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Abstract. In this paper, we derive geometric and analytic properties of invariant sets,
including orbit closures, of a large class of piecewise-affine maps T on Rd . We assume that
(i) T consists of finitely many affine maps defined on a Borel measurable partition of Rd ,
(ii) there is a lattice L⊂ Rd that contains all of the mutual differences of the translation
vectors of these affine maps, and (iii) all of the affine maps have the same linear part that is
an automorphism of L. We prove that finite-volume invariant sets of such piecewise-affine
maps always consist of translational tiles relative to this lattice, up to some multiplicity.
When the partition is Jordan measurable, we show that closures of bounded orbits of T
are invariant and yield Jordan measurable tiles, again up to some multiplicity. In the latter
case, we show that compact T -invariant sets also consist of Jordan measurable tiles. We
then utilize these results to quantify the rate of convergence of ergodic averages for T in
the case of bounded single tiles.
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1. Introduction
1.1. Piecewise maps of affine automorphisms. This paper studies geometric and analytic
properties of orbit closures of a class of piecewise-affine maps on the Euclidean space
which we call ‘piecewise-affine automorphisms’. Consider a general piecewise-affine
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map on Rd given by
T (v)= Ai (v) := L iv + τi if v ∈�i , (1)

where {�i }i∈3 is a partition of Rd and (L i , τi ) are the linear transformation and translation
components of the affine maps Ai , i ∈3, associated with this partition. For the class of
piecewise-affine maps considered in this paper, we assume that:
(i) 3 is finite and all the �i are Borel measurable;
(ii) there is a lattice L⊂ Rd for which {τi − τ j : i, j ∈3} ⊂ L; and
(iii) L i = L for all i ∈3, where L is an automorphism on L.
Fixing a basis for L, we may assume that L is represented by a unimodular matrix, i.e., an
element of GL(d, Z) which we also denote by L . In this basis, the coefficients of all the τi

would belong to a single coset of Zd which we may identify with a point a ∈ Td
:= Rd/Zd .

Hence no generality is lost by assuming that L= Zd .
With these assumptions, T has a factor on Td given by the invertible affine map (also

called an affine automorphism [Dan00])

S(u) := Lu + a, u ∈ Td . (2)

More precisely, the canonical projection 〈·〉 : Rd
→ Td induces a semiconjugacy from

(Rd , T ) to (Td , S) via the intertwining relation

〈T (v)〉 = S(〈v〉), v ∈ Rd . (3)

We will say that T is a piecewise extension of the affine automorphism S (or, in short,
a piecewise-affine automorphism), and denote the set of all piecewise extensions of S by
P(S) := P(L , a).

Given an affine automorphism S, we are interested in structural properties of bounded
orbits of all T ∈ P(S). It should be noted that piecewise-affine maps can exhibit extremely
complicated behavior. Indeed, the problem of determining whether all trajectories of a
given piecewise-affine map remain bounded is known to be algorithmically undecidable,
even when the model class of piecewise-affine maps only incorporate finite partitions that
are determined by linear inequalities with rational coefficients [BBKT01, DDBB+09].
Hence, it can be said that, generally, the boundedness question for orbits must be
established by exploiting special properties of particular maps. Some cases are trivial, such
as when each affine piece Ai is contracting. However, in our case with unimodular L , the
Ai generically yield unbounded orbits as individual maps on Rd . Therefore boundedness
of orbits of T can only follow from the fine interactions of the Ai with the partition
domains �i . This paper will not address the question of deciding when orbits are bounded
(sufficient conditions in some special classes of examples that fall in our setting can be
found in [DD03, DGWY10, Yıl02]), but rather we will consider what bounded orbits
(i.e., their closures) generally look like.

Due to (3), orbits of S already give partial information about orbits of T . Indeed, every
orbit of T is determined by an orbit of S up to a translation by a sequence in Zd . As
is well known, the nature of the orbits of S depends significantly on the spectrum of L .
For example, when L is unipotent, every orbit of S is dense in a finite union of cosets
of some subtorus of Td , a result that falls within Ratner’s theory [Tao12, §1.1]. On the
other hand, when L is hyperbolic, some orbits exhibit complicated behavior, even though
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ergodicity with respect to the Haar measure on Td implies that almost every orbit is
uniformly distributed in Td . While most of the general results of this paper will hold
without any spectral constraints, only building on a suitable ergodic decomposition of the
system (Td , S), some of the more specific ones concerning individual orbits can readily
utilize additional information that may follow from spectral properties.

1.2. Summary of the main results. We say that a set A is T -invariant if T (A)= A
and essentially T -invariant if T (A)4 A is null with respect to the measure of interest.
(The reason for our choice of convention regarding invariant sets is explained in §3.3.)
The theoretical contributions of this paper can then be summarized as follows. Given any
piecewise-affine automorphism T satisfying (i)–(iii) above, we show that:
• geometrically, any essentially T -invariant set of finite measure consists of a disjoint

union of one or more suitably defined Zd -tiles (see paragraph below);
• analytically, closures of bounded orbits of T are essentially T -invariant (and therefore

consist of Zd -tiles) provided the partition {�i }i∈3 is not too complicated (e.g., Jordan
measurable); and

• statistically, in the case of single tiles, the rate of convergence of ergodic averages on
any given orbit of T can be controlled by the underlying affine automorphism S and
the regularity of the partition {�i }i∈3.

Our results are simplest to state when S is ergodic on Td . In this case, the first two
contributions listed above are based on the following results proved in this paper.
(T) (Tiling) Any essentially T -invariant set A of finite Lebesgue measure is an essential

m-tile for some integer m ≥ 0. This means that there exist disjoint sets 01, . . . , 0m

in Rd such that each 0i is a fundamental domain for the lattice Zd (i.e., {0i+k}k∈Zd

partition Rd ) and
λd(A 4 0)= 0,

where 0 := 01 ∪ · · · ∪ 0m (0 is called an exact m-tile) and λd is the d-dimensional
Lebesgue measure. If the multiplicity m equals one, then T is ergodic on 0. (For
details, see Theorem 3.1.)

(R) (Regularity of invariant sets and orbit closures) If the partition {�i }i∈3 is Jordan
measurable in the sense that

λd

( ⋃
i∈3

∂�i

)
= 0,

then, for almost every v0, the closure of the forward orbit V = O+T (v0) := {T n(v0) :

n ≥ 0} is essentially T -invariant and Jordan measurable. More generally, every
compact essentially T -invariant set K is Jordan measurable. Moreover, it is possible
to find a Jordan measurable exact m-tile 0 that is a measure-equivalent subset of
K (or V ) and can be arranged to contain V in the latter case. (For details, see
Theorems 4.2, 5.1, and 5.2.)

For the general case, i.e., without ergodicity of S, we show that a similar picture holds,
albeit with some modifications. The starting point is a partitioning of Td (and uniquely so)
into S-invariant sets (5α) such that each element 5 of this partition is a finite union of
subtoral cosets and S is ergodic (but not necessarily uniquely ergodic) with respect to the
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uniform (surface) measure µ5 on 5. Let 5̃⊂ Rd be the preimage of 5 under 〈·〉, and let
µ5̃ be the corresponding uniform measure on 5̃. (One can also view µ5̃ as the restriction
of the k-dimensional Hausdorff measure on the Borel sets of 5̃, where k = dim(5); see §3
for details.) In this context, we establish a generalized notion of tiling for orbits of T within
5̃ and show that (T) and (R) continue to hold for µ5̃-almost everywhere (a.e.) bounded
orbits of T and, in particular, for every bounded orbit whose toral projection is dense
in 5. It should be noted that, in the unipotent case, the above mentioned partition of Td

is a partition into minimal sets for S. However, in the general setting, it is not possible to
match all orbit closures of S with finite unions of subtoral cosets in Td . Furthermore, there
may not be any decomposition of Td into minimal sets for S either.

It is natural to ask whether unimodularity of L is necessary, i.e., if the tiling property
continues to hold when L is merely an endomorphism of Td . While certain partitions
may still result in the tiling property, it turns out that generally this is not the case (see
Example 7.6).

1.2.1. Regularity of invariant tiles and convergence rate of ergodic averages. The most
significant implication of the regularity analysis of invariant tiles is that it enables us
to derive an ‘effective ergodic theorem’ for T (at least in the single tile case), i.e., a
quantitative bound on the convergence rate of ergodic averages along orbits of T based
on a suitable quantitative measure of regularity. For simplicity, consider the case when S is
ergodic on5= Td and 0 (as given by (R)) is a Jordan measurable, essentially T -invariant,
exact 1-tile for Rd . In this case, the projection 〈·〉 (when restricted to 0) defines a measure-
preserving isomorphism between 0 (with the Lebesgue measure restricted to the Borel
subsets of 0) and Td (with the Haar measure), and the intertwining relation (3) implies that
T is ergodic on 0. Hence, for any f ∈ L1(0) and for almost every v0 ∈ 0, the sequence of
iterates v = (vn)

∞

0 , where vn := T n(v0), is contained in 0 and yields

DN ( f, v) := DN ( f, v, 0) :=
∣∣∣∣ 1

N

N−1∑
n=0

f (vn)−

∫
0

f (v) dv
∣∣∣∣→ 0 as N →∞. (4)

The quantitative bound that we establish in this paper on the rate of decay of DN ( f, v)
incorporates two ingredients: a regularity estimate for the invariant tile 0 and a regularity
estimate for the function f . Regarding the first, let us define

ρ0(ε) := λd(Nε(∂0)), ε > 0, (5)

where Nε(B) denotes the (open) ε-neighborhood of a set B. Note that Jordan measurability
of 0 implies a priori that limε→0+ ρ0(ε)= 0. Regarding the second ingredient, let f :
0→ C be uniformly continuous and let ω f denote its modulus of continuity (with respect
to the Euclidean metric on 0). Note that, again, the uniform continuity of f means a priori
that limε→0+ ω f (ε)= 0. With these two ingredients, we establish the quantitative bound

DN ( f, v).d ω f (
√

dbDN (u)−1
c
−1/d)+ ‖ f ‖∞ρ0(

√
dbDN (u)−1

c
−1/d), (6)

where u := (〈vn〉)
∞

0 denotes the projection of v on Td (which itself results in an orbit of S),
and DN (u) denotes the standard discrepancy (with respect to axis-parallel rectangles) of
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the first N terms of u in Td . (Here the notation b·c denotes the integer part, and A .d B
means A ≤ C B, where C is a numerical constant that depends on d only.)

Note that this is a general-purpose upper bound. But it is ready to be turned into an
effective bound with additional information on f , 0 and u. In particular, bounds on
DN (u) can be obtained by standard analytic tools, such as the Erdős–Turán inequality
(see, e.g., [KN74]), which can exploit the algebraic structure of S.

In the special case when S is uniquely ergodic, note that DN (u)→ 0 uniformly over all
u0 ∈ Td . Hence we get that, for every f continuous on 0, DN ( f, v)→ 0 uniformly over
all v0 for which v is contained in 0. This is a close approximation to unique ergodicity for
T on 0, even if it does not hold per se.

1.3. Relation to other work on piecewise maps. There is a large body of literature on
piecewise maps and naturally this paper has relations to many of them. The piecewise-
affine automorphisms studied in this paper admit absolutely continuous invariant measures
with density equal to the indicator function of their invariant sets. Starting with
[LY73, AY84] and [GB89], piecewise expanding maps (uniformly or in area) have been
studied extensively in terms of the refinements of the sufficient conditions on the set
of discontinuities that guarantee existence of absolutely continuous invariant measures.
However, our maps are not area-expanding, but, instead, are (locally) area-preserving.
In this respect, they match more closely with piecewise isometries such as piecewise
translations and rotations, piecewise parabolic maps [AFNZ00, AFL09] and with area-
preserving piecewise hyperbolic maps. The work [ZL13] concerning invariant measures
with bounded variation density for general piecewise area-preserving maps is of particular
relevance to this paper. In one dimension and for partitions consisting of intervals, the maps
that we consider simply reduce to interval translation maps [BT03] on their full domain
and, furthermore, to interval exchange transformations on their (bounded) invariant sets.
In higher dimensions, certainly a much wider variety of spectral possibilities is present.

The tiling property of invariant sets has been known for some time for a restricted
class of maps in which L is a skew transformation. This was noted in [DD03, GT04] and
was proved in [GT05]. The case of piecewise translations (i.e., when L is the identity
transformation) falls under the work of Adler et al [AKM+05, ANST10, ANS+17]. To the
best of our knowledge, the present paper is the first work that extends these partial results
to all L ∈ GL(d, Z).

1.4. Organization of the paper. In §2, we present the background material concerning
dynamics of affine automorphisms on Td which will be needed in the subsequent
sections. Section 3 contains our general tiling theorem for invariant sets of piecewise-
affine automorphisms and is central to this paper. The results of this section are derived
based on measure-theoretic principles only. In §4, after deriving some general properties
of orbit closures of piecewise homeomorphisms, we show that closures of bounded
orbits of piecewise-affine automorphisms have the tiling property whenever the partitions
associated with these maps are Jordan measurable. We further this analysis in §5, where
we show that any bounded orbit closure and, more generally, any compact essentially
invariant set, is Jordan measurable. In §6, building on all the tools and results of this paper,
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we derive quantitative bounds on the convergence rate of the ergodic averages associated
with T . Section 7 is devoted to selected examples from algorithmic analog-to-digital (A/D)
conversion that have motivated this paper and concludes with a list of open problems and
challenges. Some of our more technical lemmas (which are non-dynamical) are presented
in Appendix A. In addition, Appendix B is concerned with extracting invariant sets of
finite-to-one maps.

2. Preliminaries on toral dynamics of affine automorphisms
In this section, we will discuss the structure of generic orbits of affine automorphisms
of the torus by means of a recursive, ‘semi-explicit’ ergodic decomposition, the meaning
of which will be made precise below. Let S be an affine automorphism of Td given by
S(u) := Lu + a, where L is a unimodular matrix and a is an arbitrary element of Td . It is
well known (e.g., [Bro76, Theorem 3.3]) that S is ergodic on Td (with respect to the Haar
measure) if and only if whenever k is in Zd :
(i) (L>)nk = k for n > 0 implies L>k = k; and
(ii) L>k = k and k · a = 0 (mod 1) implies k = 0.

When S is not ergodic, it is natural to seek an ergodic decomposition. However, a
‘general-purpose’ decomposition of the Haar measure on Td via Choquet’s theorem does
not reveal the nature of the ergodic components explicitly, so we will take a more direct
approach that also extracts geometric information on the ergodic components of interest to
us. As will be discussed below, these ergodic components turn out to be uniform measures
supported on certain lower-dimensional submanifolds 5 of the form G + P , where G is
a subtorus and P is a finite subset of Td . In other words, each such 5 is a finite union
of cosets of a subtorus of Td . Note that 5 determines G uniquely (since any connected
component of 5 is a coset of G) but determines P only up to translations by elements of
G. The uniform probability measure on 5 will be denoted by µ5. (In other words, µG is
the same as the Haar measure on G and µ5 is the normalized sum of translated copies of
µG on the cosets that constitute 5.) The main result that we will show in this section is
the following proposition.

PROPOSITION 2.1. There exists a unique partition of Td into S-invariant subsets (5α),
where each 5α is a finite union of cosets of some subtorus and S is ergodic on 5α with
respect to µ5α .

This result will follow as a consequence of several basic facts concerning dynamics of
affine toral automorphisms. Let us define the following classes of sets that will be used
frequently in this paper.

C := {G + P : G is a subtorus and P is a finite subset of Td
}, (7)

CS := {5 ∈ C :5 is S-invariant}, (8)

Ce
S := {5 ∈ CS : S is ergodic on 5 with respect to µ5}. (9)

We now discuss what it means for a set 5= G + P ∈ C to be S-invariant. The relation

S(u + v)= L(u)+ S(v),
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which is valid for all u and v, implies that S(5)= L(G)+ S(P). Since any subtorus G is
of the form (V + Zd)/Zd , where V is a linear subspace of Rd defined by rational equations
and L(Zd)= Zd , we know that L(G) is also a subtorus. Hence S(5) ∈ C. Matching the
connected components of 5 and S(5), we get that G + P is S-invariant if and only if G
is L-invariant and P is S-invariant modulo translations by G.

When G is an L-invariant subtorus of Td , we have S(G + p)= G + S(p) for all
p ∈ Td . This relation induces a map G + p 7→ G + S(p) on Td/G, which we may denote
by SG . Let π : Td

→ Td/G be the canonical projection given by π(p) := G + p. With this
notation, we can equivalently say that G + P is S-invariant if and only if G is L-invariant
and π(P) is SG-invariant. Since P is finite, the latter holds if and only if π(P) decomposes
into finitely many distinct periodic SG-orbits of cosets of G. Note that the coset SG(G + p)
is the same as the set S(G + p), i.e., we have the commutation relation SG ◦ π = π ◦ S.
Hence periodicity of (Sn(G + p)) will mean periodicity of (Sn

G(π(p))).
With these elementary observations, we are ready to proceed. The proof of Proposition

2.1 will rely on the following crucial lemma.

LEMMA 2.1. Suppose G is an L-invariant subtorus of Td and (Sn(G)) is periodic. If S is
not ergodic on the orbit OS(G), then there exists an L-invariant proper subtorus G ′ of G
such that (Sn(G ′ + p)) is periodic for every p ∈ G.

Proof. Let ek(u) := e2π ik·u for u ∈ Td , k ∈ Zd . Note that the system {ek}k∈Zd/G⊥ (with
domain restricted to G) forms an orthonormal basis of L2(G), where, for notational ease,
we represent each coset G⊥ + k with a unique element in it. Denote S j (0) by s j , j ∈ Z,
so that S j (G)= G + s j . Define

ϕ j,k(u) := 1S j (G)(u)ek(u − s j ) for u ∈ Td , j ∈ Z, k ∈ Zd ,

where 1S j (G) denotes the indicator function of S j (G).
Let M be the period of (Sn(G)) and denote OS(G)= G ∪ (G + s1) · · · ∪ (G + sM−1)

by 5. Then the system

{ϕ j,k : j = 0, . . . , M − 1, k ∈ Zd/G⊥}

(with domain restricted to 5) is an orthonormal basis of L2(5). Note that, by periodicity,
we have s j+M − s j ∈ G for all j . We also have ϕ j+M,k(u)= ek(s j − s j+M )ϕ j,k(u), i.e.,
these two functions are equal up to a phase factor. (However the phase factor need not
vanish unless k is zero, i.e., in G⊥.)

If S is not ergodic on 5, then there exists an S-invariant f ∈ L2(5) that is not constant
µ5-a.e. Consider the expansion

f =
M−1∑
j=0

∑
k∈Zd/G⊥

〈 f, ϕ j,k〉ϕ j,k .

Observing that 1S j (G) ◦ S = 1S j−1(G) and ek(Su − s j )= eL>k(u − s j−1),

ϕ j,k ◦ S = ϕ j−1,L>k for all j ∈ Z and k ∈ Zd ,
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so that

f ◦ S =
M−1∑
j=0

∑
k∈Zd/G⊥

〈 f, ϕ j,k〉ϕ j−1,L>k . (10)

With L>-invariance of G⊥, we also have

f =
M−1∑
j=0

∑
k∈Zd/G⊥

〈 f, ϕ j,L>k〉ϕ j,L>k (11)

so that equating the coefficients in (10) and (11), we get that, for all k ∈ Zd/G⊥,

〈 f, ϕ j,L>k〉 =

{
〈 f, ϕ j+1,k〉 if j = 0, . . . , M − 2,
〈 f, ϕ0,k〉ek(sM−1 − s−1) if j = M − 1.

(12)

Since f is not constant, there exists a non-zero element k∗ in Zd/G⊥ for which
〈 f, ϕ j,k∗〉 6= 0 for some j = 0, . . . , M − 1. The orbit ((L>)nk∗) in Zd/G⊥ has to be finite
(i.e., periodic) or else we would get a violation of f ∈ L2(5).

Let N be the smallest positive integer such that (L>)N k∗ = k∗ and define

k0 :=

{
k∗ if N = 1,
L>k∗ − k∗ if N > 1.

Note that k0 6= 0 and (L>)N k0 = k0. Consider the closed subgroup

H := {u ∈ G : k0 · u = (L>k0) · u = · · · = ((L>)N−1k0) · u = 0 (mod 1)}.

We are going to show that (Sn(H + p)) is M N -periodic for any given p ∈ G. Since
(L>)N k0 = k0, H is L-invariant so that, for any coset H + p, we have Sn(H + p)=
H + Sn(p) for all n. Then (Sn(H + p)) is M N -periodic if and only if SM N (p)− p ∈ H .
Since SM (G)= G, we already know that SM N (p) ∈ G and hence SM N (p)− p ∈ G. To
show that SM N (p)− p ∈ H , we analyze the cases N = 1 and N > 1 separately.

Case N = 1. We have L>k0 = k0. Note that, for any u ∈ Td ,

k0 · (SM (u)− u)= k0 · ((L M
− I )u + (L M−1

+ · · · + L + I )a)= Mk0 · a

so that k0 · (SM (u)− u) is independent of u. Meanwhile, (12), together with the
knowledge that 〈 f, ϕ j,k0〉 6= 0 for some j = 0, . . . , M − 1, implies that

〈 f, ϕ0,k0〉 = 〈 f, ϕ1,k0〉 = · · · = 〈 f, ϕM−1,k0〉 = 〈 f, ϕ0,k0〉ek0(sM−1 − s−1) 6= 0

so that k0 · (SM (s−1)− s−1)= k0 · (sM−1 − s−1)= 0 (mod 1). Thus, we also have
k0 · (SM (p)− p)= 0 (mod 1), which proves that SM (p)− p ∈ H .

Case N > 1. For any integer i ≥ 0,

((L>)i k0) · (SM N (p)− p)= k0 · (L M N+i p − L i p + (L M N−1
+ · · · + L + I )L i a)

= ((L>)M N k0 − k0) · (L i p)+ ((L>)M N k∗ − k∗) · (L i a)

= 0.

This proves that SM N (p)− p ∈ H .
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Next, H is a proper closed subgroup of G (including the possibility that H is {0}) since
k0 6= 0. As such, H can be written in the form G ′ + F , where G ′ is a proper subtorus of
G and F is a finite subgroup of G. Since H ∈ C and is L-invariant, it follows from our
earlier discussion that G ′ is L-invariant. We then see that (Sn(G ′ + p)) must be periodic
because it remains within OS(H + p), which can be expressed as a finite union of cosets
of G ′ given by

M N−1⋃
i=0

G ′ + F + Si (p),

due to the fact that (Sn(H + p)) is M N -periodic. �

COROLLARY 2.1. Suppose G is an L-invariant subtorus of Td and (Sn(G + p)) is
periodic for some p ∈ Td . If S is not ergodic on OS(G + p), then there exists an
L-invariant proper subtorus G ′ of G such that (Sn(G ′ + p′ + p)) is periodic for every
p′ ∈ G.

Proof. For the given p, consider the affine automorphism S′(u) := Lu + (a + Lp − p).
Then the commutation relation

S(· + p)= S′(·)+ p (13)

implies that (i) (Sn(G + p)) is periodic if and only if (S′n(G)) is periodic, and (ii) S is
ergodic on5 ∈ CS if and only if S′ is ergodic on5− p ∈ CS′ . Hence, if S is not ergodic on
OS(G + p), then Lemma 2.1 (applied to S′ on G) implies that there exists an L-invariant
proper subtorus G ′ of G such that (S′n(G ′ + p′)) is periodic for every p′ ∈ G. Therefore,
by (13) again, (Sn(G ′ + p′ + p)) is also periodic for every p′ ∈ G. �

Proof of Proposition 2.1. Starting with G = Td and p = 0, we apply Corollary 2.1
recursively to every periodic orbit OS(G + p) until every branch of the process terminates,
i.e., S is ergodic on the resulting periodic orbit. More precisely, each such branch is
characterized by a finite sequence of periodic orbits

OS(G0 + p0), OS(G1 + p1 + p0), . . . , OS(Gr + pr + · · · + p0),

where (G0, p0)= (Td , 0) and, for all i ≥ 1 (provided r 6= 0), Gi is a proper subtorus of
Gi−1 and pi is an arbitrary element of Gi−1. The termination (i.e., finiteness of r ) is
guaranteed because dim Gi < dim Gi−1. Each orbit OS(Gi + pi + · · · + p0) is periodic,
but S is ergodic only on OS(Gr + pr + · · · + p0). In order to get distinct branches, we
only consider pi that are distinct modulo Gi .

The final result is a partitioning of Td into a collection of subsets (5α), where each
5α ∈ C

e
S .

Finally, we show that there is only one partition with this property. Suppose (5α)
and (5β) are two such partitions of Td . The ergodicity and continuity of S implies
that it has a dense orbit Oα in any 5α . We know that Oα intersects with some 5β , but
S-invariance implies that Oα ⊂5β . Taking the closure, we have5α ⊂5β . By symmetry,
there must exist 5α′ such that 5β ⊂5α′ . But then 5α ⊂5α′ , which implies that α = α′,
and therefore 5α =5β . Hence the two partitions are identical. �
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3. Tiling of T -invariant sets
In this section, we will establish the first core result of this paper, namely, the tiling
property of essentially invariant sets of piecewise-affine automorphisms. We start by
defining the measures that will be relevant to us.

3.1. The measures µ5 and µ5̃. Let T be a piecewise-affine automorphism and let S be
its toral factor. As we saw in §2, Td admits an ergodic decomposition into S-invariant sets
(5α), each of which is of the form 5= G + P for some subtorus G and a finite set P .
Here each 5 is equipped with its uniform probability measure µ5 defined on its Borel
sets. Up to a constant factor, µ5 is equal to the k-dimensional Hausdorff measure on Td

restricted to the Borel sets of 5, where k = dim(G).
For any set A ⊂ Td , let Ã denote its preimage under the canonical map 〈·〉. Note that

(5̃α) is a partition of Rd and that T (5̃α)⊂ 5̃α for each α because of (3). Hence we may
study T on each 5̃α individually.

In the immediate discussion below, we will work with a general 5= G + P ∈ C, but
when the maps S and T are incorporated into our discussion, we will assume that 5 ∈ CS

or, actually, is an element of the partition (5α).
When G = Td , clearly, 5̃= Rd . Otherwise, when G is a proper subtorus of Td

(including the case G = {0}), 5̃ is a countable union of distinct cosets of the rational
subspace V of Rd , where G = (V + Zd)/Zd and, alternatively, is a finite union of cosets
of the subgroup G̃ := V + Zd of Rd . We equip 5̃ with its own uniform surface measure
µ5̃ which assigns the same weight on every coset. Likewise, and again up to a constant
factor, the resulting measure µ5̃ is equal to the k-dimensional Hausdorff measure on Rd

restricted to the Borel sets of 5̃. While the exact normalization of µ5̃ will not affect the
main results of this paper, there is a natural choice that will help to simplify our notation.
We would like µ5̃ and µ5 to be compatible in the sense that µ5̃(B)= µ5(〈B〉) for any
Borel set B ⊂ 5̃ on which 〈·〉 is one-to-one. This is a special case of the more general
equality

µ5̃(B)=
∫
5

NB dµ5, (14)

where NB : Td
→ N ∪ {∞} is the multiplicity function defined by

NB(u) := |{v ∈ B : 〈v〉 = u}| = |B ∩ 〈·〉−1(u)|. (15)

(Here | · | denotes cardinality.) Indeed, if 〈·〉 is one-to-one on B, then NB = 1〈B〉 so that
(14) implies that µ5̃(B)= µ5(〈B〉).

Let us see why (14) is valid with a suitable normalization of µ5̃. First, note that Borel
measurability of NB (for B Borel) follows from the continuity of the canonical map 〈·〉.
(See, for example, the general discussion in [Fed69, 2.2.13 and 2.10.10]. Alternatively,
this fact follows from the explicit representation

NB =
∑
n∈Zd

1〈B∩Qn〉,

where Qn := n + [0, 1)d .) Next, let ν(B) denote the right-hand side of (14) for any Borel
set B ⊂ 5̃. It is clear from (15) that N∅ = 0, and whenever (Bn) is a disjoint countable
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family we have N∪Bn =
∑

NBn . Employing the monotone convergence theorem, we get
that ν is a Borel measure. It remains to show that ν is uniform on 5̃. The identity NB+x =

NB(· − 〈x〉), which is valid for any set B and any x ∈ Rd , implies, in particular, that
ν(B + x)= ν(B) whenever x ∈ G̃ and B is a Borel set in any of the cosets G̃ + p̃ that
constitute 5̃. Hence ν restricted to G̃ + p̃ is nothing but a translate of the Haar measure
on G̃, which is, of course, the uniform measure and it is unique up to a constant multiple.
Since µ5 has the same weight on each coset G + p that constitutes5, ν also has the same
weight on each G̃ + p̃. This shows that µ5̃ can be normalized to equal ν and therefore
(14) has been established.

Note that, for any Borel set B in 5̃, NB = 0 µ5-a.e. if and only if µ5̃(B)= 0. More
generally, NB1 = NB2 µ5-a.e. if and only if µ5̃(B1 4 B2)= 0.

3.2. Interaction between T and µ5̃. Let 5 ∈ CS , i.e., µ5 remain invariant by S. Note
that while µ5̃ is invariant under each affine component of T , it need not be invariant under
T itself when the set of points with multiple preimages is not negligible, which is typically
the case. We show below that T preserves the measure of a set if and only if it is ‘essentially
one-to-one’ on this set.

For a Borel set B ⊂ 5̃, we say that T is essentially one-to-one on B if the set of points
v ∈ B for which T (v) has more than one preimage in B is µ5̃-null. To make this notion
more precise, let us first define, for an arbitrary non-empty set A in 5̃

m A :=min
v∈A
|T−1(T (v)) ∩ A| and MA :=max

v∈A
|T−1(T (v)) ∩ A|. (16)

Clearly, |T−1(T (v)) ∩ A| ≥ 1 for all v ∈ A so that we have MA ≥ m A ≥ 1. We set M∅ :=
m∅ := 1 (instead of the convention that would set the maximum of a function over the
empty set equal to −∞ and the minimum equal to +∞). Hence T is one-to-one on A if
and only if MA = 1. Also

m A|T (A)| ≤ |A| ≤ MA|T (A)| (17)

for all sets. Similarly, for any Borel set B in 5̃ of non-zero measure, we define

`B := ess inf
v∈B
|T−1(T (v)) ∩ B| and L B := ess sup

v∈B
|T−1(T (v)) ∩ B|, (18)

both with respect to µ5̃. It is clear that L B ≥ `B ≥ 1. If µ5̃(B)= 0, we set L B := `B := 1
(instead of the conventional values of −∞ and +∞). With this convention, it follows that
T is essentially one-to-one on B if and only if L B = 1.

Note that
1≤ m B ≤ `B ≤ L B ≤ MB ≤ |3|<∞,

where 3 denotes the index set labeling the partition of the domain of T , as introduced
in §1.1. If we define

B∗ := {v ∈ B : `B ≤ |T−1(T (v)) ∩ B| ≤ L B}, (19)

then we have
µ5̃(B\B

∗)= 0; `B = m B∗ and L B = MB∗ . (20)
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LEMMA 3.1. Let 5 ∈ CS . Then, for all Borel sets B ⊂ 5̃,

`Bµ5̃(T (B))≤ µ5̃(B)≤ L Bµ5̃(T (B)), (21)

and the following are equivalent when µ5̃(B) <∞.
(a) µ5̃(T (B))= µ5̃(B).
(b) NT (B) = NB ◦ S−1 µ5-a.e.
(c) T is essentially one-to-one on B.
The implications (c)⇒ (a) and (b)⇒ (a) are valid when µ5̃(B)=∞ as well.

Proof. Let C ⊂ 5̃ be an arbitrary Borel set. For any u ∈5, let [u] denote 〈·〉−1(u). We
begin by noting that T (C ∩ [u])= T (C) ∩ [S(u)] so that setting A := C ∩ [u] in (17)
yields

mC∩[u]|T (B) ∩ [S(u)]| ≤ |C ∩ [u]| ≤ MC∩[u]|T (C) ∩ [S(u)]|.

Observing that mC ≤ mC∩[u] ≤ MC∩[u] ≤ MC and employing definition (15), we obtain

mC NT (C)(S(u))≤ NC (u)≤ MC NT (C)(S(u)) for all u ∈5. (22)

We now integrate all three functions in (22) over5, which gives us, using the S-invariance
of µ5 and the relation (14),

mCµ5̃(T (C))≤ µ5̃(C)≤ MCµ5̃(T (C)). (23)

This is almost (21) except for the constants of equivalence. We will now tighten these
constants. For any Borel B ⊂ 5̃, let B∗ be as in (19). It already follows from (23) that
T (C) is measure zero if and only if C is. Setting C := B\B∗, which is measure zero by
(20), we get that T (B\B∗) is also measure zero so that µ5̃(T (B))= µ5̃(T (B

∗)). We now
set C := B∗ in (23). Invoking (20) again, we obtain

`Bµ5̃(T (B))=m B∗µ5̃(T (B
∗))

≤ µ5̃(B
∗)= µ5̃(B)≤ MB∗µ5̃(T (B

∗))= L Bµ5̃(T (B)),

which is the desired form of (21).
(c) ⇒ (a). This is immediate from (21) since T essentially one-to-one means L B =

`B = 1.
(b)⇒ (a). This follows by integrating NT (B) and NB ◦ S−1 over5 and using (14) along

with the fact that µ5 is invariant under S−1.
(a)⇒ (b) and (c). Assume that µ5̃(T (B))= µ5̃(B) <∞. Let

B1 := {v ∈ B : |T−1(T (v)) ∩ B| = 1}.

Since T is one-to-one on B1, we have MB1 = m B1 = 1 so that setting C := B1 in (22)
and replacing u by S−1(u) already gives NT (B1) = NB1 ◦ S−1. We will extend this to
B by showing that B\B1 is of measure zero. We clearly have µ5̃(T (B1))= µ5̃(B1).
Meanwhile, for B\B1,

2µ5̃(T (B\B1))≤ µ5̃(B\B1).

Indeed, if B\B1 6= ∅, we have m B\B1 ≥ 2 so that we can invoke (23) with C := B\B1; if
B\B1 = ∅, the inequality, of course, still holds. This shows that

2µ5̃(T (B\B1))≤ µ5̃(B)− µ5̃(B1)= µ5̃(T (B))− µ5̃(T (B1))= µ5̃(T (B\B1)),
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where the last equality follows from the fact that T (B\B1) and T (B1) are disjoint by
definition of B1. Since µ5̃(T (B\B1)) <∞, we obtain µ5̃(T (B\B1))= µ5̃(B\B1)= 0.
Therefore µ5̃(T (B)\T (B1))= 0. Hence L B = 1, i.e., T is essentially one-to-one. In
addition,

NT (B) = NT (B1) = NB1 ◦ S−1
= NB ◦ S−1 µ5-a.e.,

where, in the last equality, we have also used the S-invariance of µ5. �

3.3. The tiling property of T -invariant sets. In this subsection, we will prove our first
main theorem which states that T -invariant sets comprise disjoint tiles. We start below
with a discussion on our convention of T -invariance and its implications.

3.3.1. T -invariant sets. We say that a set A is T -invariant if T (A)= A. Similarly, for
5 ∈ CS , we say that a Borel set A ⊂ 5̃ is essentially T -invariant if µ5̃(A 4 T (A))= 0.

The significance of this definition is the following crucial observation. Suppose A is
essentially T -invariant with µ5̃(A) <∞. It follows from Lemma 3.1((a)⇒ (c)) that T is
essentially one-to-one on A. Moreover, since T is also essentially one-to-one on any Borel
subset of A, it again follows from Lemma 3.1(this time, (c)⇒ (a)) that (A, µ5̃, T|A) is an
invertible measure-preserving system. Equivalently, 1A is an invariant density for T on 5̃
since, for any Borel subset B of 5̃,

µ5̃(A ∩ T−1 B)= µ5̃(T (A ∩ T−1 B))= µ5̃(T (A) ∩ B)= µ5̃(A ∩ B).

(Here, we have used the set identity T (A ∩ T−1 B)= T (A) ∩ B.)
Let us note that, in many examples, no set B of positive and finite measure satisfies the

alternative invariance condition T−1(B)= B, which, otherwise, would also be of interest.
It is natural to ask how one might encounter T -invariant sets. Theorem B.1 provides a

general-purpose formula for the largest invariant set contained in any given set, which is
valid for any ‘finite-to-one’ map. However, for some examples of T , there may not be any
non-empty invariant sets in the strict sense (see Examples 7.1 and 7.2). Orbit closures are
generally not expected to be strictly invariant either, but we will see in the next section that
they are essentially invariant provided the partition is Jordan measurable.

Let us also note the following simple observation for future reference.

LEMMA 3.2. Let 5 ∈ CS and A, B be two Borel sets in 5̃. If B is essentially T -invariant
and A is µ5̃-equivalent to B, i.e., µ5̃(A 4 B)= 0, then A is also essentially T -invariant.

Proof. Note that (21) implies µ5̃(T (A 4 B))= 0, and since T (A)4 T (B)⊂ T (A 4 B),
we have µ5̃(T (A)4 T (B))= 0 as well. The conclusion then follows from the basic
relation A 4 T (A)⊂ (A 4 B) ∪ (B 4 T (B)) ∪ (T (B)4 T (A)). �

3.3.2. Tiles. Note that a set X ⊂ Rd is Zd -invariant (i.e., X + Zd
= X ) if and only if it

is the preimage under 〈·〉 of a subset of Td . Given such a Zd -invariant set X , we say that
0 is an exact tile (or simply a tile) for X if {0+k}k∈Zd is a partition of X . More generally,
given a non-negative integer m, we say that 0 is an m-tile for X if it is the union of m
disjoint tiles for X , with 0-tile meaning the empty set. It is easy to see that 0 is an m-tile
for X if and only if N0 = m everywhere on 〈X〉.
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We say that a Borel set B ⊂ 5̃ is an essential m-tile for 5̃ if it differs from an exact
m-tile 0 for 5̃ by a µ5̃-null set. Equivalently, NB = m holds µ5-a.e. on 5.

THEOREM 3.1. Let 5 ∈ Ce
S . Any essentially T -invariant set A ⊂ 5̃ of finite measure is an

essential m-tile for 5̃, where it must necessarily be the case that µ5̃(A)= m. If m = 1,
then T|A is ergodic with respect to µ5̃.

Proof. The essential T -invariance of A yields NA = NT (A) µ5-a.e. and Lemma
3.1((a) ⇒ (b)) yields NT (A) = NA ◦ S−1 µ5-a.e. Hence NA = NA ◦ S−1 µ5-a.e. Since
S is ergodic, it follows that NA is constant µ5-a.e. By definition of NA, this constant is a
non-negative integer m, and (14) implies that µ5̃(A)= m.

The ergodicity of T|A for m = 1 follows from the fact that 〈·〉 : A→5 is a measure-
preserving isomorphism between (A, µ5̃) and (5, µ5) intertwining T and S. Indeed, for
any Borel subset B of A such that T−1

|A B = B, (3) (combined with the fact that T|A is
essentially one-to-one) implies that 〈B〉 is essentially S-invariant, so that ergodicity of S
implies that µ5̃(B)= µ5(〈B〉)= 0 or 1. �

Remarks.
• T|A may or may not be ergodic when m ≥ 2 (Examples 7.3 and 7.4).
• Any Borel exact m-tile 0 that is µ5̃-equivalent to A would be essentially T -invariant

due to Lemma 3.2, and in the case m = 1, T|0 would be ergodic with respect to µ5̃.
Note that neither A nor 0 may be exactly invariant, but working with an exact tile
0 in the case of m = 1 comes with the convenience of 〈·〉 being a bijection between
0 and 5. This feature will be employed in §6 when we discuss convergence rate of
ergodic averages.

4. Essential invariance and tiling of orbit closures for T
The results of the previous section were mainly of measure-theoretic nature, involving
essentially T -invariant sets. The results of the present section and the next one will
combine topology and measure by providing sufficient conditions for essential invariance,
tiling and basic regularity properties of orbit closures for T in terms of the partition
associated with T .

4.1. Orbit closures for piecewise homeomorphisms: topologically approximate
invariance and essential invariance. The main result of this subsection will be a purely
topological lemma on a sufficient condition for approximate invariance of orbit closures
of piecewise homeomorphisms. Note that, for any map f : X→ X , any forward orbit
V = O+f (v0) is nearly invariant, satisfying

V = f (V ) ∪ {v0}.

If f is a continuous map on a Hausdorff topological space X and V has compact closure,
then this relation extends to V because

V = f (V ) ∪ {v0} (24)

and f (V )= f (V )= f (V ), noting that, in Hausdorff spaces, compact sets are closed.
However, this nice fact can easily fail for discontinuous maps when orbit closures intersect
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with the set of discontinuities. To clarify the topological context of invariance properties
of orbit closures for our piecewise automorphisms T , we will consider the larger class
of piecewise homeomorphisms. (Some of our results can even be extended to piecewise
continuous maps, but this generality will not be needed.)

Let {6i }i∈3 be a finite partition of a Hausdorff topological space X and let f : X→ X
be a piecewise map defined by

f (v) := fi (v) for all v ∈6i , i ∈3,

where each fi : X→ X is a homeomorphism. In short, we will call f a piecewise
homeomorphism.

Given any collection of sets {Bi }i∈3, we will write f {B} for { f (Bi )}i∈3 and ∂B for⋃
i∈3 ∂Bi . Then ∂ f {B} stands for

⋃
i∈3 ∂ f (Bi ). With this notation, we have

∂ f {6} =
⋃
i∈3

fi (∂6i ) (25)

since ∂ f (6i )= ∂ fi (6i )= fi (∂6i ).
As in topological dynamics (of continuous maps), we will say that v0 is (positively)

recurrent (for (X, f )) if there exists a sequence of indices nk→∞ (as k→∞) for which
f nk (v0)→ v0. Therefore v0 is recurrent if and only if v0 ∈ f (V ).

The following result shows that orbit closures of a piecewise homeomorphism f are
approximately f -invariant provided the partition associated with f is sufficiently regular
in the sense that ∂ f {6} is a small set.

LEMMA 4.1. Any orbit V = O+f (v0) of a piecewise homeomorphism f : X→ X
associated with a partition 6 satisfies V 4 f (V )⊂ {v0} ∪ ∂ f {6}. If v0 is recurrent, then,
in fact, we have V 4 f (V )⊂ ∂ f {6}.

Proof. Note that
f (V )=

⋃
i∈3

fi (V ∩6i )=
⋃
i∈3

fi (V ∩6i )

and
f (V )=

⋃
i∈3

fi (V ∩6i )

so that

f (V )4 f (V )⊂
⋃
i∈3

fi (V ∩6i )4 fi (V ∩6i )⊂
⋃
i∈3

fi ([V ∩6i ] 4 [V ∩6i ]). (26)

In addition, we have the inclusions

V ∩6i ⊂ V ∩6i ⊂ [V ∩6i ] ∪ ∂6i

and
V ∩6i ⊂ [V ∩6i ∪6

c
i ] ∩6i ⊂ V ∩6i ∪ ∂6i

so that [V ∩6i ] 4 [V ∩6i ] ⊂ ∂6i . The proof is complete once we inject this bound in
(26) and employ (24). �
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The following corollary is now a trivial measure-theoretic extension of Lemma 4.1.

COROLLARY 4.1. Let f be a piecewise homeomorphism on X that is equipped with a
continuous (atomless) Borel measure µ. If the partition 6 associated with f is such that
µ(∂ f {6})= 0, i.e., fi (6i ) is a continuity set of µ for all i ∈3, then every orbit closure
for f is essentially f -invariant with respect to µ.

4.2. Essential invariance and tiling of orbit closures for T . Recall the classes of sets
defined in (7)–(9). For any 5 ∈ CS , equip 5̃ with its relative Euclidean topology and the
measure µ5̃. Consider T as a piecewise homeomorphism defined on 5̃ and write � ∩ 5̃
for the partition of 5̃ consisting of the sets {�i ∩ 5̃}i∈3.

In analogy with the terminology in the Euclidean space, we will call any continuity set
of µ5̃ 5̃-Jordan measurable. We will also say that the partition� is 5̃-Jordan measurable
if �i ∩ 5̃ is 5̃-Jordan measurable for every i ∈3: in other words, if µ5̃(∂(� ∩ 5̃))= 0.

We first record the following result, which is merely an application of Corollary 4.1.

THEOREM 4.1. Let 5 ∈ CS and let V = O+T (v0) be any bounded orbit of T in 5̃.
(i) If dim(5)= 0, then V is eventually periodic.
(ii) If dim(5)≥ 1 and � is 5̃-Jordan measurable, then V is essentially T -invariant.

Proof. The case dim(5)= 0 implies that5 is a finite set. Therefore every bounded subset
of 5̃ is finite. Hence V is an eventually periodic orbit.

For the case dim(5)≥ 1, we employ Corollary 4.1 with X = 5̃, f = T , 6 =� ∩ 5̃
and µ= µ5̃ and note that each Ti preserves µ5̃ so that each Ti (�i ∩ 5̃) is also a
continuity set of µ5̃ and µ5̃({v0})= 0. �

The next result concerns some basic observations on the multiplicity function of
bounded orbits and their closures.

LEMMA 4.2. Let 5 ∈ CS and let V = O+T (v0) be any bounded orbit of T in 5̃.
(i) If 〈V 〉 is not a periodic orbit of S, then NV ≤ 1.
(ii) If 〈V 〉 is dense in 5, then NV ≥ 1 on 5.
(iii) If dim(5)≥ 1 and 〈V 〉 is dense in 5, then NV ≤ 1≤ NV on 5.

Proof. For (i), let vn := T n(v0) and note that if NV (u)≥ 2 for some u ∈5, then there
exist n2 > n1 such that 〈vn2〉 = 〈vn1〉 = u. But then 〈V 〉 would be a periodic orbit of S
since 〈vn2〉 = Sn2−n1〈vn1〉.

For (ii), note that V is compact and therefore 〈V 〉 = 〈V 〉 =5.
For (iii), note that density implies non-periodicity when dim(5)≥ 1 so that we can

combine (i) and (ii). �

Note that, when V is bounded, 〈V 〉 is a periodic orbit of S if and only if V is an
eventually periodic orbit of T . (The ‘if’ part is obvious. The ‘only if’ part follows from
the observation that V has to be a finite set since it is contained in a bounded set whose
toral projection is finite.) Therefore (i) could be restated as ‘if V is not eventually periodic,
then NV ≤ 1’, but the stated form of (i) is more robust because its conclusion holds even
when V is not bounded. Meanwhile, (ii) and (iii) could fail without the boundedness
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assumption on V . For example, any orbit V of the affine map T (v) := v + a on R, where
a is irrational, yields projection 〈V 〉 which is a dense subset of T; but V is closed and 〈V 〉
is a countable subset of T, so NV (u)= NV (u)= 0 for uncountably many u ∈ T.

Our final result in this section shows that ergodicity of S implies tiling of orbit closures
for T .

THEOREM 4.2. Let 5 ∈ Ce
S and let V = O+T (v0) be any bounded orbit of T in 5̃.

(i) If dim(5)= 0, then there exist l ≥ 0 and m ≥ 1 such that O+T (T
l(v0)) is an exact

m-tile.
(ii) If dim(5)≥ 1 and� is 5̃-Jordan measurable, then V is an essential m-tile for some

m ≥ 0. If, in addition, 〈V 〉 is dense in 5, then m ≥ 1.

Proof. For (i), we know that V is eventually periodic by Theorem 4.1(i). Let l ≥ 0 be such
that V ′ = O+T (T

l(v0)) is periodic. Then V ′ is T -invariant and of finite measure, so it is an
essential m-tile by Theorem 3.1. Clearly, the only measure zero set in 5̃ is the empty set,
so V ′ is an exact m-tile. Furthermore, m ≥ 1 because V ′ is non-empty.

For (ii), Theorem 4.1(ii) shows that V is essentially T -invariant. Clearly, µ5̃(V ) is
finite since V is compact. Hence Theorem 3.1 implies that V is an essential m-tile for
some m ≥ 0. The final claim follows immediately from Lemma 4.2(ii). �

Remarks.
• It is not difficult to construct examples of T that yield orbit closures with tiling

multiplicity m > 1. Trivial examples follow by scaling up any single tile example by
an integer; for a non-trivial example, see Example 7.3.

• We know by Theorem 3.1 that (T, V , µ̃5) is ergodic when V is a single tile. It is
natural to ask whether this is always the case for orbit closures when � is 5̃-Jordan
measurable. However, this is not true, even if S has additional favorable properties,
such as unique ergodicity or topological transitivity (see Example 7.5).

• Note that the boundary ∂(� ∩ 5̃) that appears in Theorem 4.2 is with respect to the
topology of 5̃. It can be checked that ∂(� ∩ 5̃) is contained in ∂� ∩ 5̃, where ∂�
now stands for the boundary of � in Rd . Hence, we may, alternatively, check the
stronger condition µ5̃(∂� ∩ 5̃)= 0 if it is more convenient to do so.
It is safe to claim that all practical examples of maps T satisfy this basic regularity
assumption. As a particular case, we note that if P is a polyhedron in Rd (bounded
or not), then, for any affine subspace V of Rd , the cross-section P ∩ V is also a
polyhedron (in V ). Therefore, if the partition � consists entirely of polyhedral sets,
then it is automatically 5̃-Jordan measurable for any 5 ∈ C.

5. Regularity of orbit closures and invariant sets for T
In this section, we will show that compact invariant sets inherit the basic regularity of
the partition associated with T . In particular, we will show that, given 5 ∈ Ce

S , if the
partition is 5̃-Jordan measurable, then the closure of every bounded orbit and, in general,
any compact essentially invariant set in 5 is also 5̃-Jordan measurable.

As in §4, we will first consider general piecewise homeomorphisms and then discuss
the implications for the piecewise-affine automorphisms T .
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5.1. Orbit closures for piecewise homeomorphisms: the boundary. Our first result
shows that the boundary of an orbit closure for a piecewise homeomorphism is controlled
by its image and the boundary of the underlying partition.

LEMMA 5.1. Any orbit V = O+f (v0) of a piecewise homeomorphism f : X→ X
associated with a partition6 satisfies ∂V \ f (∂V )⊂ {v0} ∪ ∂ f {6}. If v0 is recurrent, then,
in fact, we have ∂V \ f (∂V )⊂ ∂ f {6}.

Proof. We start by noting that, for any function f and sets A, B, C , where A = B\C , we

have the inclusion A\ f (A)⊂ B\ f (B) ∪ f (C)\C . Since ∂V = V \
◦

V ,

∂V \ f (∂V )⊂ [V \ f (V )] ∪ [ f (
◦

V )\
◦

V ].

Lemma 4.1 readily implies that [V \ f (V )] ⊂ {v0} ∪ ∂ f {6} (with {v0} being unnecessary

if v0 is recurrent, i.e., contained in f (V )), so it suffices to consider [ f (
◦

V )\
◦

V ]. Note that

f (
◦

V )=
⋃
i∈3

fi (
◦

V ∩6i )⊂
⋃
i∈3

fi (
◦

V ∩
◦

6i ) ∪ fi (∂6i )⊂
⋃
i∈3

fi (
◦

V ∩
◦

6i ) ∪ ∂ f {6}.

For any given i ∈3,
◦

V ∩
◦

6i ⊂ V ∩
◦

6i ⊂ (V∩6i ∪6
c
i ) ∩

◦

6i ⊂ V∩6i ,

and therefore
◦

V ∩
◦

6i ⊂
◦

V∩6i . Since fi is a homeomorphism,

fi (
◦

V ∩
◦

6i )⊂ fi (
◦

V∩6i )=
◦

fi (V∩6i )=
◦

f (V∩6i )⊂
◦

f (V )⊂
◦

V .

Taking the union over i ∈3, we get f (
◦

V )⊂
◦

V ∪ ∂ f {6} and therefore f (
◦

V )\
◦

V ⊂ ∂ f {6},
which completes the proof. �

COROLLARY 5.1. Let V = O+f (v0) be any orbit of a piecewise homeomorphism f : X→
X associated with a partition 6. Then

∂V ⊂
∞⋂

n=1

f n(∂V ) ∪
∞⋃

k=0

f k(∂ f {6}) ∪ V ∗, (27)

where V ∗ is defined to be ∅ if v0 is recurrent and V otherwise.

Proof. Lemma 5.1 clearly implies that

∂V ⊂ f (∂V ) ∪ ∂ f {6} ∪ V ∗. (28)

Noting that f (V ∗)⊂ V ∗ and iteratively applying f to (28), we get that, for any n ≥ 1,

∂V ⊂ f n(∂V ) ∪
n−1⋃
k=0

f k(∂ f {6}) ∪ V ∗ ⊂ f n(∂V ) ∪
∞⋃

k=0

f k(∂ f {6}) ∪ V ∗.

Intersecting these supersets over all n ≥ 1 completes the proof. �

We will analyze this bound on ∂V in the next subsection in the special case of the
piecewise automorphism T on 5̃.
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5.2. Regularity of orbit closures for T . The main result of this section is the following
theorem.

THEOREM 5.1. Let 5 ∈ Ce
S and let V = O+T (v0) be any bounded orbit of T in 5̃.

(i) If � is 5̃-Jordan measurable, then so is V .
(ii) If, in addition, S is uniquely ergodic on 5 and v0 is a recurrent point for (5̃, T ),

then

∂V ⊂
∞⋃

k=0

T k(∂T {� ∩ 5̃}).

To prove this theorem, we will need the following lemma.

LEMMA 5.2. Let 5 ∈ Ce
S and let D ⊂ 5̃ be any Borel set. If 〈D〉 is not dense in 5, then

µ5̃(
⋂
∞

n=1 T n(D))= 0. If, in addition, S is uniquely ergodic on5, then
⋂
∞

n=1 T n(D)= ∅.

Proof. Let DT :=
⋂
∞

n=1 T n(D). Note that

〈DT 〉 ⊂

∞⋂
n=1

〈T n(D)〉 =
∞⋂

n=1

Sn(〈D〉)=: 〈D〉S,

so it suffices to show that µ5(〈D〉S)= 0 and, in the uniquely ergodic case, that 〈D〉S = ∅.
Due to the bijectivity of S, we have S−1(〈D〉S)= 〈D〉 ∩ 〈D〉S , which shows that

S−1(〈D〉S) and therefore also its homeomorphic image 〈D〉S are not dense in 5.
It is also true that S−1(〈D〉S)⊂ 〈D〉S . Therefore, for any u ∈ 〈D〉S , the backward orbit

U := O−S (u) which remains in 〈D〉S is not dense in5. Since µ5-a.e. orbit of S is dense in
5 due to ergodicity of S, we conclude that µ5(〈D〉S)= 0. If, in addition, S (and therefore
S−1) is uniquely ergodic on 5, then every orbit U of S−1 would have to be dense, which
immediately implies that 〈D〉S = ∅. �

Proof of Theorem 5.1. We start by inspecting the bound (27) of Corollary 5.1. For (i), we
lose no generality by assuming that dim(5)≥ 1 because, when dim(5)= 0, 5̃ is equipped
with the discrete topology so that every set has empty boundary.

Note that ∂V is a compact nowhere dense set in 5̃. With Lemma A.3, we know that
〈∂V 〉 is compact nowhere dense, and in particular, not dense, in 5. Hence, the first
implication in Lemma 5.2 shows that

⋂
∞

n=1 T n(∂V ) is µ5̃-null. For (i), as in the proof of
Theorem 4.1, we know that the assumption that µ5̃(∂(� ∩ 5̃))= 0 and Lemma 3.1 imply
that µ5̃(∂T {� ∩ 5̃})= 0. Repeatedly applying Lemma 3.1 shows that the T -iterates
of this set, T k(∂T {� ∩ 5̃}

)
, are also µ5̃-null for all k ≥ 0. Taking the union over k,

invoking Corollary 5.1 for T on 5̃ and noting that with dim(5)≥ 1 we automatically
have µ5̃(V

∗)= 0, we get that µ5̃(∂V )= 0.
For (ii), it suffices to invoke Corollary 5.1 again, but this time employing the second

implication in Lemma 5.2. �

Remark. One can also give an alternative proof of Theorem 5.1(i) using Theorem 3.1 as
follows. Lemma 5.1 implies that µ5̃(∂V \T (∂V ))= 0 so that

0≤ µ5̃(T (∂V )\∂V )= µ5̃(T (∂V ))− µ5̃(∂V )+ µ5̃(∂V \T (∂V ))≤ 0,

and therefore µ5̃(∂V 4 T (∂V ))= 0. Now Theorem 3.1 shows that ∂V is an essential
m-tile for some non-negative integer m. If we had m ≥ 1, Corollary A.1 would imply
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that N∂V (u)≥ 1 everywhere on 5, yielding 〈∂V 〉 =5. However, 〈∂V 〉 is nowhere dense
according to Lemma A.3. Hence m = 0.

5.3. Regularity of invariant sets for T . The main result of this section is the following
extension of Theorem 5.1.

THEOREM 5.2. Let 5 ∈ Ce
S , � be 5̃-Jordan measurable, and let K be a compact

essentially T -invariant subset of 5̃.
(i) K is 5̃-Jordan measurable.
(ii) There is a 5̃-Jordan measurable exact m-tile 0 such that

◦

K ⊂ 0 ⊂ K and
µ5̃(K\0)= 0.

We will prove this theorem with the help of the lemma below which will provide a
measure-theoretic reduction convenient for our objective. Let us say that a Borel set A ⊂ 5̃
is trim if, for every v ∈ A and every open neighborhood U of v, we have µ5̃(A ∩U ) > 0.
Equivalently, the support of µ5̃|A (restriction of µ5̃ to A) is equal to A. The empty set is
automatically trim, but all other trim sets have non-zero measure.

LEMMA 5.3. Let 5 ∈ C. Any compact set K in 5̃ can be expressed as the disjoint union
of two sets, A and B, where A is either empty (if µ5̃(K )= 0) or else compact and trim, B
is of measure zero and µ5̃(∂B)≤ µ5̃(∂A).

Proof. Let E be the set of v ∈ K for which K ∩U is of measure zero for some open
neighborhood U :=Uv of v. Let G :=

⋃
v∈E Uv , A := K\G and B := K ∩ G. A is

compact since G is open. Furthermore, G ⊃ E so that A and E are disjoint, and therefore
A is trim (including the case A = ∅). By Lindelöf’s lemma, G can be reduced to the union
of a countable subfamily (Uvn )n≥1, which implies that B =

⋃
n≥1 K ∩Uvn is of measure

zero. Finally, B ⊂ K\
◦

A = (∂A) ∪ B so that µ5̃(∂B)≤ µ5̃(∂A). �

Proof of Theorem 5.2. Let K be a compact essentially T -invariant set in 5̃. If K is of
measure zero, then it is automatically 5̃-Jordan measurable (because it is closed), so we
may assume that K is of non-zero measure.

Let A be the compact trim subset of K and let B be its residual as prescribed in
Lemma 5.3. B is of measure zero, so A is essentially T -invariant as well. It now suffices
to show that A is 5̃-Jordan measurable since ∂K ⊂ ∂A ∪ ∂B and µ5̃(∂B)≤ µ5̃(∂A).

We may assume that dim(5)≥ 1 because if dim(5)= 0, then the topology of 5̃ is
discrete so that all subsets of 5̃ are automatically 5̃-Jordan measurable.

By Theorem 3.1, we know that A is an essential m-tile. We also know that m ≥ 1
because the trimness of A implies that µ5̃(A) > 0. Since A is essentially T -invariant, the
set of points in A whose forward orbits remain in A has measure m. Take any such orbit
V1 in A such that 〈V1〉 is dense in 5. By Theorems 4.1(ii) and 4.2(ii), we know that the
compact set A1 := V 1 is an essentially T -invariant essential k1-tile for some 1≤ k1 ≤ m,
is contained in A and, by Theorem 5.1(i), is 5̃-Jordan measurable. If k1 < m, that is, if
µ5̃(A\A1) > 0, we repeat the process (since A\A1 is also essentially T -invariant) and
extract a compact 5̃-Jordan measurable essentially T -invariant essential k2-tile A2 = V 2
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for some orbit V2 ⊂ A\A1 such that 〈V2〉 is dense in 5 so that k2 ≥ 1. Since A1 is 5̃-
Jordan measurable and A1 ∩ A2 ⊂ ∂A1, we get that µ5̃(A1 ∪ A2)= k1 + k2. This process
will terminate after finitely many steps, resulting in compact 5̃-Jordan measurable sets
A1, . . . , Al such that µ5̃(A\(A1 ∪ · · · ∪ Al))= 0. We claim that A\(A1 ∪ · · · ∪ Al) is
empty because if it contained a point v, then U := (A1 ∪ · · · ∪ Al)

c would be an open
neighborhood of v and the trimness of A would contradict the fact that µ5̃(A ∩U )= 0.
Hence we have A = A1 ∪ · · · ∪ Al , which shows that A (and therefore K ) is 5̃-Jordan
measurable and proves the claim in (i).

For (ii), first note that, by Corollary A.1, we have N ◦

K
≤ m ≤ NK on 5. Next we apply

Lemma A.2 to the pair (
◦

K , K ) to obtain a Borel measurable exact m-tile 0 such that
◦

K ⊂ 0 ⊂ K , which yields ∂0 ⊂ ∂K so that 0, too, is 5̃-Jordan measurable. �

5.4. Embedding orbits of T in regular exact tiles. The main result of this section is the
following theorem.

THEOREM 5.3. Let 5 ∈ Ce
S and let � be 5̃-Jordan measurable. Suppose V is a bounded

orbit of T in 5̃ and 〈V 〉 is dense in 5. Let m ≥ 1 denote the multiplicity of tiling for V .
Then there exists a 5̃-Jordan measurable exact m-tile 0 such that V ⊂ 0 ⊂ V .

Note that, in the setting of Theorem 5.3, the conclusion of Theorem 5.1 which
says that µ5̃(∂V )= 0 is in effect. Furthermore, Theorem 5.2 shows that a 5̃-Jordan

measurable exact m-tile 0 could be found so that
◦

V ⊂ 0 ⊂ V . Since V need not be
contained in

◦

V , we may wonder whether 0 could be arranged to contain
◦

V ∪ V as
well. Unfortunately, it is possible that sup N ◦

V∪V
> m for some orbits so that no exact

m-tile can contain
◦

V ∪ V . (For example, let a ∈ (0, 1) be irrational and let T : R→ R,

T (v) := v + a − 1[1−a,∞)(v). Then, for any v0 ∈ (1, 2), it can be checked that
◦

V = (0, 1)
(so that m = 1) yet N ◦

V∪V
(〈v0〉)= 2.) To circumvent this obstacle, we will implement

a careful ‘surgery’ on
◦

V to remove a µ5̃-null subset that overlaps with V + Zd
\{0}

while maintaining 5̃-Jordan measurability of the resulting set. Our next result, which is
essentially topological (not concerning measure theory or dynamics), provides the main
tool of this surgery.

LEMMA 5.4. Let 5 ∈ C. For any bounded set V ⊂ 5̃, there exists W such that V ⊂W ⊂
V , NW ≤max(NV , N ◦

V
) and V \

◦

W ⊂ ∂V + Zd .

Proof. Let ZV denote ∂V + Zd and set W := V ∪ (
◦

V \ZV ). It is clear that V ⊂W ⊂ V .

Next, note that V \
◦

V ⊂ ∂V ⊂ ZV so that V \(
◦

V \ZV )⊂ ZV , and therefore

W = [V \(
◦

V \ZV )] ∪ (
◦

V \ZV )⊂ ZV ∪ (
◦

V \ZV ).

Since ZV is Zd -invariant, 〈ZV 〉 and 〈
◦

V \ZV 〉 are disjoint. The same is then true for their

respective subsets 〈V \(
◦

V \ZV )〉 and 〈
◦

V \ZV 〉, which together constitute 〈W 〉. Therefore

NW =max(N
V \(

◦

V \ZV )
, N ◦

V \ZV
)≤max(NV , N ◦

V
).
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Note that ZV is closed since it is the sum of a compact set and a closed set. Therefore
◦

V \ZV is open, which implies that
◦

W ⊃
◦

V \ZV , and so V \
◦

W ⊂ V \(
◦

V \ZV )⊂ ZV . �

Remark. In Lemma 5.4, since both V \
◦

W and ∂V are bounded sets, we can, in fact, say
that V \

◦

W ⊂ ∂V + K for some finite set K ⊂ Zd .

Proof of Theorem 5.3. First of all, note that the case dim(5)= 0 is readily handled by
Theorem 4.2(i), so we assume that dim(5)≥ 1. Let m ≥ 1 be the multiplicity of (essential)
tiling for V as implied by Theorem 4.2(ii). With Lemma 4.2(iii), we have NV ≤ 1, and with
Corollary A.1 applied to A = V , we have N ◦

V
≤ m ≤ NV on5. Lemma 5.4 yields W such

that V ⊂W ⊂ V and NW ≤ m, and Lemma A.2 with A =W and B = V yields a Borel
exact m-tile 0 such that V ⊂W ⊂ 0 ⊂ V . With Lemma 5.4 again, we have ∂0 ⊂ V \

◦

W ⊂
∂V + Zd and Theorem 5.1 now yields µ5̃(∂0)= 0. �

6. Convergence rate of ergodic averages
For convenience, the setting of this section will be limited to the case when S is ergodic
on 5 := Td . We will assume that the partition � is Jordan measurable. We start with a
bounded, Jordan measurable, exact 1-tile 0 on which T is ergodic. This set may have been
obtained using Theorem 5.2 or Theorem 5.3.

Almost every orbit O+T (v0) originating in 0 will remain in 0. As we stated earlier in (4),
the ergodic theorem implies that, for every f ∈ L1(0), DN ( f, v)→ 0 for almost every
such v0 ∈ 0. In this section, we will quantify the rate of convergence for functions f that
are uniformly continuous on 0.

The above qualitative result can actually be slightly strengthened via the toolkit of
uniform distribution in compact spaces (e.g., as in [KN74]). Let us consider T on
the compact set 0. Since ∂0 is null, 0 is a Jordan measurable essentially T -invariant
essential 1-tile on which T is ergodic. It then follows that, for almost every v0 ∈ 0 (and,
consequently, for almost every v0 ∈ 0), the sequence v = (vn)

∞

0 , where vn := T n(v0), is
uniformly distributed in 0, which means that, for any such v0, DN ( f, v)→ 0 for every
continuous f : 0→ C or, equivalently, for every uniformly continuous f on 0. This result
has the advantage that the ‘good’ orbits, i.e., those that are uniformly distributed in0, result
in the convergence of ergodic averages for a whole class of functions at once.

For additional improvements, we consider the toral projection. Given any orbit O+T (v0)

that remains in 0, let u= (un)
∞

0 in Td be defined by un := 〈vn〉, where vn := T n(v0), so
that un = Sn(u0). Denoting the inverse of the restriction of 〈·〉 to 0 by 〈·〉0 : Td

→ 0, we
have vn = 〈un〉0 . Let g := f ◦ 〈·〉0 , where f : 0→ C. It then follows by substitution that

DN ( f, v)= DN (g, u) := DN (g, u, Td) :=

∣∣∣∣ 1
N

N−1∑
n=0

g(un)−

∫
Td

g(u) du
∣∣∣∣. (29)

By the same reasoning as above but this time applied to S on Td , ergodicity of S implies
that u is uniformly distributed in Td for almost every u0: that is, the discrepancy

DN (u) := sup
R∈R

DN (1R, u, Td)→ 0 as N →∞,

where R stands for the collection of axis-parallel rectangles in Td .
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For a uniformly distributed sequence u, note that DN (h, u, Td)→ 0 for every Riemann
integrable h on Td (when viewed as a function on [0, 1)d ). This is an important distinction
because g := f ◦ 〈·〉0 may be (and typically would be) discontinuous whereas the Jordan
measurability of 0 implies that f ◦ 〈·〉0 is Riemann integrable on Td as long as f is
bounded and continuous on 0. (This follows from Lebesgue’s criterion for Riemann
integrability, noting that the set of discontinuities of f ◦ 〈·〉0 is contained in the set of
discontinuities of 〈·〉0 , which is a subset of 〈Z ∪ ∂0〉, where Z stands for the ‘continuous
integer grid’, i.e., the measure-zero set of points in Rd with at least one integer coordinate.)
Hence it follows that almost every v0 ∈ 0 yields DN ( f, v)→ 0 for every bounded and
continuous f on 0 (instead of every uniformly continuous f ). While this is yet another
improvement of the qualitative convergence result, the reformulation of the problem on
Td actually paves the path for a quantitative bound, too. For this, we will apply some
well-known bounds on (29), which we discuss next.

For a general Riemann integrable h on Td , DN (h, u) can be controlled by a combination
of a priori knowledge on the regularity of h and the discrepancy DN (u). The advantage of
this route is that quantitative bounds for DN (u) can be given via analytic tools (e.g., the
exponential sums that appear in the Erdős–Turán inequality [KN74]) that can exploit the
algebraic structure of S. For example, for unipotent L , one ends up with Weyl sums which
are well studied. The most commonly used bound for DN (h, u) is given by the standard
version of the Koksma–Hlawka inequality [KN74], which provides the bound

DN (h, u).d VarH K (h)DN (u),

where VarH K (h) denotes the variation of h in the sense of Hardy and Krause.
Unfortunately, this is a highly restricted definition of bounded variation and f ◦ 〈·〉0 can
easily fail to be of bounded variation in this sense if ∂0 is not aligned with coordinate axes.
An alternative tool (also due to Hlawka) that is applicable in our case enlarges the class of
h that can be handled to the class of all Riemann integrable functions at the expense of a
weaker bound. Given a Riemann integrable function h on [0, 1)d and a grid partition P of
[0, 1)d into half-open intervals, let s(h, P) be the mean oscillation of h over P, that is, the
difference between the upper and lower Darboux sums of h corresponding to P. For any
t > 0, let

S(h, t) := sup
‖P‖≤t

s(h, P),

where ‖P‖ is defined to be the maximum edge-length for the intervals in P. Then Hlawka
[Hla71] provides the bound

DN (h, u).d S(h, bDN (u)−1
c
−1/d). (30)

Equipped with Hlawka’s bound, we now proceed to state and prove our main
quantitative improvement of (4).

THEOREM 6.1. Let v = (vn)
∞

0 be any sequence in the Jordan measurable exact 1-tile 0
and let f : 0→ C be uniformly continuous. Then

DN ( f, v).d ω f (
√

dbDN (u)−1
c
−1/d)+ ‖ f ‖∞ρ0(

√
dbDN (u)−1

c
−1/d), (31)

where ω f is the modulus of continuity of f on 0, u := (〈vn〉)
∞

0 is the projection of v on Td ,
DN (u) is its N-term discrepancy and ρ0 is defined by (5).
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Proof. For consistency of our notation, we first identify Td with [0, 1)d . For any k ∈ Zd ,
let Qk := k + [0, 1)d and 0k := Qk ∩ 0. Then, for some finite subset γ of Zd , 0 is the
disjoint union of 0k , k ∈ γ , and [0, 1)d is the disjoint union of 〈0k〉 = 0k − k, k ∈ γ .
Clearly, each 0k , and therefore 〈0k〉, is Jordan measurable. Let gk := g1〈0k 〉, where g :=
f ◦ 〈·〉0 , so that g =

∑
k∈γ gk . Let P be a partition of [0, 1)d with ‖P‖ ≤ t . It is clear that

s(g, P)≤
∑
k∈γ

s(gk, P).

For each k ∈ γ , let Pk be the collection of intervals in P that are fully contained in 〈0k〉, let
Pc

k be those that are fully contained in 〈0k〉
c
= [0, 1)d\〈0k〉 and let ∂Pk be the remaining

ones. Note that gk(u)= f (u + k)1〈0k 〉(u). Hence∑
I∈Pk

(
sup

I
gk − inf

I
gk

)
λd(I )≤ ω f (t

√
d)

∑
I∈Pk

λd(I )≤ ω f (t
√

d)λd(〈0k〉),

where the last inequality uses the fact that the intervals in P are disjoint. Note that the
corresponding sum over Pc

k is identically zero. For each I ∈ ∂Pk , we have I ∩ 〈0k〉 6= ∅

and I ∩ 〈0k〉
c
6= ∅, and therefore

I ⊂ (〈0k〉 ∩Nt
√

d(〈0k〉
c)) ∪ (〈0k〉

c
∩Nt

√
d(〈0k〉))=Nt

√
d(∂〈0k〉),

where the last equality is due to Lemma 6.1 (see below). Note that the boundary of 〈0k〉 is
with respect to the Euclidean metric on [0, 1)d . Hence∑

I∈∂Pk

(
sup

I
gk − inf

I
gk

)
λd(I )≤ 2‖ f ‖∞

∑
I∈∂Pk

λd(I )≤ 2‖ f ‖∞λd(Nt
√

d(∂〈0k〉)),

where we have used the disjointness of I ∈ P again. Combining this with the bound for the
sum over Pk , we get

s(gk, P)≤ ω f (t
√

d)λd(〈0k〉)+ 2‖ f ‖∞λd(Nt
√

d(∂〈0k〉)).

Summing over k ∈ γ and taking the supremum over P, we now get

S(g, t)≤ ω f (t
√

d)+ 2‖ f ‖∞
∑
k∈γ

λd(Nt
√

d(∂〈0k〉)). (32)

We claim that ∑
k∈γ

λd(Nt
√

d(∂〈0k〉))≤ λd(Nt
√

d(∂0)), (33)

where the boundary of 0 is with respect to the Euclidean metric on Rd . To see this,
note that, for any ε > 0, x ∈Nε(∂〈0k〉) means that there exist x∗ ∈ [0, 1)d such that
|x − x∗|< ε and two sequences, (xn) in 〈0k〉 and (x ′n) in 〈0k〉

c, such that x∗ = lim xn =

lim x ′n . Then the sequences (xn + k) and (x ′n + k) are, respectively, in 0k ⊂ 0 and
Qk\0k ⊂ 0

c, both having the limit x∗ + k, which must be in ∂0. This implies that
x + k ∈Nε(∂0) and therefore we get Vk :=Nε(∂〈0k〉)+ k ⊂Nε(∂0). Since the Vk ,
k ∈ Zd , are disjoint, by translation invariance of Lebesgue measure and setting ε = t

√
d,

we obtain (33) which now yields

S(g, t)≤ ω f (t
√

d)+ 2‖ f ‖∞ρ0(t
√

d). (34)

The proof is completed by setting t = bDN (u)−1
c
−1/d in this bound and using Hlawka’s

inequality (30) for h = g. �
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Remark. There are other generalizations of the Koksma-Hlawka inequality that can be
used in our analysis. Among them, we would like to single out the one given in [BCGT13],
which is applicable to piecewise smooth functions with singularities along arbitrary Borel
sets. In our context, this would mean restricting our analysis to smooth f (at least Cd );
however, the resulting bound would also be somewhat stronger, especially if additional
structure is available regarding 0.

What remains to be shown is the following lemma.

LEMMA 6.1. Let X be a convex subset of Rd , considered as a metric space equipped with
the Euclidean metric. For any A ⊂ X and t > 0,

Nt (∂A)= (A ∩Nt (Ac)) ∪ (Ac
∩Nt (A)).

Proof. Note that Nt (∂A)⊂Nt (A)=Nt (A), so that Ac
∩Nt (∂A)⊂ Ac

∩Nt (A).
Similarly, A ∩Nt (∂A)⊂ A ∩Nt (Ac). Taking the union, it follows that Nt (∂A)⊂ (A ∩
Nt (Ac)) ∪ (Ac

∩Nt (A)).
For the reverse inclusion, let x ∈ (A ∩Nt (Ac)) ∪ (Ac

∩Nt (A)). Without loss of
generality, we may assume that x 6∈ ∂A as, otherwise, x ∈Nt (∂A) trivially. The first case
is x ∈ A◦ ∩Nt (Ac). There is v ∈ Ac such that |x − v|< t . If v ∈ ∂A, then x ∈Nt (∂A),
so assume that v ∈ (Ac)◦. Consider the line segment I := [x, v] with its relative topology.
Then I ∩ A◦ and I ∩ (Ac)◦ are non-empty open subsets of the connected space I , which
implies that their union is not all of I , i.e., there is a point y∗ ∈ I\(A◦ ∪ (Ac)◦)= (x, v) ∩
∂A, and therefore x ∈Nt (∂A). The second case x ∈ (Ac)◦ ∩Nt (A) is handled similarly
by switching the roles of A and Ac. Hence (A ∩Nt (Ac)) ∪ (Ac

∩Nt (A))⊂Nt (∂A). �

Remark. While the first inclusion above is valid in a general metric space, convexity
was used critically for the reverse inclusion. A counterexample without convexity is
X = (−1, 1)\{0} and A := (0, 1).

7. Examples and counterexamples, motivation and applications, open problems and
challenges

7.1. Motivation and applications to algorithmic A/D conversion. Piecewise affine maps
are typically found in applications where switching plays an important role, such as hybrid
control systems [DDBB+09] and A/D conversion algorithms with feedback (algorithmic
converters) [DGWY10, Gün12]. The subfamily of piecewise-affine automorphisms that
have motivated this paper appear in the latter setting. Below we give a brief overview of
algorithmic A/D converters and go over some important applications of our results.

By an algorithmic A/D converter, we mean a process of encoding signals into discrete
valued sequences that is implemented by carrying out an autonomous operation (the
algorithm) on some auxiliary state space. More precisely, let X be a space of input signals,
let 3 be a finite index set and let V be a chosen state space, such as Rd . The algorithm
is implemented using two associated maps; given the input and the current state, the
first map F : X× V→ V determines the next state, and a second map Q : X× V→3

determines the next output index. Q is also called a ‘quantization rule’. Given an initial
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state v0 (which may depend on x), the recursion{
vn = F(x, vn−1)

in = Q(x, vn−1)

}
, n = 1, 2, . . . (35)

defines the overall encoding (x 7→ (in)
∞

1 ). It is required that the map (x 7→ (in)
∞

1 ) is
invertible on X, and also, given a metric on X, it is desirable that each x ∈ X can be
approximately recovered from (in)

N
1 with high accuracy as N increases.

Note that the map Q can be equivalently described by a partition {�Q
x,i }i∈3, where

�
Q
x,i := {v ∈ V : Q(x, v)= i}. Similarly, F can be seen as a family of maps {Tx }x∈X on V,

where Tx (v) := F(x, v). Then (in)
∞

1 becomes the itinerary of the orbit of v0 with respect
to Tx and the partition {�Q

x,i }i∈3. In general, F and Q need not be linked, but in most
examples of algorithmic converters, Tx is a piecewise-affine map whose defining partition
coincides with the partition {�Q

x,i }i∈3 induced by Q.
While the algorithmic converter model is general enough to accommodate time-varying

signals x = (xn)
∞

1 as well, in the examples we shall see below, we will only consider
constant input signals, i.e., X will be a subset of R.

We will present two examples of algorithmic A/D converters that are relevant to this
paper: the golden ratio encoder and sigma-delta quantization.

7.1.1. The golden ratio encoder. This encoder was proposed in [DGWY10] to
address some practical considerations regarding electronic circuit implementation of
β-expansions. Let us first recall β-expansions. For any β > 1, let 3= {0, . . . , dβe − 1}.
For simplicity, let us assume that 1< β ≤ 2 so that3= {0, 1}. Pick any η ∈ [(β − 1)β, β],
and define Tx = T on V= R by

T (v) := βv − Q(v) := βv −


0 if ηv < 1,
0 or 1 if ηv = 1,
1 if ηv > 1.

We set v0 = x ∈ X= [0, (β−1)−1
] and in = Q(vn−1). It is easily checked that T maps

[0, (β−1)−1
] into itself. If η = β and Q(η−1)= 1, one gets the so-called ‘greedy’

β-expansion, whereas if η = β(β−1) and Q(η−1)= 0, one gets the ‘lazy’ β-expansion
[DK02]. The values of α strictly in between these two extremes correspond to ‘cautious’
β-expansions [DDGV06]. In all cases, x can be recovered via the inversion formula
x =

∑
∞

1 inβ
−n .

Clearly, β-expansions are not associated with a toral automorphism in the above form.
However, certain special values of β (namely, the Pisot units) can be realized in a toral
automorphism. The golden ratio encoder uses β = φ := (1+

√
5)/2.

The starting point of the golden ratio encoder is the ‘multiplier-free’ recursion

wn = wn−1 + wn−2 − in . (36)

Noting that φ2
= φ + 1, it is straightforward to check that if φ−1w−1 + w0 = x , then any

encoding decision (in) that yields a bounded solution (wn) results in x =
∑
∞

1 inφ
−n .

In order to frame this encoder in our formulation of piecewise-affine automorphisms,
let vn := (wn, wn−1). Then

vn = Lvn−1 − ine,
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FIGURE 1. An orbit closure for the golden ratio encoder for η = (1.4, 0.8) along with two of its integer translates
as a demonstration of its tiling property.

where L(v1, v2) := (v1
+ v2, v1) and e := (1, 0). L defines a hyperbolic toral

automorphism on T2 with eigenvalues φ and −1/φ. Once a quantization rule in :=

Q(vn−1) ∈3 := {0, 1} is specified, we obtain a piecewise-affine automorphism T ∈
P(L , 0) with �i := Q−1(i) and τi := −ie, i ∈3.

As in the case of classical β-expansions, there is some freedom in the choice of the
quantization rule that yields bounded orbits. In [DGWY10], a parametric family of such
rules was given that correspond to half-space partitions

�0 = {v ∈ R2
: η · v < 1}, �1 =�

c
0.

Let us denote the resulting piecewise-affine automorphism by Tη. The simplest case is
η = (1, 1) when [0, 1]2 is seen to be invariant under T(1,1). Similarly to β-expansions, it
turns out that there is an open set U for the parameter η (not containing (1, 1)) and an
open bounded set V for the state variable vn such that Tη(V )⊂ V for all η ∈U , thereby
allowing for robust implementation.

As a particular case of our results in this paper, it follows that, inside V , Lebesgue
a.e. orbit closure for T is a tile. An example is given in Figure 1.

7.1.2. Sigma-delta quantization. The most basic form of 61 quantization is based on
the difference equation

(1w)n := wn − wn−1 = x − in . (37)

For each x , we are interested in an encoding (in) that results in a bounded solution (wn).
It then follows that

x = lim
N→∞

1
N

N∑
n=1

in .
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The rate of convergence above is O(N−1) and generally not better. Inherently more
efficient encodings are obtained within the unipotent family by using the difference
operator 1m instead. Here m is a positive integer that stands for the order of the resulting
61 quantization scheme. In this case, for any ϕ ∈ `1 with

∑
ϕn = 1,

x −
∑

ϕnin =
∑

ϕn(1
mw)n =

∑
(1̃mϕ)nwn, (38)

where (1̃ϕ)n := ϕn − ϕn+1 is the adjoint of 1. For an N -term approximation, we require
that the support of ϕ is {1, . . . , N }. It is not hard to find such a ϕ with

∑
ϕn = 1 and

‖1̃mϕ‖1 = O(N−m) so that ∣∣∣x −∑ ϕnin

∣∣∣= O(N−m).

The price paid for the higher accuracy of higher-order 61 schemes is that, in order
to keep (wn) bounded, one either has to use a larger index set 3 for the same set X of
inputs or seek increasingly more complicated quantization rules for setting in in a small3.
Which route would be more feasible depends on the constraints of a given application.

In order to formulate 61 quantization as an algorithmic converter and, in particular, as
a piecewise-affine automorphism on the state space V= Rm , we set

vn := ((1
m−1w)n, (1

m−2w)n−1, . . . , wn−m+1).

Then it follows that
vn = Lvn−1 + (x − in)e,

where this time L(v1, v2, . . . , vm) := (v1, v2
+ v1, . . . , vm

+ vm−1) and e := (1, 0,
. . . , 0). Note that the map S(v) := Lv + xe defines a generalized skew translation on Tm ,
and once3⊂ Z and in = Q(x, vn−1) is specified, we get a piecewise-affine automorphism
Tx ∈ P(L , xe) with τi = (x − i)e, i ∈3. Typical quantization rules Q used in practice are
‘linear’ in the sense that Q(x, v)= round3(η · v + γ x), although more general partitions
have been proposed as well (e.g., [DD03, GT04]).

Two examples of tiling orbit closures are illustrated in Figures 2 and 3. In Figure 2,
we plot an orbit of a two-dimensional piecewise-affine automorphism associated with
a second-order 61 quantization scheme with 3= {0, 1} and the partition {�0, �1} is
defined according to the linear rule of the previous paragraph with η = ( 3

2 , 1) and γ = 0.
In this example, x = 1/

√
5. It can be seen that the boundary of the orbit closure is

significantly more complicated than the linear boundary of the partition. We have observed
that the resulting tiles become even more complicated if the slope s := η1/η2 is decreased.
Nevertheless, as we have shown in this paper, all of these tiles are Jordan measurable. On
the other hand, these tiles become more regular as s is increased. In fact, for s > 2, they
were identified by inspection to be polygonal single tiles [GT04].

In Figure 3, we demonstrate another orbit, using the same L and3, but this time with a
partition defined by a piecewise linear curve. We have found that the orbit closure shown
in (a) yields an invariant 2-tile 0: the T -invariance of 0 is demonstrated in (b), and the
fact that 0 is a 2-tile is demonstrated in (c) and (d), where two single tiles 01 and 02 are
identified. This decomposition, however, is certainly not unique.

In the case of single tiles, our results on the regularity of these tiles and the
corresponding estimates on the rate of convergence of ergodic averages allow us to better
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FIGURE 2. An orbit closure for the second-order 61 quantization with the ‘linear’ rule: x = 1/
√

5, 3= {0, 1},
η = ( 3

2 , 1), γ = 0.

quantify the rate of convergence of approximations in 61 quantization. Note that (38)
represents the error as an average over (wn). First, note that wn = f (vn) := l · vn ,
where li =

(m−1
i−1

)
, i = 1, . . . , m. Define µ :=

∫
0

f (v) dv and Wl :=
∑l

1(wn − µ). Then
(1W )n = wn − µ so that

x −
∑

ϕnin =
∑

(1̃mϕ)nwn =
∑

(1̃m+1ϕ)nWn, (39)

where the last equality uses the fact that
∑
(1̃mϕ)n = 0. Noting that |Wn| = nDn( f, V ),

it follows that any effective bound on the discrepancy of the form DN ( f, V ). N−δ for
some δ ∈ (0, 1] implies that∣∣∣x −∑ ϕnin

∣∣∣. ‖1̃m+1ϕ‖1 N 1−δ, (40)

which yields an improved bound of O(N−m−δ) using a suitable ϕ with ‖1̃m+1ϕ‖1 =

O(N−m−1), e.g., by means of a discrete B-spline of degree m + 1. To achieve this via
Theorem 6.1, one would need to analyze the invariant sets 0 of the specific examples
further and estimate the function ρ0 .

7.2. Further examples and counterexamples. In this paper, we have alluded to
examples and counterexamples of piecewise-affine transformations with various special
properties, which we now provide. Straightforward details are omitted.

Example 7.1. (T with no bounded orbit and no invariant set) Let 0< a < 1, and let T :
R→ R be given by

T (v) := v + a − 1(−∞,0)(v).
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FIGURE 3. An orbit closure yielding a 2-tile.

Example 7.2. (T with a bounded forward orbit but with no strictly invariant set) Let 0<
a < 1 be any irrational, let A := {na mod 1 : n ≥ 0} and let T : R→ R be given by

T (v) := v + a − (1(−∞,0) + 1A∩[1−a,1) − 1[0,∞)\A)(v).

Example 7.3. (T ergodic on a non-trivial invariant 2-tile) Consider

T (v) := v + a + 1[1−a,3/2)(v)− 3 · 1[5/2,∞)(v),

where 0< a < 3/4 is an irrational number. Then 0 := [a − 1
2 , 1) ∪ [2, a + 5

2 ) is a
T -invariant 2-tile on which T is ergodic.

https://doi.org/10.1017/etds.2018.140 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.140


Invariant sets of piecewise-affine automorphisms 2213

Example 7.4. (T not ergodic on an invariant 2-tile, despite ergodic S) Let 0< a < 1 and
let T : R→ R be given by

T (v) := v + a − 1[1−a,1)∪[2−a,∞)(v).

[0, 1) and [1, 2) are both T -invariant.

Example 7.5. (T not ergodic on a 2-tile orbit closure, despite ergodic S and Jordan
measurable �) Let α be an irrational number in (0, 3/4). With m0 := 0, let us define
(nk)

∞

1 and (mk)
∞

1 recursively by

nk :=min{n : n > mk−1 + k and 2−2k−1 < 〈nα〉< 2−2k
}, k ≥ 1,

mk :=min{m : m > nk + k and 2−2k−2 < 〈mα〉< 2−2k−1
}, k ≥ 1.

With these two sequences, we define T : [0, 2] → [0, 2] by

T (v) := v + α − 1[1−α,1)∪[2−α,2](v)+ 1N(v)− 1M(v),

where N := {〈nkα〉 : k ≥ 1} and M := {1+ 〈mkα〉 : k ≥ 1}. Note that N ⊂ (0, 1/4) and
M⊂ (1, 5/4) so that [1− α, 1) ∩N = ∅ and [2− α, 2] ∩M= ∅.

Then:
• ∂�= {0, 1, 2, 1− α, 2− α} ∪M ∪N, so � is Jordan measurable;
• [0, 1] and [1, 2] are essentially T -invariant, so T is not ergodic on [0, 2]; and
• the orbit V = O+T (0) is dense in [0, 2].

Remark. In relation to Example 7.5, we learned from one of the anonymous referees
the following related (and more interesting) example due to Veech ([Vee69], [MT02,
p. 1035]). Let θ and α be two numbers in (0, 1). Take two copies of the unit circle (with
unit circumference) and mark off the segment [0, α] on each of them. A map on the union
of these two circles is defined as follows. Every point is rotated by θ on the circle on which
it sits, but if the point lands in the segment [0, α], then it is moved to the same position
on the other circle. Veech showed that if θ is an irrational number with unbounded partial
quotients, then there are irrational α for which this system is minimal, yet not ergodic with
respect to the Lebesgue measure. Clearly, this map can be implemented as a piecewise-
affine automorphism on, say, [0, 2].

Example 7.6. (Piecewise extension of a toral endomorphism with a non-tiling invariant set)
Consider the map

T (v) := 2v − 1[3/4,1)(v)− 2 · 1(1,3/2](v).

The interval [0, 3
2 ] is the largest bounded set that is invariant under T . T is ergodic on this

interval with respect to the measure with density ρ given by

ρ(v) := 1
2 · 1[0,1/2)(v)+ 1[1/2,1)(v)+ 1

2 · 1[1,3/2](v).

(The invariance of ρ is straightforward; the ergodicity follows, for example, by [BG97,
‘Folklore Theorem’ 6.1.1].) Since this measure is equivalent to the Lebesgue measure on
[0, 3/2], it follows that the orbit closure of almost every initial point is equal to [0, 3/2].
Note, however, that the relation

∑
n∈Z ρ(v + n)≡ 2 may be considered to be a general

form of tiling for the invariant density. This is generally true.

https://doi.org/10.1017/etds.2018.140 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.140
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7.3. Some open problems and challenges. We close this section with a selection of open
problems and challenges.
(1) Stability. As we stated in the introduction, the problem of determining whether all

trajectories of a general piecewise-affine map remain bounded is out of reach even
for relatively mild classes of maps. However, it would still be useful to have partial
information for applications. For example, are there useful criteria that can be applied
to these maps to determine a ‘region of stability,’ i.e., a set of starting points resulting
in bounded orbits?

(2) Single vs multiple tiles. What are the general mechanisms behind the generation of
single tiles vs multiple tiles as invariant sets?

(3) Shapes of tiles. What is the mapping that takes a piecewise-affine automorphism to
its invariant set(s)? In particular, knowing the linear part L and the translations τi

and, say, in the case of a single tile invariant set 0, how is the shape of 0 related to
the shape of the partition �?

(4) Regularity of tiles. If we know the regularity properties of �, what can we say
about the regularity of 0, e.g., in terms of the ρ0 function, or simply in terms of
the Hausdorff dimension of ∂0?

(5) Approximating tiles by orbits and orbit segments. When is it possible for a piecewise-
affine automorphism considered in this paper to have the property that the forward
orbit of every non-empty open ball in an invariant tile covers the tile in finite time?

(6) Tiles of infinite area? Our results in this paper are based on invariant sets of finite
measure. However, it is possible to have non-trivial examples of unbounded invariant
sets of infinite area. But an m-tile for m =∞ is somewhat ambiguous. Is there any
analog of tiling in this setting? Also, along these lines, what do infinite-area orbit
closures look like?

Acknowledgement. The authors gratefully acknowledge the useful comments and the
suggestions made by the anonymous referees.

A. Appendix. Technical lemmas
Let X be a topological space, f : X→ R. Recall that f is lower semi-continuous (l.s.c.)
on X if and only if { f > α} is open for all α ∈ R and f is upper semi-continuous (u.s.c.)
on X if and only if { f < α} is open for all α ∈ R. For f : X→ N, it follows that f is
l.s.c. if and only if { f ≥ n} is open for all n ≥ 0 and f is u.s.c. if and only if { f ≤ n} is
open for all n ≥ 0. In particular, the indicator function 1A is l.s.c. if and only if A is open
and 1A is u.s.c. if and only if A is closed. Semi-continuity is preserved under addition and
multiplication by a non-negative constant.

LEMMA A.1. Let 5 ∈ C and let A be a bounded subset of 5̃.
(i) If A is open in 5̃, then NA is l.s.c. on 5.
(ii) If A is closed in 5̃, then NA is u.s.c. on 5.

Proof. To show that NA is l.s.c. (u.s.c.) on 5, it suffices to show that, for any u ∈5, there
is a neighborhood N of u in 5 such that 1N NA is l.s.c. (u.s.c.) on 5. Let us denote the
projection 〈·〉 by p.
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(i) Let A be open in 5̃. For any u ∈5, let U be an open neighborhood of u that is also
the homeomorphic image of a bounded open set V in 5̃ such that k + V is disjoint from
V for all k ∈ Zd

\{0}. Let Vk := k + V , k ∈ Zd . Then each Vk is also homeomorphic to U
and {Vk : k ∈ Zd

} is a partition of p−1(U ) into open sets. Since A is bounded, there exists
a finite index set I such that {A ∩ Vk : k ∈ I } partitions A ∩ p−1(U ), again into open sets.
Hence

1U NA = 1U
∑
k∈I

1A∩Vk (p
−1(·))=

∑
k∈I

1〈A∩Vk 〉,

where, in the last step, we have used the fact that 〈A ∩ Vk〉 ⊂U . Since each 〈A ∩ Vk〉 is
open, it follows that 1〈A∩Vk 〉 and therefore 1U NA is l.s.c. on 5.

(ii) The proof will be similar to part (i). Let A be closed in 5̃. For any u ∈5, let U , V ,
Vk be the same as above. Pick a closed set F ⊂U with u ∈

◦

F , and let Wk := Vk ∩ p−1(F)
so that Wk is homeomorphically mapped to F by p for each k ∈ Zd . As before, we have
that, for some finite index set I , {A ∩Wk : k ∈ I } is a partition of A ∩ p−1(F) into closed
sets. Hence

1F NA = 1F
∑
k∈I

1A∩Wk (p
−1(·))=

∑
k∈I

1〈A∩Wk 〉.

Since each 〈A ∩Wk〉 is closed, it follows that 1F NA is u.s.c. on 5. �

COROLLARY A.1. Let5 ∈ C. If A is a bounded essential m-tile for 5̃, then N ◦

A
≤ m ≤ N Ā

on 5.

Proof. The desired relation N ◦

A
≤ m ≤ N Ā readily holds µ5-a.e., since N ◦

A
≤ NA ≤ N Ā

holds everywhere and NA = m µ5-a.e. Meanwhile, Lemma A.1 implies that N ◦

A
is l.s.c.

and N Ā is u.s.c., so the sets {N ◦

A
> m} and {N Ā < m} are simultaneously µ5-null and

open, and therefore empty. �

LEMMA A.2. Let 5 ∈ C. Suppose A and B are two subsets of 5̃ such that A ⊂ B and
NA ≤ m ≤ NB on 5 for some integer m ≥ 0. Then there exists an exact m-tile 0 for 5̃
such that A ⊂ 0 ⊂ B. If A and B are Borel measurable, then 0 can be chosen to be Borel
measurable as well.

Proof. We will construct 0 using the following ‘greedy water-filling’ procedure. Given
any exact tile Q for 5̃, let Qk := Q + k, k ∈ Zd . Let (kn)

∞

1 be any enumeration of Zd . Let
A0 := A. For n = 1, 2, . . . , define

In := {u ∈5 : NAn−1(u) < m} (41)

and
An := An−1 ∪ En, (42)

where
En := p−1(In) ∩ Qkn ∩ (B\A).

Here p(v) := 〈v〉.
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Note that since (Qkn )
∞

1 is a disjoint family, (En)
∞

1 is also a disjoint family. Moreover,
all the En are disjoint from A0 = A. Therefore, for any n ≥ 1, (42) is a disjoint union.
Since En is subset of a tile, we have NEn = 1〈En〉, and therefore

NAn = NAn−1 + 1〈En〉.

Furthermore, p is bijective when restricted to any tile, so

〈En〉 = 〈p−1(In) ∩ Qkn 〉 ∩ 〈Qkn ∩ (B\A)〉 = In ∩ 〈Qkn ∩ (B\A)〉.

This relation shows that if NAn−1(u)= m for u ∈5 and n ≥ 1, then u 6∈ In and therefore
u /∈ 〈En〉 so that NAl (u)= m for all l ≥ n. Since NA0 ≤ m, we get that NAn ≤ m for all n.
Also, since A0 ⊂ B and En ⊂ B, it follows from (42) that An ⊂ B for all n. We define

0 :=

∞⋃
n=0

An = A ∪
∞⋃

n=1

En,

the latter expression being a disjoint union. Hence

N0 = lim
n→∞

NAn = NA +

∞∑
n=1

NEn = NA +

∞∑
n=1

1In 1〈Qkn∩(B\A)〉. (43)

The first relation above shows that N0 ≤ m. Hence, the infinite sums above reduce to a
finite sum for every point in 5.

Clearly, A ⊂ 0 ⊂ B. We claim that N0 = m everywhere. Let u ∈5 be arbitrary and
suppose that N0(u) < m. Then NAn−1(u)≤ N0(u) implies that u ∈ In for all n. Therefore
it follows from the last equality in (43) that N0(u)= NA(u)+ NB\A(u)= NB(u). Since
NB(u)≥ m, we get a contradiction. Hence N0(u)= m.

Finally, if A and B are Borel sets, then choosing Q to be Borel implies recursively that
all En , An , and therefore 0, are also Borel. �

LEMMA A.3. Let 5 ∈ C and let D be a compact nowhere dense subset of 5̃. Then 〈D〉 is
a compact nowhere dense subset of 5.

Proof. It is clear that 〈D〉 is compact. Suppose 〈D〉 contains a open ball B. Without loss of
generality, we may assume that the radius of B is strictly less than 1/2. Hence there exists
an open ball B̃ in 5̃ such that {B̃ + k}k∈Zd is a partition of the preimage of B under the
canonical projection. Since D is bounded and B ⊂ 〈D〉, there exists a finite set K ⊂ Zd

such that B =
⋃

k∈K 〈D ∩ (B̃ + k)〉. Note that D ∩ (B̃ + k)⊂ D and D having empty
interior implies that D ∩ (B̃ + k) is nowhere dense in 5̃. Since 〈·〉 is a homeomorphism
between B̃ and B, it follows that 〈D ∩ (B̃ + k)〉 is nowhere dense in 5. This contradicts
the fact that a finite union of nowhere dense sets is nowhere dense. �

B. Appendix. Invariant sets of finite-to-one maps
Let X be any set and let f : X→ X be any map, not necessarily onto. As before, we say
that a set A is f -invariant if f (A)= A. It is easy to see that the set X f :=

⋂
∞

n=0 f n(X)
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is positively f -invariant, i.e., f (X f )⊂ X f . However, X f need not be f -invariant in
general. (For example, let X := {(x, y) ∈ N2

: y ≤ x} ∪ {a, b}, where a and b are two new
points (say, in Z2) and define f : X→ X via f (x, y) := (x, y − 1) if y ≥ 1, f (x, 0) := a,
f (a) := b and f (b)= b. Then X f = {a, b} and f (X f )= {b}.) It turns out, as we will
show below, that X f is f -invariant if card( f −1(x)) <∞ for all x ∈ X . In this case, we
will say that f has finite preimages or f is finite-to-one [Pł15]. Clearly, the piecewise-
affine automorphisms that are considered in this paper have this property since they are
constructed by piecing together finitely many injective maps.

The following theorem is a more general form of the claim made above.

THEOREM B.1. Let f : X→ X be finite-to-one and let W be any subset of X. Then
the largest f -invariant subset of W is equal to Wf :=

⋂
∞

n=0 f n(W0), where W0 :=⋂
∞

n=0 f −n(W ).

Proof. We need to show that Wf contains any f -invariant subset of W and is f -invariant.
For the first claim, let A ⊂W and f (A)= A. We then have A ⊂ f −n(A)⊂

f −n(W ) for all n ≥ 0 so that A ⊂
⋂
∞

n=0 f −n(W )=W0. Therefore A =
⋂
∞

n=0 f n(A)⊂⋂
∞

n=0 f n(W0)=Wf .
For the second claim, note that f (W0)⊂

⋂
∞

n=1 f ( f −n(W ))⊂
⋂
∞

n=1 f −(n−1)(W )=

W0, i.e., W0 is positively f -invariant. If we let Wn := f n(W0) for n ≥ 0, then, clearly,
Wn+1 = f (Wn)⊂Wn so that f (Wf )= f (

⋂
∞

n=0 Wn)⊂
⋂
∞

n=0 f (Wn)=
⋂
∞

n=1 Wn =Wf .
Hence it remains to show that Wf ⊂ f (Wf ). This is the only place where we will use
the assumption that f is finite-to-one. There is nothing to prove if Wf is empty. For any
x ∈Wf , let Yn := f −1(x) ∩Wn , n ≥ 0. Then (Yn)

∞

0 forms a decreasing sequence of finite
sets. Furthermore, each Yn is non-empty since x ∈Wn+1 = f (Wn). Hence f −1(x) ∩Wf =⋂
∞

n=0 Yn 6= ∅, i.e., x ∈ f (Wf ). �
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