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When a suspension of conducting particles is subjected to a shear flow, there is particle
rotation due to the fluid vorticity. A conductor rotating in a uniform magnetic field
experiences a torque due to eddy currents both parallel and perpendicular to the direction
of rotation. Eddy currents induce a magnetic moment in a conducting particle, which
disturbs the magnetic field around the particle. The effect of the Maxwell stress due to
the magnetic field disturbance on the rheology of a dilute suspension is calculated in a
manner similar to the Einstein viscosity for a suspension of rigid particles. The expression
for the stress tensor contains three symmetric stress coefficients, and two normal stress
coefficients, in addition to the three antisymmetric stress coefficients calculated in
Kumaran (J. Fluid Mech., vol. 871, 2019, pp. 139–185). The stress coefficients depend
on the relative orientation of the vorticity and magnetic field and two dimensionless
parameters, β, the product of the vorticity and current relaxation time, and Σ , the ratio of
the magnetic and hydrodynamic torques. In the ‘linear’ approximation, where only terms
linear in the particle magnetic moment are retained, the particle stress depends on two
dimensionless functions. For the physically important limit β � 1, as well as the limit
β � 1 and Σ � 1, these two functions are independent of the vorticity, and depend only
on the magnetic field and material properties.

Key words: suspensions, rheology, magnetic fluids

1. Introduction

Suspended particles rotate with an angular velocity equal to one half of the fluid
vorticity in a linear shear flow of a viscous suspension in the absence of external torques.
Eddy currents are induced in a conducting particle rotating in a magnetic field due to
Faraday’s law of induction. These eddy currents result in a magnetic dipole moment at the
centre of the particle in accordance with Ampere’s law. The interaction of the particle
magnetic moment and the imposed field results in a torque which is perpendicular to
the direction of the magnetic moment and the field (Halverson & Cohen 1964; Landau,
Lifshitz & Pitaevskii 2014). Due to this, the particle rotation rate is different from one half
of the fluid vorticity at the particle location, and the angular velocity is determined by a
balance between the hydrodynamic and magnetic torques. The torque balance procedure
for determining the angular velocity and the particle torque was derived in Kumaran
(2019), and the antisymmetric part of the particle stress tensor σ p was calculated from
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901 A36-2 V. Kumaran

the particle torque using the relation (Batchelor 1970)

σ p = 1
2 V

N∑
i=1

ε̂ · Li, (1.1)

where Li is the torque on particle i, N is the total number of particles, V is the total
volume of the suspension and ε̂ is the third-order Levi-Civita antisymmetric tensor. The
particle stress was determined in the dilute limit, where the interactions between particles
are neglected. The calculation in Kumaran (2019) was incomplete, because only the
antisymmetric part of the particle stress tensor was calculated; it is not possible to calculate
the symmetric part from the particle torque. Here, the complete particle stress tensor (2.3),
including the symmetric and antisymmetric parts, is calculated from the Maxwell stress at
the particle surface. It is verified that the antisymmetric particle force moment, calculated
from (2.3), is identical to that calculated from (1.1) in Kumaran (2019). The calculation of
the symmetric traceless part of the particle stress from the Maxwell stress at the particle
surface in a suspension of conducting particles subjected to a magnetic field in the dilute
(non-interacting) limit at low Reynolds number is the subject of the present study.

The antisymmetric stress in a suspension of conducting particles in a magnetic field
is qualitatively different from the antisymmetric stress in couple-stress or Cosserat fluids
(Truesdell & Toupin 1960; Mindlin & Tiersten 1962; Stokes 1966). These fluids could
be subjected to a local body torque density analogous to the body force density in
normal fluids, and it is necessary to augment the mass and momentum conservation
equations by the angular momentum conservation equation. The analogue of the stress
in the angular momentum conservation equation, called the couple stress, is expressed
as a function of the gradients in the vorticity using constitutive relations analogous to
Newton’s law of viscosity. Structured continuum theories have been proposed (Dahler &
Scriven 1963; Condiff & Dahler 1964) where the internal molecular spin could be different
from the local fluid rotation rate, and this difference could give rise to an antisymmetric
stress proportional to the difference between the molecular spin (angular velocity of the
molecules) and one half of the vorticity. In this approach, the couple stress in the torque
balance equation is related to gradients in the molecular spin.

An antisymmetric stress also plays a crucial role in the rheology of a suspension
of ferromagnetic particles. Ferromagnetic particles have a permanent magnetic dipole
moment, and they experience a torque under an applied magnetic field. There has been a lot
of work in this area, particularly in the context of ‘spin-up’ flow of a ferrofluid (suspension
of magnetic nanoparticles with a permanent dipole moment) in a cylinder subjected to a
rotating magnetic field (Moskowitz & Rosensweig 1967; Zaitsev & Shliomis 1969; Chaves,
Zahn & Rinaldi 2008). In addition to the mass and momentum densities, the density of the
particle spin is an additional field used in theories of ferrofluids. In these theories, the
equation for the stress tensor contains a term proportional to the curl of the difference
between one half of the vorticity and the particle spin density. There is a source term in
the equation of the particle spin density due to the interaction between the particle moment
and the external field, and a sink due to the difference between the particle spin and one
half of the fluid vorticity. The continuum description also contains a ‘spin diffusion’ term
due to the linear relationship between the couple stress and the gradient of the angular
velocity (Rosensweig 2000; Rinaldi & Zahn 2002). For macroscopic particles, simulations
(Wang & Prosperetti 2001; Feng et al. 2006) have shown that the antisymmetric part of
the stress tensor is proportional to the difference between the average particle velocity and
one half of the vorticity, when an external torque is exerted on the particles.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

50
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.505


A suspension of conducting particles in a magnetic field 901 A36-3

In the case of ferrofluids, a torque is exerted on the particles due to the interaction
between the permanent dipole moment of the particles and the magnetic field. In contrast,
for conducting particles, there is no permanent magnetic moment. The magnetic moment
due to the eddy currents generated in a particle depends on the rotation rate and the
magnetic field, and there is no magnetic moment in the absence of either particle rotation
or the magnetic field. Due to the torque resulting from the eddy currents and the imposed
magnetic field, the angular velocity of the particles is different from one half of the fluid
vorticity, but the angular velocity is in turn determined from the balance between the
hydrodynamic and magnetic torques. The antisymmetric stress is due to the difference in
the angular velocity of macroscopic conducting particles and the local fluid rotation rate in
the low-Reynolds-number (quasi-static) limit. Consequently, there is no separate particle
spin density. The stress is determined as a function of the local vorticity, magnetic field
and material parameters, and it does not depend on the gradients in the vorticity.

There have been extensive studies on the rheology of magnetorheological fluids, which
consist of ferromagnetic particles suspended in viscous fluids (de Vicente, Klingenberg
& Hidalgo-Alvarez 2011). The particles are nanometres to micrometres in size, usually
anisotropic in shape, have multiple domains and could have either a permanent magnetic
dipole moment or an induced magnetic moment on application of a magnetic field. In
applications such as shock-absorbers, brakes and dampers, suspensions with a relatively
high volume fraction of particles are constrained to flow in a thin gap between two surfaces
or in a narrow tube (Klingenberg 2001). When a magnetic field is applied across the
flow, the particles align in the direction of the magnetic field, jam the gap and block
the flow. A salient feature of these suspensions is the fast transition between the flowing
and jammed states, within a time interval of the order of milliseconds, which enables
rapid on/off switching of the flow. The flowing/jammed behaviour is controlled by the
Mason number, which is the ratio of the fluid shear stress and the torque per unit volume
due to the applied magnetic field. In controlled experiments in a rheometer, there is not
only an increase of many orders of magnitude in the viscosity at a critical Mason number
(Anupama, Kumaran & Sahoo 2018), but also a yield stress is observed at very low strain
rates. The critical Mason number has been related to the Bingham number, which is the
ratio of yield stress and fluid stress (Sherman, Becnel & Wereley 2015). There have been
several studies on the viscosity and yield stress of particles, including formulation of
constitutive relations for dilute suspensions (Jansons 1983), magnetic fibre suspensions
(Kuzhir, Lopez-Lopez & Bossis 2009; Lopez-Lopez, Kuzhir & Bossis 2009) and influence
of particle shape on rheology (de Vicente et al. 2011). Spherical particles are usually
considered in particle-based models (Klingenberg & Zukoski 1990; Vagberg & Tighe
2017), and the effect of particle shape is difficult to incorporate. Exact calculations of
the dynamics of single dipolar spheroids in a shear flow have revealed a rich variety in the
phase portraits (Almog & Frankel 1995; Sobecki et al. 2018; Kumaran 2020), but these
have not yet been incorporated in particle-based models for magnetorheological fluids.
Since magnetorheological suspensions are usually dense, the magnetic particle–particle
interaction could also be important in aligning the particles. For submicrometer particles,
Brownian diffusion of the particle orientation occurs due to thermal fluctuations, and
the ratio of the magnetic interaction energy and the thermal energy is also an important
parameter.

There have been fewer studies on the rheology of conducting but non-ferromagnetic
particles subjected to a magnetic field. In contrast to ferromagnetic particles, the magnetic
permeability of these particles is almost equal to that of vacuum. However, these particles
do acquire a magnetic moment only under rotation due to eddy currents that are induced in
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901 A36-4 V. Kumaran

the particles; there is no magnetic moment in the absence of rotation. When the magnetic
field rotates relative to the conductor, there is an eddy current induced in the conductor due
to a combination of Faraday’s law of induction, ∇ × E = −μ0(dH/dt), and Ohm’s law,
E = �J . Here, E and H are the electric and magnetic fields, J is the current density, μ0 is
the magnetic permeability and � is the electrical resistivity. A current-carrying conductor
moving in a magnetic field acquires a magnetic moment due to Ampere’s law, ∇ × H =
J + ε(∂E/∂t), where ε is the electrical permittivity. The time derivative of the electric
field in Ampere’s law is usually neglected for calculating the magnetic moment, because
the current relaxation time, of O(10−14 s), is usually much smaller than the other relevant
time scales. The interaction of the induced magnetic moment M with the external field
H 0 results in a torque on the particle, μ0(M × H 0).

Moffat (1990) carried out the first studies of the force and torque on conducting particles
in a magnetic field, using rotating and travelling fields as typical time-dependent fields.
He showed that the force on a particle could be expressed as the sum of a lift force that is
irrotational and a drag force that is solenoidal, and that there is a simple relation between
the drag force and the curl of the torque on a particle. The force and torque on particles due
to these fields were determined, and particle trajectories were calculated. The predicted
trajectories have been compared with experiments (Bolcato et al. 1993).

The simpler problem of a conducting particle subjected to a simple shear flow in an
imposed magnetic field was considered by Kumaran (2019) at zero Reynolds number
where inertial effects are neglected, and in the dilute limit where the hydrodynamic and
magnetic fields of particles do not interact. For a viscous-dominated flow, the sum of the
hydrodynamic and magnetic torques on the particle is zero. The hydrodynamic torque
on a particle is proportional to the difference between one half of the fluid vorticity and
the particle angular velocity. The magnetic torque on a conducting particle rotating in an
external magnetic field H 0, T m = μ0(M × H 0), depends on the magnetic moment M
which is determined by solving the equations for the current density and the magnetic
field within the particle (Halverson & Cohen 1964; Landau et al. 2014). The moment M
is necessarily perpendicular to the applied magnetic field, but it has components that are
parallel and perpendicular to the Ω–H 0 plane, where Ω is the particle angular velocity.
The latter is called the ‘precession’ torque (Goldstein 1989), and in a simple shear flow,
this results in rotation perpendicular to the plane of shear when the magnetic field and
angular velocity are not perpendicular.

For the electromagnetic model, the governing equations are Faraday’s law of induction,
Ampere’s law with the quasi-static approximation discussed earlier and Ohm’s law for
the relation between the current and electric field. The conductor (spherical particle or
shell) is considered to have uniform electrical resistivity. The relation between the angular
velocity and magnetic moment is derived in appendix A of Kumaran (2019), and so it
is not repeated here. The flow is assumed to be viscous, and the hydrodynamic model is
the relation between the torque and the relative angular velocity for a spherical particle,
T h = 8πηR3((ω/2) − Ω), where T h is the hydrodynamic torque, η is the fluid viscosity,
R is the particle radius, Ω is the particle angular velocity and ω is the vorticity at the
particle centre. The sum of the hydrodynamic and magnetic torques is set equal to zero for
determining the particle angular velocity as a function of the fluid vorticity and magnetic
field. From dimensional analysis, the magnetic moment M is H0R3 times a function
of the product of the angular velocity and the characteristic time scale for the current
relaxation in the conductor. In the limit of zero Reynolds number, the scaled angular
velocity is a function of two dimensionless parameters: Σ = (μ0H2

0/4πη|ω|), the ratio of
the characteristic magnetic and viscous torques, and the product of the current relaxation
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A suspension of conducting particles in a magnetic field 901 A36-5

Ĥ Ĥ

Ω̂

ω̂ ω̂

(a)

ê‖

ê⊥

(b)

FIGURE 1. (a) A spherical conducting particle in a shear flow subjected to a magnetic field in
the Ĥ direction experiences a rotation in the Ω̂ direction; the vorticity ω̂ is perpendicular to the
plane of the shear. (b) The orthogonal coordinate system consisting of the unit vectors in the
vorticity direction ω̂, the unit vector ê⊥ perpendicular to ω̂ in the ω̂–Ĥ plane and the unit vector
ê⊥ perpendicular to the ω̂–Ĥ plane.

time and the vorticity, which has the form βp = (|ω|μ0R2/2�) for a spherical particle and
βs = (|ω|μ0R2δ/2�) for a thin shell. Here, ω is the fluid vorticity at the particle centre,
R is the particle radius, Rδ is the shell thickness for a thin shell (with δ � 1), H0 is the
applied field, μ0 is the magnetic permeability and � is the electrical resistivity. Since the
magnetic torque is a nonlinear function of the particle angular velocity, the torque balance
equation has to be solved iteratively to determine the angular velocity for a specified fluid
vorticity and magnetic field.

The solution procedure for determining the particle angular velocity and the torque on
a particle was formulated in Kumaran (2019). The antisymmetric component of the stress
tensor that results from the particle torque was determined in an orthogonal coordinate
system where the three unit vectors are (ω̂, ê‖, ê⊥) shown in figure 1(b), where ω̂ is the unit

vector along the direction of the vorticity, ê‖ = (Ĥ–ω̂(ω̂ · Ĥ))/

√
1 − (ω̂ · Ĥ)2 is the unit

vector perpendicular to the vorticity in the ω̂–Ĥ plane and ê⊥ = (ω̂ × Ĥ)/

√
1 − (ω̂ · Ĥ)2

is the unit vector perpendicular to the ω̂–Ĥ plane. The antisymmetric part of the particle
stress tensor is of the form σ p

a = |ω|(η(1)
a (ê‖ê⊥–ê⊥ê‖) + η(2)

a (ê⊥ω̂–ω̂ê⊥) + η(3)
a (ω̂ê‖–ê‖ω̂)).

The antisymmetric stress coefficients η(1)
a and η(2)

a are related due to the condition that the
torque is perpendicular to the magnetic field, and the independent antisymmetric stress
coefficients were evaluated in Kumaran (2019).

The present calculation consists of three parts. The first is the calculation of the particle
stress as a function of the magnetic moment, the second is the calculation of the magnetic
moment due to particle rotation and the third is the calculation of the angular velocity
due to the balance between the hydrodynamic and magnetic torques. The second and
third calculations are coupled, because the magnetic moment depends on the particle
angular velocity, and the angular velocity in turn depends on the magnetic moment via
the magnetic torque exerted on the particle. The first part, which involves the particle
stress as a function of the particle magnetic moment, is determined from the Maxwell
force moment on the particle in § 2 and appendix A. This calculation is restricted to a
spherical particle, and is valid in the continuum limit.
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901 A36-6 V. Kumaran

The second part of the calculation is described in appendix A of Kumaran (2019). In
the third part of the calculation in § 3, the angular velocity and the magnetic moment are
determined from the torque balance condition for specified values of the fluid vorticity
at the particle centre and the magnetic field. From this, the expression for the particle
stress tensor is derived. The expression for the stress tensor contains three symmetric stress
coefficients for the shear stress in the three perpendicular planes in the (ω̂, ê‖, ê⊥) space,
and two coefficients for the normal stress difference, in addition to the three antisymmetric
stress coefficients calculated in Kumaran (2019). In the expression for the stress tensor,
there are terms linear in the particle magnetic moment, due to the interaction of the
moment with the external field, and a term that is a quadratic function of the magnetic
moment. It is shown that the quadratic term is numerically much smaller than the terms
that are linear in the magnetic moment. A simplified expression for the stress tensor is
derived in the ‘linear’ approximation, where the quadratic terms in the stress tensor are
neglected. In the linear approximation, the simplified expression for the stress contains
only two stress coefficients.

The calculation of the particle stress from the magnetic moment and the calculation
of the eddy current due to particle rotation are valid for a spherical particle or shell of
any size with uniform electrical resistivity. The particle is considered to be a conducting
continuum and the fluid is an insulating continuum. For both particle and fluid, the
magnetic permeability is assumed to be that of vacuum. The torque balance condition
assumes the limit of low Reynolds number, so that the sum of the hydrodynamic and
magnetic torques is zero. It should be emphasised that the particles are not ferromagnetic,
and they do not have a permanent dipole moment or magnetic polarisation. There is a
particle dipole moment due to eddy currents only when a particle is rotating, and there is
no dipole moment when the particle is stationary.

In appendix C, the particle stress in a suspension of charged particles in a magnetic
field is determined. This calculation is simpler than that for a conducting particle, because
an analytical solution can be obtained for the particle angular velocity and particle stress
coefficients as a function of the particle charge, diameter, fluid vorticity and magnetic field.
The magnetic dipole moment M due to a particle with radius R and charge Q rotating with
angular velocity Ω is CΩΩR2Q, where CΩ is a dimensionless constant that depends on the
distribution of charges in the particle. The torque balance equation (sum of hydrodynamic
and magnetic torques is zero) can be solved analytically to obtain the particle angular
velocity as a function of the fluid vorticity ω. The particle stress depends on two
dimensionless parameters: the vorticity-independent parameter Σch = (CΩQμ0H0/8πηR)

and the parameter βch = (C2
ΩQ2μ0|ω|/(8π)2ηR2) which is the ratio of the vorticity and

the charge relaxation time. In § 4.1, it is shown that the parameter Σch is numerically small
and βch is negligible in practical applications, and a simplified expression for the particle
stress is obtained. The main conclusions are provided in § 4.

2. Particle stress

The magnetic field H around a spherical particle due to the magnetic moment M at the
centre of the particle (Landau et al. 2014) is

H = H 0 + 1
4π

(
3(x − xc)(x − xc)

|x − xc|5 − I
|x − xc|3

)
· M, (2.1)

where H 0 is the applied magnetic field, x is the position vector, xc is the centre of the
spherical particle, I is the isotropic tensor and M is the magnetic moment of the particle.
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A suspension of conducting particles in a magnetic field 901 A36-7

The Maxwell stress is given by

σ M = μ0(HH − 1
2 I(H · H)), (2.2)

where μ0 is the magnetic permeability of free space. The particle stress σ p due to the
magnetic field is related to the symmetric force moment integrated over the particle surface
(Batchelor 1970):

σ p = φ

(4πR3/3)

∫
S

dS (x − xc)n ·
[
σ M − μ0

(
H 0H 0 − 1

2
I(H 0 · H 0)

)]
, (2.3)

where S is the surface of the sphere, n = ((x − xc)/|x − xc|) is the outward unit normal
to the sphere, R is the particle radius and φ is the volume fraction of the particles. It is
important to note that the stresses σ p and σ M in (2.3) have been defined such that the first
index of the tensor is the direction of the unit normal to the surface and the second index is
the direction of the force. In (2.3), the background uniform stress (H 0H 0 − 1

2 I(H 0 · H 0))

has been subtracted to obtain the excess particle stress. The detailed calculation of the
particle stress is provided in appendix A, and the final result for the particle stress is

σ p = μ0φ

[
MH 0 + H 0M

8πR3
− MM

80π2R6
+ I

(
H 0 · M
4πR3

+ M · M
40π2R6

)]

+ 3μ0φ(MH 0 − H 0M)

8πR3
. (2.4)

The stress can be separated into the symmetric traceless part, the antisymmetric part
and the isotropic part, σ p = σ p

e + σ p
a + σ

p
i :

σ p
e = μ0φ

⎡
⎢⎣MH 0 + H 0M − 2

3
I(H 0 · M)

8πR3
−

MM − 1
3

I(M · M)

80π2R6

⎤
⎥⎦ , (2.5)

σ p
a = μ0φ

[
3(MH 0 − H 0M)

8πR3

]
, (2.6)

σ
p
i = μ0φI

[
H 0 · M
3πR3

+ M · M
48π2R6

]
. (2.7)

The isotropic part of the stress tensor, (2.7), can be subsumed in the fluid pressure, and so
it does not affect the flow. The antisymmetric part of the stress tensor, (2.6), is the same as
that determined from the torque on a particle, (1.1), in Kumaran (2019).

3. Rheology

3.1. Magnetic moment
A brief summary of the solution procedure for the angular velocity of a conducting
particle in a magnetic field is provided here, since the procedure is described in detail
in Kumaran (2019). A conducting particle in a magnetic field H 0 is considered, where the
fluid vorticity at the particle centre in the absence of the particle is ω. The angular velocity
is non-dimensionalised by one half of the fluid vorticity ω, Ω∗ = (Ω/(|ω|/2)), so that the
non-dimensional angular velocity is 1 in the absence of a torque on the particle. The torque
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balance equations were solved in an orthogonal coordinate system shown in figure 1(b),
where the three orthogonal coordinates are

ω̂ = ω

|ω| , (3.1)

the unit vector along the vorticity direction,

ê‖ = Ĥ − ω̂(ω̂ · Ĥ)√
1 − (ω̂ · Ĥ)2

, (3.2)

the unit vector perpendicular to ω̂ in the ω̂–Ĥ plane, and

ê⊥ = ω̂ × Ĥ√
1 − (ω̂ · Ĥ)2

, (3.3)

the unit vector perpendicular to the ω̂–Ĥ plane. The unit vector Ω̂ (figure 1a) along
the direction of the angular velocity is resolved into three components, Ω̂ω = Ω̂ · ω̂,
Ω̂‖ = Ω̂ · ê‖ and Ω̂⊥ = Ω̂ · ê⊥. The projection of the unit angular velocity vector onto
the direction of the magnetic field is

Ω̂H = Ω̂ω(ω̂ · Ĥ) + Ω̂‖

√
1 − (ω̂ · Ĥ)2. (3.4)

There are two dimensionless parameters in the torque balance equations. The parameter
Σ = (μ0H2

0/4πη|ω|) is the ratio of the magnetic stress and the viscous stress, where η

is the fluid viscosity. The parameter β is the product of the current relaxation time and
the vorticity. For a uniform spherical particle, β = βp = (|ω|μ0R2/2�), where R is the
particle radius and � is the electrical resistivity. For a thin conducting shell of outer radius
R and thickness δR, with δ � 1, the parameter β = βs = (|ω|μ0R2δ/2�). Since there is
no magnetic torque along the direction of the magnetic field, the torque balance condition
requires that the components of the angular velocity vector and one half of the vorticity
vector along the direction of the magnetic field are equal. This condition can be written in
terms of the dimensionless angular velocity Ω∗ as

ω̂ · Ĥ = Ω∗Ω̂H , (3.5)

where Ω∗ = |Ω∗|.
The sum of the hydrodynamic torque, 8πηR3((ω/2) − Ω), and the magnetic torque,

M × (μ0H 0), is set equal to zero in the limit of low Reynolds number to determine the
particle angular velocity. The torque balance equations in the ω̂, ê‖ and ê⊥ directions
(Kumaran 2019) reduce to

Ω̂ω − Ω∗ − Σ(1 − Ω̂2
H )M∗

I (βΩ∗) = 0, (3.6)

ω̂ · Ĥ − Ω̂ωΩ̂H + ΣΩ̂H (1 − Ω̂2
H )M∗

I (βΩ∗) = 0, (3.7)

ω̂ · (Ω̂ × Ĥ) − ΣΩ̂H (1 − Ω̂2
H )M∗

R(βΩ∗) = 0. (3.8)
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A suspension of conducting particles in a magnetic field 901 A36-9

Equation (3.8) is recast in terms of ê⊥:

Ω̂⊥

√
1 − (ω̂ · Ĥ)2 + ΣΩ̂H (1 − Ω̂2

H )M∗
R(βΩ∗) = 0, (3.9)

where Ω̂⊥ = Ω · ê⊥. The dimensionless functions M∗
R and M∗

I appearing in the expression
for the particle magnetic moment calculated in Kumaran (2019) are provided in
appendix B, and the asymptotic limits of these functions are listed in table 3. The function
M∗

R(βΩ∗) is negative for positive βΩ∗, its magnitude increases proportional to (βΩ∗)2

for βΩ∗ � 1 and the function tends to a constant value of − 1
2 for βΩ∗ � 1. The function

M∗
I (βΩ∗) is positive, its magnitude increases proportional to βΩ∗ for βΩ∗ � 1 and

decreases proportional to (βpΩ
∗)−1/2 for a uniform particle and proportional to (βsΩ

∗)−1

for a thin shell for βΩ∗ � 1.
The solution is obtained in the following sequence. Equation (3.5) is used to express

Ω∗ in terms of (ω̂ · Ĥ) and Ω̂H , then Ω̂ω is expressed as a function of (ω̂ · Ĥ) and Ω̂H ,
using (3.6), Ω̂‖ is expressed in terms of (ω̂ · Ĥ) and Ω̂H using (3.4), and Ω̂⊥ is expressed
in terms of (ω̂ · Ĥ) and Ω̂H using (3.9). Since Ω̂ is a unit vector, the requirement that
Ω̂2

ω + Ω̂2
‖ + Ω̂2

⊥ = 1 provides an implicit relation for Ω̂H in terms of ω̂ · Ĥ , Σ and β.
This equation is solved to determine Ω̂H (whose magnitude is not greater than 1) as a
function of (ω̂ · Ĥ), Σ and β.

The transformation of the solutions upon change in sign of ω̂ · Ĥ is as follows. From
(3.5), it is evident that when the sign of ω̂ · Ĥ is reversed, the sign of Ω̂H is also reversed
because Ω∗ is the magnitude of the angular velocity. When the sign of ω̂ · Ĥ is reversed,
(3.6) and (3.7) are unchanged if the sign of Ω̂ω is unchanged, (3.4) is unchanged if the sign
of Ω̂‖ is reversed and (3.9) is unchanged if the sign of Ω̂⊥ is reversed. Consequently, there
is the transformation Ω̂H → −Ω̂H , Ω∗ → Ω∗, Ω̂ω → Ω̂ω, Ω̂‖ → −Ω̂‖ and Ω̂⊥ → −Ω̂⊥
upon the sign reversal ω̂ · Ĥ → −ω̂ · Ĥ .

The particle angular velocity and the torque on the particle were determined as a
function of (ω̂ · Ĥ), Σ and β in Kumaran (2019). The solutions for the angular velocity
and torque are unique for small and moderate values of β, but there was the possibility
of multiple (three) steady states for βp > 93 for a uniform particle and for βs > 15.7 for
a thin shell when the magnetic field is perpendicular to the vorticity. The antisymmetric
component of the stress tensor was determined, but the symmetric part is not accessible
from the torque on a particle. In the present study, the symmetric part of the stress tensor
is determined from the induced magnetic moment on the particle using (2.5).

The induced magnetic moment of the conducting particle is expressed as M =
H0R3M∗, where M∗ is the dimensionless magnetic moment:

M∗ = M∗
R(βΩ∗)(Ĥ − Ω̂HΩ̂) + M∗

I (βΩ∗)(Ω̂ × Ĥ). (3.10)

It is useful to note here that M∗ · Ω = 0, that is, the magnetic moment is necessarily
perpendicular to the axis of rotation for a conducting particle. The magnetic moment is
resolved in the three orthogonal directions ω̂, ê‖ and ê⊥, in order to determine the particle
stress. The dimensionless magnetic moment in the vorticity direction is

M∗
ω = M∗

R(βΩ∗)(ω̂ · Ĥ − Ω̂ωΩ̂H ) + M∗
I (βΩ∗)(ω̂ · (Ω̂ × Ĥ))

= 0. (3.11)
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Here, the torque balance (3.7) and (3.8) have been used to substitute for (ω̂ · Ĥ − Ω̂ωΩ̂H )

and ω̂ · (Ω̂ × Ĥ). Equation (3.11) is a significant result, which states that the component
of the magnetic moment along the vorticity direction is zero . Since the component of the
magnetic moment along the direction of the angular velocity is also zero, (3.11) uniquely
specifies the direction of the magnetic moment perpendicular to the plane containing the
particle angular velocity and the fluid vorticity for the general case where the angular
velocity and vorticity are not parallel.

The component of the magnetic moment perpendicular to ω̂ in the ω̂–Ĥ plane is

M∗
‖ = M∗

R(βΩ∗)(1 − Ω̂2
H )√

1 − (ω̂ · Ĥ)2

. (3.12)

The component of the magnetic moment perpendicular to the ω̂–Ĥ plane is

M∗
⊥ = Σ(1 − Ω̂2

H )(M∗
R(βΩ∗)2Ω̂2

H + M∗
I (βΩ∗)2)√

1 − (ω̂ · Ĥ)2

+ M∗
I (βΩ∗)(1 − Ω̂2

H )(ω̂ · Ĥ)

Ω̂H

√
1 − (ω̂ · Ĥ)2

.

(3.13)

For the special case where the vorticity and magnetic field are perpendicular, the particle
angular velocity is aligned along the vorticity direction, ω̂ · Ĥ = 0, Ω̂H = 0 and Ω̂ω = 1.
The magnetic moments are

M∗
‖ = M∗

R(βΩ∗), (3.14)

M∗
⊥ = M∗

I (βΩ∗). (3.15)

In deriving (3.15), (3.5) has been used to express Ω̂H in terms of Ω∗ and (3.6) has been
used to substitute for Ω∗ = 1 − ΣM∗

I (βΩ∗).

3.2. Particle stress
The magnetic moments are substituted into (2.5) in order to determine the symmetric
traceless part of the stress tensor. The stress is expressed in the coordinate system
(ω̂, ê‖, ê⊥):

σ p = |ω|[η(1)
s (ê‖ê⊥ + ê⊥ê‖) + η(2)

s (ê⊥ω̂ + ω̂ê⊥) + η(3)
s (ê‖ω̂ + ω̂ê‖)

+ η(1)
n (ê‖ê‖ − ê⊥ê⊥) + η(2)

n (ê⊥ê⊥ − ω̂ω̂)

+ η(1)
a (ê‖ê⊥ − ê⊥ê‖) + η(2)

a (ê⊥ω̂ − ω̂ê⊥) + η(3)
a (ω̂ê‖ − ê‖ω̂)], (3.16)

where the symmetric, normal and antisymmetric stress coefficients are

η(1)
s = ηφΣ

⎡
⎣

√
1 − (ω̂ · Ĥ)2M∗

⊥
2

− M∗
‖M∗

⊥
20π

⎤
⎦ , (3.17)

η(2)
s = ηφΣ

[
(ω̂ · Ĥ)M∗

⊥
2

]
, (3.18)
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η(3)
s = ηφΣ

[
(ω̂ · Ĥ)M∗

‖
2

]
, (3.19)

η(1)
n = ηφΣ

[√
1 − (ω̂ · Ĥ)2M∗

‖ − M∗2
‖ − M∗2

⊥
20π

]
, (3.20)

η(2)
n = −ηφΣ

[
M∗2

⊥
20π

]
, (3.21)

η(1)
a = −3ηφΣ

√
1 − (ω̂ · Ĥ)2M∗

⊥
2

, (3.22)

η(2)
a = 3ηφΣ(ω̂ · Ĥ)M∗

⊥
2

, (3.23)

η(3)
a = −3ηφΣ(ω̂ · Ĥ)M∗

‖
2

. (3.24)

The antisymmetric stress coefficients, (3.22)–(3.24), have been calculated from the torque
on a particle in Kumaran (2019), and the dependence of these on the parameters Σ

and β has been discussed in detail. It has been verified that the results obtained from
(3.22)–(3.24) are in quantitative agreement with those in Kumaran (2019).

Asymptotic expressions can be obtained for the symmetric and normal stress
coefficients in the limit Σ � 1 using a regular perturbation expansion in the parameter Σ ,
and in the limit Σ � 1 using a regular perturbation expansion in the parameter Σ−1. These
expressions are shown in table 1, along with the expansions for the moments M∗

‖ and M∗
⊥.

In the limit Σ � 1, the magnetic field has a small effect on the particle rotation, and the
difference between the particle angular velocity and the fluid vorticity is O(Σ). The scaled
angular velocity Ω∗ is equal to 1 in the leading approximation, and the magnetic moments
and antisymmetric stress coefficients depend on the functions MR(β) and MI(β). In the
limit Σ � 1, the particle angular velocity is aligned close to the magnetic field, and the
dot product Ω̂H differs from 1 by O(Σ−1). For Ω̂H

∼= 1, it can be inferred from (3.5) that
Ω∗ ∼ ω̂ · Ĥ , and therefore the scaled magnetic moments and stress coefficients depend
on MR(βω̂ · Ĥ) and MI(βω̂ · Ĥ). The asymptotic expressions for the antisymmetric stress
coefficients are provided in Kumaran (2019).

Table 1 shows that the stress coefficients have the same dependence on (ω̂ · Ĥ) in the
limits Σ � 1 and Σ � 1, and therefore it is possible to define scaled stress coefficients
which are independent of (ω̂ · Ĥ) in the limits of low and high Σ :

η(1)
s = ηφ(1 − (ω̂ · Ĥ)2)η̄(1)

s , (3.25)

η(2)
s = ηφ(ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2η̄(2)

s , (3.26)

η(3)
s = ηφ(ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2η̄(3)

s , (3.27)

η(1)
n = ηφ(1 − (ω̂ · Ĥ)2)η̄(1)

n , (3.28)

η(2)
n = ηφ(1 − (ω̂ · Ĥ)2)η̄(2)

n . (3.29)
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Σ � 1 Σ � 1

M∗
‖

√
1 − (ω̂ · Ĥ)2M∗

R(β)

√
1 − (ω̂ · Ĥ)2M∗

R(βω̂ · Ĥ)

Σ(M∗
R(βω̂ · Ĥ)2 + M∗

I (βω̂ · Ĥ)2)

M∗
⊥

√
1 − (ω̂ · Ĥ)2M∗

I (β)

√
1 − (ω̂ · Ĥ)2 + (ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2M∗

I (βω̂ · Ĥ)

Σ(M∗
R(βω̂ · Ĥ)2 + M∗

I (βω̂ · Ĥ)2)

(η
(1)
s /ηφ) Σ(1 − (ω̂ · Ĥ)2) (1 − (ω̂ · Ĥ)2)

×
[

M∗
I (β)

2
− M∗

R(β)M∗
I (β)

20π

]
×

[
1
2

+ ω̂ · ĤM∗
I (βω̂ · Ĥ)

2Σ(M∗
R(βω̂ · Ĥ)2 + M∗

I (βω̂ · Ĥ)2)

]

(η
(2)
s /ηφ)

Σ(ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2M∗

I (β)

2
ω̂ · Ĥ

√
1 − (ω̂ · Ĥ)2

×
[

1
2

+ ω̂ · ĤM∗
I (βω̂ · Ĥ)

2Σ(M∗
R(βω̂ · Ĥ)2 + M∗

I (βω̂ · Ĥ)2)

]

(η
(3)
s /ηφ)

Σ(ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2M∗

R(β)

2
(ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2

×
[

M∗
R(βω̂ · Ĥ)

2Σ(M∗
R(βω̂ · Ĥ)2 + M∗

I (βω̂ · Ĥ)2)

]

(η
(1)
n /ηφ) Σ(1 − (ω̂ · Ĥ)2) (1 − (ω̂ · Ĥ)2)

×
[

M∗
R(β) + (M∗

I (β)2 − M∗
R(β)2)

20π

]
×

[
1

20πΣ
+ M∗

R(βω̂ · Ĥ)

Σ(M∗
R(βω̂ · Ĥ)2 + M∗

I (βω̂ · Ĥ)2)

]

(η
(2)
n /ηφ) −Σ(1 − (ω̂ · Ĥ)2)M∗

I (β)2

20π
−

[
1 − (ω̂ · Ĥ)2

20πΣ

]

TABLE 1. The Σ � 1 and Σ � 1 limits for the scaled magnetic moments M∗
‖ (equation (3.12))

and M∗
⊥ (equation (3.13)), and the viscometric coefficients η

(1)
s –η

(2)
s and η

(1)
n –η

(2)
n (equations

(3.17)–(3.21)). The functions M∗
R and M∗

I are defined in appendix B for a uniform particle and a
thin shell.

The functions η̄(1)
s –η̄(2)

n are shown as a function of Σ for for different values of (ω̂ · Ĥ)

in figure 2 for a uniform particle and in figure 3 for a thin shell. The following results can
be inferred from these figures.

(a) The first symmetric stress coefficient η(1)
s is positive and the first normal stress

coefficient η(1)
n is negative. The sign of η(2)

s is the same as that of ω̂ · Ĥ , while that of η(3)
s is

the negative of that of ω̂ · Ĥ . The second normal stress coefficient η(2)
n is always negative.

This follows from (3.12) and (3.13), where it was shown that M‖ and M⊥ are negative and
positive, respectively. Equations (3.22)–(3.24) indicate that the first antisymmetric stress
coefficient is negative and the second and third antisymmetric stress coefficients have the
same sign as ω̂ · Ĥ . This is consistent with the results in Kumaran (2019).

(b) Excellent data collapse is observed for different values of (ω̂ · Ĥ) for βp ≤ 10 for
a uniform particle and βs ≤ 3 for a thin shell, indicating that the scalings (3.25)–(3.29)
provide results that are independent of ω̂ · Ĥ for all the stress coefficients. In the regime

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

50
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.505


A suspension of conducting particles in a magnetic field 901 A36-13

η̄s
(1) η̄s

(2)
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10–1

100
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10–2

10–1

100

10–2 10–1 100 101 102 103 10–2 10–1 100 101 102 103

(b)(a)

¯–ηs
(3) ¯–ηn

(1)

10–4

10–3

10–2

10–1

100

10–4

10–3

10–2

10–1

100

10–2 10–1 100 101 102 103 10–2 10–1 100 101 102 103

(c) (d )

¯–ηn
(2)

10–6

10–5

10–4

10–3

10–2

10–2 10–1 100 101 102 103

(e)

Σ

FIGURE 2. The scaled symmetric and normal viscosity coefficients η̄
(1)
s (a), η̄

(2)
s (b), −η̄

(3)
s (c),

η̄
(1)
n (d) and −η̄

(2)
n (e) as a function of Σ for a uniform particle with βp = 1 (solid lines), βp = 10

(dashed lines) and βp = 100 (dotted lines) and for ω̂ · Ĥ = 0.95 (◦), ω̂ · Ĥ = (1/
√

2) (�) and
ω̂ · Ĥ = (1/3) ().
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η̄s
(1)

¯–ηs
(3)

¯–ηn
(2)

¯–ηn
(1)

η̄s
(2)

10–4

10–3

10–2

10–1

100

10–4

10–3

10–2

10–1

100

10–4

10–3

10–2

10–1

100

10–4

10–3

10–2

10–1

100

10–6

10–5

10–4

10–3

10–2

10–2 10–1 100 101 102 103

10–2 10–1 100 101 102 103 10–2 10–1 100 101 102 103

10–2 10–1 100 101 102 103 10–2 10–1 100 101 102 103

(e)

(b)(a)

(c) (d )

Σ

FIGURE 3. The scaled symmetric and normal viscosity coefficients η̄
(1)
s (a), η̄

(2)
s (b), −η̄

(3)
s (c),

η̄
(1)
n (d) and −η̄

(2)
n (e) as a function of Σ for a thin shell with βs = 1 (solid lines), βs = 3 (dashed

lines) and βs = 30 (dotted lines) and for ω̂ · Ĥ = 0.95 (◦), ω̂ · Ĥ = (1/
√

2) (�) and ω̂ · Ĥ =
(1/3) ().
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βp > 10 for a spherical particle and βs > 3 for a thin shell, the results for different ω̂ · Ĥ
do not coincide for Σ in the range 1–10, but there is good collapse of the date outside of
this range.

(c) All the stress coefficients increase proportional to Σ for Σ � 1. For Σ � 1, the
first and second symmetric stress coefficients tend to 0.5 and −0.5, respectively, and the
magnitudes of the third symmetric stress coefficient and the first normal stress coefficient
decrease proportional to Σ−1. These asymptotic trends are independent of the parameter β,
and are consistent with the analytical results in table 1. In fact, the expressions in table 1
are in quantitative agreement with the Σ � 1 and Σ � 1 asymptotic expressions; the
comparison is not shown in figures 2 and 3 to enhance clarity.

(d) The magnitude of the second normal stress coefficient is O(10−2) smaller than the
other coefficients, due to the numerical factor of (20π)−1 in (3.21).

(e) The magnitudes of η̄(1)
s and η̄(2)

s are nearly equal, indicating that the numerical
difference due to the second term in the square brackets on the right-hand side of (3.17) is
insignificant. Similarly, the magnitudes of 2η̄(3)

s and η̄(1)
n are almost equal, indicating that

the second term in the square brackets in (3.20) is much smaller than the other terms.

3.3. Linear approximation
In the linear approximation, where only terms linear in M∗

‖ and M∗
⊥ are retained in

(3.17)–(3.24), the second normal stress coefficient η(2)
n is zero, and the seven stress

coefficients, (3.17)–(3.23), can be related to two positive functions, η̄′(β,Σ) and η̄′′(β,Σ):

η̄′(β,Σ, ω̂ · Ĥ) = 2η̄(1)
s = 2η̄(2)

s = − 2
3 η̄

(1)
a = 2

3 η̄
(2)
a = (ΣM∗

⊥/

√
1 − (ω̂ · Ĥ)2), (3.30)

βη̄′′(β,Σ, ω̂ · Ĥ) = −2η̄(3)
s = −η̄(1)

n = 2
3 η̄

(3)
a = −(ΣM∗

‖/
√

1 − (ω̂ · Ĥ)2), (3.31)

where the definitions of the scaled antisymmetric stress coefficients, calculated in
Kumaran (2019), are

η(1)
a = ηφ(1 − (ω̂ · Ĥ)2)η̄(1)

a , (3.32)

η(2)
a = ηφ(ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2η̄(2)

a , (3.33)

η(3)
a = ηφ(ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2η̄(3)

a . (3.34)

Using the above approximations, the constitutive relation for the stress tensor is

σ p = |ω|ηφ{η̄′(β,Σ, ω̂ · Ĥ)[(1 − (ω̂ · Ĥ)2)(2ê⊥ê‖ − ê‖ê⊥)

+ (ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2(2ê⊥ω̂ − ω̂ê⊥)]

+ βη̄′′(β,Σ, ω̂ · Ĥ)[(ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2(ω̂ê‖ − 2ê‖ω̂)

− (1 − (ω̂ · Ĥ)2)(ê‖ê‖ − ê⊥ê⊥)]}. (3.35)

The Σ and β dependences of η̄′ and η̄′′ in the limits of large and small β are summarised
in table 2 for a uniform particle and a thin shell; these are derived using the asymptotic
expressions for M∗

R and M∗
I in table 3. The asymptotic expressions are compared with the
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Spherical particle Thin shell

βp � 1 βp � 1 βs � 1 βs � 1

η̄′ η̄′′ η̄′ η̄′′ η̄′ η̄′′ η̄′ η̄′′

Σ � 1 (βpΣ/30) (βpΣ/315) (3Σ/2
√

2βp) (Σ/2βp) (βsΣ/6) (βsΣ/18) (3Σ/2βs) (Σ/2βs)

Cross-over βpΣ = 30 βpΣ = 31.5 Σ = 0.94
√

βp Σ = 2 βsΣ = 6 βsΣ = 6 Σ = 0.67βs Σ = 2

Σ � 1 1 (20/7βpΣ) 1 (2/βpΣ) 1 (2/βsΣ) 1 (2/βsΣ)

TABLE 2. The functions η̄′ and η̄′′ (equation (3.35)) in the limits of small and large β and small
and large Σ for a uniform particle and a thin shell.

10–3

10–2

10–1

100

10–1 100 101 102 103 104

βpΣ βpΣ

η̄
′ (

β
p,

 Σ
, ω̂

 ·
Ĥ

)

η̄
′′ (

β
p,

 Σ
,  

ω̂
 ·

Ĥ
)

(βpΣ/30)(a)

10–4

10–3

10–2

10–1 100 101 102 103

(20/7βpΣ)

(2/βpΣ)

(βpΣ/315)
(b)

FIGURE 4. The functions η̄′(βp, Σ, ω̂ · Ĥ) (a) and η̄′′(βp, Σ, ω̂ · Ĥ) (b) for a uniform particle
for ω̂ · Ĥ = (1/

√
2) and βp = 1 (◦), βp = 3 (�), βp = 10 (∇), βp = 30 (�) and βp = 100 (�).

The dashed lines, from left to right, are the Σ � 1 and βp � 1 asymptotic expressions in table 2
for βp = 30 and 100, respectively.

actual numerical values in figure 4 for a uniform particle and in figure 5 for a thin shell.
In all of the limits shown in table 2, the functions η̄′ and η̄′′ are independent of ω̂ · Ĥ , the
angle between the vorticity and the magnetic field. In nearly all of the limits, η̄′ and η̄′′ are
functions only of the product βΣ ; the only exceptions are the limits β � 1 and Σ � 1,
shown by the boxed expressions in table 2. The intersection of the Σ � 1 and Σ � 1
asymptotes is also shown in table 2. For β � 1, the cross-over occurs at βpΣ ∼ 30 for a
uniform particle and at βsΣ ∼ 6 for a thin shell. For β � 1, the location of the cross-over
is Σ = 2 for the function η̄′′ for a uniform particle and a thin shell, but is dependent on
β for the function η̄′. From figures 2 and 3, it can further be inferred that the functions η̄′

and η̄′′ are independent of ω̂ · Ĥ , and they depend only on the product βΣ for βp � 3 for a
uniform particle and βs � 1 for a thin shell. In the limit β � 1 and Σ � 1, the numerical
results are in agreement with the asymptotic predictions in table 2 only for βp � 30 for a
uniform particle and βs � 10 for a thin shell.

The dependence of η̄′ and η̄′′ only on the product βΣ is significant, because this is a
vorticity-independent parameter, which is βpΣ = (μ2

0H2
0R2/8πη�) for a uniform particle
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(2/βsΣ)
(βsΣ/18)

(b)

FIGURE 5. The functions η̄′(βs, Σ, ω̂ · Ĥ) (a) and η̄′′(β, Σ, ω̂ · Ĥ) (b) for a uniform particle
for ω̂ · Ĥ = (1/

√
2) and βs = 0.3 (◦), βs = 1 (�), βs = 3 (∇), βs = 10 (�) and βs = 30 (�). The

dashed lines, from left to right, are the Σ � 1 and βs � 1 asymptotic expressions in table 2 for
βs = 10 and 30, respectively.

and βsΣ = (μ2
0H2

0R2δ/8πη�). Therefore, the functions η̄′ and η̄′′ depend only on material
parameters and the magnetic field in most of the limits shown in table 2 with the exception
of β � 1 and Σ � 1. When η̄′ and η̄′′ depend only on material parameters, the first term
in the braces in (3.35) is a constant, and the second term is proportional to the vorticity,
because the parameter β is the product of the vorticity and the current relaxation time.

The constitutive relation (3.36) is further simplified when the magnetic field is
perpendicular to the direction of the vorticity. In this case, the particle angular velocity
and the vorticity are in the same direction, ω̂ · Ĥ and Ω̂H are zero, and the constitutive
relation is

σ p = |ω|ηφΣ{M∗
I (βΩ∗)(2ê⊥ê‖ − ê‖ê⊥) + M∗

R(βΩ∗)(ê‖ê‖ − ê⊥ê⊥)}, (3.36)

where Ω∗ is the solution of equation (3.6) with ω̂ · Ĥ = 0, Ω̂H = 0 and Ω̂ω = 1:

1 − Ω∗ − ΣM∗
I (βΩ∗) = 0. (3.37)

4. Conclusions

4.1. Parameter regimes
Realistic numerical values of the parameters β and Σ were estimated in Kumaran (2019)
for particles made of conducting materials such as copper or aluminium. The parameter β,
which is proportional to the square of the particle radius, is O(1) only for millimetre-sized
particles at a very high vorticity of 103–104 s−1. For most practical applications, the
parameter β is small and the limit β � 1 is most relevant. However, there are special cases
such as ultra-low-resistivity materials and type II superconductors where large values of
β can be realised in practice. The parameter Σ is independent of the particle radius, and
it is proportional to the square of the magnetic field. The magnetic field H0 can be varied
over a wide range. The value of H0 for the Earth’s magnetic field is about 50 A m−1, but a
practically realisable magnetic field of about 1 T results in H0 ∼ 106 A m−1. Consequently,
Σ can be varied over a wide range from 10−3 to 103 in experiments.
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The parameter βΣ is independent of the fluid vorticity, and the magnitudes of this
dimensionless number are estimated as follows. If we consider a suspension of particles of
low-resistivity materials such as aluminium and copper, � ∼ 2 × 10−8 kg m3 s−3 A−2,
suspended in water with viscosity η ∼ 10−3 kg m−1 s−1, the parameter βpΣ ∼ 3 ×
10−3H2

0R2, where H0 is the magnetic field with unit A m−1 and the radius R is expressed
in metres. If the particle size is 10–100 μm, it is easy to access the regimes βpΣ � 1 and
βpΣ � 1 by using magnetic field strengths in the range 50–106 A m−1. For a thin shell, the
functions η̄′ and η̄′′ depend on the parameter βsΣ = (μ2

0H2
0R2δ/8πη�), which is smaller

than βpΣ by a factor δ, the ratio of the shell thickness and particle radius. In this case,
as well, the parameter regimes βsΣ � 1 and βsΣ � 1 are accessible using particles of
diameter 10–100 μm and H0 in the range 50–106 A m−1.

For charged particles in a viscous fluid discussed in appendix C, there are
two dimensionless parameters: the ratio of magnetic and viscous stress Σch =
(CΩQμ0H0/8πηR), which is independent of the fluid vorticity, and the parameter βch =
C2

ΩQ2μ0|ω|/(8π)2ηR2), which is a linear function of the fluid vorticity but is independent
of the magnetic field. The typical surface charge density for colloidal particles is of the
order of 10−2 C m−2 (Fernandez-Barbero et al. 1996), resulting in the maximum value
of Σch ∼ 6 × 10−5 for particles of diameter 10 μm and magnetic field strength H0 =
106 A m−1. However, a charge density as large as 1 C m−2 has been reported in magnetic
nanoparticles suspended in polar solvents. If such large charge densities can be realised
in particles of radius 10 μm, the parameter Σch for such particles is O(6 × 10−3) (Brown
et al. 2013; Campos et al. 2017). The parameter βch is much smaller, about 3 × 10−14|ω| for
particles with diameter 10 μm, charge density 1 C m−2 and H0 = 106 A m−1, where ω is
expressed in s−1. Therefore, the terms proportional to βch can be neglected in the particle
stress, and only the O(Σch) contributions to the stress coefficients are of relevance. This
approximation leads to a simplified constitutive relation, (C 21).

It should be noted that this effect will be difficult to observe in aqueous solutions with
ions, due the presence of a counter-ion layer around each particle. When a particle with
surface charges rotates, the counter-ion layer also rotates due to the no-slip boundary
condition at the surface. If the Debye length is much smaller than the particle radius, the
magnetic moment due to particle rotation is nearly balanced by that due to the rotation of
the counter-ion layer; the ratio of the difference in the magnetic moment of the two and the
moment due to the surface charges is comparable to the ratio of the Debye layer thickness
and the particle size. In contrast, in non-polar solvents, there is very little screening, and
the Debye layer thickness could be larger than the particle radius (Hsu, Dufresne & Weitz
2005; Waggett, Shafiq & Bartlett 2018). In such cases, it should be possible to observe
rheology modification or secondary flow due to the effect of the magnetic field on a
charged particle.

4.2. Particle stress
Equation (2.4) is the principal result for the particle stress due to a suspension of dipolar
particles in an external field. Though consistent with the expression of Batchelor (1970) for
the relation between the particle torque and the antisymmetric part of the stress tensor, this
expression is more general because it enables calculation of the symmetric particle stress
as well. Though this was evaluated for a magnetic dipole in a magnetic field, the same
expression applies for an electrical dipole in an electric field if ε0 and E0 are substituted
for μ0 and H0, and M is considered the electric dipole moment instead of the magnetic
dipole moment. For an isotropic polarisable particle, the electric dipole moment is along
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the direction of the electric field, and therefore there is no antisymmetric part for the
particle stress. However, particles with a permanent dipole and those with anisotropic
polarisability could have an antisymmetric contribution to the particle stress.

4.3. Magnetic moment
It is known (Halverson & Cohen 1964; Landau et al. 2014) that the component of the
magnetic moment along the direction of the angular velocity is zero. An interesting
additional result here, (3.11), is that the component of the moment along the vorticity
direction is zero for a conducting particle in a linear shear flow in the viscous limit.
This appears to be a consequence of the torque balance condition, and this second
condition serves to fix the direction of the magnetic moment perpendicular to the angular
velocity–vorticity plane where the two are not parallel. In contrast, the magnetic moment
for a charged particle does have a component along the vorticity direction, as shown in
(C 10). In fact, in the practically realisable limit Σch � 1, the particle magnetic moment
is primarily along the vorticity direction for a charged particle.

4.4. Rheology
At the outset, it is important to note that the particle stress due to the magnetic field is
related to the vorticity at the particle centre. This is in contrast to the Einstein calculation
for the stress due to a suspension of rigid particles in a fluid, where the particle stress
is related to the symmetric traceless part of the rate of deformation tensor. In addition,
the stress tensor due to the magnetic field is not symmetric, and therefore the velocity
disturbance and secondary flow resulting from a magnetic field will be qualitatively
different from that due to a rigid sphere in a linear shear flow.

A general rheological model for the stress in an incompressible fluid consists of three
symmetric stress coefficients for the symmetric component of the stress tensor in three
perpendicular planes, two normal stress coefficients for the two normal stress differences
and three antisymmetric stress coefficients for the antisymmetric part of the stress tensor.
In Kumaran (2019), the three antisymmetric stress coefficients were evaluated, and it
was shown that there are only two independent coefficients due to the constraint that the
particle torque is perpendicular to the magnetic field. This relationship is also evident from
(2.6) when the magnetic moment is perpendicular to the vorticity direction. The symmetric
traceless part of the stress tensor in (2.5) contains two terms, one of which is linear and
the second is quadratic in the particle magnetic moment. Therefore, the symmetric part
depends on five functions: M‖, M⊥, M2

‖ , M2
⊥ and M‖M⊥. However, the quadratic term in

(2.5) is numerically smaller than the linear contribution.
In the ‘linear’ approximation (3.35), where the terms quadratic in the magnetic moment

are neglected, the eight stress coefficients depend on two functions: η̄′(β,Σ, ω̂ · Ĥ) and
η̄′′(β,Σ, ω̂ · Ĥ). These functions depend on ω̂ · Ĥ only for Σ ∼ 1 and βp � 10 for a
uniform particle and βs � 3 for a thin shell. In all other parameter regimes, the functions
η̄′ and η̄′′ are independent of ω̂ · Ĥ . However, it should be noted that the stress tensor
(3.35) does explicitly depend on ω̂ · Ĥ .

For a uniform particle, the functions η̄′(βp, Σ) and η̄′′(βp,Σ) (figure 4) are only
functions of βpΣ for βp � 3 for all Σ , and for Σ �

√
βp and βp � 3. For a thin shell,

η̄′(βs,Σ) and η̄′′(βs,Σ) (figure 5) are functions of βsΣ for βs � 1 for all Σ , and for Σ �
(2βs/3) and βs � 1. This constitutes a significant simplification, because the parameter
βpΣ depends on material properties and the magnetic field, and is independent of the
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vorticity. With this simplification, the stress (3.35) has two parts, the first proportional to
|ω|η̄′(βΣ) is a linear function of the vorticity and the second proportional to |ω|βη̄′′(βΣ)

is proportional to the square of the vorticity, because the parameter β is the product of the
vorticity and the current relaxation time. The latter is O(β) smaller than the former in the
relevant limit β � 1 discussed in § 4.1.

For a unidirectional flow where the velocity is in the x direction and the velocity gradient
is in the y direction, the rheology modification is strongest when the magnetic field is
parallel to the flow direction, that is, ê‖ = ex and ê⊥ = ey . In this case, (3.35) indicates
that the eddy current contribution to the viscosity is 2ηφη̄′. The function η̄′ approaches
a maximum value of 1 in the limit of high magnetic field. Therefore, the maximum
increment in the viscosity due to the Maxwell stress is 2ηφ; this is in addition to the
Einstein increment due to the a rigid particle in a shear flow, 5(ηφ)/2. Of the viscosity
increment due to the Maxwell stress, 3(ηφ)/2 is due to the antisymmetric part of the
stress tensor and (ηφ)/2 is due to the symmetric part of the stress tensor.

It is shown in appendix C that analytical solutions can be obtained for the particle
angular velocity and stress coefficients for a suspension of charged particles in a shear
flow. In this case, the ratio of the magnetic and viscous torques, Σch, is independent of the
vorticity and the parameter βch is a linear function of the vorticity. Based on the estimates
in § 4.1, the numerical value of βch is negligible, and only the terms linear in Σch could
result in a significant rheology modification. The largest contributions to the stress are
due to the second symmetric stress coefficient, the second normal stress coefficient and
the third antisymmetric stress coefficient; in contrast, these three coefficients provide the
smallest contribution to the stress for a suspension of conducting particles. The linear
approximation for the stress tensor, (C 21), contains an asymmetric stress in the ω̂–Ĥ
plane, and a normal stress difference between the normal stresses in the vorticity direction
and the direction perpendicular to the ω̂–Ĥ plane.
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Appendix A. Calculation of particle stress

Since the particle stress tensor is not symmetric, it is important to specify the convention
for calculating the particle stress used here and in Kumaran (2019). In indicial notation,
the stress σ

( p)

ij is defined as the force per unit area in the j direction acting on a surface
with outward unit normal in the i direction. Using this notation, the force density acting
on the fluid in the Navier–Stokes momentum conservation equation, ∇ · σ p, is written in
indicial notation as (∂σ

( p)

ij /∂xi).
The particle stress in (2.4) is evaluated as follows. Using the notation r = (x − xc) and

r = |x − xc|, the magnetic field (2.1) is expressed in indicial notation as

Hi = H0i + 1
4π

(
3rirk

r5
− δik

r3

)
Mk. (A 1)
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The Maxwell stress, (2.2), is

σ M
lj − μ0

(
H0jH0l − 1

2
δjlH0kH0k

)

= μ0

4π

[
H0j

(
3rlrk

r5
− δlk

r3

)
Mk + H0l

(
3rjrk

r5
− δjk

r3

)
Mk

− δjlH0m

(
3rmrk

r5
− δmk

r3

)
Mk

]

+ μ0

16π2

[(
3rjrk

r5
− δjk

r3

)(
3rlrm

r5
− δlm

r3

)
MkMm

− δjl

2

(
3rprk

r5
− δpk

r3

) (
3rprm

r5
− δpm

r3

)
MkMm

]
. (A 2)

The force moment is

rinl

(
σ M

lj − μ0

(
H0jH0l − 1

2
δjlH0kH0k

))

= μ0

4π

[
H0j

(
3rir2

l rk

r6
− rirk

r4

)
Mk + H0l

(
3rirjrlrk

r6
− rlriδjk

r4

)
Mk

− δjlH0m

(
3rirlrmrk

r6
− rirlδmk

r4

)
Mk

]

+ μ0

16π2

[(
3rirkrjrl

r6
− δjkrirl

r4

)(
3rlrm

r5
− δlm

r3

)
MkMm

− δjlrirl

2r

(
3rprk

r5
− δpk

r3

)(
3rprm

r5
− δpm

r3

)
MkMm

]

= μ0

4π

[
H0j

(
3rirk

r4
− rirk

r4

)
Mk + H0l

(
3rirjrlrk

r6
− rlriδjk

r4

)
Mk

− H0m

(
3rirjrmrk

r6
− rjriδmk

r4

)
Mk

]

+ μ0

16π2

[(
6rirjrkrm

r9
− 2δjkrirm

r7

)
MkMm

− rirj

2r

(
3rkrm

r8
+ δkm

r6

)
MkMm

]

= μ0

4π

[
H0j

(
2rirk

r4

)
Mk − H0lMj

(rlri

r4

)
+ H0k

(rjri

r4

)
Mk

]

+ μ0

16π2

[(
9rirjrkrm

2r9
− 2δjkrirm

r7
− δkmrirj

2r7

)
MkMm

]
. (A 3)
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Using the identities

∫
S dS rirj = 4πr4δij

3
,

∫
S dS rirjrkrm = 4πr6(δijδkm + δikδjm + δimδjk)

15
,

⎫⎪⎪⎬
⎪⎪⎭ (A 4)

the integral of the force moment over the surface of the sphere is

∫
S

dS rinl

(
σ M

jl − μ0

(
H0jH0l − 1

2
δjlH0kH0k

))

= μ0

[(
2MiH0j

3
− H0iMj

3
+ δijH0kMk

3

)
+ 1

60πR3

(−MiMj + 2δijM2
k

)]
. (A 5)

The particle stress is

σ
( p)

ij = φ

(4πR3/3)

∫
S

dS σ M
jl nlri

= μ0φ

[(
MiH0j

2πR3
− H0iMj

4πR3
+ δijH0kMk

4πR3

)
+ 1

80π2R6

(−MiMj + 2δijM2
k

)]
. (A 6)

The particle stress can be separated into the its symmetric and antisymmetric parts:

σ
( p)

sij = 1
2
(σ

( p)

ij + σ
( p)

ji )

= μ0φ(MiH0j + MjH0i + 2δijMkH0k)

8πR3

+ μ0φ(−MiMj + 2δijM2
k )

80π2R6
, (A 7)

σ
( p)

aij = 1
2
(σ

( p)

ij − σ
( p)

ji )

= μ0φ

(4πR3/3)

(
MiH0j − H0iMj

2

)
. (A 8)

From (1.1), the antisymmetric part of the stress tensor can also be obtained from the torque
on the particle:

σ
( p)

aij = 1
2

φ

(4πR3/3)
εijkLk, (A 9)

where Lk = εklmμ0MlH0m is the torque exerted on a particle and εijk is the Levi-Civita
antisymmetric tensor in indicial notation.

Appendix B. Particle magnetic moment

The scaled magnetic moments M∗
R and M∗

I were calculated in Halverson & Cohen (1964)
using phaser algebra and in Kumaran (2019) using a simpler vector notation. For a uniform
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Uniform particle Thin shell

βpΩ
∗ � 1 βpΩ

∗ � 1 βsΩ
∗ � 1 βsΩ

∗ � 1

MR(βΩ∗) −((βpΩ
∗)2/315) −(1/2) −((βsΩ

∗)2/18) −(1/2)

MI(βΩ∗) (βpΩ
∗/30) (3/2

√
2βpΩ∗) (βsΩ

∗/6) (3/2βsΩ
∗)

TABLE 3. The asymptotic behaviour of the functions M∗
R(βΩ∗) (equations (B 1) and (B 3)) and

M∗
I (βΩ∗) (equations (B 2) and (B 4)) in the limits βΩ∗ � 1 and βΩ∗ � 1.

particle of radius R, the scaled magnetic moments M∗
R and M∗

I are

M∗
R = −1

2
+ 3

2
√

2βpΩ∗
sinh (

√
2βpΩ∗) − sin (

√
2βpΩ∗)

cosh (
√

2βpΩ∗) − cos (
√

2βpΩ∗)
, (B 1)

M∗
I = − 3

2βpΩ∗ + 3
2
√

2βpΩ∗
sinh (

√
2βpΩ∗) + sin (

√
2βpΩ∗)

cosh (
√

2βpΩ∗) − cos (
√

2βpΩ∗)
, (B 2)

where Ω∗ = |Ω/(|ω/2|)| is the scaled angular velocity, βp = (|ω|μ0R2/2�), ω is the fluid
vorticity at the particle centre, R is the particle radius, μ0 is the magnetic permittivity and
� is the electrical resistivity. For a thin shell of radius R and thickness δR with δ � 1, the
scaled magnetic moments are

M∗
R = −β2

s Ω
∗2

2(9 + β2
s Ω

∗2)
, (B 3)

M∗
I = 3βsΩ

∗

2(9 + β2
s Ω

∗2)
, (B 4)

where βs = (|ω|μ0R2δ/2�). The limiting behaviours of the magnetic moments for
βΩ∗ � 1 and βΩ∗ � 1 are provided in table 3.

Appendix C. Charged particle

The magnetic dipole moment M induced in a charged sphere of radius R rotating with
angular velocity Ω is

M = 1
2

∫
V

dV x × (�cv), (C 1)

where �c is the charge density, v is the velocity and x is the distance from the centre of the
sphere. For a rotating sphere, the velocity is v = Ω · x and the magnetic moment is

M = 1
2

∫
V

dV x × (�cΩ × x). (C 2)

If the particle is spherically symmetric, that is, the charge density �c(r) depends only on
the distance r from the centre of the sphere, the magnetic moment is

M = 4
3
πΩ

∫ Ro

Ri

r4 dr �c(r). (C 3)
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The magnetic moment can then be written as

M = CΩΩR2Q, (C 4)

where Q is the total particle charge and CΩ is a constant which depends on the radial
charge distribution. For example, if the charge density is uniform throughout the particle
volume, �c = Q/(4πR3/3), then CΩ = 1/5. If the charges are located only on the surface
of the particle, �c = (Q/4πR2)δ(r − R), then CΩ = 1/3.

The hydrodynamic and magnetic torques on a particle in a shear flow, T h and T m, are

T h = 4πη(ω − 2Ω), (C 5)

T m = μ0M × H 0 = (CΩΩQR2μ0) × H 0, (C 6)

where ω is the fluid vorticity at the particle location determined in the absence of the
particle. In the limit of low Reynolds number, the total torque on a particle is zero, and the
torque balance equation is

4πηR3(ω − 2Ω) + CΩQR2μ0H0(Ω × Ĥ) = 0. (C 7)

The above equation is divided by 8πηR3 to obtain a relation between the angular velocity,
vorticity and the magnetic field vector:

1
2ω = Ω − Σch(Ω × Ĥ), (C 8)

where Σch = (CΩQμ0H0/8πηR) is a dimensionless number which is a ratio of the
magnetic and viscous torques. Equation (C 8) can be solved to obtain the angular velocity:

Ω = ω + Σchω × Ĥ + Σ2
chĤ(ω · Ĥ)

2(1 + Σ2
ch)

. (C 9)

Substituting the angular velocity in (C 4), the components of the particle magnetic moment
(ê‖, ê⊥, ω̂) coordinate system are

Mω = CΩQR2|ω|(1 + Σ2
ch(ω̂ · Ĥ)2)

2(1 + Σ2
ch)

, (C 10)

M‖ = CΩQR2|ω|Σ2
ch(ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2

2(1 + Σ2
ch)

, (C 11)

M⊥ = CΩQR2|ω|Σch

√
1 − (ω̂ · Ĥ)2

2(1 + Σ2
ch)

. (C 12)

From (2.5), (2.6) and (3.16), the symmetric, normal and antisymmetric stress coefficients
are

η(1)
s = ηφΣ2

ch(1 − (ω̂ · Ĥ)2)

2(1 + Σ2
ch)

− ηφΣ3
chβchω̂ · Ĥ(1 − (ω̂ · Ĥ)2)

5(1 + Σ2
ch)

2
, (C 13)
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η(2)
s = ηφΣ2

chω̂ · Ĥ
√

1 − (ω̂ · Ĥ)2

2(1 + Σ2
ch)

− ηφΣchβch(1 + Σ2
ch(ω̂ · Ĥ)2)

√
1 − (ω̂ · Ĥ)2

5(1 + Σ2
ch)

2
, (C 14)

η(3)
s = ηφΣch(1 + 2Σ2

ch(ω̂ · Ĥ)2)

√
1 − (ω̂ · Ĥ)2

2(1 + Σ2
ch)

− ηφΣ2
chβch(1 + Σ2

ch(ω̂ · Ĥ)2)(ω̂ · Ĥ)

√
1 − (ω̂ · Ĥ)2

5(1 + Σ2
ch)

2
, (C 15)

η(1)
n = ηφΣ3

chω̂ · Ĥ(1 − (ω̂ · Ĥ)2)

(1 + Σ2
ch)

+ ηφΣ2
chβch(1 − Σ2

ch(ω̂ · Ĥ)2)(1 − (ω̂ · Ĥ)2)

5(1 + Σ2
ch)

2
, (C 16)

η(2)
n = −ηφΣchω̂ · Ĥ(1 + Σ2

ch(ω̂ · Ĥ)2)

(1 + Σ2
ch)

+ ηφβch(1 − Σ2
ch + 3Σ2

ch(ω̂ · Ĥ)2 + Σ4
ch(ω̂ · Ĥ)4)

5(1 + Σ2
ch)

2
, (C 17)

η(1)
a = −3ηφΣ2

ch(1 − (ω̂ · Ĥ)2)

2(1 + Σ2
ch)

, (C 18)

η(2)
a = 3ηφΣ2

chω̂ · Ĥ
√

1 − (ω̂ · Ĥ)2)

2(1 + Σ2
ch)

, (C 19)

η(3)
a = 3ηφΣch

√
1 − (ω̂ · Ĥ)2

2(1 + Σ2
ch)

, (C 20)

where βch = (C2
ΩQ2μ0|ω|/(8π)2ηR2) is the ratio of the vorticity and the charge relaxation

time. The terms proportional to βch on the right-hand sides in (C 13)–(C 17) are a
consequence of the term that is quadratic in the magnetic moment on the right-hand side
in (2.5).

As discussed in § 4.1, the value of the parameter Σch is numerically small in practical
applications. Consequently, the O(Σch) terms are the largest contributions to the stress
tensor for a suspension of charged particles in a magnetic field. From (C 13)–(C 20),
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the O(Σch) terms in the third symmetric stress coefficient η(3)
s , the second normal

stress coefficient η(2)
n and the third antisymmetric stress coefficient η(3)

a are the largest
corrections to the stress tensor. This is in contrast to the stress tensor for conducting
particles calculated in § 3.2, where the coefficients η(1)

s , η(3)
s , η(1)

n , η(1)
a and η(2)

a , which are
proportional to η̄′(β,Σ), are much larger in magnitude than η(2)

s , η(2)
n and η(3)

a , which are
proportional to η̄′′(β,Σ). The O(Σch) contribution to the stress for conducting particle is,
in the ω̂–ê⊥ plane, given by

σ p = ηφΣch|ω|[
√

1 − (ω̂ · Ĥ)2(2ω̂ê‖–ê‖ω̂) + (ω̂ · Ĥ)(ω̂ω̂–ê⊥ê⊥)]. (C 21)
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