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A numerical analysis is presented of the Rayleigh–Taylor instability (RTI) in the
presence of an external electric field, with an emphasis on nonlinear phenomena
associated with the evolution of complex interfacial morphology. The Poisson
equation for the electric field and the Navier–Stokes equation for fluid flow field
are solved simultaneously along with the Cahn–Hilliard phase field equation for
interface deformation and morphology development. Numerical model is validated
against the existing data and the results of linear analysis. Extensive numerical
simulations are carried out for a wide range of fluid flow and electric field conditions.
Computed results show that, in both linear and nonlinear regimes, a horizontal field
suppresses the RTI, while a vertical electric field aggravates it. However, the vertical
field does not affect the secondary instability; specifically, it does not contribute to
the baroclinical generation of vorticity and consequently does not affect the roll-up
formation. Linear analysis predicts that the RTI remains the same with the interchange
of the dielectric constants of the two fluids, which is also confirmed by the numerical
model for small interface deformations. This prediction, however, does not hold true
in the nonlinear regimes in that complex interfacial morphology may evolve quite
differently if the dielectric constants of two fluids are interchanged.

Key words: instability control, MHD and electrohydrodynamics, multiphase flow

1. Introduction
The Rayleigh–Taylor instability (RTI) occurs when a heavier fluid initially sits

above a lighter one in a gravity field, which was first discovered by Rayleigh (1883,
1900) and later applied to all accelerated fluids by Taylor (1950). Small perturbations
at the initially flat heavy/light fluid interface would set in the instability and evolve
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into complex nonlinear structures in the form of ‘bubbles’ and ‘spikes’ (Sharp 1984).
At the early stage the ‘bubble’ rises exponentially based on the linear mechanism, and
then it attains a more realistic velocity as the nonlinear interaction comes into play.
Eventually, vortex structures form around the ‘spikes’, leading to the RTI turbulent
mixing (Chertkov 2003; Boffetta et al. 2009; Sohn 2009). Since the initial study
on the RTI over a century ago, the topic has attracted continuous interest because
both of its fundamental importance and of its widespread applications in the fields of
geophysics (Michioka & Sumita 2005), astrophysics (Ribeyre, Tikhonchuk & Bouquet
2004) and inertial confinement fusion (Kilkenny et al. 1994).

Extensive research on the RTI has been carried out with theoretical, experimental
and numerical approaches. Theoretical analysis was conducted first by Rayleigh
(1883), who performed a linear stability analysis describing the early stage growth of
the RTI initiated with a single mode perturbation under the gravitational force. More
than half a century later, Taylor (1950) extended the model to the general stability
cases of heterogeneous fluid accelerated in a direction perpendicular to the plane of
stratification. Different theoretical models were also developed by other researchers
(Sharp 1984; Kull 1991). Laboratory experiments were also conducted with focus
on initial condition effects, late stage turbulent mixing and so on (Layzer 1955;
Dalziel 1993; Schneider, Dimonte & Remington 1998; Dimonte & Schneider 2000;
Olson & Jacobs 2009). Numerical simulation of the RTI has gained its popularity
since 1980s (Youngs 1984; Tryggvason 1988). The RTI now has been considered
as the benchmark of two-phase flow problems, and also used as the canonical case
for different numerical studies (Ding, Spelt & Shu 2007). From the perspective
of numerical simulation, the RTI falls into the category of free surface problem
associated with two-phase flows. For the study of these problems, numerical methods
have been developed including, but not limited to, the volume of fluid (VOF) method
(Hirt & Nichols 1981), the finite element projection method (Guermond & Quartapelle
2000), the phase field method (Jacqmin 1999; Ding et al. 2007; Celani et al. 2009a)
and the lattice Boltzmann method (Chen & Doolen 1998; He, Chen & Zhang
1999). Among these numerical treatments, phase field has been demonstrated to be
effective and accurate in simulating the RTI (Jacqmin 1999; Ding et al. 2007; Celani
et al. 2009b) and hence is employed in this study. While the RTI evolves from
initial random perturbations (i.e. multiple interacting wavelengths), a single mode
analysis is of fundamental importance as it serves as a foundation for more complex
mathematical models of the multimode RTI (Dimonte 2004). Despite its apparent
simplicity, the single mode RTI has not yet been well understood and continues to
be the intensive research subject of experimental (White et al. 2010; Renoult et al.
2011), numerical (Lee, Kim & Kim 2011; Ramaprabhu et al. 2012) and theoretical
(Abarzhi 2010) studies.

It is well known that an imposed electric field would change the stability of an
interface (Melcher & Schwarz Jr 1968; Craster & Matar 2009; Joshi, Radhakrishna &
Rudraiah 2010). Grandison, Papageorgiou & Vanden-Broeck (2007, 2012) investigated
the influence of an electric field on the Kelvin–Helmholtz instability (KHI), and
found that a strong enough field could stabilize the system with the assistance of
surface tension. Mohamed & El Shehawey (1983a,b) presented a weakly nonlinear
analysis of perpendicular electric field on the RTI. Recently, Barannyk, Papageorgiou
& Petropoulos (2012) studied the suppression effect of horizontal electric field on
the RTI, assuming that the fluids are inviscid and the flow is irrotational. Both
initial value problem and travelling waves were discussed. Korovin (2011) considered
a perturbation as a 2-D planar surface wave in the RTI with the presence of a
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tangential electric field, and discussed the effect of the angle between the field and
surface wave vector. Recently it was found that the instability of a polymer interface
in perpendicular electric field could be used to generate the micro/nano patterning in
a polymer film (Wu & Russel 2009).

There appears to have been little work on the nonlinear effects of electric field on
the RTI, with exceptions given by Cimpeanu, Papageorgiou & Petropoulos (2014) and
Rahmat et al. (2014). The former is concerned with stability and growth rates in a
horizontal electric field, and the effect of electric field on the interfacial morphology
is not studied. The latter, on the other hand, deals with electrically conducting
fluids only. The present study is concerned about the effect of the electric field
on the RTI, focused on the nonlinear phenomena and the associated interfacial
morphology development driven by a combined effect of gravity and an external
electric field. This paper is organized as follows. The mathematical model, along
with governing equations, is given first and the numerical solution methodology is
described. Having validated the model, numerical simulations were conducted to
determine the effect of physical quantities on the nonlinear interactions characterizing
the electrohydrodynamic RTI, such as the electric field (including the orientation and
strength), surface tension and viscosity. Computed results are presented showing that
for two dielectric fluids in a Rayleigh–Taylor system, a vertical electric field not
only aggravates the RTI but also weakens the roll-ups at the falling tip. In addition,
the permittivity ratio of the two liquids can have a profound effect on the nonlinear
development of interface deformation and morphologies.

2. Mathematical model
The problem under consideration is sketched in figure 1, where two immiscible

viscous and incompressible fluids are confined in an infinite horizontal channel with
the depth of l. The density, viscosity and electrical permittivity of the fluids are
ρi, µi and εi (i = 1, 2), respectively. Both fluids are dielectric materials separated
by a charge-free interface. The surface tension coefficient between the two fluids is
represented by γ . As usual, the upper fluid bears a larger density ρ1 < ρ2, which is
susceptible to the classical RTI: the amplitude would be amplified if a perturbation
arises on the interface. An electric field is imposed upon the system. The evolution
of the interfacial morphology under the influence of the electric field is the subject
of numerical analysis in this paper. In figure 1, both the horizontal and vertical fields
are plotted for the sake of illustration. These two cases will be discussed separately.

The details of the numerical model have been described elsewhere (Yang et al.
2014); thus only a brief account is given here. The phase field as an effective tool
for modelling the free surface problem has been employed to study the classical RTI
(Jacqmin 1999; Ding et al. 2007; Celani et al. 2009b). The phase field, electric field
and fluid flow field are governed by the equations described below.

2.1. Phase field equation
In the phase field, a phase parameter C is introduced such that C = 1 and C = 0
correspond to two distinctive phases, respectively. The evolution of the phase
parameter C traces out the deformation of the free surface. For the problem considered
in this study, both diffusion and convection effects contribute to the development of
phase field. The convective Cahn–Hilliard equation (Jacqmin 1999) is employed here
to describe the evolution of the phase field,

Ct + u · ∇C−M∇2φ = 0 ∈Ω × T, (2.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

54
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.54


400 Q. Yang, B. Q. Li, Z. Zhao, J. Shao and F. Xu

y

O x

l

H0

w

FIGURE 1. (Colour online) Schematic of the electrohydrodynamic RTI problem, the lower
left corner is chosen as the original point of the coordinate. The electric field is in either
horizontal or vertical direction.

where Ω is the geometric computational domain, with its boundary defined by ∂Ω ,
T is the computing time duration, u represents the fluid velocity, M is the phase field
mobility and is taken as a constant in this study and φ is the chemical potential which
is defined as φ = δf /δC. The free energy density function, f , which is a function of
phase parameter C, takes the following form,

f (C)= 1
2ξγ α|∇C|2 + ξ−1γα · 1

4 C2(1−C)2 ∈Ω × T, (2.2)

where γ is the surface tension coefficient, ξ is a measure of interface thickness and
α = 6

√
2 is a constant.

2.2. Electric field equation
In dielectric materials, an external electric field polarizes the molecules, and the
molecular dipoles so induced in return modifies the electric field. The resulting
electric field is governed by the Gauss law ∇ · (εr(C)E)= qe (Jackson 1999), where
εr(C) is the relative dielectric permittivity, E electric field intensity and qe free charge
density. In this study, we focus on the fluids with small conductivity (e.g. benzene).
For the case under consideration, the time scale of the flow tc = Lc/Uc (Lc being the
length scale and Uc the characteristic velocity) is much smaller than that of the charge
relaxation tσ = ε0εr/σ(tc� tσ or σ � ε0εrUc/Lc). As a result, the free charge may be
neglected in the media (qe = 0), and only polarized charges need to be counted for
the electrical performance during the process.

Within the framework of electrohydrodynamics, the dynamic current is small,
and hence the magnetic field is negligible. Also, the curl of the electric field is
approximately zero (∇ × E = 0), which allows us to write E = −∇V (where V is
the electric potential). Thus the governing equation of the electric field reduces to
the Laplace equation (Tomar et al. 2007; Hua, Lim & Wang 2008; Lin, Skjetne &
Carlson 2012),

∇ · (εr(C)∇V)= 0 ∈Ω × T. (2.3)
The above equation governs both the bulk fluids and the diffuse interface. Indeed,

one of the merits of phase field model is that, by introducing the phase parameter C,
the entire domain can be treated in a unified manner. This is in contrast with a sharp
interface model where the two fluids must be treated separately, and a jump boundary
condition is necessary at the fluid/fluid interface. Compared with the conventional
Laplace equation (∇2V = 0), the permittivity εr(C) in (2.3) is not a constant but a
variable that depends on the phase parameter C. Thus for a two-phase flow problem,
such as the RTI, the permittivity εr(C) varies spatially.
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2.3. Flow field equation
The flow field is described by the governing equations of mass conservation and
momentum balance equations. Both fluids are considered as incompressible, (Ding
et al. 2007)

∇ · u= 0 ∈Ω × T. (2.4)

The Navier–Stokes equations should be modified to allow for variable density and
viscosity. For the present study, the external force includes the gravitational force,
electrical force and surface tension force on the interface. Thus, the vector momentum
balance equation takes the form of

ρ(C)(ut + u · ∇u)=−∇p+∇ · [µ(C)(∇u+∇uT)] + ρ(C)g+ f γ + f e ∈Ω × T,
(2.5)

where f e denotes the electrical force (Tomar et al. 2007; Hua et al. 2008; Lin et al.
2012), f γ accounts for the surface tension force, g is the gravity acceleration, ρ(C)
is the density of fluid, p is the pressure and µ(C) is the viscosity. Note that (2.5)
is valid for the entire computational domain, which is made possible by letting the
physical properties be a function of the phase parameter C. The surface tension force
is expressed as

f γ = φ∇C (2.6)

with φ being the chemical potential. The electrical force f e can be calculated by
taking the divergence of the Maxwell stress tensor (Saville 1997):

f e = ∇ ·
{
ε0εr EE− 1

2
ε0εr

[
1− ρ

εr

(
∂εr

∂ρ

)
T

]
E · Eδ

}
= ∇ ·

[
ε0εr EE− 1

2
ε0εr E · Eδ

]
+ ε0∇

(
1
2

E · E
∂εr

∂ρ
ρ

)
, (2.7)

where E is the electric field intensity, and δ the identity matrix. In the above
equation, the first term on the right-hand side represents the electrical force due to
the electrical charge, which sometimes is referred to as the Korteweg–Helmholtz force.
The second one originates from the changes in material density, usually referred to
as the electrostriction force density. This term is neglected in this paper as the fluid
is incompressible.

2.4. Dimensionless parameters
In order to represent the density difference, the Atwood ratio A= (ρ2 − ρ1)/(ρ2 + ρ1)
is introduced, which is a key factor governing the RTI. The governing equations are
normalized by the characteristic parameters: length Lc, velocity Uc=√AgLc, and time
tc=Lc/Uc=√Lc/Ag. Furthermore, the following dimensionless parameters are defined
to simplify the analysis of the problem,

Re= ρm

√
L3

cg
µm

, We= γ

ρmgL2
c

, Eb = ε0εmV2
0

ρmgLcw2
, Pe= ξ

√
L3

cg
Mγ

, Cn= ξ

Lc
,

(2.8a−e)
where subscript m (= 1, 2) stands for the fluid with a greater value; for instance,
εm = ε2 when ε2 > ε1. The Reynolds number (Re) describes the relative importance
between the inertial (i.e. gravity) and the viscous force. Since gravity is a crucial force
in the RTI, the significance of other forces is measured by dimensionless parameters in
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relation to gravity. The Weber number (We) reveals the relative magnitude of interface
tension force and gravity force. The electrical Weber number (Eb) describes the ratio
of the electrical over the gravity force. It is worth noting that for a vertical electric
field Eb= ε0εmV2

0/(ρmgLcl2). The viscosity and electrical permittivity ratios of the two
fluids are represented by λµ=µ2/µ1 and λε = ε2/ε1, respectively. For the phase field,
two more parameters need to be defined: the Peclet number (Pe), which characterizes
the ratio of the convective over diffusive mass transport and the Cahn number, Cn,
which is defined as the ratio of the interface thickness over the characteristic length.
For the problem in study, the two fluids are confined between two plates with a
distance l. This height l is of importance and the characteristic length is chosen as
Lc = l/4, also we assume w= λ= l/4 as the default value.

With the dimensionless parameters defined above, the governing equations can be
normalized, namely,

Ct + u · ∇C− 1
Pe
∇2φ = 0, (2.9a)

∇ · (εr(C)∇V)= 0, (2.9b)
∇ · u= 0, (2.9c)

Aρ(C)[ut + (u · ∇)u] = −∇p+
√

A
Re
∇ · [µ(C)(∇u+∇uT)] + ρ(C) j

− 1
2

Ebβ
2|∇V|2∇εr(C)+Weφ∇C, (2.9d)

where φ = δf /δC and f (C) = (1/2)α|∇C|2Cn + (1/4Cn)αC2(1−C)2. Also, β is a
shape factor with β =w/Lc for a horizontal electric field, and β = l/Lc for a vertical
electric field. The dimensionless density, viscosity and relative permittivity are further
given by

ρ(C) = (2AC+ 1− A)/(1+ A), (2.10a)
µ(C) = C+ (1−C)/λµ, (2.10b)
εr(C) = C+ (1−C)/λε. (2.10c)

2.5. Boundary and initial conditions
For the fluid flow field, no-slip conditions are imposed at the top and bottom walls,
u = 0 and the Neumann conditions are applied at side boundaries, ∂u/∂n = 0. For
the electric field imposed in the vertical direction, Dirichlet boundary conditions are
applied on a pair of electrodes, V = 1 at y= l/Lc, and V = 0 at y= 0, and Neumann
conditions for the side boundaries, ∂V/∂n= 0 at x= 0 and x= 1. For the horizontal
electric field, the boundary conditions are different: V = 1 at x = 0, V = 0 at x = 1,
and ∂V/∂n= 0 at y= l/Lc and y= 0. For pressure, its normal derivatives are all set
to zero, ∂p/∂n= 0. The Neumann boundary conditions are imposed at all boundaries
for phase field and chemical potential, ∂C/∂n = 0, and ∂φ/∂n = 0; this guarantees
the conservation of total mass. Initially, the flow field is set zero everywhere, which
means the system starts to evolve from quiescence. The initial interface is assumed to
take a shape of a cosine wave, below which the phase parameter is set as C= 0 and
above which C= 1.

2.6. Numerical methodology
All the equations are discretized by the finite difference method and solved
numerically for each time step. The detailed computational methodology is described
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elsewhere (Yang et al. 2014) and thus only an outline is given here. A collocated
grid is used and the temporal terms in the above equations are discretized explicitly.
Calculations start with the solution of the phase field C. Then, the density, viscosity
and dielectric constant are updated using (2.9). In the present model, all the
parameters (the density ρ(C), viscosity µ(C) and permittivity εr(C)) are treated as
linear functions of the phase parameter C across the interface. The specific form of
the function is insignificant for the problem under consideration since the interface is
rather thin compared with the whole computational domain. The first-order derivative
terms employ an upwinding scheme to increase the numerical stability. The Laplace
equation for the electric field is discretized using a central difference scheme and
solved by the method of successive over-relaxation (SOR).

A projection method (Yang et al. 2014) is employed to solve the Navier–Stokes
equation together with the mass conservation equation and with the force terms
obtained from the electric field. For a large density ratio, spurious currents may occur
at the interface, which may cause numerical instability. Numerical experience suggests
that the harmonic interpolation, 1/ρi+1/2 = (1/ρi + 1/ρi+1)/2, is useful in preventing
this numerical instability (Yang, Li & Ding 2013) and it is thus used in the present
study. Having obtained the fluid flow field, the phase field is then solved again for
the next time step. This procedure repeats itself until the preset time duration is
reached. The time steps and grid sizes are so chosen to ensure the accurate and
stable numerical solutions.

3. Results and discussion
3.1. Model validation

Unless otherwise indicated, all the results in the following will be presented in
dimensionless units introduced in the previous section. To validate our model, the
classical RTI without electric field was simulated, and then compared against the
available numerical results. The same parameters are chosen as given by Ding et al.
(2007). Specifically, the Atwood ratio A= 0.50, Re= 3000, the height l= 4w, surface
tension is not considered and the fluids are assumed to be incompressible. In the
present case of zero surface tension, the Cahn–Hilliard equation simply amounts
to the interface tracking only. The initial interface being located in a rectangular
domain [0, 1] × [0, 4] at y(x)= 2+ 0.1 cos(2πx), which represents a planar interface
superimposed by a perturbation of wavenumber k = 1 with an amplitude 0.1w. The
top of the rising fluid and the bottom of the falling fluid are monitored, with the
results presented in figure 2. As can be seen, the computed results from the present
model agree well with those of Ding et al.

After validating the numerical model for the conventional RTI without an electric
field, the next step is to verify its correctness with the presence of an electric field.
To do so, the results from numerical simulations are compared against those by
linear stability analysis for the growth rate of RTI in a horizontal electric field (see
appendix A for detailed linear stability analysis). Substituting the parameters into
(A 14), the results by linear stability analysis are obtained and shown in figure 3,
where the numerical results from the present model are also given. For this case, the
gravity is ignored, which is equivalent to removing the term ρ(C) j from (2.9d). One
detail needs to be clarified about the neglecting of gravity in this particular case. To
maintain the same definition of the dimensionless parameters involving gravity (such
as the Reynolds number), g is kept as a constant and assigned a value of g= 9.8. The
interface is assumed to be f (x, t)= estA0 cos(kx), and the real part of s represents the
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FIGURE 2. (Colour online) Time evolution of the positions of rising and falling tips, along
with the results given by Ding et al. Both time and position are dimensionless.
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FIGURE 3. (Colour online) Comparison of the growth rates of interface perturbation
predicted by linear stability analysis and by the present numerical model for horizontal
electric fields imposed. Gravity and surface tension are ignored, and other parameters are
listed in table 1. The growth rate is normalized by t−1

c =
√

Ag/Lc.

growth rate of the perturbation. As shown in figure 3, s is negative, indicating that the
instability is suppressed by the horizontal electric field. It is noted that the numerical
data in figure 3 was obtained via the best fit of function f (x, t). As it can be seen,
the numerical results compare well with those of the linear analysis, validating the
correctness of numerical phase field model. It is worth pointing out that in order to
compare with linear stability analysis, the initial amplitude of perturbation A0 is set
sufficiently small for it to fall into the linear region (i.e. A0 � λ, λ = 2π/k). More
comparisons between the numerical and linear results are presented in the subsequent
sections.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

54
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.54


Numerical analysis of the Rayleigh–Taylor instability in an electric field 405

Parameters Value

Reynolds number (Re) 1000
Atwood ratio (A) 0.50
Weber number (We) 0.001
Cahn number (Cn) 0.03
Ratio of viscosity (λµ) 1
Ratio of electrical permittivity (λε) 3
Ratio of height/width (l/w) 4

TABLE 1. Parameters used in calculations.

For convenience, a set of default parameters are defined and listed in table 1. These
values of parameters were used in the results to follow unless otherwise indicated. In
the present study, the Peclet number (Pe) is taken as a function of surface tension
Pe= 2.5/γ . If the surface tension is zero, the Peclet number would lose its meaning
and phase field simply tracks the interface evolution caused by convection.

3.2. Stability analysis
3.2.1. Electrohydrodynamic RTI in a horizontal electric field

The effect of a horizontal electric field on the RTI is assessed in this section.
It is known that a tangential electric field stabilizes the interface between two
dielectric materials (Melcher & Schwarz Jr 1968). For the specific case of the
RTI, according to the linear stability analysis, the horizontal electric field would
suppress the perturbation on the interface (Barannyk et al. 2012). In the following,
the numerical model described and validated above is employed to conduct the fully
nonlinear analysis.

In the phase field model, the interface is represented by the contour of phase
parameter C = 0.5. The initial perturbation is set as y(x) = 2 + 0.0025 cos(2πx).
As the interface deformation evolves, the positions of ‘rising tip’ (i.e. bubble) and
‘falling tip’ (i.e. spike) are monitored. For the convenience of subsequent discussion,
a parameter 1h is defined to quantitatively characterize the instability. This important
quantity stands for the structure height, which is the difference between the positions,
viz.

1h= yr − yf , (3.1)

where yr and yf measure the vertical positions of the rising and falling tips,
respectively. A small 1h means the interface deformation is small, while a large
value indicates a serve deformation.

The configuration being studied is shown in figure 1 with the electric field applied
in the horizontal direction. For this case, both gravity and surface tension are
considered. Computed results are plotted in figure 4(a), which shows the time change
of structure height with different electric fields whose strength is characterized by
the electrical Weber number Eb. Clearly, the instability is driven by a competing
mechanism between the gravity and the horizontal electric field, with the former
destabilizing the interface and the latter (electric field) stabilizing it. For the field-free
case (Eb= 0), the gravity effect dominates and the structure height grows continuously
and the instability is aggravated. A weak electric field slows down the instability but
does not suppress it, which is evident with the cases of Eb= 0.25. However, a strong
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FIGURE 4. (Colour online) (a) Time evolution of structure height as affected by horizontal
electric fields (Eb). The electrical permittivity ratio of the two fluids is ε2/ε1= 3 : 1. Other
parameters are the same as in table 1. Solid lines represent numerical results and discrete
dots indicate linear analysis. (b) The electrical force distribution along the fluid–fluid
interface. The scale bar measures the magnitude of the electrical force.

electric field (i.e. a large Eb) overwhelms the destabilizing effect of gravity and
completely suppresses the interface perturbation. For the cases considered, with a
field strength of Eb = 0.4, the perturbation is suppressed by the horizontal electric
field. Moreover, an oscillation occurs during the suppression process, which is also
reported in a previous study (Cimpeanu et al. 2014). For an even stronger electric
strength (Eb= 0.8 and 4.0), the perturbation decays faster and the period of oscillation
becomes shorter. For a comparison, the linear analysis results (see appendix A) are
also shown in figure 4; clearly, the numerical results are consistent with the linear
analysis. From the computed data, one may readily construct a stability diagram
demarking the stable and unstable regions, the boundary of which is defined by the
critical voltage. According to the present calculations, the critical value of Eb is 0.32.
This is in consistency with the critical value of Eb = 0.3 predicted by linear stability
analysis (see appendix A for details).

To provide a better physical insight into the suppression effect of a horizontal
electric field, the distribution of the electrical force (which in this case is referred
as the Korteweg–Helmholtz force) along the interface is plotted in figure 4(b).
It is noted that the plotted electrical force is normalized by ε0|ε2 − ε1|V2

0/(2w2),
which is the force on a flat interface. In phase field representation, the fluid–fluid
interface is characterized by a diffusive interface layer, whose thickness is defined by
0.016C 6 0.99 (C is the phase parameter). This is in contrast with a sharp interface
model across which flux experiences a jump. The electrical force given in figure 4(b)
is calculated by integrating the force density across the thickness of the diffusive
interface layer, whose shape is given by y(x)= 2+ 0.0025w cos(2πx) at the onset of
the instability. Although the force distribution evolves with time, a snap shot at an
instant provides useful information on how it affects the interface development. As
it is seen in figure 4(b), the force is normal to the interface and points downwards.
It is strong at the rising tips on the two sides of the domain, pushing the interface
downwards. At the falling tip, on the other hand, the electric force is weak. Also,
the fluids are incompressible and need to satisfy the constraint of mass conservation.
As a result, the interface is pushed upwards. This is the mechanism by which a
horizontal electric field suppresses the RTI.
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FIGURE 5. (Colour online) (a) Evolution of structure height under the influence of
horizontal electric fields (Eb). The electrical permittivity ratio is ε2/ε1 = 1 : 3. Other
parameters are the same as in table 1. Solid curves – numerical results and discrete dots
– linear analysis. (b) The distribution of the electrical force along the interface. The scale
bar denotes the magnitude of the electrical force.

The Korteweg–Helmholtz force is known being normal to the interface and pointing
from the fluid with larger permittivity to the smaller one, thus the force depends on
the relative values of the electrical permittivities of the two fluids. In the previous
section, ε2>ε1 was discussed. The case of ε2/ε1= 1 : 3 is considered here. Figure 5(a)
shows the evolution of structure height with different electrical Weber numbers. The
results are similar to the case of ε2/ε1 = 3 : 1; namely, a weak horizontal electric
field slows down the instability and a field strong enough can completely suppress
it. The electrical force along the interface is displayed in figure 5(b). In contrast to
figure 4(b), the force in this case points upward, being the largest at the falling tip
and gradually decreasing from the falling to the raising tip along the interface. Under
the action of this electrical force (figure 5b), the falling tip is pushed upward and the
rising tip is squeezed downward due to the conversation of mass, thereby resulting in
a suppression effect on the instability.

For both ε2/ε1 > 1 and ε2/ε1 < 1, a horizontal electric field produces a suppression
effect on the RTI. The suppression effect is also predicted by a linear stability analysis
(see appendix A for details), where the effect of the electric field in the dispersion
equation appears as ε0(ε2 − ε1)

2E2
0/(ε2 + ε1) (see (A 14)). This term remains the same

for both ε2 >ε1 and ε2 <ε1, but it produces an opposite effect to gravity. The reason
of comparing the two cases (ε2/ε1 = 3 : 1 and 1 : 3) is to indicate that the stability
characteristic resembles each other for the two cases but the detailed action of the
electric forces on the interface is different. Also, the interfacial morphology differs for
the two cases, which may not be explained by linear analysis, as it will be discussed
in § 3.3.

3.2.2. Electrohydrodynamic RTI in a vertical electric field
The electric field in different orientations has different effects on the interface

instability. It is known that the electric field perpendicular to the interface would
aggravate the instability (Taylor & Mcewan 1965). Recently this phenomenon is
exploited to manufacture the micro/nano structure on thin polymer films (Wu &
Russel 2009). In this section, the effect of a vertical electric field on the RTI is
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FIGURE 6. (Colour online) (a) Evolution of structure height under the action of vertical
electric fields (Eb). The electrical permittivity ratio is ε2/ε1 = 3 : 1. Other parameters are
the same as in table 1. Solid lines represent numerical results and discrete dots indicate
linear analysis. (b) The electrical force distribution along the interface. The scale bar
indicates the magnitude of the electrical force.

discussed. Consistent with the previous section, the structure height is monitored
during numerical simulation in order to quantify the instability. The case of
ε2/ε1 = 3 : 1 is studied first, and the results are plotted in figure 6. Both numerical
and linear analytical results are depicted in figure 6. As expected, they agree with
each other when the structure height is small; and deviate from each other for a large
structure height as the nonlinear effect comes into play. Clearly, both numerical and
linear analytical results indicate that the vertical electric fields tend to enhance the
RTI. The structure height accelerates higher in time with a vertical electric field, and
the interface becomes more and more unstable with an increase in the electric field
strength. The stability analysis in a vertical electric field can also be performed by a
linear theory (see appendix B for details), which yields the same conclusion. In an
attempt to uncover the mechanism for this effect, the electrical force distribution along
the interface is depicted in figure 6(b). The force acts downward with a maximum at
the falling tip and gradually reduces in magnitude along the interface to a minimum
at the rising tip. For the vertical electric field, the electrical forces are normalized by
ε0|ε2 − ε1|V2

0/(2l2). Following the same line of argument as discussed in the above,
the force distribution in figure 6(b) accelerates the downward motion of the interface
at the falling tip and the upward motion at the rising tip due also to the conservation
of mass, thereby enhancing the RTI.

The case of ε2/ε1= 1 : 3 is shown in figure 7(a), where similar results are obtained,
that is, the RTI is enhanced and becomes stronger with a larger electrical Weber
number. Electrical force along the interface at the initial occasion is plotted in
figure 7(b). The orientation and the distribution of the electrical force along the
interface both are almost opposite to those in the case of ε2/ε1 = 3 : 1. The force
points upwards with the largest value at the rising tip and the smallest one at that
falling part, which, in combination with the requirement for mass conservation, results
in an aggravation of the RTI.

3.3. Interfacial morphology of electrohydrodynamic RTI
The RTI usually evolves in the following pattern: one part of fluids falls downward
(sometimes referred as ‘spike’) while the other rises up (i.e. ‘bubble’), with sometimes
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FIGURE 7. (Colour online) (a) Evolution of structure height under the action of vertical
electric fields (Eb). The electrical permittivity ratio is ε2/ε1 = 1 : 3. Other parameters
are the same as in table 1. Solid curves – numerical results and discrete dots – linear
analysis. (b) The electrical force distribution along the interface. The scale bar denotes
the magnitude of the electrical force.

roll-ups appearing at the tip due to nonlinear interaction (Sharp 1984). In § 3.2, the
stability of interface under the action of electric fields was discussed. The instability
was quantified by the structure height difference between the rising and the falling
tips. One key issue is the interfacial morphology of the RTI, which is the subject
of this section. The interface exhibits various morphology patterns even with the
same structure height. It is reasonable to conjecture that the electric field orientation
and strength may play important roles in determining the evolution of the interfacial
morphology. Here attention is focused on two aspects of the interfacial morphology,
with one concerning the width of the ‘spike’ and/or the ‘bubble’, and the other the
appearance of the roll-ups at the tip. As in the above, the influence of the horizontal
and vertical electric field on the interfacial morphology will be discussed in separate
sections below.

3.3.1. Interfacial morphology under the action of horizontal electric field
Some representative results of the interfacial morphology and flow field in the

presence of horizontal electric fields are shown in figure 8. Specifically, figure 8(a)
shows the evolution of the interfacial morphology and flow fields for Eb= 0.1, which
is a relative small value. Initially, the flow is characterized by a relatively simple
pattern, with the heavy fluid falling down at the centre and the light fluid rising
up at the two sides. As time progresses, the tail forms around the ‘spike’ and the
vertex starts to emerge. The interface evolves into an even more complex pattern
as time continues. With an increase in field strength, as shown in figure 8(b) for
the case of Eb = 0.2, the ‘spike’ is shorter and thinner compared with figure 8(a).
The suppressing effect of a horizontal electric field on the RTI illustrated here can
be explained by the same mechanism as discussed above. With a stronger field, the
instability is weakened by the electrical force along the interface, and only a small
part wedges into the light fluid to form a shorter and thinner ‘spike’. Comparison of
figure 8(a) and (b) shows that the similar flow field is obtained except that the falling
part is smaller with a stronger electric field. An even stronger electric field (Eb= 1.0)
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FIGURE 8. (Colour online) The RTI under the action of different horizontal electric fields:
(a) Eb = 0.1, (b) Eb = 0.2 and (c) Eb = 1.0. Other parameters are the same as in table 1.
The dimensionless time for the panels, from left to right, are t∗= 0, 2.0, 3.0, 4.0 and 5.0.
The dashed line represents the equilibrium interface. The vector flow field and streamline
contours are plotted at right for t∗ = 3.0 and t∗ = 5.0.

can completely suppress the instability, which is shown in figure 8(c). For this case,
the interface undergoes an oscillation with a rather small amplitude and eventually
becomes essentially flat.

Appearance of fluid roll-ups is a common phenomenon associated with the RTI.
The essential feature of the roll-up phenomenon is preserved for a weak electric
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field. This is clearly shown in figure 8(a) where two counter-rotating vortices are
formed along the sides of the falling fluid stream. Similar results in the absence of
electric fields were observed by other researchers (Tryggvason 1988; He et al. 1999;
Guermond & Quartapelle 2000; Ding et al. 2007). It is generally accepted that the
roll-ups and vortices are caused by the secondary instability occurring at the interface
between two fluids in motion (Daly 1967). The secondary instability appearing along
the side of the ‘spike’ causes the interface to ‘mushroom’, which increases the effect
of traction on the ‘spike’ and as a result vortex forms (Sharp 1984). For inviscid fluids,
this secondary instability is often referred as the Kelvin–Helmholtz instability (KHI).
For two viscous fluids with different viscosities, the Yih instability dominates the
secondary instability (Yih 1967; Boomkamp & Miesen 1996). This study considers
another explanation for the roll-ups. According to the Bjerknes theorem (Thorpe,
Volkert & Ziemianski 2003), one source of the vorticity comes from the baroclinity,
which is proportional to the cross-product of the density gradient and the pressure
gradient, ∇p×∇ρ. In an RTI system, the gravity is the driving force in absence of
electric field. The pressure tends to distribute vertically and its gradient ∇p points
downward. At the two sides of the ‘spike’, ∇ρ is normal to the interface; namely,
perpendicular to ∇p. Thus the vorticity generates at these spots and roll-ups occur
under a persistent action of vorticity. It is worth noting that the Bjerknes theorem
was proposed to explain the meteorological phenomena, in which the density and
pressure change continuously. However, for a sharp interface system, the terms ∇p
and ∇ρ are not well defined due to the jump of density and pressure across the
interface. In the present paper, a diffuse interface model (i.e. phase field) is employed
and the density varies continuously across the interface layer, for which the Bjerknes
theorem is applicable.

The effect of permittivity ratio ε2/ε1 on the RTI was analysed in § 3.2. A key
conclusion reached there is that the structure height of the RTI is almost identical
for both ε2/ε1 = 3 : 1 and ε2/ε1 = 1 : 3 (see figures 4 and 6). Here, the influence of
permittivity ratio on interfacial morphology is assessed. Figure 9 compares the shapes
of the fluid–fluid interface at dimensionless time t∗= 5.0 for the cases of ε2/ε1= 3 : 1
and ε2/ε1 = 1 : 3. As is evident in the figure, the falling ‘spikes’, albeit being the
same in structure height, differ dramatically in detailed morphology. The ‘spike’ is
very narrow for ε2/ε1 = 3 : 1, but much broader for the other case. The difference in
the characteristics of roll-ups for the two cases is also rather remarkable. Apparently,
the difference is caused by strong nonlinear interactions present in the system.

For these two cases, other parameters such as density and viscosity are kept the
same; only the electrical permittivity ratio of the two fluids is inverted. To gain further
insight into the behaviour shown in figure 9, the electrical force along the interface is
plotted in figure 10 for different amplitudes of deformation. In figure 10(a), a set of
curves are shown representing the two fluid interfaces at different times of evolution.
Although the interfaces of the two cases (i.e. ε2/ε1 = 3 : 1 and ε2/ε1 = 1 : 3) evolve
differently and neither follows the cosine functions, the use of the same interfaces
would allow us to identify the difference in the characteristics of the electrical force
distribution along the interface for these two cases, which in turn would shed light on
the physics governing the development of the interface morphology under the action
of the electric field. The force in the y direction determines the vertical motion of the
interface and is plotted in figure 10(b,c). Similar force distribution can be obtained
analytically (see appendix C). As stated before, the characteristics of the electric force
and its action are important in determining the interfacial morphology. For an RTI
system, the total electrical force is balanced by the hydrostatic pressure, and the non-
uniform local force is a culprit for the interface deformation. More specifically, a
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FIGURE 9. (Colour online) Comparison of interfacial morphologies of the RTI at
dimensionless time t∗ = 5.0 under the action of a horizontal electric field (Eb = 0.3)
when the electrical permittivity ratios of two fluids are inverted: (a) ε2/ε1 = 3 : 1 and
(b) ε2/ε1 = 1 : 3.
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FIGURE 10. (Colour online) Distribution of the electrical force in the y direction along
the interface as a function of horizontal electric fields: (a) interface shapes represented
by a cosine wave function with different amplitudes Amp= 0.02, 0.05, 0.1 and 0.2, the
normalized electrical force in y direction along each of interface shapes displayed in (a)
for ε2/ε1 = 3 : 1 (b), and for ε2/ε1 = 1 : 3 (c).

larger force in the y direction causes the interface to rise up, while a smaller one
causes it to fall down, to satisfy the constraint of mass conservation. Inspection of
figure 10 shows that, for a small deformation, the electrical force distribution nearly
follows a cosine function, which means that half the interface (0.25< x< 0.75) falls
downward and the other half goes upward. This is also predicted by the linear analysis
(see appendix A). For large deformations, nonlinear effects come into play and the
distribution of electrical force along a cosine-shaped interface no longer follows a
cosine function. Moreover, the force distributions differ more significantly in shape
for the two cases as deformation becomes more severe, implying that in the nonlinear
regime, the instability evolves differently for these two cases.
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Let us now turn to the mechanism by which the electrical force affects the
interfacial morphology. For that, it might be favourable to refer some previous
analyses on the morphology of the classical RTI. According to Daly (1967), the
traction plays a significant role in determining the interfacial morphology. During
the RTI process, the traction exerted on the fluid is proportional to the density of
the medium through which it moves, and hence the ‘spike’ always goes faster than
the ‘bubble’. Total mass is required to be conserved, resulting in the ‘spike’ being
longer and thinner than the ‘bubble’. With an electric field imposed, the electrical
force along the interface modifies the effect of the traction, thereby causing a change
of the interfacial morphology. For ε2/ε1 = 3 : 1, the electrical force is negative (i.e.
pointing downward). The force is large in magnitude at the ‘bubble’, indicating an
enforcement of the traction on the ‘bubble’. Thus the rising speed of the ‘bubble’
is slowed down, leading to a fat ‘bubble’ and a thin ‘spike’ (see figure 9a). On the
contrary, for the case of ε2/ε1 = 1 : 3, the electrical force is positive and attains the
maximum at the ‘spike’. Thus, the traction on the ‘spike’ is enforced, resulting in a
fatter ‘spike’, as shown in figure 9(b).

3.3.2. Interfacial morphology under the action of vertical electric field
Simulations were also conducted to understand the influence of a vertical electric

field on the development of the interfacial morphology. Figure 11 shows the evolution
of the interface under the action of a vertical electric field (without gravity). The heavy
fluid falls downward, forming a narrow needle-shaped ‘spike’ and the light fluid rises
upward, forming a big ‘bubble’. From the flow field, one can see that the fluids simply
fall and rise with no ‘tail’ formed during the process. The morphology is characterized
by two noticeable features: no roll-ups and a long narrow ‘spike’. Thus, the vertical
electric field produces a disturbing effect similar with gravity, causing the RTI to grow,
but also differs from gravity in that no roll-ups will occur with a vertical electric
field acting alone. A similar shape was reported by other researchers when a heavy
fluid falls into another fluid with negligible density (i.e. A = 1) under gravity but
in the absence of an electric field (Tryggvason 1988; Kull 1991). As stated before,
the traction imposed on one fluid is proportional to the density of the medium fluid
that it moves into (Daly 1967), and thus the traction on the ‘spike’ can be ignored
when A = 1. Thus the ‘spike’ goes downward rapidly and renders itself a long and
thin shape. Also, the presence of the roll-ups is attributed to the baroclinity along the
‘spike’. When A = 1, the heavy fluid flows into a vacuum. The pressure along the
interface is approximately constant; as a result the pressure gradient is perpendicular
to the interface. Apparently, the density gradient is always normal to the interface.
Consequently ∇p×∇ρ = 0 or the baroclinity is zero with A= 1 and vorticity is not
generated, whereby roll-ups do not form. As shown below, under action of a vertical
field along, such a similar interfacial morphology forms in a vertical electric field due
to the action of electrical force, the detailed mechanism would be revealed later.

The RTI driven by a combined action of a vertical electric field and gravity
is illustrated in figure 12. As a comparison, the classical RTI with gravity alone
(Eb = 0) is shown in figure 12(a). Comparison of the results reveals the different
disturbing effects associated with the vertical field and the gravity: the roll-ups are
absent in figure 11 when the field is present without gravity, whereas they show
up in figure 12(a) when gravity is present without the electric field. Clearly, both
gravity and the vertical electric field each aggravate the instability but produce
different interfacial morphologies. This difference in nonlinear behaviour associated
with gravity and a vertical field is manifest by the nature of the forces. Gravitational
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FIGURE 11. (Colour online) Time snapshot of interfacial morphology at t∗ = 0, 3.0, 6.0,
9.0 and 12.0 (from left to right) and of the fluid flow field at t∗ = 6.0 and 12.0 in the
presence of a vertical electric field Eb = 0.1. The gravity is ignored and other parameters
are listed in table 1.

force leads to non-zero baroclinity (∇p × ∇ρ 6= 0), which produces the vorticity
and then causes the roll-ups at the two sides of the ‘spike’. For a vertical electric
field without gravity, the electrical force acts normal to the fluid/fluid interface. This
means that the pressure gradient is perpendicular to the interface and is aligned with
the direction of density gradient, resulting in ∇p × ∇ρ = 0. Thus, by the Bjerknes
theorem (Thorpe et al. 2003), vorticity will not be baroclinically deposited along the
interface. Consequently, the roll-ups will not form under the action of the vertical
electric field. Figure 12(b,c) show the interfacial morphology in the presence of both
gravity and the vertical electric field. Apparently, these interfacial morphologies are
similar with figure 12(a) except that the heavy fluid falls more deeply with more
complex vortex structure, suggesting that the vertical electric field intensifies the RTI.
However, the secondary instability is not aggravated by the vertical field; as a matter
of fact the width of the ‘spike’ is well controlled with a vertical field present. For
different electric field strengths, the flow field and streamlines are similar, except that
the flow pattern is elongated in the vertical direction for a stronger electric field, as
shown in the accompanying fluid flow fields in figure 12. Furthermore, the roll-up
structure remains approximately the same with different field strengths, indicating that
vorticity deposited along the interface is caused primarily by the gravitational force.

The morphology shown in figure 12 corresponds to the case ε2/ε1 = 3 : 1. For
a different permittivity ratio, the interfacial morphology is expected to be different.
Figure 13 compares the interfacial morphology for different permittivity ratios for the
same electrical strength. With ε2/ε1= 3 : 1, the ‘spike’ is rather thin, whereas a broad
‘spike’ is obtained with ε2/ε1 = 1 : 3. Roll-ups are not obvious in both cases by the
reason stated above. For the two cases, the vertical electrical force distribution along
the interface is plotted in figure 14 assuming the interface takes a shape of cosine
function. When the interface deformation is small, the force distribution follows
the cosine wave function, whereas a large deformation distorts the distribution of
electrical force, manifesting the nonlinear behaviour. Similar results are obtained by
the analytical method (see appendix C). For ε2/ε1 = 3 : 1, the electrical force points
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FIGURE 12. (Colour online) Evolution of the interfacial morphology under the action of
vertical electric fields: (a) Eb = 0, (b) Eb = 0.1 and (c) Eb = 0.3. Other parameters are
given in table 1. The dimensionless time for the subfigures, from left to right, are t∗ = 0,
1.0, 2.0, 3.0 and 3.5 for interface evolution and t∗ = 2.0 and 3.5 for the flow fields.

downward and attains a maximum in magnitude at the ‘spike’. This electrical force
counterbalances the traction on the ‘spike’, driving the ‘spike’ to evolve fast and
deform into a narrow shape. On the other hand, for ε2/ε1 = 1 : 3, the electrical force
points upwards and is strongest at the ‘bubble’. Thus the ‘bubble’ rises higher and
is thin, again because the traction at the ‘bubble’ is counterbalanced by the electric
force.
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FIGURE 13. (Colour online) The effect of the electrical permittivity ratio on the interfacial
morphology with a vertical electric field of Eb = 0.5 at dimensionless time t∗ = 1.5:
(a) ε2/ε1 = 3 : 1 and (b) ε2/ε1 = 1 : 3.
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FIGURE 14. (Colour online) Distribution of the y component of the electric force along
the interface with the presence of different vertical electric fields: (a) interface shapes
represented by a cosine function with different amplitudes: Amp= 0.02, 0.05, 0.1 and 0.2,
and normalized electrical force in y direction along the interface for ε2/ε1 = 3 : 1 (b) and
for ε2/ε1 = 1 : 3 (c).

3.4. Influence of the viscosity
The influence of viscosity is considered in this section. Figure 15(a) shows the effect
of the Reynolds number on the RTI for a given horizontal electric field. As depicted in
the figure, for fluids with a large viscosity (i.e. a small Reynolds number) the interface
gradually returns to the equilibrium state (flat interface) and no interface oscillation
is observed, that is, the system is overdamped. For fluids with a small viscosity, on
other hand, the interface takes a damped oscillation (see the curves of Re = 20, 50,
100, 1000). If the fluids are inviscid, no convergent results are obtained even with
continuous grid refinement. As pointed by several authors (Tryggvason 1988; He et al.
1999), this is caused by an occurrence of numerical singularity on vortex sheet at
the centre of the roll-up. From the trend shown in figure 15(a), it is reasonable to
suggest that for inviscid fluids the perturbation takes the form of undamped oscillation;
the same conclusion is also reached in appendix A. Figure 15(b) shows the RTI in
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FIGURE 15. (Colour online) Effect of viscosity on the evolution of the interface structure
height in (a) a horizontal electric field (Eb= 4.0) and (b) a vertical electric field (Eb= 0.2).
The electrical permittivity ratio of the two fluids is ε2/ε1= 3 : 1 and other parameters are
given in table 1.

a vertical electric field as a function of viscosity; clearly the system in this case is
always unstable. It is also noted that a large viscosity results in a slower evolution of
structure height.

The nature of viscosity is to impedes the fluid motion in shearing flows and hence
the interface movement. Specifically, a large viscosity results in a slower interface
movement. This is also evident in figure 15(a) by examining the slopes of the curves,
which could be interpreted as the speed at which the interface moves at a given instant
in time. The decay rate at which the perturbed interface eventually converges to its
equilibrium state is an important issue which is affected by the viscosity of the fluid
and the applied electric field. By comparing the curves of Re= 20, 50, 100 and 1000,
one may conclude that for such a system with oscillation, a large viscosity leads to
a rapid decay rate. On the other hand, for the system without oscillation, a large
viscosity leads to a slow decay rate (see the curves of Re= 5 and 10). The viscous
force in this case is in a role of preventing the interface perturbation from retreating
to the equilibrium. To sum up, the viscosity has different effects on the decay rates for
over- and underdamped interface oscillations. This is also consistent with the analysis
of viscous effects in appendix A.

3.5. Influence of the wavelength
In the computations presented above, one single mode perturbation with the fixed
wavelength λ = 1 was taken. Here the influence of the wavelength on the RTI is
considered and some computed results are presented in figure 16. It is apparent that
the wavelength w dramatically affects the instability for both horizontal and vertical
electric fields, which is supported by the results of the linear analysis in appendices
(see figures 18 and 20). For a horizontal electric field (Eb = 0.3), figure 16(a) shows
that the interface is stable for λ = 0.5 and unstable for λ = 1 and 2. This result is
consistent with the linear theory (see (A 1) in appendix A), which predicts the growth
rate is s = −14.8 ± 191.9i (stable) for λ = 0.5, s = 0.13 (unstable) for λ = 1 and
s= 34.5 (unstable) for λ= 2. In the case of the vertical field (Eb= 0.1), the structure
evolves slower with increasing the wavelength, as shown in figure 16(b). According to
the linear theory, a growth rate of s= 73.4 is predicted for λ= 0.5, s= 54.8 for λ= 1
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FIGURE 16. (Colour online) (a) The effect of wavelength on the RTI in a horizontal
electric field Eb = 0.3; the wavelength λ is varied from 0.5, 1 to 2 and other parameters
are as in table 1. (b) The effect of wavelength on the RTI in a vertical electric field
Eb = 0.1.

and s= 39.1 for λ= 2. This agrees with the numerical results as the interface becomes
less unstable for λ= 2 and more unstable for λ= 0.5. Although the instability depends
on the wavelength, no significant effects of the wavelength on the development of
interfacial morphology were observed.

3.6. Multiple mode
The single mode RTI is commonly used in numerical simulations, as it serves a
base case for benchmark studies and has led to the discovery of many interesting
phenomena. However, in reality the RTI tends to evolve from an initial random
perturbation with multiple wavelengths. In this section, the effect of electric field
on the RTI with a multiple mode perturbation is studied with the phase field
numerical model presented above. For this, the computational domain of a square
[0, 4] × [0, 4] is used with an initial perturbation of the fluid interface given by
y(x) = Amp

∑N
n=1 (an/2N) cos(nπx/2) + (bn/2N) sin(nπx/2), where Amp = 0.025 is

the amplitude and a total of 20 modes (N = 20) were used. The coefficients, an

and bn, are random numbers distributed between [−1, 1] and for convenience, the
initial interface henceforth is referenced to as a random perturbation. The boundary
conditions at the two lateral sides for fluid flow are changed to periodic conditions.
The Reynolds number, the Atwood number and other dimensionless parameters are
chosen as given table 1. Computed results for the structure height evolution are
given in figure 17 for the RTI in horizontal and vertical electric fields. As evident
in figure 17(a), the RTI generated by the random perturbation is suppressed by a
horizontal electric field, and this suppression effect becomes stronger with increasing
electric field. On the other hand, figure 17(b) illustrates that a vertical electric field
tends to aggravate the RTI. These observations consistent with the results obtained
with one single mode perturbation, as expected.

According to the linear theory (see appendices A and B), for a given set of
parameters there exists a most unstable wavelength at which the instability evolves
fastest. In figure 17(c), the evolution of the interfacial morphology of the RTI in
the absence of an electric field is displayed. Calculations started with the random
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FIGURE 17. (Colour online) (a) Time development of the structure height in a horizontal
electric field. (b) The structure height evolution in a vertical electric field. (c–e) Show the
spatio-temporal evolution of the interfacial morphology for the classical RTI (electric field
free), the RTI in a horizontal and in a vertical electric field. The electric field strength is
Eb = 0.2 for (d) and Eb = 0.1 for (e).

perturbation imposed upon the interface at t∗ = 0. The perturbation then is allowed
to develop in time and evolves into a rather complicate structure eventually. At
t∗ = 2.0, the dominant wavelength becomes 4/7 (i.e. seven periods are observed).
This is consistent with the linear theory, which predicts that the most unstable
wavelength is 0.68. This most unstable wavelength is altered by an electric field
imposed. Specifically, a horizontal electric field increases the wavelength while a
vertical one decreases it. Figure 17(d) shows the results for the RTI in a horizontal
electric field Eb = 0.2. As can be seen, the instability evolves slowly for such a case.
Only three periods of structure are obtained at t∗ = 3.0, which indicates that the
dominant wavelength is 4/3. For a comparison, the most unstable wavelength is 1.92
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according to the linear theory. On the other hand, when a vertical electric field is
applied, the instability is amplified as indicated in figure 17(e). The wavelength of
the structure is reduced by the imposed vertical electric field. Indeed, nine structures
have appeared when t∗ = 2.0. Once again, this is consistent with the linear analysis
presented in appendix A.

4. Concluding remarks
A numerical phase field model has been developed for a nonlinear analysis of

the RTI in the presence of an electric field. The model was validated against
numerical results reported in literature and also the predictions by linear analysis.
Numerical simulations were carried out to study the effect of the electric field on the
stability and interfacial morphology, with focus on nonlinear effects. It is found that
a horizontal electric field suppresses the RTI in both linear and nonlinear regimes.
The instability is entirely suppressed if the applied horizontal field is sufficiently
large. On the other hand, a vertical electric field has a destabilizing effect and
aggravates the RTI. Moreover, in the absence of gravity, a vertical electric field
only causes ‘spikes’ to form but not roll-ups for the cases studied. This is primarily
because the force generated by the vertical field is perpendicular to the interface, and
as such no vorticity along the interface can be generated baroclinically. Thus, the
main destabilizing effect of a vertical field is to aggravate the ‘spike’ and does not
contribute to the formation of roll-ups. The interfacial morphology is affected not
only by the applied electric fields but also by the permittivity ratios of the fluids. If
the upper denser fluid has a larger electrical permittivity, then a long and thin ‘spike’
forms. The ratio of permittivity being inversed (i.e. the two dielectric constants are
interchanged), a short and wide ‘spike’ is obtained. This nonlinear behaviour is in
contrast with linear analysis, which states that the instability is unchanged if the
dielectric constants of the two fluids are interchanged.
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Appendix A. Linear stability analysis on RTI in a horizontal electric field
In this section, the linear stability analysis of the RTI under the action of horizontal

electric fields is considered. The electric field and fluid flow are sufficient to describe
the system, and hence the phase field becomes trivial. For the configuration in figure 1,
the governing equation for electric field is the Laplace equation, conservation of mass
and momentum for fluid flows (Cimpeanu et al. 2014),

∇2V (i) = 0, (A 1)
∇ · u(i) = 0, (A 2)

ρ(u(i)t + u(i) · ∇u(i))=−∇p(i) +µi∇2u(i) + ρi g, (A 3)
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where i = 1, 2 represent fluid 1 and 2. The fluids are perfect dielectrics with
constant permittivities; thus the electrical force are absent in each bulk fluid. The
electrical force manifests itself at the fluid–fluid interface and thus affects its boundary
condition.

Initially, the interface is flat and the fluids are quiescent. These base states can be
written as (Melcher & Schwarz Jr 1968),

V (1) = V (2) = E0x, (A 4)
u(1) = u(2) = 0, (A 5)

p(1) =−ρ1gy+ (ρ1 − ρ2)gH0, p(2) =−ρ2gy− 1
2ε0(ε2 − ε1)E2

0; (A 6a,b)

f (x)=H0. (A 7)

In order to study the stability of the system, an infinitesimal perturbation is added
to the base state, viz.

V (1) = E0x+ V̂ (1)(y)est−jkx, V (2) = E0x+ V̂ (2)(y)est−jkx; (A 8a,b)

u(1) = û(1)(y)est−jkx, u(2) = û(2)(y)est−jkx; (A 9a,b)

p(1) = p̂(1)(y)est−jkx − ρ1gy+ (ρ1 − ρ2)gH0,

p(2) = p̂(2)(y)est−jkx − ρ2gy− 1
2ε0(ε2 − ε1)E2

0;
}

(A 10)

f =H0 + ξest−jkx, (A 11)

where k= 2π/λ (λ the wavelength) is the wavenumber.
The boundary conditions on the channel walls are no-slip conditions for the fluid

flow and no vertical component of the electric field (Barannyk et al. 2012),

∂V (1)/∂y= 0, u(1) = 0 at y= 0; (A 12a,b)

∂V (2)/∂y= 0, u(2) = 0 at y= l. (A 13a,b)

At the interface y= f (x)≈H0, the field variables should satisfy the physical constraints
given in terms of the kinematic conditions, the continuity of the normal component of
the electric displacement, the continuity of tangential component of the electric field
and the continuity of normal stress,

u(1)y =
∂f
∂t
+ u(1)x

∂f
∂x
, u(2)y =

∂f
∂t
+ u(2)x

∂f
∂x
; (A 14a,b)

n · (ε1∇V (1))= n · (ε2∇V (2)), t · ∇V (1) = t · ∇V (2); (A 15a,b)

σ
(1)
ij · n− σ (2)ij · n= γ (∇s · n) · n, (A 16)

where ∇s =∇ − n(n · ∇) is the surface divergence operator and σ (k)ij is the stress of
the fluid k (k= 1 for fluid 1 and k= 2 for fluid 2), expressed a sum of the hydrostatic
pressure, surface tension stress and electrical stress tensor,

σ
(k)
ij =

−p(k) + 2µ(k)
∂u(k)

∂x
+ ε0εk

(
1
2

E2
x −

1
2

E2
y

)
µ(k)

(
∂u(k)

∂y
+ ∂v

(k)

∂x

)
+ ε0εkExEy

µ(k)
(
∂u(k)

∂y
+ ∂v

(k)

∂x

)
+ ε0εkExEy −p(k) + 2µ(k)

∂v(k)

∂y
+ ε0εk

(
−1

2
E2

x +
1
2

E2
y

)
.

(A 17)
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The normal and tangential vector of the interface is given by the following
expressions,

n=
(
−∂f
∂x
, 1
)/√

1+
(
∂f
∂x

)2

, t =
(

1,
∂f
∂x

)/√
1+

(
∂f
∂x

)2

. (A 18a,b)

The governing equations can be solved along with boundary conditions for the given
interface perturbations. The condition for a non-trivial solution leads to the following
dispersion equation,[

gk(α2 − α1)

s2
− k3γ

s2(ρ1 + ρ2)
−C3 − C3k2E2

0ε0(ε2 − ε1)
2

s2(ε2 + ε1)(ρ1 + ρ2)

]
× (C1q2α1 +C2q1α2 − k)− 4C3kα1α2

+ 4C3k2

s
(α2ν2 − α1ν1)[C1q2α1 −C2q1α2 +C3k(α2 − α1)]

+ 4C3k3

s2
(α2ν2 − α1ν1)

2(q2C1 − k)(q1C2 − k)= 0, (A 19)

where q1 =
√

k2 + sρ1/µ1, q2 =
√

k2 + sρ2/µ2, C1 = tanh(kH0) coth(q2H0), C2 =
tanh(kH0) coth(q1H0), C3 = coth(kH0), α1 = ρ1/(ρ1 + ρ2) and α2 = ρ2/(ρ1 + ρ2). It is
noted that for the above solution, use has been made of l= 2H0.

Melcher & Schwarz Jr (1968) have studied the RTI in a horizontal electric field,
and obtained the following dispersion equation,

−
[

gk
s2
(αb − αa)+ k3T

s2(ρa + ρb)
+ 1+ k2

xE2
0ε0(εa − εb)

2

s2(ρa + ρb)(εa + εb)

]
× (qbαa + qaαb − k)− 4kαbαa + 4k2

s
(αbνb − αaνa)[(αaqb − αbqa)+ k(αb − αa)]

+ 4k3

s2
(αbνb − αaνa)

2(qb − k)(qa − k)= 0, (A 20)

where T represents the surface tension coefficient. It is noted that in their original
equation (Melcher & Schwarz Jr 1968, (35)), a sign ‘+’ between the terms
(gk/s2)(αb − αa) and k3T/(s2(ρa + ρb)) was missing. Also, the above equation was
obtained with the depth of the fluids set to infinity. The upper (bottom) fluid is
referred as a (b), whereas in our case the upper (bottom) fluid is denoted by 2 (1).
With H0 → ∞ (i.e. C1 = C2 = C3 = C4 = 1) substituted, our dispersion equation
simplifies to the above equation given by Melcher and Schwarz.

In figure 18, the effect of horizontal electric field on the growth rate of the RTI
is shown based on (A 19). To be consistent with the main text, the wavenumber k is
normalized by Lc (Lc is the characteristic length). This holds true for all appendices
below unless otherwise indicated. As can be seen, the growth rate is remarkably
decreased with the presence of horizontal electric fields. For a perturbation with
a specific wavenumber, the instability is completely suppressed when an electric
field strong enough is applied. Also, the most dangerous wavenumber (i.e. the most
unstable wavenumber) is shifted leftward as the electric field increases in strength. In
figure 18, the wavenumber k = 6.283 corresponds to the perturbation that was used
in the numerical model.
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FIGURE 18. (Colour online) Linear growth rates as a function of horizontal electric fields
characterized by electrical Weber number Eb = ε0εmV2

0/(ρmgw3); other parameters are the
same as in table 1.

Equation (A 19) is used to study the effect of the viscosity on the RTI and results
are shown in figure 19. In figure 19(a), all the curves pass through the critical point of
kc= 3.187. This state is achieved by a balance between the surface tension, electrical
force and gravity and is thus independent of viscosity. For perturbations with k< kc,
the growth rate s is real and positive and the system is unstable, with the growth
rate increasing with a decrease in viscosity. Similar curves exist for Eb = 0 but with
kc = 25.822. Thus, a horizontal field suppresses instability. In the region of k > kc,
the growth rate s is real but negative and thus the system is stable. However, there
exists a turning point kt at which the line of the real part of s changes its slope
(see figure 19a). Similar points are also observed elsewhere (Chandrasekhar 1961).
In figure 19(b), the Im(s) is plotted as a function of viscosity. As it can be seen,
the turning point marks the emergence of the imaginary part of s or Im(s) > 0 for
k> kt, and Im(s)= 0 for k< kt. Moreover, kt decreases with the fluid viscosity, with
an inviscid fluid collapsing its turning point into the critical point (or kc= kt). Though
the system is stable at k> kc, the turning point differentiates the response of the fluid
to the perturbation. In the region of kt > k> kc, the perturbed interface is overdamped
and retreats directly to the plane equilibrium surface without oscillation (or Im(s)= 0).
There, a large viscosity provides a strong resistance to the movement of the perturbed
interface back to its equilibrium position and thus leads to a smaller Re(s) value or
a slow interface decay rate (see figure 19a). In the region of k > kt, on the other
hand, the interface goes through oscillations whose amplitude decays with time and
eventually recedes to the equilibrium (i.e. flat surface), and a large viscosity gives rise
to a high decaying rate. This is consistent with the numerical observation in figure 15,
which used k= 6.283.

The turning point, kt, is a solution to the characteristic equation (A 19). Mathema-
tically, it is the point at which s changes from the real negative roots (only the less
negative value of Re(s) is plotted in figure 19) and becomes complex conjugate roots.
Physically, it marks the point at which aperiodically damped modes (kc < k < kt)
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FIGURE 19. (Colour online) Growth rates as a function of the viscosity characterized by
Reynolds number in a horizontal electric field: (a) the real part and (b) the imaginary part.
The electrical Weber number Eb = 4.0 and other parameters are the same as in table 1.

changes to periodically damped modes (k > kt). Figure 19 further indicates that the
value of kt is affected by a change of viscosity, and increases with an increase of
viscosity, other parameters being fixed. Detailed analysis reveals that kt represents a
balance between the viscous damping effect and the effort of other forces (surface
tension and electric force) responsible for oscillatory motion in the system for k> kc.
If viscous effect dominates, only aperiodically damped modes exist, which corresponds
to the region kc < k < kt. For the case where viscous effect is comparable with the
effect of the other forces, the interface undergoes an oscillatory motion of damped
amplitude, which occurs for k> kt. In the limiting case of inviscid fluid (or viscosity
goes to zero), the interface undergoes an undamped periodic motion.

When s→ 0, (A 14) reduces to the condition for the marginal stability,

g(α2 − α1)− k2γ

(ρ1 + ρ2)
− coth(kH0)kE2

0ε0(ε2 − ε1)
2

(ε2 + ε1)(ρ1 + ρ2)

− 8k3(α2 − α1)ν1ν2

(
α2ν2 − α1ν1

α1ν1 + α2ν2

)
coth(kH0)[1− coth(kH0)] = 0. (A 21)

Substituting k= 6.283 and other parameters into (A 15), one obtains the critical value
of the electrical Weber number, Eb = 0.30. It is interesting to note that the linear
stability is unchanged if the dielectric constants of the two fluids are interchanged.
This also holds true for a vertical electric field, as shown below.

Appendix B. Linear stability analysis of RTI in a vertical electric field
For the case of the RTI in the presence of a vertical electric field, the linear stability

analysis is similar. The governing equations are the same as above. The base states
are different and expressed as,

V (1) = D0

ε1
y, V (2) = D0

ε2
y+ (ε2 − ε1)V0

ε2 + ε1
; (B 1a,b)

u(1) = u(2) = 0; (B 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

54
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.54


Numerical analysis of the Rayleigh–Taylor instability in an electric field 425

p(1) =−ρ1gy+ (ρ1 − ρ2)gH0, p(2) =−ρ2gy− 1
2
ε0

(
1
ε1
− 1
ε2

)
D2

0; (B 3a,b)

f (x)=H0, (B 4)

where D0 = ε1ε2V0/(ε1 + ε2)H0. With an infinitesimal perturbation added to the base
state, one has

V (1) = D0

ε1
y+ V̂ (1)(y)est−jkx, V (2) = D0

ε2
y+ (ε2 − ε1)V0

ε2 + ε1
+ V̂ (2)(y)est−jkx; (B 5a,b)

u(1) = û(1)(y)est−jkx, u(2) = û(2)(y)est−jkx; (B 6a,b)

p(1) = p̂(1)(y)est−jkx − ρ1gy+ (ρ1 − ρ2)gH0,

p(2) = p̂(2)(y)est−jkx − ρ2gy− 1
2
ε0

(
1
ε1
− 1
ε2

)
D2

0;

 (B 7)

f =H0 + ξest−jkx, (B 8)

where k= 2π/λ (λ the wavelength) is the wavenumber.
The boundary conditions on the channel walls are no-slip conditions for the fluid

flow and the Dirichlet conditions for the electric field,

V (1) = 0, u(1) = 0 at y= 0; (B 9a,b)

V (2) = V0, u(2) = 0 at y= l. (B 10a,b)

The boundary conditions at the interface y= f (x)≈H0 are the same as above.
The condition for a non-trivial solution leads to a dispersion equation for a vertical

electric field, [
gk(α2 − α1)

s2
− k3γ

s2(ρ1 + ρ2)
−C3 + C3k2D2

0ε0(ε2 − ε1)
2

s2ε1ε2(ε2 + ε1)(ρ1 + ρ2)

]
× (C1q2α1 +C2q1α2 − k)− 4kα1α2

+ 4C3k2

s
(α2ν2 − α1ν1)[C1q2α1 −C2q1α2 + k(α2 − α1)]

+ 4C3k3

s2
(α2ν2 − α1ν1)

2(q2C1 − k)(q1C2 − k)= 0, (B 11)

where q1 =
√

k2 + sρ1/µ1, q2 =
√

k2 + sρ2/µ2, C1 = tanh(kH0) coth(q2H0), C2 =
tanh(kH0) coth(q1H0), C3= coth(kH0), α1= ρ1/(ρ1 + ρ2) and α2= ρ2/(ρ1 + ρ2). Again,
l= 2H0 was used. The growth rate of the RTI as a function of vertical electric fields
is depicted in figure 20(a). Clearly, the growth rate is increased and the interface
becomes more unstable in the presence of applied vertical fields. Figure 20(b) shows
the effect of the viscosity on the RTI. If the wavenumber k is smaller than 60.97,
then the system is unstable. For a small Reynolds number (i.e. a large viscosity), the
growth rate of the perturbation decreases accordingly.
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FIGURE 20. (Colour online) Growth rates as a function of (a) vertical electric fields
characterized by electrical Weber number Eb = ε0εmV2

0/(ρmgwl2) with Re= 1000 and (b)
the viscosity characterized by Reynolds number with Eb = 0.4. Other parameters are the
same as in table 1.

Appendix C. Nonlinear analysis of the interfacial morphology
In figures 10 and 14, the electrical force and interfacial morphology are calculated

by the numerical model. The force also can be obtained approximately by an
analytical method. First, the instantaneous interface shape is assumed to be a
first-order harmonic function. For this shape, electric potentials V (1) and V (2) are
obtained in terms of a Fourier series, and the coefficients of the first few terms
are determined by substituting the series into the governing equation along with
associated boundary conditions. We then proceed to determine the electrical force
along the interface. The detailed procedure is as follows.

The electric field is governed by the Laplace equation (i.e. (A 1)). For the RTI in a
horizontal electric field, initially the fluid–fluid interface is flat. The base states of the
interface and the electrical potential are written as (A 4) and (A 7), to which a small
perturbation is added,

f (x)=H0 + ξe−jkx; (C 1)

V (1) = E0x+ V̂ (1)
1 (y)e−jkx + V̂ (1)

2 (y)e−2jkx; (C 2)

V (2) = E0x+ V̂ (2)
3 (y)e−jkx + V̂ (2)

4 (y)e−2jkx, (C 3)

representing the case with a deformed interface. Here, for an initial interface
perturbation of ξe−jkx, the second-order terms are retained for the electric potential.
The reason for doing so is to determine how the nonlinearity of electric force
comes into play for a first-order harmonic interface. For the electric potential V (1),
one has the general solution V̂ (1)(y) = C1 cosh(ky) + C2 cosh(2ky) by substituting
the expression of V (1) into the governing equation (A 1) and applying the boundary
condition ∂V̂ (1)(y)/∂y= 0 at y= 0. By the same token, V̂ (2)(y)=C3 cosh[k(2H0 − y)]+
C4 cosh[2k(2H0 − y)]. The interface and the electrical potentials now become

f =H0 + ξe−jkx; (C 4)
V (1) = E0x+C1 cosh(ky)e−jkx +C2 cosh(2ky)e−2jkx; (C 5)

V (2) = E0x+C3 cosh[k(2H0 − y)]e−jkx +C4 cosh[2k(2H0 − y)]e−2jkx. (C 6)
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Here quadratic terms are included to account for the nonlinear effect of the electric
field. Now consider the following relations with y= f (x)≈H0,

cosh(ky) = cosh(kH0 + kξ̂e−jkx)

= cosh(kH0) cosh(kξ̂e−jkx)+ sinh(kH0) sinh(kξ̂e−jkx)

≈ cosh(kH0)+ sinh(kH0)kξ̂e−jkx,

sinh(ky) = sinh(kH0 + kξ̂e−jkx)

= sinh(kH0) cosh(kξ̂e−jkx)+ cosh(kH0) sinh(kξ̂e−jkx)

≈ sinh(kH0)+ cosh(kH0)kξ̂e−jkx,

cosh[k(2H0 − y)] = cosh(kH0 − kξ̂e−jkx)

= cosh(kH0) cosh(kξ̂e−jkx)− sinh(kH0) sinh(kξ̂e−jkx)

≈ cosh(kH0)− sinh(kH0)kξ̂e−jkx,

sinh[k(2H0 − y)] = sinh(kH0 − kξ̂e−jkx)

= sinh(kH0) cosh(kξ̂e−jkx)− cosh(kH0) sinh(kξ̂e−jkx)

≈ sinh(kH0)− cosh(kH0)kξ̂e−jkx.



(C 7)

At the interface, the normal component of electrical displacement and the tangential
component of the electric field are continuous, see (A 15), where the normal and
tangential vector of the perturbed interface is expressed as,

n= (jkξ̂e−jkx, 1)
/√

1− k2ξ̂ 2e−2jkx ≈ (jkξ̂e−jkx, 1+ 1
2 k2ξ̂ 2e−2jkx),

t = (1,−jkξ̂e−jkx)

/√
1− k2ξ̂ 2e−2jkx ≈ (1+ 1

2 k2ξ̂ 2e−2jkx,−jkξ̂e−jkx).

 (C 8)

With ξ , V (1) and V (2) substituted into the boundary conditions, we have

−jε1E0kξe−jkx −C1ε1k2 cosh(kH0)ξe−2jkx −C1ε1k3 sinh(kH0)ξ
2e−3jkx

− 2C2ε1k2 cosh(2kH0)ξe−3jkx − 2C2ε1k3 sinh(2kH0)ξ
2e−4jkx

−C1ε1k sinh(kH0)e−jkx −C1ε1k cosh(kH0)e−2jkx

− 2C2ε1k sinh(2kH0)e−2jkx − 2C2ε1k2 cosh(2kH0)ξe−3jkx

=−jε2E0kξe−jkx −C3ε2k2 cosh(kH0)ξe−2jkx +C3ε2k3 sinh(kH0)ξ
2e−3jkx

− 2C4ε2k2 cosh(2kH0)ξe−3jkx + 2C4ε2k3 sinh(2kH0)ξ
2e−4jkx

+C3ε2k sinh(kH0)e−jkx −C3ε2k2 cosh(kH0)ξe−2jkx

+ 2C4ε2k sinh(2kH0)e−2jkx − 2C4ε2k2 cosh(2kH0)ξe−3jkx,

−E0 +C1jk cosh(kH0)e−jkx +C1jk2 sinh(kH0)ξe−2jkx + 2C2jk cosh(2kH0)e−2jkx

+ 2C2jk2 sinh(2kH0)ξe−3jkx +C1jk2 sinh(kH0)ξe−2jkx +C1jk3 cosh(kH0)ξ
2e−3jkx

+ 2C2jk2 sinh(2kH0)ξe−3jkx + 2C2jk3 cosh(2kH0)ξ
2e−4jkx

=−E0 +C3jk cosh(kH0)e−jkx −C3jk2 sinh(kH0)ξe−jkx + 2C4jk cosh(2kH0)e−2jkx

− 2C4jk2 cosh(2kH0)ξe−3jkx −C3jk2 sinh(kH0)ξe−2jkx +C3jk3 cosh(kH0)ξ
2e−3jkx

− 2C4jk2 sinh(2kH0)ξe−3jkx + 2C4jk3 cosh(2kH0)ξ
2e−4jkx.


(C 9)
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The perturbations are assumed to be small, C2�C1�1, C4�C3�1 and ξ�1. Thus
the following terms, C1ξ

2, C3ξ
2, C2ξ , C4ξ , C2ξ

2 or C4ξ
2 may be neglected. Then we

let the terms with e−jkx and e−2jkx being identical on both sides,

−jε1E0kξ −C1ε1k sinh(kH0)=−jε2E0kξ +C3ε2k sinh(kH0),

C1ε1 cosh(kH0)kξ +C2ε1 sinh(2kH0)=C3ε2 cosh(kH0)kξ −C4ε2 sinh(2kH0),

C1 =C3,

C2 cosh(2kH0)+C1k sinh(kH0)ξ =C4 cosh(2kH0)−C3k sinh(kH0)ξ ,

 (C 10)

from which C1, C2, C3 and C4 are obtained,

C1 =C3 = j(ε2 − ε1)E0ξ

(ε1 + ε2) sinh(kH0)
,

C2 =− j(ε2 − ε1)E0ξ
2k

(ε1 + ε2)2

[
(ε2 − ε1)

tanh(kH0) sinh(2kH0)
+ 2ε2

cosh(2kH0)

]
,

C4 =− j(ε2 − ε1)E0ξ
2k

(ε1 + ε2)2

[
(ε2 − ε1)

tanh(kH0) sinh(2kH0)
− 2ε1

cosh(2kH0)

]
.


(C 11)

The electrical force applied at the interface is given by (Jackson 1999),

f e =
[

fx
fy

]
=

t
1
2ε0ε(E2

x − E2
y)nx + ε0εExEyny

ε0εExEynx + 1
2ε0ε(−E2

x + E2
y)ny

|1

2

, (C 12)

where J(·)K1
2 = (·)2 − (·)1 denotes the jump in the quantity as the interface is

crossed from the upper to the lower fluid. A quantity of main interest is the vertical
component of electrical force fy, as it determines the interfacial morphology,

fy = Jε0εExEynx + 1
2ε0ε(−E2

x + E2
y)nyK

1

2
≈ A0 + A1ξe−jkx + A2ξ

2e−2jkx, (C 13)

where

A0 =− 1
2ε0(ε2 − ε1)E2

0; (C 14)

A1 =−ε0(ε2 − ε1)
2

(ε1 + ε2)
coth(kH0)kE2

0; (C 15)

A2 = ε0(ε2 − ε1)

4(ε1 + ε2)2

{−7(ε2 + ε1)
2 + 2(ε2 − ε1)

2

× [1+ coth2(kH0)− 4 coth(kH0) coth(2kH0)] + 32ε1ε2
}

k2E2
0. (C 16)

Here, up to quadratic terms are kept and other higher-order terms are truncated.
The zeroth-order term (i.e. A0) is dominant and determines the direction of electric
force (i.e. pointing upwards or downwards). In linear perturbation analysis (see
appendices A and B above), only the zeroth- and the first-order terms are considered.
Here the second-order term (i.e. A2ξ

2e−2jkx) is retained to study the nonlinear effect
of the electrical force.

The electrical force influences the interfacial morphology through (A 16) (i.e.
boundary condition at the interface). In the expression of stress σ (k)ij , the hydrostatic
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pressure p(1) = −ρ1gy + (ρ1 − ρ2)gH0, p(2) = −ρ2gy − (1/2)ε0(ε2 − ε1)E2
0. The above

equation is essentially a force balance condition, where the total force includes
hydrostatic force, electrical force, viscous force and surface tension force. Here
we focus on the effect of electrical force on the interfacial morphology and, thus
the viscous force is neglected for simplification. The electrical force causes the
interfacial deformation, and the surface tension force increases to balance the
electrical force. Ultimately a delicate balance is achieved to reach a steady state
or equilibrium state. This steady state of the interfacial deformation is of the
form, ys = H0 + B1ξe−jkx + B2ξ

2e−2jkx, and the force balance leads to the following
expression,

fy + (ρ2 − ρ1)g(y−H0)+ 1
2
ε(ε2 − ε1)E2

0

=−γ ∂2ys/∂x2

[1+ (∂ys/∂x)2]3/2 ≈ γ k2B1ξe−jkx + 4γ k2B2ξ
2e−2jkx. (C 17)

Substituting fy and y into the above equation, one has

B1 = A1 + (ρ2 − ρ2)g
γ k2

; (C 18)

B2 = A2

4γ k2
. (C 19)

For the two cases ε2/ε1=3 :1 and ε2/ε1=1 :3, the interfacial morphology differs from
each other (see figure 9), for which the vertical components of the electrical force fy

are computed and depicted in figure 21. Clearly, with an increase of deformation (i.e.
ξ ), the nonlinear term A2ξ

2e−2jkx comes into play. The obtained electrical force profile
is similar to that in figure 10. Figure 21(c,d) correspond to the equilibrium interfacial
deformation including the quadratic term for ε2/ε1 = 3 : 1 and ε2/ε1 = 1 : 3. Thus, a
narrow falling spike is obtained for ε2/ε1 = 3 : 1 but a broad one for ε2/ε1 = 1 : 3;
these observations are similar to those shown in figure 9.

We now proceed to the case of vertical field. The procedure is the same and the
base state takes the form of (B 11) and (B 4). After adding the small perturbation to
the base state, the interface and electrical potential become

f =H0 + ξe−jkx; (C 20)

V (1) = D0

ε1
y+ V̂ (1)

1 (y)e−jkx + V̂ (1)
2 (y)e−2jkx; (C 21)

V (2) = D0

ε2
y+ (ε2 − ε1)V0

ε2 + ε1
+ V̂ (2)

1 (y)e−jkx + V̂ (2)
2 (y)e−2jkx. (C 22)

Substitution of V (1) into the governing equation (A 4) along with V̂ (1)(y) = 0
at y = 0 yields V̂ (1)(y) = C1 sinh(ky) + C2 sinh(2ky). By the same procedure,
V̂ (2)(y)=C3 sinh[k(2H0 − y)] +C4 sinh[2k(2H0 − y)]. Thus, we have

f =H0 + ξe−jkx; (C 23)

V (1) = D0

ε1
y+C1 sinh(ky)e−jkx +C2 sinh(2ky)e−2jkx; (C 24)
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FIGURE 21. (Colour online) The vertical electrical force along the interface in a horizontal
electric field. (a) ε2/ε1 = 3 : 1 and (b) ε2/ε1 = 1 : 3. The equilibrium deformation under
the action of electrical force, with Eb = 0.2 and We = 0.001: (c) ε2/ε1 = 3 : 1 and
(d) ε2/ε1= 1 : 3. The position of x, ξ and ys are normalized by Lc and electrical force by
ε0|ε2 − ε1|V2

0/(2w2).

V (2) = D0

ε2
y+ (ε2 − ε1)V0

ε2 + ε1
+C3 sinh[k(2H0 − y)]e−jkx +C4 sinh[2k(2H0 − y)]e−2jkx.

(C 25)

The same boundary conditions should be satisfied at the interface, i.e. the continuity
of normal component of the displacement and continuity of the tangential component
of the electric field, whence one has

C1 =− (ε2 − ε1)D0ξ

ε1(ε2 + ε1) sinh(kH0)
,

C2 = (ε2 − ε1)D0ξ
2k

ε1(ε2 + ε1)2

[
(ε2 − ε1)

tanh(kH0) sinh(2kH0)
+ 2ε1

cosh(2kH0)

]
,

C3 = (ε2 − ε1)D0ξ

ε2(ε2 + ε1) sinh(kH0)
,

C4 = (ε2 − ε1)D0ξ
2k

ε2(ε2 + ε1)2

[
− (ε2 − ε1)

tanh(kH0) sinh(2kH0)
+ 2ε2

cosh(2kH0)

]
.


(C 26)

The electrical force in the vertical direction now takes the form of

fy = Jε0εexeynx + 1
2ε0ε(−e2

x + e2
y)nyK

1

2
≈ A∗0 + A∗1ξe−jkx + A∗2ξ

2e−2jkx, (C 27)
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FIGURE 22. (Colour online) The vertical component of the electrical force in a vertical
electric field. (a) ε2/ε1 = 3 : 1 and (b) ε2/ε1 = 1 : 3. The corresponding equilibrium
deformation for (c) ε2/ε1 = 3 : 1 and (d) ε2/ε1 = 1 : 3 with Eb = 5.0 and We= 0.02. The
position of x, ξ and ys are normalized by Lc and electrical force by ε0|ε2 − ε1|V2

0/(2l2).

where

A∗0 =−
1
2
ε0
(ε2 − ε1)

ε1ε2
D2

0; (C 28)

A∗1 = kε0
(ε2 − ε1)

2

ε1ε2(ε2 + ε1)
coth(kH0)D2

0; (C 29)

A2 = (ε2 − ε1)
3

4ε1ε2(ε2 + ε1)2

{−7(ε2 + ε1)
2 + 2(ε2 − ε1)

2

× [1+ coth2(kH0)− 4 coth(kH0) coth(2kH0)] + 32ε1ε2
}

k2D2
0. (C 30)

At the interface, the hydrostatic pressure term expresses, p(2)=−ρ2gy− (1/2)ε0(1/ε1
−1/ε2)D2

0. The equilibrium deformation is determined by the force balance, which can
be written as ys =H0 + B∗1ξe−jkx + B∗2ξ

2e−2jkx, where

B∗1 =
A∗1 + (ρ2 − ρ2)g

γ k2
; (C 31)

B∗2 =
A∗2

4γ k2
. (C 32)

For the interface in a vertical electric field, the fy is calculated and plotted in
figure 22. With the second-order term (i.e. A∗2ξ

2e−2jkx) taken into account, the
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electrical force does not follow the cosine function for a large deformation. Its
profile is similar to the numerical results shown in figure 14. As for the equilibrium
deformation, the falling part is narrow for ε2/ε1 = 3, but wide for ε2/ε1 = 1 : 3, as
shown in figure 22(c,d). This is consistent with the numerical results in figure 13.

REFERENCES

ABARZHI, S. I. 2010 Review of theoretical modelling approaches of Rayleigh–Taylor instabilities
and turbulent mixing. Phil. Trans. R. Soc. Lond. A 368 (1916), 1809–1828.

BARANNYK, L. L., PAPAGEORGIOU, D. T. & PETROPOULOS, P. G. 2012 Suppression of Rayleigh–
Taylor instability using electric fields. Math. Comput. Simul. 82 (6), 1008–1016.

BOFFETTA, G., MAZZINO, A., MUSACCHIO, S. & VOZELLA, L. 2009 Kolmogorov scaling and
intermittency in Rayleigh–Taylor turbulence. Phys. Rev. E 79, 065301.

BOOMKAMP, P. A. M. & MIESEN, R. H. M. 1996 Classification of instabilities in parallel two-phase
flow. Intl J. Multiphase Flow 22 (6), 67–88.

CELANI, A., MAZZINO, A., MURATORE-GINANNESCHI, P. & VOZELLA, L. 2009a Phase-field model
for the Rayleigh–Taylor instability of immiscible fluids. J. Fluid Mech. 622, 115–134.

CELANI, A., MAZZINO, A., MURATORE-GINNANESCHI, P. & VOZELLA, L. 2009b Rayleigh–Taylor
instability in two dimensions and phase-field method. In Advances in Turbulence XII, pp.
169–172. Springer.

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability, pp. 448–453. Clarendon.
CHEN, S. & DOOLEN, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid

Mech. 30 (1), 329–364.
CHERTKOV, M. 2003 Phenomenology of Rayleigh–Taylor turbulence. Phys. Rev. Lett. 91 (11), 115001.
CIMPEANU, R., PAPAGEORGIOU, D. T. & PETROPOULOS, P. G. 2014 On the control and suppression

of the Rayleigh–Taylor instability using electric fields. Phys. Fluids 26 (2), 022105.
CRASTER, R. V. & MATAR, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod.

Phys. 81 (3), 1131–1198.
DALY, B. J. 1967 Numerical study of two fluid Rayleigh–Taylor instability. Phys. Fluids 10 (2),

297–307.
DALZIEL, S. B. 1993 Rayleigh–Taylor instability: experiments with image analysis. Dyn. Atmos.

Oceans 20 (1), 127–153.
DIMONTE, G. 2004 Dependence of turbulent Rayleigh–Taylor instability on initial perturbations. Phys.

Rev. E 69 (5), 056305.
DIMONTE, G. & SCHNEIDER, M. 2000 Density ratio dependence of Rayleigh–Taylor mixing for

sustained and impulsive acceleration histories. Phys. Fluids 12, 304–321.
DING, H., SPELT, P. D. & SHU, C. 2007 Diffuse interface model for incompressible two-phase flows

with large density ratios. J. Comput. Phys. 226 (2), 2078–2095.
GRANDISON, S., PAPAGEORGIOU, D. T. & VANDEN-BROECK, J. M. 2007 Interfacial capillary waves

in the presence of electric fields. Eur. J. Mech. (B/Fluids) 26 (3), 404–421.
GRANDISON, S., PAPAGEORGIOU, D. T. & VANDEN-BROECK, J. M. 2012 The influence of electric

fields and surface tension on Kelvin–Helmholtz instability in two-dimensional jets. Z. Angew.
Math. Phys. 63 (1), 125–144.

GUERMOND, J. L. & QUARTAPELLE, L. 2000 A projection FEM for variable density incompressible
flows. J. Comput. Phys. 165 (1), 167–188.

HE, X., CHEN, S. & ZHANG, R. 1999 A lattice Boltzmann scheme for incompressible multiphase
flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152
(2), 642–663.

HIRT, C. W. & NICHOLS, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39 (1), 201–225.

HUA, J., LIM, L. K. & WANG, C.-H. 2008 Numerical simulation of deformation/motion of a drop
suspended in viscous liquids under influence of steady electric fields. Phys. Fluids 20 (11),
113302.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

54
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.54


Numerical analysis of the Rayleigh–Taylor instability in an electric field 433

JACKSON, J. D. 1999 Classical Electrodynamics. Wiley.
JACQMIN, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling.

J. Comput. Phys. 155 (1), 96–127.
JOSHI, A., RADHAKRISHNA, M. C. & RUDRAIAH, N. 2010 Rayleigh–Taylor instability in dielectric

fluids. Phys. Fluids 22 (6), 064102.
KILKENNY, J. D., GLENDINNING, S. G., HAAN, S. W., HAMMEL, B. A., LINDL, J. D., MUNRO,

D., REMINGTON, B. A., WEBER, S. V., KNAUER, J. P. & VERDON, C. P. 1994 A review
of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial
confinement fusion. Phys. Plasmas 1 (5), 1379–1389.

KOROVIN, V. M. 2011 Effect of tangential electric field on the evolution of the Rayleigh–Taylor
instability of a dielectric liquid film. Tech. Phys. 56 (10), 1390–1397.

KULL, H. J. 1991 Theory of the Rayleigh–Taylor instability. Phys. Rep. 206 (5), 197–325.
LAYZER, D. 1955 On the instability of superposed fluids in a gravitational field. Astrophys. J. 122,

1.
LEE, H. G., KIM, K. & KIM, J. 2011 On the long time simulation of the Rayleigh–Taylor instability.

Intl J. Numer. Meth. Engng 85 (13), 1633–1647.
LIN, Y., SKJETNE, P. & CARLSON, A. 2012 A phase field model for multiphase electro-hydrodynamic

flow. Intl J. Multiphase Flow 45, 1–11.
MELCHER, J. R. & SCHWARZ, W. J. JR 1968 Interfacial relaxation overstability in a tangential

electric field. Phys. Fluids 11 (12), 2604–2616.
MICHIOKA, H. & SUMITA, I. 2005 Rayleigh–Taylor instability of a particle packed viscous fluid:

implications for a solidifying magma. Geophys. Res. Lett. 32 (3), L03309.
MOHAMED, A. & EL SHEHAWEY, E. S. F. 1983a Nonlinear electrohydrodynamic Rayleigh–Taylor

instability. II: a perpendicular field producing surface charge. Phys. Fluids 26 (7), 1724–1730.
MOHAMED, A. E. M. A. & SHEHAWEY, E. S. F. 1983b Nonlinear electrohydrodynamic Rayleigh–

Taylor instability. Part 1. A perpendicular field in the absence of surface charges. J. Fluid
Mech. 129, 473–494.

OLSON, D. H. & JACOBS, J. W. 2009 Experimental study of Rayleigh–Taylor instability with a
complex initial perturbation. Phys. Fluids 21 (3), 034103.

RAHMAT, A., TOFIGHI, N., SHADLOO, M. S. & YILDIZ, M. 2014 Numerical simulation of wall
bounded and electrically excited Rayleigh–Taylor instability using incompressible smoothed
particle hydrodynamics. Colloid Surf. A 460, 60–70.

RAMAPRABHU, P., DIMONTE, G., WOODWARD, P., FRYER, C., ROCKEFELLER, G., MUTHURAMAN,
K., LIN, P.-H. & JAYARAJ, J. 2012 The late-time dynamics of the single-mode Rayleigh–Taylor
instability. Phys. Fluids 24 (7), 074107.

RAYLEIGH, LORD 1883 Investigation of the character of the equilibrium of an incompressible heavy
fluid of variable density. Proc. Lond. Math. Soc. 14, 170–177.

RAYLEIGH, LORD 1900 Scientific Papers. vol. II. Cambridge University Press.
RENOULT, M. C., PETSCHEK, R. G., ROSENBLATT, C. & CARLÈS, P. 2011 Deforming static fluid

interfaces with magnetic fields: application to the Rayleigh–Taylor instability. Exp. Fluids 51
(4), 1073–1083.

RIBEYRE, X., TIKHONCHUK, V. T. & BOUQUET, S. 2004 Compressible Rayleigh–Taylor instabilities
in supernova remnants. Phys. Fluids 16 (12), 4661–4670.

SAVILLE, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev.
Fluid Mech. 29, 27–64.

SCHNEIDER, M. B., DIMONTE, G. & REMINGTON, B. 1998 Large and small scale structure in
Rayleigh–Taylor mixing. Phys. Rev. Lett. 80 (16), 3507.

SHARP, D. H. 1984 An overview of Rayleigh–Taylor instability. Physica D 12 (1), 3–18.
SOHN, S. I. 2009 Effects of surface tension and viscosity on the growth rates of Rayleigh–Taylor

and Richtmyer–Meshkov instabilities. Phys. Rev. E 80 (5), 055302.
TAYLOR, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to

their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192–196.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

54
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.54


434 Q. Yang, B. Q. Li, Z. Zhao, J. Shao and F. Xu

TAYLOR, G. I. & MCEWAN, A. D. 1965 The stability of a horizontal fluid interface in a vertical
electric field. J. Fluid Mech. 22 (01), 1–15.

THORPE, A. J., VOLKERT, H. & ZIEMIANSKI, M. J. 2003 The Bjerknes’ circulation theorem: a
historical perspective. Bull. Am. Meteorol. Soc. 4, 471–480.

TOMAR, G., GERLACH, D., BISWAS, G., ALLEBORN, N., SHARMA, A., DURST, F., WELCH, S. W.
J. & DELGADO, A. 2007 Two-phase electrohydrodynamic simulations using a volume-of-fluid
approach. J. Comput. Phys. 227 (2), 1267–1285.

TRYGGVASON, G. 1988 Numerical simulations of the Rayleigh–Taylor instability. J. Comput. Phys.
75 (2), 253–282.

WHITE, J., OAKLEY, J., ANDERSON, M. & BONAZZA, R. 2010 Experimental measurements of the
nonlinear Rayleigh–Taylor instability using a magnetorheological fluid. Phys. Rev. E 81 (2),
026303.

WU, N. & RUSSEL, W. B. 2009 Micro-and nano-patterns created via electrohydrodynamic instabilities.
Nano Today 4 (2), 180–192.

YANG, Q., LI, B. Q. & DING, Y. 2013 3D phase field modeling of electrohydrodynamic multiphase
flows. Intl J. Multiphase Flow 57, 1–9.

YANG, Q., LI, B. Q., SHAO, J. & DING, Y. 2014 A phase field numerical study of 3D bubble rising
in viscous fluids under an electric field. Intl J. Heat Mass Transfer 78, 820–829.

YIH, C. S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27 (02), 337–352.
YOUNGS, D. L. 1984 Numerical simulation of turbulent mixing by Rayleigh–Taylor instability.

Physica D 12 (1), 32–44.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

54
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.54

	Numerical analysis of the Rayleigh–Taylor instability in an electric field
	Introduction
	Mathematical model
	Phase field equation
	Electric field equation
	Flow field equation
	Dimensionless parameters
	Boundary and initial conditions
	Numerical methodology

	Results and discussion
	Model validation
	Stability analysis
	Electrohydrodynamic RTI in a horizontal electric field
	Electrohydrodynamic RTI in a vertical electric field

	Interfacial morphology of electrohydrodynamic RTI
	Interfacial morphology under the action of horizontal electric field
	Interfacial morphology under the action of vertical electric field

	Influence of the viscosity
	Influence of the wavelength
	Multiple mode

	Concluding remarks
	Acknowledgements
	Appendix A. Linear stability analysis on RTI in a horizontal electric field
	Appendix B. Linear stability analysis of RTI in a vertical electric field
	Appendix C. Nonlinear analysis of the interfacial morphology
	References




