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DEFINABILITY OF DERIVATIONS IN THE REDUCTS OF
DIFFERENTIALLY CLOSED FIELDS

VAHAGNASLANYAN

Abstract. Let F = (F ; +, ·, 0, 1,D) be a differentially closed field. We consider the question of
definability of the derivation D in reducts of F of the form FR = (F ; +, ·, 0, 1, P)P∈R where R is some
collection of definable sets in F . We give examples and nonexamples and establish some criteria for
definability of D. Finally, using the tools developed in the article, we prove that under the assumption
of inductiveness of Th(FR) model completeness is a necessary condition for definability of D. This can
be seen as part of a broader project where one is interested in finding Ax-Schanuel type inequalities (or
predimension inequalities) for differential equations.

§1. Introduction. For a differentially closed field F = (F ; +, ·, 0, 1,D), we con-
sider its reducts of the form FR = (F ; +, ·, 0, 1, P)P∈R where R is some collection
of definable sets in F . Our main problem is to understand when the derivation D is
definable in FR. Ideally, we would like to find a dividing line for definability of D
like local modularity in the problem of recovering the field structure in the reducts
of algebraically closed fields (see the discussion below).

Question 1.1. When is D definable in the reduct FR?
As we will see when D is definable, it is definable with using just one parameter,
namely an element t ∈ F with D t = 1. So it is more convenient to add t to our
language as a constant symbol and work in the reducts of F = (F ; +, ·, 0, 1, t,D)
(we do this starting from Section 5). So, we will assume for simplicity that the sets
fromR are 0-definable in this language and alsowewill be interested in 0-definability
of D.
Note that one could be tempted to ask a more general question of whether there
is a derivation definable in the reduct. But in that case such a derivation will also
be definable in the differentially closed field F . Since it is known that any such
derivation is of the form a ·D for some a ∈ F , it is no loss of generality if we restrict
our attention to definability of D only. Another point is that, we can assume thatR
is finite since any possible definition of D can contain only finitely many relations
from R.
This is by nature a classification problem. We do not have a comprehensive
solution yet, but we give some partial answers to our question, and draw some
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conclusions based on our analysis. We will not pose any explicit conjectures, but
one may nevertheless expect intuitively that definability of D is very rare, i.e., in
most cases it is not definable. In other words, our general expectation is that for
“generic” reducts D is not definable.
The motivation to consider this kind of problem comes from two indepen-
dent sources. Firstly, the analogous problem for pure fields, that is, recovering
the field structure from reducts of algebraically closed fields or from nonlo-
cally modular strongly minimal sets in general, is a well studied question in
model theory of fields and Zariski geometries. It was initiated by Zilber’s famous
“Trichotomy conjecture” and is still not entirely resolved. It has been (and still is)
a topic of active research during the past few decades and proved to be very useful.
Zariski geometries, introduced by B. Zilber and E. Hrushovski, are structures
where that theory works ideally. For more details on this, we refer the reader to
[3,8,13,20].
Secondly, this problem turns out to be related to the existence of an “Ax-Schanuel
type theorem” for a given differential equation E(x, y) (in this case, we will work
in the reduct FE = (F ; +, ·, 0, 1, E) with R = {E}). Let us briefly explain what we
mean by this.
James Ax has proved the following analogue of Schanuel’s conjecture in differ-
ential setting ([2]). Let K be a differential field and C be its field of constants. Let
also (x1, y1), . . . , (xn, yn) be nonconstant solutions to the exponential differential
equation Dx = D y

y in K . Then

�(x1, . . . , xn) := tdC C (x1, . . . , xn, y1, . . . , yn)− l.dimQ(x1, . . . , xn/C ) ≥ 1,
where td stands for the transcendence degree and l.dim stands for the linear dimen-
sion (moduloC ) as a vector space. This inequality is nowknown as theAx-Schanuel
inequality. The function � here is a predimension function in the sense ofHrushovski
([4]). Thus the Ax-Schanuel inequality is a predimension inequality. This property
gives a good understanding of the exponential differential equation. In particular,
one can consider the corresponding reduct. Then the first order theory of the reduct
is axiomatised by axioms of algebraically closed fields, functional equation(s), an
axiom scheme for the Ax-Schanuel inequality and the strong existential closedness
axiom scheme (see [6,18]). This is exactly the axiomatisation that one obtains after
carrying out a Hrushovski construction with the above predimension function.
Thus, the reduct here is reconstructed by a Hrushovski construction. Zilber calls
such predimension inequalities adequate.
After realising this one can ask whether it is possible to do something similar
for other differential equations. One therefore poses a problem whether for a given
differential equation there is an “Ax-Schanuel type” inequality (or a predimension
inequality). It is useful to classify differential equationswith respect to this property,
i.e., whether there is an “adequate” predimension inequality or not. If there is
one, then one will know the complete theory of the equation. One of the recent
developments in this direction is the establishment of anAx-Schanuel type inequality
for the j-function by Jonathan Pila and Jacob Tsimerman ([12]). For details on
Schanuel’s conjecture and the Ax-Schanuel inequality (and its generalised versions)
see [6, 17–19, 21]. For Hrushovski constructions and predimensions, we refer the
reader to [4,16].
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We are not going to consider these questions in this article, but let us see how
this problem is related to definability of D in the corresponding reduct. The idea is
that definability of a derivation would imply that there is no “nontrivial” adequate
predimension inequality for the given differential equation. Roughly speaking, if D
is definable then the problem is reduced to finding an Ax-Schanuel type inequality
for the equation y = Dx. But one can argue that there is no such nontrivial
inequality for the latter equation. We will support this viewpoint by a result in the
last section. Indeed, as we will see if D is definable and the theory of the reduct is
inductive then it must actually be model complete. But Hrushovski constructions
yield inductive theories in nice examples, so it is a reasonable condition. Thus,
assuming the reduct is inductive, definability of D implies model completeness
which can be used to show that a possible adequate predimension must be trivial
in some sense. Of course, these statements are pretty vague, and we presented them
here just to give a basic idea about the connection of those two questions. We limit
ourselves to these explanations and refer the reader to [1] for more details.
Let us briefly outline the article. After giving the necessary preliminaries in
Section 2, we show in Section 3 that definable derivations in models of DCF0
are the trivial ones. Then, we study the reducts of differentially closed fields from
a general model theoretic point of view and establish some of their properties in
Section 4. In Section 5, we will see that if E is a differential curve containing the
graph of D then D is a quantifier-free definable in FE .
Furthermore, we will show in Section 6 that the behaviour of D at generic points
is enough to understand whether it is definable. Indeed, we will prove that if for a
generic element a the Morley rank (in the reduct) of D a over a is finite, then D is
definable (Theorem 6.4). Using the results on generic points, we will give further
examples of differential equations that define D (Section 7). Theorem 7.10 will sum
upmost of our results obtained up to that point giving a list of conditions equivalent
to definability of D in the reducts.
The last section will be devoted to the question of model completeness of reducts
that define D. Namely, we will prove that if D is definable in FR and Th(FR) is
inductive, then this theory must in fact be model complete (Theorem 8.2). This
will immediately imply that one cannot define D from the exponential differential
equation D y = yDx.

§2. Preliminaries. In this section, we present basic definitions and facts about
differential fields. For more details and proofs of the results stated here, we refer the
reader to [5,8–10].
We assume all rings that we deal with are commutative rings with identity and
have characteristic zero.
The language of differential rings is LD = {+, ·, 0, 1,D}. In this language, we
can axiomatise the theory of differential (rings) fields with the axioms of (rings)
fields with two extra axioms stating that D is additive and satisfies Leibniz’s rule,
i.e., ∀x, y D(x + y) = Dx + D y and ∀x, y D(xy) = xD y + yDx. The theory
of differential fields of characteristic zero is denoted by DF0.
The field of constants of a differential field (F ; +, ·, 0, 1,D) is defined as the kernel
of the derivation, i.e., CF = {x ∈ F : Dx = 0}. This is always a relatively
algebraically closed subfield of F .
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If F is a differential field then the ring of differential polynomials over F is a differ-
ential ring extension defined asF {X} = F [X,D(X ),D2(X ), . . .] withD(Dn(X )) =
Dn+1(X ). Thus, differential polynomials are of the formp(X,DX, . . . ,Dn X ) where
p(X0, . . . , Xn) ∈ F [X0, . . . , Xn] is an algebraic polynomial over F . A differential
rational function over F is the quotient of two differential polynomials over F .
The field of all differential rational functions of X over F will be denoted by F 〈X 〉.
We can also consider differential polynomials in several variables, which are defined
analogously. If f(X1, X2, . . . , Xn) is such a polynomial, then the equation f = 0 is
a differential equation over F .
Further, for F a differential field and A ⊆ F a subset, we denote by 〈A〉 or

Q〈A〉 the differential subfield generated by A. If K ⊆ F are differential fields, and
A ⊆ F then K〈A〉 is the differential subfield generated by K and A. The algebraic
subfield generated by K and A is denoted by K(A). One can easily verify that
K〈A〉 = K({Dn a : a ∈ A, n ∈ N}).
The order of f, denoted ord(f), is the biggest n for which Dn(X ) occurs in f.
In this case the highest power of Dn(X ) in f is the degree of f, written deg(f).
In the case of polynomials of several variables, we will write ordXi (f) for the order
of f with respect to Xi .
The theory DF0 has a model completion. It is called the theory of differentially
closed fields of characteristic zero. To axiomatise this theory, we add the existential
closedness axiom scheme: a differential field (F ; +, ·, 0, 1, D) is differentially closed if
for any nonconstant differential polynomialsf(X ) and g(X ) over F with ord(g) <
ord(f) there exists x ∈ F such that f(x) = 0 and g(x) �= 0. We let DCF0 denote
the theory of differentially closed fields of characteristic 0. It immediately follows
from the definition that differentially closed fields are algebraically closed (in the
field theoretic sense). Hence, the field of constants is algebraically closed as well.
SupposeK ⊆ F are twomodels of DF0. For an element a ∈ F one defines the dif-
ferential rank (or dimension or order) of a overK , denoted DR(a/K) (or dim(a/K)
or ord(a/K)), as the transcendence degree ofK〈a〉 overK . If it is finite, say n, then
there is a differential polynomial f(X ) ∈ K{X} of order n with f(a) = 0. If f
is the simplest among such polynomials, i.e., the pair (ord(f),deg(f)) is minimal
with respect to the lexicographical order, then it is called the minimal polynomial
of a over K . This polynomial must be irreducible. The elements a,D a, . . . ,Dn−1 a
are algebraically independent, while a,D a, . . . ,Dn a are algebraically dependent
over K . In this case a is called differentially algebraic over K , otherwise it is called
differentially transcendental over K . In the latter case DR(a/K) is defined to be �.
SupposeK |= DF0 andK ⊆ F is a differentially closed extension ofK . Then for
any element a ∈ F the following inequality holds

U(a/K) ≤MR(a/K) ≤ DR(a/K),
where U(a/K) stands for the U-rank and MR(a/K) stands for the Morley rank
of a over K . Moreover, a is differentially transcendental over K if and only if
U(a/K) = MR(a/K) = DR(a/K) = �. In this case a is called generic over K
(if we omitK then it means a is generic over the empty set or, equivalently, over the
prime differential subfield).
There is a unique complete type of a differentially transcendental element (over
a subfield K) which is determined by formulas {f(x) �= 0 : f(X ) ∈ K{X}}.
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The theory of differentially closed fields is model theoretically very nice. Namely,
it admits elimination of quantifiers, elimination of imaginaries, it is complete and
model complete. Further, DCF0 is �-stable with Morley rank �. Every differential
field K has a differential closure which is defined as the prime model of DCF0
over K . The prime model always exists and is unique up to isomorphism (over K)
in �-stable theories. We will denote the differential closure of K by Kdif , while Kalg

will denote the field theoretic algebraic closure.
Furthermore, it is easy to see that the Morley degree of DCF0 is 1. This means
that in a model F |= DCF0 any definable set A ⊆ F is either of finite rank (it is
small) or it has rank � and its complement has finite rank (it is big).
Now, we define differential curves and make some easy observations about them
that will be used later in the article.

Definition 2.1. A differential algebraic curve E in a differential field K is a set
in K2 defined by a differential equation of two variables, i.e., E = {(x, y) ∈ K2 :
f(x, y) = 0} for some f(X,Y ) ∈ K{X,Y}. For brevity, we will sometimes say
differential curve instead of differential algebraic curve.

Note also that by an algebraic curve, we mean a set defined by an algebraic
equation of two variables. Let D := {(x,Dx) : x ∈ K} be the graph of D in K .
This is an example of a differential curve.

Definition 2.2. A differential curve in general sense in a differentially closed
field F is a definable subset of F 2 the generic fibres of which are of finite Morley
rank.

Clearly any proper differential curve is a curve in general sense. On the other
hand it is easy to notice that any curve E in general sense must be contained in a
proper differential curve. This means, it must be defined by a formula of the form
ϕ(x, y) = [f(x, y) = 0 ∧ �(x, y)], where f is a differential polynomial and � is
any formula. Indeed, otherwise E will contain a set of the form f(x, y) �= 0 the
generic fibres of which have rank �.
We could alternatively define curves in general sense to be definable sets (in F 2)
of Morley rank less than � · 2. The above argument shows that this is equivalent to
the above definition. Thus, if (a, b) is a pair of differentially independent elements
and ¬ϕ(a, b) holds in F then ϕ(x, y) defines a curve in general sense.1
Finally let us fix some notations. We will use upper-case letters X,Y, . . . with
possible subscripts for indeterminates of polynomials. We will use lower-case letters
for elements of a set and for variables in formulas (it will be clear from the context
which one we mean). In particular if f(X ) ∈ F {X} is a differential polynomial
then f(X ) = 0 means that f is identically zero, while f(x) = 0 means f vanishes
at x (or it is a formula with a free variable x).

§3. Definable derivations. If D is a derivation on a field (F ; +, ·, 0, 1) then for any
element a ∈ F the map a ·D will be a derivation as well. We show in this section
that in a differentially closed field all definable derivations are of that form.

1One can also requireMR(E) to be at least� in order to avoid anydegeneracies likeDx = 0∧D y = 0
(which correspond to finite sets in ACF0), but it is not important for us.
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Theorem 3.1. Let F = (F ; +, ·, 0, 1,D) be a differentially closed field and D̃ be a
definable (possibly with parameters) derivation. Then there exists an element a ∈ F
such that D̃ = aD.

Though this fact is well known (a proof can be found for example in [14]), we
nevertheless present our proof here as we are going to need it in Section 7.
The following well-known result is a characterisation of definable functions in a
differentially closed field (see, for example, [9] or [15], Exercise 6.1.14).

Lemma 3.2. Let F be a differentially closed field and f : F k → F be a definable
(possibly with parameters) function in F . Then there is a partition of F k into a finite
number of definable subsets Ui such that f is given by a differential rational function
on each of them (this means, in particular, that each of these rational functions is
determined on the corresponding set).

We establish one more result before proving the Theorem 3.1.

Lemma 3.3. Suppose D and D1 are derivations on a field (F ; +, ·, 0, 1) such that
there is t ∈ F with D t = 1. Let P(X0, . . . , Xn, Y ) be a nonzero polynomial over F
such that

P(X,DX, . . . ,Dn X,D1X ) = 0. (3.1)

Then D1 = a ·D, where a = D1 t.
Proof. For an element x ∈ F and an arbitrary rational number r one has
P(x + r,D x, . . . ,Dn x,D1 x) = 0, hence

P(X,Dx, . . . ,Dn x,D1 x) = 0

(as a polynomial of X ). Therefore all coefficients of this polynomial are zeros.
Since P(X0, . . . , Xn, Y ) is nonzero, if we consider it as a polynomial of X0, it will
have a nonzero coefficient that is a polynomial of X1, . . . , Xn, Y . It must vanish at
(D x, . . . ,Dn x,D1 x). This is true for all x ∈ F .
Thus for a nonzero polynomial P1, we have

P1(DX, . . . ,Dn X,D1X ) = 0.

Again, fixing an element x ∈ F , we see that for any rational r one has P1(Dx + r,
D2 x, . . . ,Dn x,D1 x + ar) = 0 (we substitute X = x + rt). This implies

P1(X,D2 x, . . . ,Dn x,D1 x − aDx + aX ) = 0.
Replacing X by a fixed element y ∈ F and taking x + rt2 instead of x, we get

P1(y,D2 x + 2r,D3 x, . . . ,Dn x,D1 x − aD x + ay) = 0.
Therefore

P1(y,X,D3 x, . . . ,Dn x,D1 x − aDx + ay) = 0.
Arguing as above, we show that for some nonzero polynomial P2, we have

P2(y,D3 x, . . . ,Dn x,D1 x − aDx + ay) = 0
for all x, y ∈ F . Proceeding this way one can prove that there is a nonzero
polynomial Q(Z1, Z2) ∈ F [Z1, Z2] such that

Q(Y,D1X − aDX + aY ) = 0.
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Now suppose for some u ∈ F , we have D1 u �= aD u. Then for any natural
number n one has D1(nu) �= aD(nu). This means that for any y ∈ F the poly-
nomial Q(y, ay + Z) equals zero for infinitely many values of Z, hence, it is
identically zero. This yields Q(Y,Z) = 0. We arrived at a contradiction, therefore
D = aD1. �
Proof of Theorem 3.1. From Lemma 3.2 it follows that there are definable sets
Ui ⊆ F such that D̃ is given by a differential rational function on each Ui .
Therefore there are differential polynomials fi(X ), gi (X ) ∈ F {X} such that
fi(x) · D̃(x) = gi(x) and fi(x) �= 0 for all x ∈ Ui . We know that fi(X ) =
Pi (X,DX, . . . ,Dm X ), gi (X ) = Qi(X,DX, . . . ,Dm X ) for some polynomials Pi
and Qi over F . Form the polynomial

P(X0, . . . , Xm,Y ) =
∏
i

(Pi(X0, . . . , Xm) · Y −Qi(X0, . . . , Xm)).

This is a nonzero polynomial and

P(X,DX, . . . ,Dm X, D̃X ) = 0.

AsF is differentially closed, there exists t ∈ F with D t = 1. Now Lemma 3.3 yields
the desired result. �

§4. Model theoretic properties of the reducts. From now on, we will work in a dif-
ferentially closed field F = (F ; +, ·, 0, 1,D), which we will assume to be sufficiently
saturated. Thus, it will serve as a monster model for us.
For a collection R of definable sets in (Cartesian powers of) F , we define
the R-reduct FR of F to be the structure (F ; +, ·, 0, 1, P)P∈R in the language
LR = {+, ·, 0, 1} ∪ R (the elements of R are relation symbols in the language LR).
We will omit R and just say “reduct” whenever no confusion can arise. We will say
thatR (or the reduct FR) is algebraic if all relations of R can be defined in the pure
field (F ; +, ·, 0, 1). If R consists of just one relation E then we will write FE for the
corresponding E-reduct.
In this section, we examine basic model theoretic properties of the reducts FR.
Though we will sometimes assumeR is finite, most of our results will be valid for an
arbitrary R. From the point of view of Question 1.1 the assumption of finiteness of
R is no loss of generality as a possible definition of D would anyway contain only
finitely many occurrences of relation symbols from R.
We start by introducing a piece of notation. In order to distinguish between the
same concepts in the differentially closed field F and in the reduct FR, we will add a
subscript D or R, respectively, to their notations. Thus MRD,MDD, tpD, dclD, and
aclD stand for Morley rank, Morley degree, type, definable closure and algebraic
closure, respectively, in F while MRR,MDR, tpR,dclR, and aclR stand for the same
notions in FR.
Also, we will need to consider generic elements and types. By generic, we will
always mean generic in the differentially closed field F (rather than in FR) unless
explicitly stated otherwise. If we do not specify over which set an element is generic
then we mean over the empty set.
Finally, we turn to model theoretic properties of the reducts. Clearly FR is an
�-stable structure. We now find its Morley rank.
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Proposition 4.1. FR has Morley rank � unless R is algebraic.
Proof. First of all, since FR is a reduct of F , and the latter has Morley rank �,
we have MR(FR) ≤ �. So we need to prove MR(FR) ≥ �.
It suffices to prove this for R = {P} where P is a nonalgebraic unary relation
which has finite Morley rank in the differentially closed field F . The case P = C
(the field of constants) is a well-known example. In this case the reduct is just an
algebraically closed field with a unary predicate for an algebraically closed subfield.
Our proof below is an adaptation of a known proof for this special case (see, for
example, [7], Exercise 6.6.17, d).
As P is nonalgebraic, it must be infinite and hence MRR(P) ≥ 1. Also P has
finite Morley rank in F , so (Q(P))alg �= F . Now for an element x ∈ F \(Q(P))alg
define

Xn =
{
y ∈ F : ∃a0, . . . , an−1 ∈ P

(
y =

∑
aix

i
)}
.

The map � : Pn+1 → Xn+1 given by (a0, . . . , an) �→ a0 + a1x + · · · +
anx

n is a definable bijection. Hence MRR(Xn) = MRR(Pn) ≥ n. Therefore
MRR(F ) = �. �
We will assume throughout the article that R is not algebraic and so FR has
Morley rank �.

Remark 4.2. As we saw in the proof, if a ∈ F is a differentially transcendental
element then for each n < � there is a definable (in FR) set Xn ⊆ F , defined over a,
such that n ≤MRR(Xn) < �.
Further, observe that FR has Morley degree 1. If ϕ(x) is a formula (of one
variable) in the languageLR = {+, ·, 0, 1}∪R then in the languageLD it is equivalent
to a quantifier-free formula. If it is an equation in conjunction with something
else, then MRR(ϕ) < � otherwise MRR(ϕ) = �. Also, MRR(ϕ) ≤ MRD(ϕ)
and these ranks are finite or infinite simultaneously. Indeed, if MRD(ϕ) = �
then MRD(¬ϕ) < �, and so MRR(¬ϕ) < �. Therefore, MRR(ϕ) = � since
MRR(x = x) = � as proven above.
There is a unique generic 1-type in FR given by
{ϕ(x) : ϕ ∈ LR, MRR(ϕ) = �} = {¬ϕ(x) : ϕ ∈ LR, MRR(ϕ) < �}.

Similarly, the unique generic n-type is given by formulas of Morley rank � · n.
Now let us discuss the issue of quantifier elimination for FR. First notice that,
even when R = {D}, FR does not admit quantifier elimination for y = D2 x is
existentially definable but not quantifier-free definable. It turns out that this is a
general phenomenon.
Corollary 4.3. If R is nonalgebraic and finite then the reduct FR does not admit
elimination of quantifiers.
Proof. Suppose R is not algebraic but FR has quantifier elimination. Then any
formula with one free variable must be equivalent to a Boolean combination of
algebraic polynomial equations (in the language of rings) and formulas of the form

Q(p1(x), . . . , pn(x)),

where Q ∈ R is an n-ary predicate and pi ’s are algebraic polynomials. But clearly
if such a formula has finite Morley rank then the latter is uniformly bounded, i.e.,
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there is a bound which is the same for all formulas of finite Morley rank (remember
that R is finite). This contradicts Proposition 4.1. �
One sees that although in the case R = {D} the reduct does not have quantifier
elimination, it is nevertheless model complete. In general it is true if D is existentially
definable. We show this below.
Lemma 4.4. Let M be a structure. If a function f : Mn → M is existentially
definable inM then it is also universally definable.
Proof. If φ(x̄, y) defines f then so does ∀z(z = y ∨ ¬φ(x̄, z)). �
Proposition 4.5. IfD is existentially definable inFR thenTR := Th(FR) is model
complete.
Proof. Suppose that D is existentially definable. Take an arbitrary formula
ϕ ∈ LR. In the language of differential rings it is equivalent to a quantifier-free
formula, i.e., to a Boolean combination of differential equations. Each differen-
tial equation is existentially definable in the reduct and, by Lemma 4.4, it is also
universally definable. Substituting existential definitions in positive parts (i.e., equa-
tions) and universal definitions in negative parts (inequations), we get an existential
formula in the language LR. Thus any formula in the language of the reduct is
equivalent to an existential formula. This is equivalent to model completeness. �
Thus, model completeness is the deepest possible level of quantifier elimination
thatwe canhave forTR.Aswewill see in the last section, under a natural assumption,
definability of D will imply that TR is model complete.

§5. An example. In this section, we show that in a certain class of reducts D is
definable. It will be used later to establish some criteria for definability of D.
Choose an element t ∈ F with D t = 1 (it exists because our field is differentially
closed) and add it as a constant symbol to our language. Thus fromnowon, wework
in the language {+, ·,D, 0, 1, t} for differential fields, which by abuse of notation,
we will again denote by LD. Correspondingly all reducts will be considered in the
language LR = {+, ·, 0, 1, t}∪R. Again abusing the nomenclatures, we will call LD
the language of differential rings and LR the language of the reducts. This means
that, we do not count t as a parameter in our formulas, i.e., we are free to use t in
formulas and declare that something is definable without parameters. Note that this
does not affect any of the results proved in the previous section. Let us also mention
that after adding t to our language (and requiring that a derivation takes the value
1 at t), the only candidate for a definable derivation can be D (see Theorem 3.1).
For a formula ϕ(x̄) in the language LR,D = LR ∪ LD and a tuple ā ∈ F , we will
sometimes writeF |= ϕ(ā). This is an abuse since in generalϕ is not in the language
of differential rings, but clearly F can be canonically made into an LR,D-structure.
In general, if the relations in R are defined with parameters and D is definable
then it will be definable with parameters as well. But in many cases, we do not use
any extra parameters to defineD. So for simplicity, wewill assume thatR consists of
0-definable relations inF , i.e., relations defined over k0 = Q(t) = dcl(∅). Thus from
now on by definable, we will mean definable without parameters unless explicitly
stated otherwise.
We denote the theory of the reduct by TR := Th(FR). We will say that there is
a derivation DK on a model KR |= TR which is compatible with R. This means
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that (K ; +, ·,DK , 0, 1, t, P)P∈R ≡ (F ; +, ·,D, 0, 1, t, P)P∈R, i.e., the differential field
K = (K ; +, ·,DK, 0, 1, t) is differentially closed with DK t = 1 and the sets from R
are defined by the same formulas as in F .
Throughout the article, we letE be a differential curve (possibly in general sense);
as we noted above the corresponding reduct will be denoted FE . Recall also that
D = {(x,Dx) : x ∈ F } is the graph of D.
Now, we prove an auxiliary result which will be used several times throughout
the article. It states that (Q(t))n is Kolchin-dense in F n for each n.

Lemma 5.1 (cf. [8], Lemma A.4). For any nonzero differential polyno-
mial f(X1, . . . , Xn) over Q(t) there are elements t1, . . . , tn ∈ Q[t] such that
f(t1, . . . , tn) �= 0.
Proof. First assume f is a polynomial of one variable X . Let ord(f) = n. Since
F is differentially closed, we can find an element u ∈ F withDn+1 u = 0∧f(u) �= 0.
Then clearly

u = cntn + · · ·+ c1t + c0
for some constants c0, . . . , cn ∈ C .
Now for constants �0, . . . , �n denote

p(t, �̄) = �ntn + · · ·+ �1t + �0.
Since t is transcendental over C , there are algebraic polynomials qi(X0, . . . , Xn) ∈
Q[X0, . . . , Xn], i = 1, . . . , m, such that for all �̄ ∈ Cn+1

f(p(t, �̄)) = 0 iff
m∧
i=1

qi(�̄) = 0.

Let V ⊆ Cn+1 be the algebraic variety over Q defined by ∧mi=1 qi(�̄) = 0. Then as
we saw above V (C ) �= Cn+1, and hence V (Q) � Qn+1. So there is a tuple r̄ ∈ Qn+1

with r̄ /∈ V (Q). Therefore f(p(t, r̄)) �= 0 and p(t, r̄) ∈ Q[t].
Now,weprove the general case (whenf hasmore thanone variables) by induction
on n. If f = f(X1, . . . , Xn) with n > 1 then consider it as a differential polynomial
g(X1, . . . , Xn−1) of n − 1 variables over the differential ring Q(t){Xn}. Choose a
nonzero coefficient of g which will be a nonzero differential polynomial h(Xn) ∈
Q(t){Xn}. As we proved above there is tn ∈ Q[t] such that h(tn) �= 0. Now the
polynomial f(X1, . . . , Xn−1, tn) is a nonzero polynomial of n − 1 variables over
Q(t) and we are done by the induction hypothesis. �
Remark 5.2. The proof shows that, we can choose t1, . . . , tn from Z[t] (and even
from N[t]).

Definition 5.3. Introduce the reverse lexicographical order on (n+1)-tuples of
integers, that is, (α0, . . . , αn) < (
0, . . . , 
n) if and only if for some j, αi = 
i for
i > j and αj < 
j . Themultidegree of an algebraic polynomialQ(X0, . . . , Xn) is the
greatest (with respect to this order) (n+1)-tuple (α0, . . . , αn) forwhichX

α0
0 · · · · ·Xαnn

appears inQ with a nonzero coefficient. Themultidegree of a differential polynomial
f(X ) = P(X,DX, . . . ,Dn X ) is defined as that of P.

Theorem 5.4. If E (a differential algebraic curve) contains the graph of D then
D is quantifier-free definable in FE .
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Before proving the theorem, we give an example which helps to understand how
the proof works.

Example 5.5. SupposeE is given by (D y−D2 x)·Dx = 0.ThenE(x+t, y+1) =
[(D y −D2 x) · (Dx + 1) = 0]. The conjunction E(x, y) ∧ E(x + t, y + 1) implies
D y −D2 x = 0. Now, we substitute x �→ tx, y �→ x + ty and get t(D y −D2 x) +
y−Dx = 0. Subtracting the previous equationmultiplied by t, we get y−Dx = 0.
Thus the formula E(x, y) ∧E(x + t, y +1)∧E(tx, x + ty) ∧E(tx + t, x + ty +1)
defines D.

Proof.
2Let E be given by a differential equation f(x, y) = 0. We know that

f(X,DX ) identically vanishes. DenoteU := Y −DX and consider the differential
polynomial g(X,U ) := f(X,U +DX ). Clearly g(X, 0) = 0.
First, we intersect additive translates to “eliminate” x and define a differential
equation h(u) = 0 for some differential polynomial h(U ). If g(X,U ) depends onX
(i.e., g(X,U ) ∈ k0{X,U}\k0{U}) then we can find (see Lemma 5.1) p(t) ∈ Q[t]
such that g(X + p(t), U ) �= g(X,U ). Clearly, U is invariant under the transforma-
tion X �→ X + p(t), Y �→ Y + p′(t) where p′(Z) = ∂p

∂Z . So consider the formula
E(x, y)∧E(x+p(t), y+p′(t)). It is equivalent to g(x, u) = 0∧g(x+p(t), u) = 0
which implies g1(x, u) := g(x, u) − g(x + p(t), u) = 0. The leading terms of the
differential polynomials g(X,U ) and g(X +p(t), U ) in variableX (i.e., the sums of
monomials in these polynomials that have highest multidegree in X ) are the same
and hence they cancel out in the difference g1(X,U ) := g(X,U )− g(X +p(t), U ).
On the other hand g1(X,U ) �= 0 by our choice of p and the multidegree of g1 in
X is strictly less than that of g. In other words, if the multidegree of g in X is
bigger than (0, . . . , 0), then we can reduce it. Now if g1(X,U ) depends on X then,
we do the same for g1. We keep repeating this process and reduce the multidegree
of our differential polynomial step by step until it becomes (0, . . . , 0). This means,
we get a curve h(u) = 0 for a nonzero differential polynomial h, which contains a
quantifier-free definable set in our reduct. It is also clear that the latter contains the
curve u = 0 (the graph of D).
Now, we use multiplicative translates to define the curve u = 0 (which is actually
y = Dx). Let p(t) ∈ Q[t]. When we substituteX �→ p(t)X, Y �→ p′(t)X + p(t)Y
then U is replaced by p(t)U . Then h(u) = 0 ∧ h(p(t)u) = 0 is implied by
a quantifier-free formula in the language of the reduct and implies hα,1(u) :=
p(t)αh(u) − h(p(t)u) = 0 for any positive integer α. If (α0, . . . , αn) is the multi-
degree of h, then taking, α := α0 + · · · + αn , the leading terms of the differential
polynomials p(t)αh(U ) and h(p(t)U ) will coincide and will cancel out in the dif-
ference hα,1(U ) := p(t)αh(U ) − h(p(t)U ). By an appropriate choice of p, we
can also guarantee that hα,1(U ) is nonzero unless h(U ) = h(1) · Uα . Indeed, if
h(U ) �= h(1) ·Uα then the polynomial h(V ·U )−Vα · h(U ) is nonzero and hence
there is p(t) ∈ Q[t] such that h(p(t) · U ) �= p(t)α · h(U ), therefore hα,1(U ) �= 0.
Thus, if h(U ) is not a homogeneous algebraic polynomial then hα,1 is nonzero
and its multidegree is strictly less than that of h. Now if hα,1(U ) is not algebraic
homogeneous, then we repeat the above procedure for hα,1. Iterating this process,

2I am grateful to Ehud Hrushovski for detecting a gap in the initial version of the proof and helping
me to fix it.
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we will eventually obtain an equation uα = 0 for some positive integer α which is
equivalent to u = 0. Taking into account that all the sets defined this way contain
u = 0, we see that at the last step we have defined u = 0 which, in terms of x and y,
is the curve y = Dx.
Finally note that, we only take conjunctions of atomic formulas here, hence the
definition is quantifier-free. �
Remark 5.6. Strictly speaking, for the “quantifier-free” part of the theorem to
be true, we need to pick p(t) ∈ N[t] each time. Alternatively, we could add unary
functions for multiplicative and additive inverses to our language.

Corollary5.7. IfE is a curve in general sense that containsD thenD is quantifier-
free definable.

Proof. Being a curve in general sense, E is defined by a formula of the form
f(x, y) = 0∧�(x, y) for � a quantifier free formula in the language of differential
fields. Now for the curveE ′ given by the equation f(x, y) = 0, we have a definition
of D. Suppose it is given by the formula ϕ(x, y) in the reduct FE′ . We claim that
the same formula defines D in FE . Indeed, as we take only conjunctions to define
D from E ′, the set defined by ϕ(x, y) in FE will be contained in D. On the other
hand it clearly contains D. Therefore it defines D. �
We will give further examples and nonexamples (of differential equations
defining D) in Section 7, but first, we need to establish some facts on generic
points which we do in the next section.

§6. Generic points. Recall that we work in a saturated differentially closed field
F . From now on, we fix a generic (in the sense of DCF0, that is, differentially
transcendental) point a ∈ F . We first prove that if D a can be defined from a then
we can recover the whole of D.

Proposition 6.1. Suppose a formula ϕ(x, y) ∈ LR defines D a from a, that is,

F |= ∀y(ϕ(a, y) ↔ y = D a).
Then D is definable (without parameters). Moreover, if ϕ is existential then D is
existentially definable.

First proof. First of all observe that since the generic type is unique, for any
differentially transcendental element b ∈ F , we have

F |= ∀y(ϕ(b, y) ↔ y = D b).
Let A be the set defined by ϕ(x, y) and define

B := {(b,D b) : b generic in F} ⊆ A.
At generic points b, the formulaϕ definesD b, but we do not have any information
about nongeneric points. So, we need to shrink the set A to a subset of D in order
to avoid any possible problems at nongeneric points. The set A, being a curve in
general sense (its fibre over any generic point x = b consists of one element and
hence is small), must be defined by a formulaf(x, y) = 0∧�(x, y) (in the language
of differential rings). Then f(a,D a) = 0 and hence f(X,DX ) = 0. Therefore D
can be defined from the differential curve f(x, y) = 0 by Theorem 5.4. Taking into
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account that for a generic element b the elements b + p(t) and p(t)b are generic as
well for any p(t) ∈ Q[t]\{0}, we see that the sets ϕ(x, y) ∧ ϕ(x + p(t), y + p′(t))
and ϕ(x, y) ∧ ϕ(p(t)x, p(t)y + p′(t)x) contain B. Arguing as in the proofs of
Theorem 5.4 and Corollary 5.7, after taking sufficiently many conjunctions of such
formulas, we will eventually define a set B ′ such that it contains B and is contained
in the graph D of D. Note that B ′ is 0-definable.
Treating D as an additive group, we prove the following.

Claim. D = B ′ + B ′.

Clearly B ′+B ′ ⊆ D. Let us show that the converse inclusion holds. Any element
d ∈ F has a representation d = b1 +b2 with b1 and b2 generic. Indeed, take b1 to be
generic over d and choose b2 = d − b1. Hence (d,D d ) = (b1,D b1) + (b2,D b2) ∈
B + B ⊆ B ′ + B ′.
This gives a definition of Dwithout parameters. Moreover, if ϕ is existential then
we get an existential definition. �
Remark 6.2. The group D is in fact a connected �-stable group (its Morley
degree is one). Therefore the equality D = G + G holds for any definable subset
G of D with MR(G) = MR(D) (see, for example, [7], Chapter 7, Corollary 7.2.7).
We could use this to show that D = B ′ +B ′ since MR(B ′) = MR(D) = �. In fact,
the idea is the same as in the above claim; one just passes to a saturated extension
and uses the above argument there.

We will shortly give another proof to Proposition 6.1. For this, we first observe
that if D is definable with independent parameters then it is also definable without
parameters.

Lemma 6.3. Suppose �(x, y, u1, . . . , un) ∈ LR and b1, . . . , bn are differentially
independent elements in F . If the formula �(x, y, b̄) defines y = Dx then there are
0-definable elements t1, . . . , tn ∈ k0 = Q(t) such that �(x, y, t̄) defines D (and so D
is 0-definable).

Proof. We have
F |= �(x, y, b̄)←→ y = Dx.

Therefore
q(z̄) := tpD(b̄) |= �(x, y, z̄)←→ y = Dx.

Since q(z̄) is the generic m-type in DCF0, it consists only of differential inequa-
tions. Applying compactness and taking into account that conjunction of finitely
many inequations is an inequation as well, we conclude that there is a differential
polynomial f(Z1, . . . , Zm) over k0 such that

F |= ∀z̄(f(z̄) �= 0 −→ ∀x, y(�(x, y, z̄)↔ y = Dx)).
By Lemma 5.1, we can find elements t1, . . . , tm ∈ k0 such that f(t1, . . . , tm) is
nonzero. Now, we see that

F |= �(x, y, t̄)←→ y = Dx,
and we are done. �
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Second proof of Proposition 6.1. Let (b1, b2) ∈ F 2 be a differentially inde-
pendent tuple. Then for every d ∈ F the differential transcendence degree of
d, d + b1, d + b2 is at least 2. It is easy to deduce from this that the following
formula defines D:

∃u1, u2(ϕ(b1, u1) ∧ ϕ(b2, u2) ∧ [(ϕ(x, y) ∧ ϕ(x + b1, y + u1))
∨(ϕ(x, y) ∧ ϕ(x + b2, y + u2)) ∨ (ϕ(x + b2, y + u2) ∧ ϕ(x + b1, y + u1))]).
Now Lemma 6.3 concludes the proof. �
The idea that the behaviour of D at generic (differentially transcendental) points
determines its global behaviour as a function can be developed further. We proceed
towards this goal in the rest of this section.
Next, we show that if D a is not generic over a (in the reduct), then it is in fact
definable and hence D is definable. Let p(y) := tpR(D a/a) be the type of D a over
a in FR.
Theorem 6.4. The derivationD is definable in FR if and only if p has finiteMorley
rank (in FR).
Proof. Obviously, if D is definable then p is algebraic and hence has Morley
rank 0. Let us prove the other direction.
Let ϕ(a, y) ∈ p be a formula of finite Morley rank. Trivially F |= ϕ(a,D a) and
ϕ(x, y) defines a curve in general sense. As in the proof of Proposition 6.1, we can
define a big subset�(x, y) ofD, that is, a subset ofMorley rank�. This set certainly
contains the point (a,D a) and �(a, y) defines D a. Thus D a is definable over a
and Proposition 6.1 finishes the proof. �
Remark 6.5. The proof shows that if ϕ(x, y) is an existential formula of rank
< � · 2 which is true of (a,D a) then D is existentially definable.
Corollary 6.6. In the reduct,D a is either generic or algebraic (in fact, definable)
over a.

Lemma 6.7. If p is isolated then it has finite Morley rank (in the reduct).

Proof. The argument here is an adaptation of the proof of the fact that in
differentially closed fields the generic type is not isolated.
Suppose p is isolated but has rank �, i.e., it is the generic type over a (in the
reduct). Then

p(y) = {¬ϕ(a, y) : ϕ ∈ LR, F |= ϕ(a,D a) and MRR(ϕ(a, y)) < �}.
Suppose ¬�(a, y) isolates p. By Remark 4.2 there is a formula ϕ(a, y) for which
MRR(�(a, y)) < MRR(ϕ(a, y)) < �. Then ϕ(a, y) ∧ ¬�(a, y) is consistent.
A realisation of this formula cannot be generic, for ϕ has finite Morley rank.
This is a contradiction. �
As an immediate consequence one gets the following result.

Corollary 6.8. The derivation D is definable in FR if and only if p is isolated.
Remark 6.9. We can consider the quantifier-free type q(y) := qftp(D a/a).
Then D is quantifier-free definable if and only if this type is isolated, if and only if
it has finite Morley rank.
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Notice that in stability-theoretic language, we have proved that D is definable
if and only if tpR(D a/a) forks over the empty set. Indeed, MRR(D a) = �
(since it is generic in the differentially closed field) and forking in �-stable theories
means that Morley rank decreases, hence tpR(D a/a) forks over ∅ if and only if
MRR(D a/a) < �. In terms of forking independence, we have the following for-
mulation: D is definable if and only if a � |� D a in FR. This will be generalised in
the next section. Note also that all the above results will remain true if we replace
Morley rank everywhere with U-rank.
Now add a differentially transcendental element a to our language and consider
the reducts in this new language. Denote the theory of FR in this language by T+R .
Assume that each model of T+R comes from a differentially closed field, that is, each
model KR is the reduct of a differentially closed field K = (K ; +, ·,DK, 0, 1, t, a)
in which a is generic (differentially transcendental) and relations from R are inter-
preted canonically (i.e., they are defined in K by the same formulas as in F). Then
the type p(y) will be realised byDK a inKR. The omitting types theorem now yields
that p must be isolated. Thus, we have established the following result.

Theorem 6.10. If each model ofT+R is theR-reduct (with canonical interpretation)
of a model ofDCF0, thenD is definable.

In other words, this means that if each model of T+R is equipped with a derivation
which is compatible with R then D is definable. The converse of this holds as well
trivially.
This is similar to Beth’s definability theorem in spirit (see [11]). Beth’s theorem in
this setting means that if each model of T+R has at most one derivation compatible
withR then D is definable. We showed that if each model has at least one derivation
then D is definable. Also it is worth mentioning that unlike Beth’s definability
theorem, this statement is not true in general for arbitrary theories.

§7. Further examples. In this section, we will give more examples of differential
equations defining D. Those examples will be used to characterise definable and
algebraic closures of generic elements in the reducts. At the end of the section, we
will give two nonexamples. Note that the results of this section will not be used later.
We will show first that differential rational functions define the derivation.

Proposition 7.1. IfE(x, y) is given by g(x)·y = f(x)where f(X )
g(X ) is a differential

rational function which is not an algebraic rational function, then D is definable
in FE .
Lemma 7.2. Let D1 and D2 be derivations on a field K and t ∈ K be such that
D1 t = D2 t = 1. If there is a nonzero algebraic polynomialP(X0, . . . , Xn, Y1, . . . , Ym)
over K such that

P(X,D1X, . . . ,Dn1 X,D2 X, . . . ,D
m
2 X ) = 0

thenD1 = D2.

Proof. We can assume without loss of generality that n = m. As in the proof of
Lemma 3.3, we can show there is a nonzero polynomial P1(X̄ , Ȳ ) such that

P1(X1, . . . , Xn,D2 Y −D1 Y + X1, . . . ,Dn2 Y −Dn1 Y + Xn) = 0.
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Clearly D := D2−D1 is a derivation ofK . The above identity implies that for some
nonzero polynomial Q, we have

Q(DX,D2X, . . . ,Dn X ) = 0.

If D1 �= D2 then D �= 0 and there is an element b ∈ K with D b �= 0. Dividing D
by D b, we can assume that D b = 1. But then substituting X �→ X + rbj for r ∈ Q

and j = 1, . . . , n, we see that Q = 0, which is a contradiction. �
Proof of Proposition 7.1. Suppose

f(X ) = P(X,DX, . . . ,Dn X ), g(X ) = Q(X,DX, . . . ,Dm X ).

Wewill use Beth’s definability theorem to show thatD is definable inTE := Th(FE).
Indeed, if we have two derivations D1 and D2 on a model KE |= TE that are
compatible with E (and K is differentially closed with either of these derivations
and D1 t = D2 t = 1), then

P(X,D1X, . . . ,Dn1 X ) ·Q(X,D2X, . . . ,Dm2 X )
= P(X,D2X, . . . ,Dn2 X ) ·Q(X,D1X, . . . ,Dm1 X ).

Since f(X )/g(X ) is not an algebraic rational function, the above identity shows
that the conditions of Lemma 7.2 are satisfied. Therefore D1 = D2. �
Remark 7.3. Note that even in the simple cases y = D2 x and y = (Dx)2 the
differentiation is not definable without using t since we can not distinguish between
D and −D.
Now, we prove that if E(x, y) defines an algebraic function of x,D x, . . . ,Dn x,
i.e., E is given by an equation f(x, y) = 0 with ordY (f) = 0, then one can define
Dx. But first, we need to exclude some trivial counterexamples like y ·Dx = 0 (see
Example 7.11).

Definition 7.4. A differential polynomial f(X,Y ) is said to be non-degenerate
if it cannot bedecomposed into a product g(X )h(X,Y )whereg is a differential poly-
nomial and h is an algebraic polynomial. An irreducible nonalgebraic polynomial
which depends on both variables is obviously nondegenerate.

Proposition 7.5. Suppose E(x, y) is defined by a nondegenerate equation
f(x, y) = 0 where ordX (f) > 0 and ordY (f) = 0. Then D is definable in FE .
Proof. Pick a differentially transcendental element a ∈ F and let

f(a,Y ) =
k∏
i=1

fi(a,Y )ei

be the irreducible factorisation of f(a,Y ) over k0〈a〉. Denote

g(a,Y ) :=
k∏
i=1

fi(a,Y ) =
m∑
i=0

gi(a) · Y i ,

where gi(X ) ∈ k0〈X 〉 and gm �= 0.
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Consider the formula

�(x, z0, . . . , zm) = ∃y1, . . . , ym
⎛
⎝∧
i �=j
yi �= yj ∧

m∧
i=1

E(x, yi ) ∧
m∧
i=1

m∑
j=0

zj · yji = 0
⎞
⎠.

Clearly, E(a, y) holds if and only if g(a, y) = 0. The polynomial g(a,Y ) has
m different roots. Therefore ϕ(a, z0, . . . , zm) holds if and only if the roots of∑m
i=0 zi · Y i are exactly the same as those of g(a,Y ) (as these two polynomials

have the same degree in Y ). This can happen if and only if
∑m
i=0 zi · Y i is equal to

g(a,Y ) up to a constant which depends on a. This means that

zi
zm
=
gi(a)
gm(a)

,

for all i . At least one of gi (X )
gm(X )

is not an algebraic rational function since otherwise
f would be degenerate. But then, we can define D a from that differential rational
function by Proposition 7.1 and we are done. �
Next, we will apply Proposition 7.5 to work out definable and algebraic closures
of generic points in the reducts. As before, let a ∈ F be a generic point. We will
show that the definable closure of a inFR coincides either with the definable closure
in the differentially closed field or with that in the pure algebraically closed field.
It is well known what the definable and algebraic closures of arbitrary sets in
differentially closed fields look like. Taking into account the fact that we have added
t as a constant symbol to the language, we see that for a setA ⊆ F the definable and
algebraic closures in F are given by dclD(A) = k0〈A〉 and aclD(A) = (k0〈A〉)alg,
where k0 = Q(t) and k0〈A〉 is the differential subfield generated by k0 and A. This
immediately implies that in the reduct we have k0(A) ⊆ dclR(A) ⊆ k0〈A〉 and
(k0(A))alg ⊆ aclR(A) ⊆ (k0〈A〉)alg.
We show that for generic elements one of these two extremal cases must happen.
Theorem 7.6. For a ∈ F a generic point exactly one of the following statements
holds:
• dclR(a) = k0(a); this holds if and only if aclR(a) = (k0(a))alg if and only ifD is
not definable;
• dclR(a) = k0〈a〉; this holds if and only if aclR(a) = (k0〈a〉)alg if and only ifD is
definable.
Proof. It will be enough to show that if aclR(a) � (k0(a))alg then D is definable.
Thus, let aclR(a) � (k0(a))alg. Choose b ∈ (k0〈a〉)alg\(k0(a))alg which is algebraic
(in the model theoretic sense) over a in FR. There is a formula ϕ(x, y) ∈ LR
such that ϕ(a, b) holds and ϕ(a, y) has finitely many realisations. Because ϕ(a, y)
defines a finite set in the differentially closed field F , it is equivalent to an algebraic
polynomial equation over k0〈a〉. The latter is clearly nondegenerate and is not
defined over k0(a) since b is its root. Applying Proposition 7.5, we define D a
(over a). Hence D is definable. �
Now using Proposition 7.1, we generalise Theorem 6.4.
Proposition 7.7. Let a ∈ F be a differentially transcendental element. If

MRR(a,D a, . . . ,Dn a) < � · (n + 1)
for some n thenD is definable.
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Proof. We proceed to the proof by induction on n. The case n = 1 is done in
Theorem 5.4. Assuming the theorem is true for all numbers less than n, we prove it
for n.
There is a formula ϕ(x0, x1, . . . , xn) ∈ LR with MRR(ϕ) < � · (n + 1) and

FR |= ϕ(a,D a, . . . ,Dn a).
Sinceϕ does not have “full” rank,we can assumewithout loss of generality it is given
by a differential equationf(x0, x1, . . . , xn) = 0 in the language of differential rings.
Sincef(a,D a, . . . ,Dn a) = 0 and a is generic,fmust be equal to g(X,U1, . . . , Un)
for some differential polynomial g with g(X, 0, . . . , 0) = 0 where X := X0, Ui :=
Xi − Di X . Further, applying the method of additive translates as in the proof
of Theorem 5.4, we can assume that g does not depend on the first variable, so
we write g(U1, . . . , Un). However, we cannot proceed as in Theorem 5.4 and use
multiplicative translates as there exist nonalgebraic “homogeneous” differential
polynomials of several variables.

Claim. Dn a ∈ dclR(a,D a, . . . ,Dn−1 a).
Proof. The set defined byϕ(a,D a, . . . ,Dn−1 a, y) containsDn a.Moreover, that
formula is given by h(y − Dn a) = 0 where h(U ) = g(0, . . . , 0, U ). Consider the
formula

ϕ
[
p(t)a,D(p(t)a), . . . ,Dn−1(p(t)a),Dn(p(t)a) − p(t)Dn a + p(t)y] , (7.1)

for a nonzero polynomial p(t) ∈ Q[t].
It is easy to see that this is a formula in the language of reducts with parameters
a,D a, . . . ,Dn−1 a and it is true of y = Dn a. The formula (7.1) is equivalent to
h(p(t)(y −Dn a)) = 0. Taking the conjunction of ϕ(a,D a, . . . ,Dn−1 a, y) and the
formula (7.1), we get a formula in the language LR equivalent to3

h[y −Dn a] = 0 ∧ h[p(t)(y −Dn a)] = 0.
This contains the point Dn a since h(0) = 0 and is contained in sets defined by
h[p(t)(y−Dn a)]−(p(t))αh[y−Dn a] = 0 forα a positive integer.By an appropriate
choice of α, we reduce the multidegree of h and by a choice of p, we make sure the
difference is not identically zero (see the proof of Theorem 5.4). This can be done
unless h is an algebraic homogeneous polynomial. Iterating this process, we will
eventually reach a situationwhere h has been replaced by an algebraic homogeneous
polynomial in which case our formula defines Dn a. �
We proved that there is a formula �(x̄) ∈ LR such that �(a,D a, . . . ,Dn−1 a, y)
has a unique solution which is Dn a. We can assume MRR(a,D a, . . . ,Dn−1 a) =
� · n since otherwise D is definable by the induction hypothesis. Let b1, . . . , bn−1 be
differentially independent elements over a. Then

tpR(a, b1, . . . , bn−1) = tpR(a,D a, . . . ,D
n−1 a) =: p(x0, . . . , xn−1).

Evidently ∃!y�(x0, . . . , xn−1, y) ∈ p where “∃!” stands for “there is a unique” (it is
obviously first-order expressible). Therefore

FR |= ∃!y�(a, b1, . . . , bn−1, y),
3Here we use square brackets for ease of reading. They do not have any special meaning.
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and the unique solution of �(a, b1, . . . , bn−1, y) is a differential rational function of
a, b1, . . . , bn−1. Denote it by r(a, b1, . . . , bn−1). If r is an algebraic rational function
then


(x̄) := ∀y(�(x0, . . . , xn−1, y)↔ y = r(x0, . . . , xn−1))
is a formula in the language of reducts and is true of (a, b1, . . . , bn−1). Hence it must
be true of (a,D a, . . . ,Dn−1 a) too, which means Dn a = r(a,D a, . . . ,Dn−1 a)
which is impossible since a is differentially transcendental.
Thus, r is not algebraic. By a compactness argument (as in Lemma 6.3), we can
choose t1, . . . , tn−1∈Q(t, a) such thatF |=
(a, t1, . . . , tn−1) and r(a, t1, . . . , tn−1) ∈
Q(t)〈a〉\Q(t, a). This guarantees that the formula �(a, t1, . . . , tn−1, y) (which is in
the language of reducts) defines a nonalgebraic (in the field theoretic sense) element
over a and so dclR(a) � k0(a). So D is definable due to Theorem 7.6. �
Recall that in a stable theory a set A (in the monster model) is called independent
(over B) if for any a ∈ A, we have a |�B A\{a}.
Corollary 7.8. D is definable in FR if and only if the sequence a,D a,D2 a, . . . is
not independent (over the empty set) in FR.
Proof. If the sequence a,D a,D2 a, . . . is not independent then for some n the
set {a,D a, . . . ,Dn a} is not independent. Therefore MRR(a,D a, . . . ,Dn a) <
� · (n + 1). �
As a common generalisation of Theorem 5.4 and Proposition 7.5, we prove the
following result.
Proposition 7.9. Suppose E (a curve in general sense) contains a differential
curve defined by a nondegenerate equation f(x, y) = 0 where ordX (f) > 0 and
ordY (f) = 0. Then D is definable in FE .
Proof. Let g(X,Y ) = p(X,DX, . . . ,Dn X,Y ) be an irreducible nondegenerate
factor off(X,Y ). Furthermore, as ordX (f) > 0, we can assume that ordX (g) > 0.
Consider the formula

ϕ(x, y1, . . . , yn) := ∃z(E(x, z) ∧ p(x, y1, . . . , yn, z) = 0).
ClearlyFE |= ϕ(a,D a, . . . ,Dn a). Further, ifϕ(a, b1, . . . , bn) holds then for some c,
we have

p(a, b, c) = 0 ∧E(a, c).
Since p is irreducible, a, b1, . . . , bn are algebraically dependent over c. Moreover,
ordX (g) > 0 implies that b1, . . . , bn are algebraically dependent over {a, c}. On
the other hand, c is differentially algebraic over a. Therefore a, b̄ are differentially
dependent and hence MRD(ϕ) < � · (n + 1). Now Proposition 7.7 finishes the
proof. �
One will certainly notice at this point that we found a number of conditions on
FR which are all equivalent to definability of D. We sum up all these conditions in
the following theorem.
Theorem 7.10. For a differentially transcendental element a ∈ F the following are
equivalent:
1. D is definable in the reduct FR without parameters,
2. MRR(D a/a) < �,
3. MRR(D a/a) = 0,
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4. tpR(D a/a) forks over the empty set,
5. The sequence (Dn a)n≥0 is not ( forking) independent,
6. dclR(a) � k0(a),
7. aclR(a) � (k0(a))alg,
8. Every model of T+R is the LR-reduct (with canonical interpretation) of a
differentially closed field,

9. Every automorphism of FR fixes D setwise.
Proof. Weneed only show 9⇒ 1. Take any automorphism � ofFR which fixes a.
It fixes D setwise, hence (�(a), �(D a)) ∈ D. This means �(Da) = D(�a) = D a.
Thus any automorphism of FR fixing a fixes D a. Since FR is saturated, D a is
definable over a. Therefore D is definable. �
We conclude this section by giving examples of differential equations that do not
define D.

Example 7.11. We will show that unary relations cannot define D.
Let R consist of unary relations, i.e., definable subsets of F (by quantifier elim-
ination of DCF0, we may assume R consists of sets of solutions of one-variable
equations). Then D is not definable in FR.
Consider the differential closure K of k0 inside F , that is,

K = {d ∈ F : DR(d ) < �}.
This is by definition a differentially closed field. Take a generic element a ∈ F ,
i.e., an element outside K . Let L ⊇ K be the differential closure of K〈a〉 inside F .
Further, denote ai = Di a, i ≥ 0, and let A be a transcendence basis of L over K
containing these elements (not differential transcendence basis, which would consist
only of a).
Define a new derivation D1 on L as follows. Set D1 = D on K ∪ A\{a0, a1} and
D1 a0 = a2, D1 a1 = a0. This can be uniquely extended to a derivation of L. The
field automorphism � ∈ Aut(L/K) which fixes A\{a0, a1} and swaps a0 and a1 is
in fact an isomorphism of differential fields L = (L; +, ·,D) and L1 = (L; +, ·,D1).
Therefore the latter is differentially closed.
Thus, we have a fieldL equipped with two different derivationsD andD1 andL is
a differentially closed field with respect to each of them. Further,K ⊂ L consists of
all differentially algebraic elements in L. Since L and L1 are isomorphic overK , the
differential closure of k0 in L1 is equal toK as well. Therefore the interpretations of
relation symbols for one-variable differential equations in L and L1 are contained
in K . But D and D1 agree on K and therefore those interpretations agree in L
and L1. This shows that D is not definable in the structure FR.
Example 7.12. Now, we give a more interesting example.

Proposition 7.13. The exponential differential equation D y = yD x does not
defineD.

We show first that for a differential equation E if D is definable in TE then E is
uniquely determined by TE .

Lemma 7.14. IfD is definable in TE then for any differential equation E ′(x, y)

TE = TE′ ⇒ E = E ′.
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Proof. Let E be given by the equation f(x, y) = 0. Since D is definable, the
formula ∀x, y(E(x, y) ↔ f(x, y) = 0) (more precisely, its translation into the
language of the reducts) is in TE . In other words, the fact that E is defined by the
equation f(x, y) = 0 is captured by TE . Therefore if E ′ has the same theory as E
it must be defined by the same equation f(x, y) = 0. �
Proof of Proposition 7.13. An axiomatisation of the complete theory of the
exponential differential equation is given in [6]. One can deduce from the axioms
that the equation D y = 2yDx is elementarily equivalent to the exponential equa-
tion. But clearly those two equations define different sets in differentially closed
fields. Hence the previous lemma shows that D is not definable if E is given by
D y = yDx. �
We will give another proof of Proposition 7.13 in Section 8.

§8. Model completeness. In Section 6,we showed that if a formulaϕ(x, y) defines
a small set which contains the point (a,D a) for a differentially transcendental ele-
ment a then D is definable. Moreover, if ϕ is existential then D is existentially
definable. Recall that smallness of a set can be verified as follows: if b is a generic
(differentially transcendental) element over a, that is, (a, b) is a generic pair (differ-
entially independent), then ϕ(x, y) defines a small set if and only if ¬ϕ(a, b). Thus,
instead of working with formulas defining D, we can work with formulas ϕ(x, y)
with ϕ(a,D a) ∧ ¬ϕ(a, b).
Definition 8.1. A formula ϕ(x, y) ∈ LR is a D-formula if F |= ϕ(a,D a) ∧
¬ϕ(a, b), where (a, b) is a differentially independent pair.
Here, we worked over the empty set. In particular, a is differentially transcen-
dental over the empty set and the definitions that we consider are again over the
empty set, i.e., without parameters. However, it is clear that, we could in fact work
over any set A ⊆ F . In this case, we should let a be differentially transcendental
over A. If ϕ(x, y) is a formula over A such that ϕ(a,D a) ∧ ¬ϕ(a, b) holds where
b is differentially transcendental over Aa (in this case, we will say ϕ is a D-formula
overA), then certainly D is definable overA. Moreover, if ϕ(x, y) is existential then
D is existentially definable over A. In this section, we use this fact to prove that
under a natural assumption, if D is definable then it is existentially definable.
As above a ∈ F is a differentially transcendental element and k0 = Q(t) =
dclR(∅) (recall that t is an element with D t = 1).
Theorem 8.2. If TR is inductive (i.e., ∀∃-axiomatisable) and defines D then it
defines D existentially and, therefore, TR is model complete.

This is similar to Lindström’s theorem in spirit stating that an inductive the-
ory, which is categorical in some infinite cardinality, is model complete (see [15]).
We can also consider another formulation of Theorem 8.2: if TR is not model com-
plete and is inductive, then it does not define D. In general, TR is not expected to
be model complete, so in inductive reducts, definability of a derivation is expected
to be rare.
We now establish an auxiliary result which will be used in the proof of
Theorem 8.2.
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Lemma 8.3. Let ϕ(x, ū) ∈ LR be a quantifier-free formula and p(X,Y, Ū ) ∈
k0[X,Y, Ū ] be an algebraic polynomial which is monic in the Y variable. Denote

�(x, y) := ∀ū(ϕ(x, ū)→ p(x, y, ū) = 0).

If ∃ūϕ(a, ū) and �(a,D a) hold thenD is existentially definable.
Proof. Let the tuple (b1, . . . , bm, e1, . . . , es ) be of maximal differential transcen-
dence degree m over a such that FR � ϕ(a, b1, . . . , bm, e1, . . . , es ), and assume that
b1, . . . , bm are differentially independent over a.
Consider the formula

�(x, y, z̄) = ∃v1, . . . , vs (ϕ(x, z̄ , v̄) ∧ p(x, y, z̄, v̄) = 0).

Clearly �(a,D a, b̄) holds. Moreover, if �(a, d, b̄) holds for some d , then for some
d1, . . . , ds , we have

FR � ϕ(a, b̄, d̄ ),

which implies that d1, . . . , ds have finite rank over {a, b1, . . . , bm}. Since p is monic
as a polynomial of Y and p(a, d, b̄, d̄ ) = 0, we conclude that d ∈ (k0(a, b̄, d̄ ))alg
and hence d is not generic over {a, b1, . . . , bm}.
Thus working over the parameter set B = {b1, . . . , bm}, we see that a is generic
over B and �(x, y, b̄) is a D-formula over B. Hence, we can make it into a proper
definition of D with parameters from B. Thus, we get an existential definition of D
with differentially independent parameters b1, . . . , bm. By Lemma 6.3, we have an
existential definition without parameters. �
Now, we are ready to prove our main theorem.

Proof of Theorem 8.2. Let �(x, y) be a formula defining D. We assume that
D is not existentially definable, hence � is not existential. The main idea of the
proof is that unless one says explicitly that ∀x∃y�(x, y), one cannot guarantee
that � defines a function. In other words, we will prove that ∀x∃y�(x, y) (which is
not an ∀∃-sentence) is not implied by the ∀∃-part of TR, as otherwise we will be
able to find an existential definition of D. This will contradict our assumption of
inductiveness.
Let T be the ∀∃-part of TR, i.e., the subset of TR consisting of ∀∃-sentences.
In other words

T = {∀x̄∃ȳϕ(x̄, ȳ) : ϕ is a quantifier-free formula in LR, FR |= ∀x̄∃ȳϕ(x̄, ȳ)}.

Denote Φ := {ϕ(x̄, ȳ) : ∀x̄∃ȳϕ(x̄, ȳ) ∈ T}.
By our assumption, T is an axiomatisation of TR. However, we will get a con-
tradiction to this by showing that T has a model in which ∀x∃y�(x, y) does not
hold. The construction of that model will go as follows. We start with the field
k = Q(t, a) = k0(a) and add solutions of the formulas ϕ ∈ Φ step by step (for
ϕ(x̄, ȳ) ∈ Φ, we think of x̄ as coefficients and of ȳ as solutions). We also make sure
that, we do not add D a in any step. If the latter is not possible then we show that
D is existentially definable.
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In order to implement this idea, we expand the language by adding constant4

symbols for solutions of all ϕ ∈ Φ. First, take C0 = {a}. We will inductively add
new constant symbols to C0 countably many times.
If Cl is constructed then Cl+1 is the expansion of Cl by new constant symbols
as follows. For each ϕ(x̄, ȳ) ∈ Φ with |x̄| = m, |ȳ| = n say, and for all c̄ ∈ Cml ,
add new constant symbols d 1ϕ,c̄ , . . . , d

n
ϕ,c̄ . After adding these new constants for all

ϕ ∈ Φ, we get Cl+1. Finally set C =
⋃
l Cl . This is a countable set.

Now consider the following sets of sentences in the expanded language LR ∪ C .
First, denote

Γ(C ) := {ϕ(c1, . . . , cm, d 1ϕ,c̄ , . . . , d nϕ,c̄) : ϕ(x̄, ȳ) ∈ Φ, |x̄| = m, |ȳ| = n, c̄ ∈ Cm}.
Furthermore, let

Δ(C ) := {¬�(a, c) : c ∈ C}.
Finally, we set

Σ(C ) := TR ∪ tpR(a) ∪ Γ(C ) ∪ Δ(C ).
Claim. Σ := Σ(C ) is satisfiable.

Proof. If it is not satisfiable, then a finite subset Σ0 ⊆ Σ is not satisfiable. Denote
the set of constants from C that occur in sentences from Σ0 by {a, e1, . . . , en}
(if necessary, we can assume a occurs in Σ0 inessentially). We are going to give
a its canonical interpretation in F , and this is the reason that we separated it
from the other constant symbols. Let �(a, e1, . . . , en) :=

∧
(Σ0 ∩ Γ). The formula

�(x, u1, . . . , un) is clearly quantifier-free and without parameters.
Thus

TR ∪ tpR(a) ∪ {�(a, e1, . . . , en)} ∪ {¬�(a, ei ) : i = 1, . . . , n}
is inconsistent. This means that in particular, we cannot find interpretations for
e1, . . . , en inFR which will make the latter into a model of Σ0. As alreadymentioned
above, a is interpreted canonically in F , i.e., its interpretation is the element a ∈ F .
Therefore

FR � ∃u1, . . . , un
[
�(a, ū) ∧

∧
i

¬�(a, ui )
]
.

This means

FR � ∀ū
[
�(a, ū) −→

∨
i

ui = D a

]
.

Note that evidently FR � ∃ū�(a, ū), i.e., the implication above does not hold
vacuously. So the formula

�(x, y) := ∀ū
[
�(x, ū) −→

n∏
i=1

(y − ui) = 0
]

satisfies the conditions of Lemma 8.3. Hence, D is existentially definable. This
contradiction proves the claim. �
4In this proof we use the word “constant” for constant symbols only and not for constants in the sense

of differential algebra. In particular, the interpretations of those constant symbols may not be constants
in the differential sense.
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Thus Σ is satisfiable. Take a modelM of Σ and inside this model consider the
subsetK consisting of interpretations of the constant symbols fromC .We claim that
K is closed under addition and multiplication and contains 0, 1, t. This is because
the sentence ∀x, y∃z,w(x + y = z ∧ x · y = w), being ∀∃, belongs to T . So, by our
construction of C , for each c1, c2 ∈ C , we have elements d1, d2 ∈ C such that the
sentences c1 + c2 = d1, c1 · c2 = d2 are in Σ. Similarly 0, 1, t ∈ K since the sentences
∃x(x = 0), ∃x(x = 1), and ∃x(x = t) are in T . Therefore K is a structure in
the language of rings. In fact it is an algebraically closed field (containing k) since
ACF0 is ∀∃-axiomatisable. Hence K is a structure KR = (K ; +, ·, 0, 1, t, P)P∈R in
the language of the reducts (with the induced structure fromM). By the choice
of Σ, we know that KR is a model of T .
If we chooseM to be saturated of cardinality |F | (such a model exists due to
stability) then we can identify it withFR.5 In that caseKR is a substructure obtained
by starting with k0(a) and inductively adding solutions to formulas from Φ.
Suppose for a moment that � is universal in order to illustrate what we are going
to do next. Let

�(x, y) = ∀v̄�(x, y, v̄)
with � quantifier-free. Since FR |= ¬�(a, s) for any s ∈ K , there is a witness l̄s ∈ F
such that FR |= ¬�(a, s, l̄s ). However this witness may not be in K . So, we add all
those witnesses to K and then repeat the above procedure to make it a model of T .
We also make sure we never addD a, which is possible as above (otherwise Dwould
be existentially definable). Iterating this process countably many times and taking
the union of all the constructed substructures, we end up with a structureNR in the
language of reducts which is a model of T and contains witnesses for each of the
formulas ∃v̄¬�(a, s, v̄) where s ∈ N . Thus, NR |= ¬∃y�(a, y) which means that T
is not an axiomatisation of TR. This contradiction proves the theorem.
Now, we consider the general case. Let � be of the form

�(x, y) = ∀v̄1∃w̄1∀v̄2 · · · ∀v̄n∃w̄n�(x, y, v̄1, . . . , v̄n),
where � is quantifier-free (the tuples v̄1 and w̄n can be empty). Then

¬�(x, y) = ∃v̄1∀w̄1∃v̄2 · · · ∃v̄n∀w̄n¬�(x, y, v̄1, . . . , v̄n).
We add new constant symbols as follows. Firstly, for each s ∈ C , we add a tuple
of constants l̄ 1s of the same length as v̄1. Then for each i and each tuple c̄ ∈ C |w̄i |,
we add new constants l̄ i+1c̄ with |l̄ i+1c̄ | = |v̄i+1|. Denote this extension of C by C ′.
Then, we add new constant symbols to C ′ for solutions of all formulas ϕ ∈ Φ
as above. We denote this set by C 1. Then, we iterate this procedure by adding
new constants to witness ¬�(a, s) (for each s from the set of constants already
constructed) and then adding new constants for solutions of ϕ ∈ Φ. Thus, we get a
chain C ⊆ C 1 ⊆ C 2 ⊆ · · · . Let C̃ be their union.6
5Note that this is not essential, but it helps to understand how the proof works.
6In this construction for an element s ∈ C (and for tuples c̄i ), we add one l̄1s in each step. Though

this does not cause any problems, at each step we can add the corresponding sets of constants only for
new constant symbols. In particular, after adding one l̄1s we do not add any such tuple for the same s any
more. Alternatively, we could just require all those different tuples for the same element s to be equal by
adding the appropriate formulas stating their equality.
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For A ⊆ C̃ denote
Ξ(A) := {¬�(a, s, l̄ 1s , c̄1, l̄ 2c̄1 , . . . , l̄ nc̄n−1 , c̄n) : s ∈ A, c̄i ∈ A|w̄i |}.

For any s ∈ K , we know that FR |= ¬�(a, s), therefore Σ(C ) ∪ Ξ(C ) is satisfiable
(note that this collection of sentences contains parameters from C ′). The proof of
the above claim shows that Σ(C 1) ∪ Ξ(C ) is satisfiable and so Σ(C 1) ∪ Ξ(C 1) is
satisfiable too. Proceeding inductively, we see that Σ(C i ) ∪ Ξ(C i ) is satisfiable for
each i < �. Hence, by compactness, Σ(C̃ ) ∪ Ξ(C̃ ) is satisfiable.
The interpretation of C̃ in a model of Σ(C̃ ) ∪ Ξ(C̃ ) gives a structure NR in
the language of reducts which is a model of T and contains witnesses for each
of the formulas ∃v̄1∀w̄1∃v̄2 · · · ∃v̄n∀w̄n¬�(a, s, v̄1, . . . , v̄n) where s ∈ N . Hence
NR |= ¬∃y�(a, y) which means that T is not an axiomatisation of TR, which is
a contradiction. �
As an immediate application of Theorem 8.2, we give another proof of
Proposition 7.13 which states that if E is the exponential differential equation,
i.e., it is given by D y = yDx, then D is not definable in FE .7 Indeed, Kirby gives
an ∀∃-axiomatisation of the first-order theory of the exponential differential equa-
tion ([6]). It is not model complete however, hence D cannot be definable due to
Theorem 8.2. Of course it is the Ax-Schanuel inequality that is responsible for this.
As Kirby proved, it is an adequate predimension inequality.
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