfies the convergence condition in Assumptichahd if Assumption 2
holds then necessarilyg # 0 holds as is easily seen

(b) If x, satisfies the convergence condition in Assumptiah But with o = 0, and
if T is continuousthen(2.3) continues to hold by Lemma.A However this is
not necessarily true for arbitrary locally integral§éren “regularj T as the fol-
lowing example show? Let x, = E}Zl(sj — g_1) = & — go wWhere the random
variablese, are ii.d. standard normalThen the convergence condition in Assump-
tion 2.1 is satisfied witho = 0. Let T(x) = 1(_, 0)(X) and note thaT is locally
integrable and is even “regular” in the sense of Park and Phill}899. The
l.h.s. of (2.3) is now equal tn™* XL, 1, ¢ (g — &o), Which converges.a to
E(L(—o.0)(&t — €0)|€0) = ®(&0), Which is positive(® denoting the standard nor-
mal cumulative distribution functioft.d.f.]). The th.s. of (2.3), howeveris equal
to T(0) = O, becauser = 0.

Theorem 21 is in fact a special case of a more general result that makes use
of a weaker version of Assumption22
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Assumption 2*. There exista € N such that for every = a the distribu-
tion of t~¥2x, possesses a density, say w.r.t. Lebesgue measure d Fur-
thermore sup=.| hll.s < oo holds

Assumption 2* does not restrict the distribution of,1 =t < a, at all. Of
course under any assumption implying existence and boundedness fof
1=t < a, Assumption 2* becomes equivalent to Assumptiot22As with
Theorem 21, Theorem 22 is formulated for real-valued functionds general-
ization to the case of extended real functions is given in Remdskvehich
follows.

THEOREM 22. Suppose Assumptions 2.1 and 2.2* hold an& B R is
locally integrable. Then

n 1
NI T Y2%) 5 | T(eW(r))dr. (2.5)
t=a 0
If, additionally,
a—1
nt > T(n"Y2x,) = 0 in probability, (2.6)
t=1

then (2.3) also holds. (In case=al we use the convention that the sum in (2.6)
is zero.)

Of course Theorem 21 is a special case of Theoren2Zwith a = 1). It is
not difficult to see that existence and boundednesk,dbr 1 =t < ais a
sufficient condition for(2.6) whenT is locally integrablé’ However under this
condition onh; Assumptions 2 and 22* coincide Theorem 22 is therefore
useful as an alternative to Theoreni 2n situations where existence and uni-
form boundedness of the densitibscan only be established from a certain
index onward(cf. Section 3 and wherg?2.6) can be verified from some source
other than boundedness lnffor 1 =t < a. For exampleif T is bounded in a
neighborhood ok = 0 (a fortiori if T is continuous ak = 0), condition (2.6)
immediately follows regardless of the distribution xf 1 = t < a.® More
general sufficient conditions are given in the following proposition

PROPOSITION &B. For Borel-measurable TR — R consider the follow-
ing conditions:

(i) T(x) =o0(|x|7?) forx — 0, x # 0.
(i) T is Lebesgue-integrable in a neighborhood of=x0, |T(x)| is increasing on
(—&,0) and decreasing oK0, &) for somee > 0.
(iii) T is Lebesgue-integrable in a neighborhood ofx0, |T(x)| is increasing on
(—&,0) and bounded o1(0, ) for somes > 0.
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(iv) Tis Lebesgue-integrable in a neighborhood ef 8, |T(x)| is bounded ori—&,0)
and decreasing o0, ¢) for somee > 0.
(v) T is bounded oii—&,0) and also on(0, &) for somee > 0.

Then each of conditions (ii)—(v) implies (i), which in turn implies (2%).

Simple corollaries to Theorem2that immediately follow from the preced-
ing discussion are given nexh the important case whesg has an absolutely
continuous distribution for ali the conditions in these corollaries can be weak-
ened somewhasee Remark .4, which follows

COROLLARY 24. Suppose Assumptions 2.1 and 2.2* hold an®RT R
is locally integrable. If T satisfies (k) = o(|x|2) for x = 0, x # 0, then the
weak convergence result (2.3) holds.

COROLLARY 25. Suppose Assumptions 2.1 and 2.2* hold an®RT— R
is locally bounded (and Borel-measurable). Then the weak convergence result
(2.3) holds.

As already notegthe “regularity” conditions o in Park and Phillipg1999
and de Jond2002, respectivelyimply local integrability Furthermoretheir
respective “regularity” conditions imply conditigi) in Proposition 2.2 Hence
these “regularity” conditions also impl§2.6). Thus the “regularity” conditions
in Park and Phillipg1999 and also in de Jon¢2002 are stronger than the
conditions imposed oif in Theorems 2L and 22 and Corollary 24; cf. also
Example 32 in Section 3

Remark 24. Supposel: R — R is Borel-measurable and suppose that each

X, 1 =1t < a, has a(possibly unboundeddensity Then(2.6) already follows

if condition (i) in Proposition 23 holds only outside of a set of Lebesgue
measure zerd® Consequentlygiven the above assumption oq, Corol-
lary 2.4 already holds under this weaker form of conditioh We also note
that this weaker form of conditionii) is satisfied if e.g., T is essentially
bounded in(—e,0) U (0,e) for a suitables > 0.}* In particular given the
above assumption oxi, Corollary 25 then holds even for essentially locally
boundedT.

Remark 25. (Extended Real Functiohs

(a) Similarly as in Remark 2, the first claim in Theorem .2 also holds for locally
integrable function§ from R to R U {—o0,00}; the second claim also holds pro-
vided that the expression i{2.6) is well defined(at least on a sequence of sets
Q, with P(Q,,) = 1 asn — 0).*® This is e.g., the case if eack;, 1=t < a, has
a (possibly unboundeddensity As another examplehe expression irf2.6) is
also always well defingdegardless of the distribution &f, 1 =t < a, if T takes
its values only inR U {oo} (or in R U {—oo}).
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(b

=

Suppose the functiof in Proposition 23 takes now values iR U {—c0,00).16
Then again each of the conditiofis)—(v) implies(i). (Note that under any of the
conditions(i)—(v) the functionT is in fact real-valued ori—¢, £)\{0} for a suit-
ablee > 0.) Furthermorecondition(i) continues to imply2.6) if T(0) is finite
or if none of the distributions of;, 1 = t < a, has positive point mass at= 0.
In particular Corollary 24 continues to hold foll : R — R U {—co,00} if addi-
tionally T(0) is finite or if none of the distributions of;, 1 =t < a, has positive
point mass ak = 0.

Remark 24 continues to hold for function§: R — R U {—oo,00}. In particular
Corollary 24 also holds foiT : R — R U {—o0,00} already under the weaker form
of condition(i), provided eaclx;, 1 =t < a, has a(possibly unboundéediensity
Similarly, Corollary 25 already holds for essentially locally bound&dR —
R U {—o0,00} under the same provision fa, 1=t <a. (If T: R - R U {—o0,00}

is locally boundegwe are back to the case of real-valiiEdand hence Corollary
2.5 directly applies without any further provision ag 1=t < a.)

~

(c

Remark 26. Supposel:R - Ror T:R — R U {—oo,00} is essentially lo-
cally bounded and suppose that Assumptiordsathid 22* hold. Then certainly
(2.5) holds(evenT locally integrable would suffice We stresshowever that
(2.3) need not follow in general without further assumptioRemarks 24 and
2.5(c) provide such additional condition&lternatively; it follows from the pre-
ceding discussion th&2.3) also holds if we additionally assume that condition
(i) in Proposition 23 holds and thatT (0) is finite or none of the distributions
of x;,, 1 =t < a, has positive point mass at= 0.

Remark 27. Similarly as in Remark 2, Theorem 22 continues to hold for
functionsT with values inRP. For functionsT with values in(R U {—o0,00}) P
the same is also true for the first claim in Theorerf, 2nd it is true for the
second claim provide¢2.6) is well defined for any linear combinatiam'T. A
corresponding remark applies to Corollarie4 and 25, Remark 24, and their
extensions discussed in Remark.2

3. SUFFICIENT CONDITIONS AND COROLLARIES

In this section we discuss the important special case whénan integrated
processwhich is the case exclusively considered in Park and Philll299
and de Jond2002. Assume that fon = 1 the procesg, takes the form

n

Xn=Xo+ X W, (3.1)

t=1

with X being independent of the process )=, and withw; given by

N:%@%y (3.2)
=
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Here (&) are ii.d., E(gj) = 0, Eg? < o0, 37| ¢;| < o0, and 22, ¢; # O.
Without loss of generality we shall set the variancespéqual to oneFurther-
morg it is assumed that; has a densitysay g. The preceding assumptions
will be kept throughout Section 3 and will be referred to as the maintained
assumptions of Section 3

3.1. Sufficient Conditions for Assumptions 2.2 and 2.2*
To begin with note thatx, can be represented as

n oo

Xn=Xo+ | X Coj&jt 2 Ynjej|s (3.3)
i=1 i=o0

where ¢,j = 3 ¢ and y,; = 7)., ¢ It immediately follows that

n~%¥2x, has a density for every = 1 (cf. Lukacs 197Q Theorem 33.2, and
observe that the term in brackets (&3) cannot be identically zero because
220 ¢; #0).

To motivate the sufficient conditions for Assumption? and 22* given in
Lemma 31, which follows we start with a preparatory and informal discus-
sion It is easy to see that any distribution given by a convolution has a bounded
density if at least one factor in the convolution has a bounded deityse-
quently the densityh, of n~Y2x,, is guaranteed to be bound&dr every fixed
n = 1) if the (common densityq of ¢; is boundedWe note that a sufficient
condition for boundedness af is thatis, the characteristic function of;, is
absolutely integrabléLukacs 197Q Theorem 2.2). However the densityh,
can be bounded even if the densifys unboundedTo see how this can hap-
pen consider for the moment the special case whegris a random walki.e.,
wherew; = g, and wherex, = 0 (for simplicity). Becausen™2x,, is then the
sum ofn i.i.d. random variablests densityh,, is the (scaled n-fold convolu-
tion of g itself. Now, for exampleif g has a polgit can happen that this pole is
“smoothed” out by the convolution operatioresulting in a bounded density
h,. Related to this observation is the fact that in cases where the characteristic
function s (s) of g; is not absolutely integrahlehe characteristic function of
n~Y2x, can be integrabl¢implying thath, is bounded from somen onward
because it is theth power ofy (evaluated an Y2s) and becauséy| = 1
holds It follows that absolute integrability of a power gfwill imply (individ-
ual) boundedness dfi,, at least from a certaim onward and thus will be a
central condition in the followingAs it turns out this central condition implies
not onlyindividual boundedness dif, (from a certainn onward but alsouni-
form boundednesérom a certainn onward. Returning to the case of general
Xn @s in(3.1), we note thatdepending on the behavior of the coefficiegis
often h, is in fact a convolution of much more thanfactors of the formq
(sometimes even of infinitely many factdr&Not too surprisinglyin this case
the previously mentioned central condition ¢rwill automatically deliver in-
dividual boundedness df, for every n= 1.
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With ¢ denoting the characteristic function gf we shall therefore consider
the following integrability condition

f |f(s)|” ds< oo forsomer € R withl=v < co. (3.4)

Recall that(3.4) with » = 1 implies boundedness gfand that(3.4) becomes
less stringent as increasesln particular characteristic functions correspond-
ing to unbounded densities can sati$8/4) with v > 1; cf. Remark 31(b),
which follows We mention here that a simple sufficient condition {814) is
l(S)] = O(s™") ass — oo for somen > v~ 1. In particular if |¢(s)| = O(s™")
for somen > 0, then(3.4) holds for somes = 1. The latter condition with ©”
strengthened tod” is used in Park and Phillip€l999 and de Jong2002; see
Section 33 for more discussian

The following lemma provides sufficient conditions for Assumptior&sénhd
2.2* and is inspired by Section.d of Ibragimov and Linnik(1971). Part(i) of
the lemma improves upon Lemma 1 in de J§&G02. Recall thath, denotes
the density ofn=%?x,,.

LEMMA 3.1. Suppose condition (3.4) holds. Then the following statements
are true.

(i) There exist g € N and a real number C such that fora ng
Ihall. =C (3.5)

holds; i.e., Assumption 2.2* is satisfied.

(ii) If, for every n=1, at leastr coefficients of the innovations, —co <j =n, in
(3.3) are nonzero, then (3.5) holds forznng = 1.7 That is, Assumption 2.2 is
satisfied.

(iii) If » =1, then (3.5) holds for r= ng = 1. That is, Assumption 2.2 is satisfied.

(The constants C in (i)—(iii) and also the index eepend only oy and the
coefficientse;.)

The more difficult part in the proof of the preceding lemma is to establish
Assumption 2*, i.e.,, the uniform boundedness of the densitigdrom a cer-
tain indexng onward Once Assumption .2* is known to hold Assumption
2.2 then follows underny condition that impliegindividual) boundedness of
h, for everyn (in fact for everyn, 1 = n < a, sufficeg. Parts(ii) and (iii)
provide such condition§ he basic observation here is that whend@ef) holds
and the distribution ok, is the convolution of not less tham terms of the
form q (not counting the factor corresponding xg), then | h,||, is finite (cf.
Lemma B2 in Appendix B. The additional assumptions in pai(is) and (iii)
precisely imply this for the distribution af,,. As already mentionedound-
edness ofy, i.e,

lale < co, (3.6)
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implies that| h,|.. is finite for everyn = 1. Thus(3.6) is an alternative condi-
tion under which Assumptions2 and 22* are equivalent(We note that3.4)
with » = 1 implies(3.6); cf. Lukacs 197Q Theorem .2.)*8

Note that the conditions in Lemmal3i) and(ii) allow the densityq of ¢; to
be unboundedwhereas the conditions for paiiti) imply boundedness df.

Remark 31.

(a) The assumption in pafti) is certainly satisfied if the coefficients; are all pos-
itive (negative.

(b) The additional assumption in paiit) cannot be removedConsider the example
wherew; = g — g1 + &, anda¥?s; + « is gamma-distributed with shape
parametew satisfyings < « < 3 and scale parameter 1 and whege= 0 (for
simplicity). Thenx, = &, + &_1 whereasx, for n # 2 is always the sum of at
least threes;’s. Consequentlythe density ofx, (being a shifted and scaled ver-
sion of a gamm&a«,1)-distribution has a polewhereas the density of,, n # 2
(being a shifted and scaled version of a ganmi/a)-distribution with 8 =
3a > 1) is bounded Note that the characteristic functigf(s) of g; satisfies
| (s)| = (1 + a~1s?)"%2 and thusy satisfies(3.4) for v > 1/a > 2 but not
for v = 1/a.

3.2. Sufficient Conditions for Assumption 2.1

Sufficient conditions for Assumption.2 abound in the literaturd-or the sake
of comparability with Park and Phillipel999 and de Jong2002 we shall use
the condition

X2yl < oo, (3.7)
i=o

which is also used in Park and Philligs999 (cf. their Assumption 2). A
stronger summability condition is used in Assumptio @f Park and Phillips
(1999 and also in de Jon@002. It is well known that—under the maintained
assumptions of Section 3—conditidB.7) implies our Assumption .2 with

o = 372, ¢; (cf, eg., Philips and Solp 1992 Theorem 34 and Re-
marks 22(ii) and 35(i)).

3.3. Corollaries and Comparison with Park and Phillips (1999)
and de Jong (2002)

The following corollary collects some of the results that can be obtained by
combining Theorem .2 with the sufficient conditions discussed in Sectiors 3
and 32.

COROLLARY 3.2. Suppose the processsatisfies the maintained assump-
tions of Section 3 and (3.4) and (3.7) hold. LetM —> R or T:R - R U
{—o00,00} be locally integrable. Then
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n 1
NI T Y2x,) % | T(eW(r))dr
0

t=1

holds witho = X%, ¢;, provided the densitiestare (individually) bounded
for every t= 1.1° This latter condition is satisfied if any of the following con-
ditions holds.

(i) The density of g of; is bounded; i.e., (3.6) holds.
(i) The characteristic functiony of g is integrable; i.e., (3.4) holds with = 1.
(i) ¢; > O0forallj=0o0r¢; <Oforallj=0.

The preceding corollary gives conditions that imply the desired convergence
result forall locally integrable functionsThe next corollary operates under
weaker conditions on the processat the expense of imposing a mild growth
condition on the functiof.

COROLLARY 33. Suppose the processsatisfies the maintained assump-
tions of Section 3 and (3.4) and (3.7) hold. Letf > Ror T:R - R U
{~o0,00} be locally integrable. Then# 3, T(n"¥2x,) % Jo T(oW(r))dr
with o = 3 ¢; holds for some & 1.2° Furthermore,

n‘léT(n‘l/zxt)i>f T(oeW(r))dr
t=1 0

holds, provided Tx) = o(|x|72) for x — 0, x # 0, except possibly on a set of
Lebesgue measure zero. This latter condition is satisfied if any of the condi-
tions (ii)—(v) of Proposition 2.3 hol&

A simple special case of Corollary3is the following result

COROLLARY 3.4. Suppose the processsatisfies the maintained assump-
tions of Section 3 and (3.4) and (3.7) hold. Letf > R or T:R - R U
{—o00,00} be essentially locally bounded (and Borel-measurable). Then

n 1
NI T Y2x,) % | T(eW(r))dr
0

t=1

Corollary 32 is based on TheoremX2and hence on Assumptior22whereas
Corollary 33 derives from Theorem.2 and Assumption.2*. As already noted
Assumption 2 differs from Assumption 2* only in that it additionally re-
quires the first few densitiek, to be (individually) bounded As a conse-
quencethe requirements on the procegsn Corollary 32 are only marginally
stronger than in Corollary.3; e.g., adding condition(3.6), i.e., that the density
g of g; is boundedsuffices The advantage of Corollary.3thus is that it does
not impose any regularity condition on the functi®rbut delivers the desired
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convergence result fanylocally integrable functior (at a small cost in terms
of additional conditions o).

It is easy to see that Corollary3contains the convergence result in de Jong
(2002 as a special caséirst, de Jong uses stronger assumptions on the pro-
cessx; (namely the stronger summability conditiol;~, j|¢;| < oo, existence
of moments ofg; of order higher than 2and the stronger conditiofs(s)| =
o(s™ ") for somen > 0 on the characteristic functiaft). Secondthe class of
functions considered in Corollary.3is much wider than the class considered
in de Jong(2002 as the discussion subsequent to Corollagyt2Zas shown

Comparing Corollary 3 with Theorem 2 in Park and Phillipg1999, we
observe that Corollary.3 (and a fortiori Corollary 2) allows for a much wider
class of functions than Theorem23in Park and Phillipg1999. In particular
Corollary 33 not only covers anyessentially locally bounded functior(cf.
Corollary 34) but also allows for locally unbounded functions and extended
real-valued functiong Recall that any function that is “regular” in the sense of
Park and Phillips1999 is locally bounded With respect to the conditions im-
posed on the process, note that Corollary 3 makes use of the same assump-
tions as used in TheoremZ3in Park and Phillipg1999 plus the additional
condition (3.4) and the assumption that the innovatiogjspossess an abso-
lutely continuous distribution(Comparing Corollary 2 with Theorem 2 in
Park and Phillipg1999 we see that a further mild condition such ag., bound-
edness of the density &f has been addedThis seems to be a modest price to
pay for the ability to cover much larger classes of functidrigally, we also
point out that the conditions axj in Corollary 33 are strictly weaker than the
assumptions underlying Theoren#3n Park and Phillipg1999 (cf. Park and
Phillips, 1999 Assumption 22), which provides a weak convergence result for
“clipped” versions of certain locally unbounded functiofsThis shows that
the “clipping” device of that theorem can be avoided altoget{iRecall from
Section 1 that the proof of this theorem seems to be in gcforlso note 2

We illustrate the corollaries with some examples

Example 3.1

Suppose the process satisfies the assumptions of CorollarnB3Let T;(x) =
log|x| andTx(x) = |x|* with =1 < a < 0, whereT,(0) andT,(0) are set to an
arbitrary element oR U {—oo,00}. It is easy to see that both functions are lo-
cally integrable and satisf§;(x) = o(|x|2) and T,(x) = o(|x|?) for x = 0,

x # 0. Corollary 33 then implien 2 31, T,(n"Y2x,) % I Ti(aW(r)) dr for
i=12witho =37, ¢.

The functions in the preceding example do not satisfy the “regularity” con-
ditions for Theorem 2 in Park and Phillip§1999 but do satisfy the “regular-
ity” conditions of de Jong2002. The following example is covered neither by
the results in Park and Phillipd999 (because the functions are not locally
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bounded nor by the results in de Jon@002 (because the functions are not
piecewise monotone

Example 3.2

Suppose the process satisfies the assumptions of Corollary83Let T3(x) =
(log|x])sin(x~1) andT,(x) = |x|*sin(x 1) with —1 < & < 0, whereT;(0) and
T,(0) are set to an arbitrary elementRfU {—oo,00}. Again both functions are
locally integrable and satisfl5(x) = o(|x|~2) andT,(x) = o(|x|~2) for x = 0,

x # 0. Corollary 33 then impliesn 2 3, T,(n"¥2x) % [2 T, (¢ W(r)) dr for

i =34 with o = 32 ¢;. In fact, Corollary 33 applies as well to the func-
tions Ts(x) = (log|x|)S(x) and Tg(x) = |x]|*S(x) with —1 < a < 0, where
T5(0) andTs(0) are set to an arbitrary element RfU {—oo,c0} and whereSis
an arbitrary(essentially local bounded Borel-measurable function

4. EXTENSIONS

The results in Section 3 allow for dependence in the increments of the process
X; as they are modeled as a linear procédss$s quite natural to ask to what
extent the results in Section 3 can be generalized to other dependence struc-
tures such as mixingiear epoch dependena@nd so onObserve that the re-
sults in Section 2 are of a generic nature in that they rely only on Assumptions
2.1 and 22 (or 2.2*), which do not specify a particular dependence structure
Because functional central limit theorems as expressed in Assumpficer@
widely available for various dependence structunesluding those mentioned
previously the question reduces to whether or not Assumptic¢h(@r 2.2*)

holds for such dependence structuresparticular the validity of a local cen-

tral limit theorem would imply Assumption.2*. Not much seems to be avail-
able in the literature in that regard

A key feature of the results in this paper is that the random variabfésx
have to have uniformly bounded densiti@s$ least from some index onward
In view of local central limit theorems this appears to be a quite natural condi-
tion. Whether or not this condition can be relaxed while retaining the validity
of the convergence result for all locally integrable functidndo not know Of
course relaxation is certainly possible if the convergence result is to be estab-
lished only for a smaller class of functios(e.g., Assumption 2 or 22* can
be completely dropped for continuoiis.

Suppose the convergence reg@lB) holds for a functiorH and suppose the
function T satisfiesT(Ax) = g(A)H(x) for all A > 0 and allx € R with a
suitable functiorg (e.g., T is homogenous of degreeandH = T). Then(2.3)
applied toH can be rewritten as

(ng(nl/z))*}n:T(xt) N le(aW(r))dr. (4.1)
t=1 0
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Now, if T does not satisfy a decomposition as before but does so approxi-
mately in a suitable senseelation (4.1) can still be establishedrhis then
provides convergence results for nonlinear functions of unnormalized inte-
grated processesSection 5 of Park and Phillipgl999 carries through this
program under the assumption that the functibrappearing in the approxi-
mation is “regular” in their senséde Jong and Whan@002 obtain analo-
gous results wheil satisfies the “regularity” conditions of de Jorig002.
Based on the results of the present papeth of these results can be ex-
tended to the situation where the functibhin the approximation is locally
integrable but does not satisfy the regularity conditions in Park and Phillips
(1999 or de Jong(2002.

NOTES

1. The last claim is true if one adopts a definition of piecewise continuity such thathlse |
and rh.s. limits exist and are finite at each point of discontinuity

2. Afunction T can be constructed that satisfies all the conditions of Theordrm3ark and
Phillips (1999 but does not satisfg,T(c,) — 0 as claimed in the proof of that theorethseems
that to salvage that theorem a condition suchrés) = o(|x|™*) for x — 0, x # 0, needs to be
added

3. For T to be defined as a real-valued function on alllgfde Jong(2002 assigns the value
zero toT at the pole locationsThe results in the present paper do not rely on taisitrary
assignment and also work for functions that assume the vatueis—oo; cf. Remarks 2L and 25.
(The arguments in these remarks also show that an assignment such as the one in 2@0Bisy
in fact inconsequential under the assumptions on the process made in that paper

4. If, instead x;] is set equal to an arbitrary random variakleor r < n~1, which is defined
on the probability space supportirig;), an equivalent assumption is obtainédore generally
Assumption 21 is unaffected by any modification made to finitely many elementexgt

5. The integral in expressiof2.2) is to be understood in the sense of Lebesgue

6. Condition (2.2) is of course also satisfied i is only essentially locally bounded.e., if
ess-sup=x|T(x)| < oo for any 0< K < oo, where ess-sup denotes the essential supremum w
Lebesgue measure

7. The integral over the positive paft' (cW(r)) and also the integral over the negative part
T (ocW(r)) exist as. for every Borel-measurabl€, because almost every sample pathif.) is
continuous The argument in the proof of TheoremlZhen also establishessafiniteness of both
these integrals under local integrability

8. Of courseit is trivially true for any real-valued if, e.g., x; = 0 with probability one for all
teN.

9. To see this note that for evetyl =t < a, (andM > 0) we haveP(n™!|T(n"Y2x,)| >
8) = P HT(nY2)| > 8, In"Y2| = M) + P(In"¥2| > M) = (nd) 17| T((t/n)¥2x)| x
1 g (UMY20h () dx + 0(1) = (08) L (n/)¥2 [%,[T(2)|h((n/)¥22) dz + o(1) = 67 X
n~Y2t=Y2|h |, [N, T(2)|dz+ o(1) = o(2) by local integrability ofT.

10. Although (2.6) is true for such function3, we stress that2.6) is in generainot true with-
out further conditions even for locally integrable

11 In fact, each one ofii)—(v) even impliesT(x) = o(|x| %) for x = 0, x # 0.

12. Observe that any function “regular” in the sense of Park and Phillip89 is locally bounded
and thus satisfie¢v) of Proposition 23. Furthermore any function “regular” in the sense of de
Jong (2002 satisfies at least one @fi)—(v) in Proposition 23 as is easily seen

13. To see thisnote that after suitably modifyin@ on a set of Lebesgue measure zexondi-
tion (i) in Proposition 23 is satisfied for the modified function and that this modification changes
the sum in(2.6) at most on a set of probability zero as a result of the assumptiog,dn=t < a.
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14. More generallyif modifying T on a set of Lebesgue measure zero results in a function that
satisfies one of condition§i)—(v) of Proposition 23, then condition(i) holds outside a set of
Lebesgue measure zero

15. That is there exists a sequence of sddg with P(Q,) —» 1 asn — oo such that
T(n"Y2x(w)) = oo and T(n"¥?xg(w)) = —co do not hold simultaneously fap € Q, and some
l=s<al=t<a

16. As a point of interest we note that for real-valu€dondition (v) is in fact equivalent to
boundedness of on (—¢, ), but this is not necessarily so Tf takes its values ifR U {—oo,00}.

17. Lemma B2 in fact shows that if at least coefficients ofej;, —co < j = n, in (3.3) are
nonzero for agiven n then|hy|,, is finite for thisn.

18. Together with Lemma (i) this provides an alternative proof of pdiii) of Lemma 31.

19. In fact boundedness df; for 1 =t < ng suffices whereng is as in Lemma a(i).

20. Namely for a = ng; cf. Lemma 31(i).

21 For a minor generalization of this implication see Remavk&nhd note 14
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APPENDIX A: PROOFS FOR SECTION 2

LEMMA A .1. Suppose TR — R is continuous and Assumption 2.1 holds with the
requirements # 0 omitted. Then (1.1) holds.

Proof. DefineZy(f) asfolT( f(r)) dr for everyf € D[0,1]. Because eache D[0,1]
is bounded and measuralgiillingsley, 1968 p. 110 and becausg is continuousZ+( f)
is well defined and finiteObserve thatl.1) can be rewritten as

Zr(n V2% ) + n HT(0Y2x,) — T(0] S Zr(oW(.),
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where the second term on thé.b. is 0,(1) becauseT is continuous anah—?x,, con-
verges in distributionlt hence suffices to establish th#&(n~Y/2x;,;) converges to
Z+(oW(.)) in distribution Suppose now thd € D[0,1] converges td € C[0,1] (the
subset of all continuous functions @ 1]) w.r.t. the Skorohod topologyrhen this con-
vergence is in fact uniforngBillingsley, 1968 p. 112). In particular it follows that f,
andf are uniformly boundedw.r.t. r € [0,1] andk = 1) by a finite positive constant
say M. BecauseT restricted td —M, M ] is uniformly continuousit follows that T ( f,(r))
converges tar ( f(r)) uniformly on[0,1]. Thus Z+( fy) converges td+( ). It follows
that the set of continuity points &ft containsC[0,1]. Because almost every sample
path of Brownian motion is an element 610,1], it follows that the set of continuity
points ofZt is a set of measure one under the measure inducedMly). Applying the
continuous mapping theorem in its extended fdex., Billingsley, 1968 Theorem 51)
then establishe€l.1). |

LEMMA A .2. Let T: R — R be a locally integrable function. For evegy> 0 there
exists a continuous functioh: R — R such that|T — T, < &, where|T — T, denotes
21T (x) — T(x)] dx.

Proof. For anym € Z define T(x) = T(X) 1imm+1)(X). BecauseT is locally inte-
grable the functionT,, is certainly Lebesgue-integrable oven, m+1]. Hence there
exists a continuous functiof,: [m m + 1] — R such thatfr:‘“ﬁm(x) — Tm(X)] dx <
(e/3)27IM~1 (cf. Bauer 1978 (43.6) and(44.2)). ExtendT,, to a function on all ofR
by settingT,(x) = 0 for x & [m,m + 1]. Obviously then|T,, — Ty < (g/3)27Im—1
holds Note thatT,, is continuous orR except possibly ak = mandx = m + 1. For
0 < 7 < 3 let gn, denote the “trapezoidal” function given ly,,(x) = 1 for
m+n=x=m+1-m,gn,(X)=0forx=mandforx =m+ 1 and that linearly
interpolates betweer = m andx = m + n and also betweew = m + 1 — 5 and
x = m + 1. Then the functionT,gm,, iS continuous on all ofR and vanishes out-
side of(m,m + 1). By choosingn(m) small enoughdepending ol ande) we obtain
T = TmOmpmls < (/30271 Define T = 3¢z TnOm n(m @nd note thafl is
continuous onR. Since clearlyT = X ., T, holds we arrive at|T — T[, =
EmEZHTm - ngm,n(m)Hl = EmEZ(”Tm - Tm”l + ”Tm - ngm,n(m)”l) <
Smez(e/3)271M = ¢, u

Proof of Theorem 2.1. The idea of the proof is to use Lemma2Ato reduce the case
of locally integrableT to the case of continuou and then to appeal to LemmaZl
which in turn rests on the continuous mapping thearem

Step 1 Let & > 0 and letT be the continuous function guaranteed by Lemma A
Then for alln = 1 we have

E|n—t E T(n"Y2x,)—n7? E T(n"Y2x)| =n"? E E|T(n"¥2x,) — T(n"Y2x,)|

t=1

n—t En: ) IT((t/m)M2x) — T((t/n)¥2x)|h () dx
t=1 J -0

n*1/2 i t—l/2 on |T(Z) _ 'I~'(z)|ht((n/t)1/2z) dz

t=1

=n""2 E V2T = Tlalhe,, = 2¢ SuIdl helle. (A1)

t=1
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Step 2 Lete > 0 and letT be as in step.10bserving thatT (ox) — T(ox)| is locally
integrable we may apply Corollary.4in Chung and Williamg1990 to obtain

1 1 1
EU T(aW(r))dr—f T(oW(r)) dr sEf IT(eW(r)) — T(oW(r))| dr
0] 0 0

= EJOO |T(ox) — T(oXx)|L(1, x) dx= foo |T(ox) — T(oX)|EL(1, x) dx. (A.2)

For the last equality iffA.2) we have used Fubini’s theoremhis is justified because
the functions involved are nonnegative and becdudex) is a measurable stochastic
process(That is the map(w, X) — L(1, x)(w) is measurable wt. the products-field

A ® B(R) whereA is theo-field on the probability space supportiig(.) andB(R) is
the Borelo-field on R. This is true becausk has continuous sample pattts. Chung
and Williams 199Q p. 146, Karatzas and Shrey&991, Remark 114.) Now, for every

X € R, the local timeL (1, x) has a distribution that has point mas®@2x|) — 1 at the
origin and otherwise has a density given kiy) = (2/7)Y2exg—0.5(y + |x|)?] for

y > 0 andk(y) = 0 else(cf. Borodin and Salminenl1996 p. 127, eq (1.3.4)).
Consequently

EL(Lx) = 2[¢(Ix]) — [x[(1 = @(|x])] = 2¢(|x]) = (2/m)"?

for all x € R, and hence theh.s. of (A.2) is not less than

(2/7r)1/2f T(ox) = T(ox)| dx = (2/m)Y?|o H|T = T, = (2/m) 2o~ Ye. (A.3)

—o0

Step 3 It follows from steps 1 and 2 that for every> 0 we can find a continuous
function T,: R — R such that

SUPE[N™t D T(n¥2x) —n"t X T,(n"Y2x)| <7 (A.4)
n=1 t=1 t=1
and
1 1 _
E‘f T(eW(r))dr —f T,(eW(r))dr| <n (A.5)
0 0
hold. By Lemma Al we have
n 1
nt> T, Y%) S J T,(cW(r)) dr. (A.6)
t=1 0

Relations(A.4)—(A.6) establish the resul2.3) by a standard argumeii¢f. Anderson
1971, Theorem 77.1). |

Proof of Theorem 2.2. The proof of(2.5) is identical to the proof of Theorem2
apart from mainly notational differenced-or step 3 observe that because of continuity
of 'I’,, the firsta — 1 terms in(A.6) are op(1) and hence can be omittg¢drhe second
claim then follows from(2.5) and(2.6). n
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Proof of Proposition 2.3. That (ii) implies (i) is seen as followsBecause of the
monotonicity property we have for € x < ¢ the inequality

x\T(x)\sfo |T(§>|d§s£|T(§)\d§<oo,

the final integral being finite because of integrability in a neighborhood of. 2¢eace
X|T(x)| = 0 for x — 0, x > 0. A similar argument for—e < x < 0 then shows that
T(x) = o(|x|~1) and hence i®(|x|~2) for x — 0 andx # 0. The implication(v) = (i)
is trivial. The implicationgiii) = (i) and(iv) = (i) follow by combining the arguments
for the proofs of(ii) = (i) and(v) = (i). It remains to provéi) = (2.6), and for this it
suffices to show that =T (n"%2x,) — 0 asn — oo for any givent and any value oxk;.
If x; = O, this follows trivially, becauseT (0) is a real numberOtherwise we obtain
n~T(n"Y2x,) = x;20(1) = 0(1) ash — oo. n

APPENDIX B: PROOFS FOR SECTION 3

LEMMA B.1. Lety be the characteristic function of a distribution with mean zero
and variance 1. Then there exisis 0 < A < 1, such that|¢(s)| = exp(—s%/8) holds
for —A = s=A.

Proof. Theorem 23.3 in Lukacs(1970 implies thaty(s) = 1 — s2/2 + £(s) where
Z(s) = 0(s?) ass — 0 and/(0) = 0. Hence there exists\’, 0 < A’ < 1, such that
|£(s)| = s%4 for —A' = s= A'. It follows that [¢(s)| = |1 — s%/2| + [{(s)| =1 —
§%/2 + s?/4 =1 — s?/4 for —A' = s = A'. Since(0) = 1 andy is continuous it
follows that there exista”, 0 < A” = A’, such that(s)| > 0 holds for—A” = s= A",
Hence log|(s)| is well defined on—A” = s = A” and satisfies logs(s)| = log(1 —
s%/4) on that interval A Taylor series expansion of l¢d + x) aroundx = 0 then shows
that for —A” = s= A"

logly(s)| = log(1— s%4) = —s%/4 + £(s),

where&(s) = o(s?) for s — 0 and£(0) = 0. ChoosingA, 0 < A = A” < 1, small
enough we obtainé(s)| = s%/8 for —A = s = A. This implies logy/(s)| = —s%8 for
—A=s=A. |

We note that a more careful choice of constant in the preceding proof establishes that
for any 0< 6 < 3 there exists & = A(8) as in the lemma such that(s)| = exp(—8s?)
holds for—A = s= A.

Proof of Lemma 3.1. It follows from Theorem 2.2. of Lukacs(1970 that|h,|. =
(27) 7| W,|, provided the latter is finitewhere¥, denotes the characteristic function of
n~Y2x, and|.|l; denotes thd ,-norm wr.t. Lebesgue measure @ It hence suffices to
bound | W, ;.
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(i) Note thatx, is independent of the term in brackets in the representd8®)
and that both sums in the brackets are independent of each dimere

¥, (s) = Eexp(isn~¥2x,)

n [es]
= Eexp(isn~¥?x,)E exp(isn‘l/2 21 Co j ) Eexp(isn‘l/2 > Ynie-| )
fo

j=0

Consequently

n
[P, (9)| = ‘Eexp<isn1/2 21 Coj 81)’ =

n
Hl Eexp(isn~"?c,_; &)
1= 1=

= [Ty (sn e, )l = [Tl (sn?[c, ), (B.1)
=1 i=1
the final equality following from|¢(—=s)| = |#(9)].
Now,
[ iwords= [ wonas+ [ wioras ®2)
—o0 |s|=AnY? |s|>AnY?

for every A > 0. Performing the substitutioa — sn~%/2 and using(B.1), the
first integral on the.h.s. of (B.2) can be bounded by

n*2 [T1¥(slc, )l ds (B.3)

|s|l=Aj=1

ChooseA = (2|c|)"*A > 0, where A is as in Lemma BL and wherec =
>0 éi, which is nonzero by assumptioNote that the coefficients, converge
to c. Hence there is & € N such that/c|/2 = |c | = 2|c| wheneverk = K.
Because every characteristic function is bounded by one in absolute aaldie
because-A = s= Aimplies —A = s|c,j| = A for n — j = K, the expression in
(B.3) for n > K is in view of Lemma B1 bounded by

n-K n—K
n/? IT ¥ (slcoj)| ds= n*/2 [T exp(—s?c2 ;/8) ds
|s|l=Aj=1 |s|l=Aj=1

n—K
= nl/zf exp(—s2 > c§1/8> ds
|s|l=A j=1

= nlfzf exp(—s?c?(n—K)/32) ds
[s|[=A

= (32m)Y?|c 7t nY2(n— K) Y2 = (32m)Y?|c L |(K + 1)V2
BecausgB.3) for 1 = n = K is clearly bounded by &n*/? < |c|"*AK Y2, the

expression in(B.3) is bounded byC; = max((327)Y2(K + 1)Y2 AKY?)/|c| <
oo foralln= 1.
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To deal with the second term on thé.s. of (B.2), perform the same substi-
tution as before and ugd.1) to obtain

fu Al/zl‘l’n(s)ldss n/2 ITlw(slc,;Dlds (B.4)

[s|>A j=1

With K as defined afte(B.3), we can then fon > K bound(B.4) by

n—1

nt/2 I1 I (slcdds (B.5)

[s|>A k=K

becauseéys(.)| = 1. Applying Holder’s inequality successively— K times (B.5)
can forn = K + » be bounded by

n—1 1/(n—K)
n¥2 ] (J lr(sle)n K dS>
k=K |s|=A
n—1 1/(n—K)
=n"2[] (Ickllf df(r)l”Kdr)
k=K [r|>A|cl

§2 —1,1/2 and
|-t <J,|>Ac/2*””)' r)
= 2[c| InV2(sup{l(1)]: [r] > A|c|/2}>””< i |¢<r>"dr>. (B.6)

BecauseA|c|/2 = A/4 > 0 andy is the characteristic function of an absolutely
continuous distributionthe supremum iiB.6) is less than ondn view of (3.4),
the rh.s. of (B.6) is therefore bounded by a finite constant foe K + ». This
completes the proof of patt).

(ii) In view of part(i) it suffices to show thatW,||; < oo holds for 1= n < K + ».
Note that|W,(s)| = |[Eexplisn V2[ 3L, ¢,_j&; + 220 ¥n ;- )|. The result
then follows from Lemma B2, which is given subsequently

(iii) This follows from partii), observing that the maintained assumptEfi0 @ #

0 implies that at least one coefficient in the representaf®B8) is nonzero for
everyn =1 |

LEMMA B.2. Suppose Z W + 3" @&, Witha; # 0for 1=j = mand W is
independent oE;" ; ;). Then

fm |Eexp(isZ)|ds= (min|aj\)‘1fm [ (9)|” ds< oo,

provided (3.4) withv = m holds.
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Proof. Observe thatE exp(isZ)| = |Eexp(is 2”1 ;&j,)|. Hence

| ieexstiszias= [ T iwesapids= | TTiwtslaybics
—oo —ooj= —o0j=

m >} 1/m m =) 1/m
=1 wtsteprmes] "= 1 (1o [ wesimes

[}

(I ds= (minlay ) [ w91 ds< en,

= (min|a]- ‘)71'[

where the second inequality follows from Hoélder’s inequality n

Proof of Corollary 3.2. This follows from Theorem 24, Remark 21, and the dis-
cussion in Sections.B and 32, in particulay Lemma 31 and Remark 3. u

Proof of Corollary 3.3. This follows from Theorem 2, Proposition 23, Remarks 24
and 25 (note that eacl, has an absolutely continuous distributipand the discussion
in Sections 3L and 32, in particular Lemma 31. |

https://doi.org/10.1017/50266466604201013 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604201013

