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ABSTRACT. This paper attempts to estimate the maintenance cost of water pollution
abatement measures to the Indian industry using the methodology of distance function
in the theory of production. The distance function is estimated using both programming
and stochastic frontier models for a sample of water polluting industries in India. The
firm-specific shadow prices for pollutants, measures of efficiency, and scale economies
are estimated. Estimates show that on average the cost to the Indian industry for
reducing one ton of BOD and COD are respectively, Rs 0.246 and 0.077 million. Large
differences in the estimates of firm-specific shadow prices of pollutants reflect the use of
inefficient water pollution abatement technologies. The relationships between firm-
specific shadow prices or marginal costs of abatement of BOD and COD and the index
of compliance (ratio of effluent load to sale value) and the pollution load reductions
obtained confirm the earlier empirical results of studies on water pollution abatement in
Indian industries. The earlier studies have found increasing marginal costs with respect
to reductions in pollution concentrations and decreasing marginal cost with respect to
the pollution loads reduced by the firms.

1. Introduction
It is now known that sustainable industrial development requires the pres-
ervation of the environment. Industries create a demand not only for waste
receptive services from the environmental media: air, forests, land, and water
but also for some material inputs supplied by the environmental resources
(for example wood in the paper and pulp industry). Environmental
resources can ensure a sustainable supply of these services, if they are pre-
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served at their natural regenerative level or if the demand for waste receptive
services is equal to the waste assimilative capacity of environmental
resources. Given that the demand for environmental services from various
economic activities can exceed the natural sustainable levels of supply at a
given time, and if measures are not taken to reduce this excess demand to
zero there can be degradation of environmental resources. The cost of
reducing the demand for environmental services to the natural sustainable
level of supply is regarded as the cost of sustainable use of environmental
resources and, in the case of industrial demand for environmental services, it
is the cost of sustainable industrial development. The measurement of this
cost of sustainable industrial development is the main objective of this paper.

As a part of environmental regulation, a firm faces a supply constraint
on the environmental services in the form of prescribed standards for
effluent quality. The effluent standards are normally fixed such that the
demand for the services of environmental media does not exceed the
natural sustainable level of supply. The firm has to spend some of its
resources to reduce the pollution loads to meet the effluent quality stan-
dards. The firm with a resource constraint will be having less resources left
for the production of its main product after meeting the standards.
Therefore, the opportunity cost of meeting these standards is in the form
of a reduced output of the firm. If all the firms in the industry meet the
standards, the value of the reduced output of firms is the cost of sustain-
able industrial development. How can we estimate this cost for a
competitive firm facing the environmental regulation? It has to be esti-
mated by studying the firm’s behaviour in making decisions regarding
pollution loads and the choice of pollution abatement technologies. In
some of the recent studies, the technology of a polluting firm is modelled
on one of the two basic approaches using the conventional methods of the
theory of production: (a) considering effluent as an additional input in the
production or profit function, and (b) by including abatement capital as an
additional input in a cost function. In some studies, the pollution abate-
ment technology is modelled with the assumption that it is non-separable
from the technology of main products while in others it is modelled with
the assumption it is separable. In response to environmental regulation,
firms may adopt different types of technologies to reduce pollution.
Jorgenson and Wilcoxen (1990) identify three different responses of firms.
First, the firm may substitute less-polluting inputs for more-polluting
ones. Second, the firm may change the production process to reduce emis-
sions. Third, the firm may invest in pollution abatement devices. In
practice, a firm may adopt a mix of these methods. The first two methods
are non-separable with the production processes of main products while
the third method is known as end-of-the-pipe method.

There are a number of empirical studies starting from the early eighties
examining the impact of environmental regulation on the economic per-
formance of firms.1 The ultimate aim of these studies has been to measure
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1 See Myers and Nakamura, 1980; Pittman, 1981, 1983; Gollop and Roberts, 1983;
Conrad and Morrison, 1989; Jorgenson and Wilcoxen, 1990; Barbara and
McConnell, 1990; and Gray and Shadbegian, 1995.
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the effect of pollution regulation on total factor productivity growth (TFP).
Most of these studies are based on production, cost profit functions, with
the pollution variable modelled indirectly using abatement capital expen-
diture as one of the inputs. Ideally, the technology of water or air polluting
firms has to be described as one of joint production of good and bad
outputs, the bad output being the pollution. The assumption of free dis-
posal (a multi-product firm can produce less of one output without
reducing the outputs of other goods) that is normally made in the conven-
tional production theory cannot be applied to describe the technologies of
polluting firms. Shephard (1974: 205) noted that:

for the future where unwanted outputs of technology are not likely to
be freely disposable, it is inadvisable to enforce free disposal of inputs
and outputs. Since the production function is a technological state-
ment, all outputs, whether economic goods are wanted or not, should
be spanned by the output vector y.

Also, the conventional studies have implicitly assumed that the firms are
operating on the production frontier and the pollution control does not
have an impact on production efficiency. However, many recent studies
have shown that these assumptions are unlikely to hold in many cases.2
Finally, the profit or cost functions used to represent production tech-
nology require firm-specific prices, especially input prices,3 the reliable
data of which are difficult to obtain. As will be shown in this paper, the dis-
tance function approach for describing the production technology of a firm
will potentially avoid all these problems.

The remainder of the paper is planned as follows: section 2 describes the
methodology. Section 3 provides information about the data and also high-
lights the methods of estimation of the output distance function. Section 4
presents the estimates of shadow prices of bad outputs, scale economies,
and technical efficiency for water-polluting industries in India. Finally
section 5 provides concluding comments.

2. Methodology
2.1. Output distance function
The conventional production function defines the maximum output that
can be produced from an exogenously given input vector while the cost
function defines the minimum cost to produce the exogenously given
output. The output and input distance functions generalize these notions
to a multi-output case. The output distance function describes ‘how far’ an
output vector is from the boundary of the representative output set, given
the fixed input vector. The input distance function shows how far the input
vector is from the input vector corresponding to the least cost for pro-
ducing a given vector of outputs.

Suppose that a firm employs a vector of inputs x∈ℜ N
�

to produce 
a vector of outputs y∈ℜ M

�
, ℜ N

�
, ℜ M

�
, are non-negative N- and M-
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2 See Fare et al. 1989; Fare et al. 1993; Hakuni, 1994; Yaisawarng and Klien, 1994;
Porter and van der Linde, 1995; Coggins and Swinton, 1996; and Kumar, 1999.

3 See recent studies on pollution abatement cost functions in India. For example,
Mehta et al. 1995; James and Murty, 1996; Pandey, 1998; and Misra, 1999.
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dimensional Euclidean spaces, respectively. Let P(x) be the feasible output
set for the given input vector x and L(y) is the input requirement set for a
given output vector y. Now the technology set is defined as

T � {(y,x) ∈ ℜ M�N
�

y ∈ P(x), x ∈ L(y)} (1)

The output distance function is defined as

D0 (x,y) � min {� � 0:(y/�) ∈ P(x)} �x ∈ ℜ N
�

(2)

Equation (2) characterizes the output possibility set by the maximum equi-
proportional expansion of all outputs consistent with the technology set
(1). We now turn to the properties of the output distance function. The
output distance function can be used to measure the Debreu–Farrell tech-
nical efficiency (DF) (Debreu, 1951; Farrell, 1957). In terms of the above
output set, the Debreu–Farrell measure can be defined as DF(y,x) �
max{�:�y∈ P(x)}; and in terms of the output distance function DF (y,x) � 1/
D0 (y,x). Thus, the DF measure is the reciprocal of the value of the distance
function and it gives the factor by which all output could be expanded pro-
portionately if the production units were operating on the frontier. It is
clear that D0 (y,x) � 1. If D0 (y,x) � 1, the firm can be regarded as 100 per
cent efficient. For D0 � 1, the firm produces in the interior and could be
characterized as 100*D0 per cent efficient.

The output distance function has, among others, the following proper-
ties (for a detailed description, see Fare, 1988):

1. D0 (0, y) � � � for y � 0, that is, no free lunch.
2. D0 (x, 0) � 0 for all x in ℜ N

�
that is, inaction is possible.

3. x´ � x implies that D0 (x´, y) � D0 (x, y), that is, the more input the less
efficient.

4. D0 (x, 	 y) � 	 D0 (x, y) for 	 � 0, that is, positive linear homogeneity.
5. D0 (x, y) is convex in y.

The assumptions about the disposability of outputs become very
important in the context of a firm producing both good and bad outputs.
The normal assumption of strong or free disposability about the tech-
nology implies

if (y1 , y2) ∈ P(x) and 0 � y1 * � y1 , 0 � y2* � y2 ⇒ (y1*,y*2) ∈ P(x)

That means, we can reduce some outputs given the other outputs or
without reducing them. This assumption may exclude important produc-
tion processes, such as undesirable outputs. For example, in the case of
water pollution, Bio Oxygen Demand (BOD), Chemical Oxygen Demand
(COD), and Suspended Solids (SS) are regulated and the firm cannot freely
dispose of waste. The assumption of weak disposability is relevant to
describe such production processes. The assumption of weak disposability
implies

if y ∈ P(x) and 0 � � � 1 ⇒ � y ∈ P(x)

That means, a firm can reduce the bad output only by decreasing simul-
taneously the output of desirable produce.
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2.2 Derivation of shadow prices of bad outputs
The idea of deriving shadow prices using output and input distance func-
tions and the duality results is originally from Shephard (1970). A study by
Fare, Grosskopf, and Nelson (1990) is the first computing shadow prices
using the (input) distance function and non-parametric linear program-
ming methods. Fare et al. (1993) is the first study to derive the shadow
prices of undesirable outputs using the output distance function.

The derivation of absolute shadow prices for bad outputs using the dis-
tance function requires the assumption that one observed output price is the
shadow price. Let y1 denote the good output and assume that the observed
good output price (r1

0) equals its absolute shadow price (r1
s) (that is, for m �

1, r1
0 � r1

s). Fare et al. (1993) have shown that the absolute shadow prices for
each observation of undesirable output (m � 2,. . .,M) can be derived as4

(r s
m) � (r1

0) (3)

The shadow prices reflect the trade off between desirable and undesirable
outputs and the actual mix of outputs, which may or not be consistent with
the maximum allowable under regulation (Fare et al., 1993: 376). Further,
the shadow prices do not require that the plants operate on the production
frontier.

2.3. Scale economies
Economies of scale for a multi-output production firm can be defined in
terms of an output distance function5 as

(d�/�)/(d
/
) � [�
N

n�1
(�D0/�xn)xn]/[y1� �

M

m�1
(�D0/�ym)ym] (4)

since D0(x,y) � y/F(x)6

where:

n � 1, 2,. . .,N inputs,
m � 1, 2,. . .,M outputs,
d�/� � proportionate increase in outputs,
d
/
 � proportionate increase in inputs.

If the value of this function is equal to 1, it means the firm is operating
under constant returns to scale, and if its value is greater than or less than
one, then there are increasing or decreasing returns to scale respectively.
Having estimated the output distance function, the economies of scale for
each firm can be computed by this formula.

3. Estimation methods
3.1. Translog output distance function and data
In order to estimate the shadow prices of pollutants (bad outputs) for
Indian water polluting industries using equation (3), the parameters of the

�D0(x,y)/� ym
��
�D0(x,y)/�y1
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4 See Fare (1988) for derivation.
5 See Pittman (1981) for the definition of scale economies in the production func-

tion setting for the firms producing multiple outputs.
6 See Fare (1988) for proof.
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output distance function have to be estimated. The translog functional
form7 is chosen for estimating the output distance function for the Indian
water-polluting industries which is given as follows

ln D0(x, y) � 
0 � �
N

n�1
�n ln xn � �

M

m�1

m ln ym � �

1
2

� �
N

n�1
�
N

n�1
�nn´ (ln xn) (ln xn´) �

�
1
2

� �
M

m�1
�
M

m�1

mm´ (ln ym) (ln ym´) � �

N

n�1
�
M

m�1
�nm\ (ln xn) (ln ym) (5)

where x and y are respectively N�1 and M�1 vectors of inputs and
outputs.

The data used in this paper are from a recent survey of water-polluting
industries in India.8 These survey data provide information of character-
istics of the main plant as well as the effluent treatment plant for the year
1994–1995. The data about the main plant are given for sales value, capital
stock, wage bill, fuel cost, and other material input costs. The data about
the effluent treatment plant are given for waste water volume, influent and
effluent quality for BOD (bio oxygen demand), COD (chemical oxygen
demand), and SS (suspended solids), capital stock, wage bill, fuel and
material input cost for a sample of 60 firms. The firms in the sample belong
to chemicals, fertilisers, pharmaceuticals, drugs, iron and steel, thermal
power, refining, and other industries. For estimating the output distance
function, the technology of each plant is described by joint outputs – sales
value (good output) and COD, BOD, and SS (bad outputs) – and inputs –
capital, labour, fuel, and materials (see table 1).

The water-polluting firms in the Indian industry are supposed to meet
the standards set for the pollutants (30mg/l for BOD, 250mg/l for COD,
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7 Many earlier studies for estimating shadow prices of pollutants have used the
translog functional form for estimating the output distance function. These include
Pitman (1981), Fare, Grosskopf, and Nelson (1990), and Coggins and Swinton (1996).

8 A Survey of Water Polluting Industries in India, Research Project on ‘Fiscal
Instruments for Water Pollution Abatement in India’, Institute of Economic
Growth, Delhi (1996).

Table 1. Descriptive statistics of variables used in the estimation of the output
distance function

Variable Maximum Minimum Mean Standard deviation

1. Sales 24,197.4 6.32 1,335.972 3,348.053
2. BOD 1,368,203.0 138.70 116,859.060 234,767.140
3. COD 10,005,560.0 335.80 934,810.750 1,954,634.800
4. SS 15,658,500.0 642.40 1,637,753.900 2,799,843.000
5. Capital cost 66,288.7 11.10 4,207.929 11,545,509
6. Wage bill 1,341.9 0.05 85.577 191.099
7. Power cost 16,150.0 2.58 779.090 2,505.045
8. Material cost 892.5 0.13 123.360 207.692

Note: Sales, wage bill, power cost, material cost and capital cost are in Rs.
million at 1994–1995 prices and BOD, COD, and SS are in kilograms.
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and 100mg/l for SSP) by the Central Pollution Control Board. Command
and control regulatory instruments are used to make the firms realize the
standards. All 60 firms in the sample have effluent treatment plants and in
addition some firms are using process changes in production to achieve
the effluent standards. However, there is a large variation in the degree of
compliance among the firms measured in terms of ratio of standard to
effluent quality. The laxity of formal environmental regulation by the gov-
ernment, use of command and control instruments, and the absence of
information regulation9 by the communities in the neighbourhood of the
firms can be regarded as factors responsible for large variations in compli-
ance to the pollution standards by the firms.

3.2. Estimation of output distance function: programming model
In this section, a linear programming technique is used to estimate the par-
ameters of a deterministic translog output distance function (Aigner and
Chu, 1968). Let k � 1,2,. . .,K index the observations in the data set. The fol-
lowing problem is solved to estimate the parameters

max �
K

k�1
[ln D0 (xk, yk) � ln 1) (6)

subject to

(i) ln D0 ((xk, yk) � 0
(ii) (� ln D0 (xk, yk))/(� ln y1

k ) � 0
(iii) � 
m � 1

� 
mm � ��nm � 0
(iv) 
mm � 
mm

�nn � �nn

Here the first output is desirable and the rest of (M�1) outputs are unde-
sirable. The objective function minimizes the sum of the deviations of
individual observations from the frontier of technology. Since the distance
function takes a value of less than or equal to 1, the natural logarithm of
the distance function is less than or equal to 0, and the deviation from the
frontier is less than or equal to 0. Hence the maximization of the objective
function is done implying the minimization of the sum of deviations of
individual observations from the frontier of technology. The constraints in
(i) restrict the individual observations to be on or below the frontier of the
technology. The constraints in (ii) ensure that the desirable output has a
non-negative shadow price. The constraints in (iii) impose homogeneity of
degree �1 in outputs (which also ensures that technology satisfies weak
disposability of outputs). Finally, constraints in (iv) impose symmetry.
There is no constraint imposed to ensure non-negative values to the
shadow prices of undesirable outputs. Table 2 provides the linear pro-
gramming estimates of the output distance function for the Indian
water-polluting industries.
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9 For empirical evidence about informal regulation by the local communities, see
Murty et al. (1999) and World Bank (1999).
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Table 2. Parametric estimate of the output distance function for water-polluting
industries in India (linear programming)

Variables Parameters Values

y1 
1 0.173
y2 
2 �0.481
y3 
3 0.147
y4 
4 0.160
x1 �1 0.191
x2 �2 �0.493
x3 �3 �0.302
x4 �4 �0.560
y1^2 
11 �0.147
y2^2 
22 0.097
y3^2 
33 0.117
y4^2 
44 �0.013
y1y2 
12 1.004
y1y3 
13 �0.795
y1y4 
14 �0.084
y2y3 
23 �0.204
y2y4 
24 0.021
y3y4 
34 0.003
x1^2 �11 0.059
x2^2 �22 0.072
x3^2 �33 0.132
x4^2 �44 �0.131
x1x2 �12 �0.005
x1x3 �13 0.074
x1x4 �14 0.051
x2x3 �23 0.009
x2x4 �24 �0.178
x3x4 �34 �0.082
y1x1 �11 �0.125
y1x2 �12 0.045
y1x3 �13 �0.215
y1x4 �14 0.428
y2x1 �21 �0.055
y2x2 �22 �0.303
y2x3 �23 �0.580
y2x4 �24 �0.136
y3x1 �31 0.011
y3x2 �32 0.245
y3x3 �33 0.512
y3x4 �34 0.065
y4x1 �41 �0.044
y4x2 �42 0.083
y4x3 �43 0.014
y4x4 �44 0.054
Constant 
0 �0.598

Notes: y1: Turnover (Rs. million) x1: Capital cost (Rs. million)
y2: BOD (tonnes) x2: Wage bill (Rs. million)
y3: COD (tonnes) x3: Power cost (Rs. million)
y4: SS (tonnes) x4: Material cost (Rs. million)

Source: Estimated.
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3.3. Stochastic output distance function
The stochastic output distance function for estimation is given as follows

D0 � f(x, y, 
, �) � 
 (7)

where D0 is the distance measure, f(.) is the production technology, x is a
vector of inputs, y is a vector of outputs, 
, � are vectors of parameters to
be estimated, and 
 is the additive error term. The error term may be gen-
erated for various reasons. Typically, it may include errors introduced by
measurement, data collection, functional form specification, computa-
tional procedures, or factors known to the production units but not to the
econometrician. Fuss, McFadden, and Mundlak (1978), Brown and Walker
(1995), and Griliches and Mairesse (1995) have provided a detailed
analysis of the different factors that can generate random errors in pro-
duction models.

The basic problem with distance functions that concerns econometric
estimation is that one does not observe (have data on) the dependent vari-
able. Further, if one sets the distance function equal to its efficient (frontier)
value, D0 � 1, the left-hand side of the distance function is invariant, an
intercept cannot be estimated, and OLS parameter estimates will be biased.
Further, if the distance function is expressed in logarithms, the left-hand
side of the distance function will be zero for all observations (that is, D0 �
ln(1) � 0). In order to avoid these problems, Lovell et al. (1990), Grosskopf
et al. (1995), Grosskopf and Hayes (1993), Coelli and Perelman (1996), and
Kumar (1999) utilize the property that the output distance function is
homogeneous of degree one in outputs. Thus, for each observation to be
used in estimating the distance function, a value that is unique to that
observation can be used to multiply all output values on the right-hand
side and the value of the distance function on the left-hand side. Thus, for
an output distance function the following relationship (ignoring the error
term) holds

D0 (x, � y) � �D0(x, y), for any � � 0 (8)

In the literature, typically one of the outputs is chosen arbitrarily as a
scaling variable. For example, if we chose the Mth output, and set � �
1/yM, equation (8) may be written as

D0 (x, y / ym) � D0 (x, y) / yM (9)

Now imposing some logarithmic functional form on the output distance
function in accordance with most of the empirical literature, equation (9)
becomes

ln(D0/yM) � f(x, y / yM, 
, �) (10)

where f denote some logarithmic functional form, such as the translog and

, � the parameters. Alternatively, equation (10) may be expressed as

ln(D0) � ln(yM) � f(x,y/yM, 
, �) (11)

or

� ln(yM) � f(x, y / yM, 
, �) � ln(D0) (12)
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Given the data, the parameters in equation (12) can be estimated in various
ways, depending on the estimation criteria chosen. Basically, the objective
of the estimation method is to generate parameter estimates that fit the
data as closely as possible while maintaining the requirement that 0 � D0
� 1, which in the logarithmic case implies �� � ln D0 � 0.

Aigner et al. (1977) uses the stochastic frontier ML method in a produc-
tion function context. This approach is based on the composed error term
idea, in which a symmetric error term accounts for noise and an asym-
metric error term accounts for production inefficiency. For the inefficiency
component of the error term, one assumes a functional form and estimates
simultaneously all the technology parameters and the parameter(s) of the
distribution of the inefficiency term. Adding a symmetric error term, v, to
equation (12), and denoting the distance to the frontier term, � ln (D0), by
	, the stochastic frontier output distance function is obtained as

� ln(yM) � f(x, y / yM, 
, �) � v � 	 (13)

Typically, in the literature it has been assumed that v is distributed �
N(0,�2

v) and independently from 	, while 	 is assumed to be either half-
normal, truncated normal, exponential, or gamma distributed.10 It appears
that the most popular choice for application has been the half-normal dis-
tribution and maximum likelihood estimation (Coelli, 1995). After having
estimated (13), E(	/	 � v) is computed for each plant from which plant-
specific efficiency measures are calculated as

D0(x, y) � Exp{�E(	/	 � v)} (14)

In order to estimate simultaneously the magnitude of inefficiency and the
determinants of inefficiency, the framework proposed by Battese and
Coelli (1995) in a production function setting is applied to the distance
function framework. Let the equation (14) be defined as

Exp(�	) � exp(�z��w) (15)

where 	 is assumed to be independently distributed, such that 	 is
obtained by truncation of the normal distribution with mean z� and vari-
ance �2; z is a vector of plant-specific variables and w stands for the
unexplained part of the efficiency.

Here the model is estimated with the translog specification and the
determinants of inefficiency are taken as the ratios of effluent to influent of
all the three pollutants, that is, BOD, COD, and SS. Estimation of the
output distance function is done simultaneously with the model for deter-
minants of inefficiency. The model was estimated using the Frontier 4.1
program (Coelli, 1994).

Table 3 gives the results from the estimation of the full translog specifi-
cation. The results from the restricted translog and Cobb–Douglas
specifications are not presented here, since the values of the log likelihood
ratio statistics are low for these specifications. The results for the translog
model show that some of the parameters associated with the input and
output variables are not significant even at the 10 per cent level.
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10 See Green (1993, a,b).
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Table 3. Maximum likelihood estimate of the stochastic frontier output distance
function for water-polluting industries in India

Variable Coefficient Parameter estimate T statistic

Constant �0 �1.458 * �3.892
y1/y4 �1 0.661 * 3.038
y2/y4 �2 0.0096 *** 1.775
y3/y4 �3 �0.052 �0.130
x1 
1 �0.079 *** 1.847
x2 
2 �1.167 * �7.033
x3 
3 �0.333 0.667
x4 
4 0.738 *** �1.712
(y1/y4)

2 �11 �0.017 *** �1.423
(y2/y4)

2 �22 �0.06 �0.352
(y3/y4)

2 �33 �0.013 0.111
x1

2 
11 1.029 �0.572
x2

2 
22 �0.093 *** �1.454
x3

2 
33 �0.0009 �0.013
x4

2 
44 �0.150 ** �2.443
y1y2 �12 �0.058 1.186
y1y3 �13 0.045 �0.997
y1x1 �11 �0.031 0.738
y1x2 �12 0.009 0.292
y1x3 �13 0.005 0.0901
y1x4 �14 0.013 �0.379
y2y3 �23 �0.023 0.082
y2x1 �21 0.061 �0.533
y2x2 �22 �0.138 �1.029
y2x3 �23 �0.142 *** 1.321
y2x4 �24 0.069 0.760
y3x1 �31 0.073 0.779
y3x2 �32 0.0141 *** 1.323
y3x3 �33 0.169 *** �1.445
y3x4 �34 �0.1005 *** �1.221
x1x2 
12 �0.168 * 2.760
x1x3 
13 0.209 ** �2.029
x1x4 
14 �0.061 0.889
x2x3 
23 0.045 0.485
x2x4 
24 0.008 0.105
x3x4 
34 0.217 ** 2.171
Constant �0 0.259 * 2.623
BOD ratio �1 �0.0057 �0.198
COD ratio �2 �1.183 * �3.161
SS ratio �3 0.0046 *** 1.747

� � �
	

2/�
	

2 � �v
2 0.0018 ** 2.366

Log likelihood 5.98
@ 9.009 ***

Notes: @ Likelihood ratio test of one-sided error with number of restrictions
equal to 5.
* Significant at 1% level.
** Significant at 5% level.
*** Significant at 10% level.
where:
y1: Turnover (Rs. million) x1: Capital cost (Rs. million)
y2: BOD (tonnes) x2: Wage bill (Rs. Million)
y3: COD (tonnes) x3: Power cost (Rs. Million)
y4: SS (tonnes) x4: Material cost (Rs. million)
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4. Estimates of shadow prices, scale economies and technical efficiency
4.1. Shadow prices
Table 4 provides estimates of industry-specific shadow prices for bad
outputs, BOD and COD, based on the parameters of the translog output
distance function estimated using the programming approach. These
shadow prices are negative, reflecting desirable output and revenue fore-
gone as a result of reducing the effluent by one unit (ton) per year. For
instance, the average shadow price for water-polluting Indian industries is
Rs. 0.246 million for BOD and Rs. 0.0775 million for COD per ton. That
means reduction of BOD by one ton reduces production by Rs. 0.246
million worth of positive output. The average shadow price of total sus-
pended solids (TSS) is zero. This zero shadow price implies that TSS can be
disposed of at zero cost at the margin by the factories. Alternatively, the
pollution abatement process may be such that reduction of BOD or COD
may jointly reduce TSS such that the additional cost of reducing TSS is zero.

There is a wide variation of shadow prices of pollutants across the firms
and across the industries as shown in table 4 and appendix table A1. The
range of shadow prices for BOD is Rs.5266 to 460189 per ton while for COD,
it is Rs.528 to 77462 per ton. This wide variation can be explained by the
variation in the degree of compliance as measured by the ratio of pollutant
effluent load and sales value and the different vintages of capital used by
the firms for the production of desirable output and pollution abatement.

The shadow prices of BOD and COD, which may be interpreted as the
marginal costs of pollution abatement, are found to be increasing with 
the degree of compliance of firms. Taking the index of non-compliance by
the firms as the ratio of effluent of BOD or COD to the sales value, it is
found that the higher the index, the lower the shadow price. That means,
the dirtier the industry, the lower is the shadow price. Considering the log-
arithm of shadow price as a dependent variable and the logarithm of
effluent to sales ratios as an independent variable, the estimated relation-
ships between the shadow prices and the index of non-compliance for
BOD and COD are given as follows
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Table 4. Shadow prices of BOD and COD for water-polluting industries in India
(Rs. per ton) (Linear programming parameter estimates)

Industry No. of firms BOD shadow prices COD shadow prices

All firms 60 �246,496 �77,462
Fertiliser 4 �41,343 �10,195
Sugar 11 �179,433 �66,486
Distillery 5 �91,606 �34,390
Chemical 11 �438,988 �127,164
Refinery 2 �460,189 �163,597
Tannery 4 �138,681 �72,671
Iron and steel 1 �6,785 �528
Paper and paper 

products 16 �5,266 �837
Drug 4 �737,638 �67,774
Others 2 �436,806 �68,407

Source: Estimated.
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ln(BOD shadow price) � �0.226 � 0.710ln(BOD effluent to sales ratio),
R2 � 0.277 (�0.358) (�4.712).

ln(COD shadow price) � �3.531 � 0.270ln(COD effluent to sales ratio),
R2 � 0.004 (�3.493) (�0.470).

(Note: Figures in brackets are t-values).

In the case of BOD, there is a statistically significant negative relationship
between the shadow price and the non-compliance index. However, in the
case of COD, the relationship is negative but not statistically significant.

Also, the estimates show that the shadow prices of undesirable outputs
fall with the pollution load reductions obtained by the firms in the case of
BOD and COD. That means as found in the earlier studies of Indian water-
polluting industries,11 these results also show that there are scale
economies in water pollution abatement, implying that the higher the pol-
lution load reduction, the lower the marginal abatement cost. The
logarithms of shadow prices are regressed separately against the loga-
rithms of BOD and COD loads reduced (the difference between the
influent and effluent loads) by the firms, the results of which are given as
follows:

lnBOD shadow price � �0.772 � 0.353ln(BOD load reduced), 
R2 � 0.111 (�0.918) (�2.697).

lnCOD shadow price � 1.953 � 0.448ln(COD load reduced), 
R2 � 0.151 (1.042) (�3.215).

(Note: Figures in brackets are t-values).

4.2. Technical efficiency
Given the estimate of the econometric model of the output distance func-
tion in section 3, the firm-specific measures of technical efficiency can be
estimated using equation (4). The technical efficiency scores rely on the
value of the unobservable distance function predicted. The descriptive sta-
tistics for the technical efficiency scores are given in table 5, column 4. The
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11 Mehta et al. (1995), Murty et al. (1999), Pandey (1998), and Misra (1999).

Table 5. Scale economies and efficiency measures for water-polluting industries in
India (econometric estimation)

Industry No. of firms Scale economies Efficiency

All firms 60 0.686 0.899
Fertiliser 4 1.017 0.803
Sugar 11 0.999 0.909
Distillery 5 0.338 0.796
Chemical 11 0.421 0.887
Refinery 2 1.173 0.889
Tannery 4 0.66 0.875
Iron and steel 1 0.551 1.000
Paper and paper products 16 0.527 0.949
Drug 4 0.744 0.893
Others 2 1.236 0.994

Source: Estimated.
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mean level of efficiency for the India water-polluting industries is 0.899 if
all the outputs, that is, good as well as bad outputs, are taken simul-
taneously. It means that the Indian industries are operating below the
frontier and their production of desirable output can be increased.

What do the results of the econometric model estimated in section 3 say
about the technical efficiency and the determinants of inefficiency? The
model shows that the inefficiency effects are not a linear function of
effluent–influent ratio of various pollutants. It indicates that all the three
ratios corresponding to BOD, COD, and SS should be included in the
model as they are all significant either at the 10 per cent or lesser level. The
� parameter defined in table 3 may be interpreted as the amount of unex-
plained variation in the technical inefficiency effects (Coelli, 1995). This
parameter has a value between zero and one. If it is zero then the variance
of effects of inefficiency is zero and the model reduces to the traditional
mean response model. On the other hand, a high value for this parameter
shows that the model of determinants of inefficiency accounts for the bulk
of the variation in technical inefficiency. In our model specification, the
absolute value of this parameter is very low, that is, 0.0018 and is statisti-
cally significant at the 5 per cent level.

The sign of �I coefficients in table 3 are of particular interest. A negative
sign for the estimated coefficient shows that an increase in the value of the
variable, that is, ratio of effluent to influent (lower level of regulation) will
result in a decrease in the value of the technical inefficiency effect. Thus the
more restrictive the regulation, the more inefficient the production process
will be. In our estimates, the signs for the BOD and COD ratios are nega-
tive and for the SS ratio the sign is positive. This result may be due to the
type of regulatory instrument used, for example command and control
versus economic instruments. Since in India as of today, only command
and control measures are used to control water pollution and it is known
that the use of such instruments results in the firms using inefficient pol-
lution abatement technologies, the result found above is expected.12

However, in a situation of using economic instruments (pollution taxes or
marketable pollution permits), the result that the stricter regulation leads
to the decrease of technical efficiency of polluting firms may not hold
good. There are studies arguing that environmental regulation results in
improvement of the technical efficiency of firms, a win–win situation
explained by the Porter hypothesis (Porter and Vander Linde, 1995).

4.3. Scale economies
One more issue of importance in the ongoing debate is about the impli-
cation that the pollution control requirements have on economies of scale
and barriers to entry. Although this issue has not been as widely debated,
but it may have important policy implications. Many industries facing
strict pollution control requirements are already characterized by capital
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12 There are now studies to show that the compliance to the pollution standards by
the industries in the developing countries including India are due to both formal
regulation (command and controls) and the informal regulation by the local com-
munities (Murty et al. 1999, and World Bank, 1999).
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intensity and a large minimum efficient size (MES) of plant. A large MES
in an industry may act as a barrier to entry, either because of the number
of customers that must be pirated away from other suppliers or because of
the difficulty in raising the huge sums of money required to build a plant.
If entry is difficult, actual and potential competition in the industry may be
less vigorous; tacit and explicit collusion may be less difficult; and super-
competitive prices and profits may be easier to achieve. Thus if pollution
control requirements increase MES in an industry, they may have harmful
allocation effects, and the resulting resource costs should be weighed
against the benefits of pollution control in policy decisions.

The measure of scale economies may be estimated for each firm in the
sample and one may then examine whether firms that show a high level of
pollution control are those that have economies of scale in production and
controlling pollution. If this association is found, one may conclude that
pollution control regulations have increased MES in the sample. Table 3,
column 3 and the appendix table, column 4 provide estimates of scale
economies of water polluting industries and firms in the sample.

Three questions are of interest concerning the results of testing for scale
economies of joint production:

1. Are the firms in the sample generally operating under conditions of
increasing, neutral, or decreasing economies of scale? In the sample, the
average figure for this is 0.823.

2. Does any systematic difference in scale economies exist for different
firms/industries in the sample (for example are higher levels of
turnover/production associated with increasing or decreasing scale
economies). In the sample of 60 firms, the correlation coefficient is 0.047.

3. Are higher levels of pollution control associated with increasing or
decreasing scale economies? Unfortunately, a correct measure of pol-
lution control is not available for answering this question. A low level
of pollution may reflect either a high level of pollution control or merely
a general low level of production. Obviously, any measure of pollution
control must include both levels of influent and effluent. The measure
chosen here is the ratio of effluent to influent; a lower value of the ratio
reflects a higher level of control. The correlation coefficients between
effluent/influent of BOD and COD, and scale economies are �0.197 and
�0.098, respectively.

5. Conclusion
The distance function in the theory of production helps to characterize the
technology of a firm producing a vector of outputs jointly and to define
their shadow prices or opportunity costs. In the case of a firm generating
air and water pollution, the output distance function can be used to repre-
sent the firm’s technology as a joint production of good and bad outputs.
With the assumption of weak disposability of outputs, the shadow prices
of pollutants can be defined in terms of positive output or revenue fore-
gone.

The distance function approach helps to derive firm-specific shadow
prices for pollutants. The estimated shadow prices of pollutants have to be
equal for all the firms if pollution taxes are levied on all the firms in order
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to obtain their conformity with the prescribed standards and for all the
firms reduced pollution loads to meet the standards. Since there are no pol-
lution taxes in India, command and control instruments are used to
compel the firms to meet the set standards, and a majority of firms do not
comply with the standards. The shadow prices of pollutants estimated
vary across the firms. The estimated shadow prices of pollutants BOD and
COD for all the 60 firms in the sample differ across the firms. The esti-
mated sample averages for shadow prices of BOD and COD are Rs. 0.246
and Rs. 0.077 per a gram of pollutant, respectively. That means as per the
current pollution abatement practices, the Indian water-polluting industry
is forgoing revenue amounting to Rs. 246 and Rs. 77 for reducing one kilo-
gram of BOD and COD, respectively. Large differences in the firm-specific
shadow prices of pollutants reflect the use of inefficient pollution abate-
ment technologies by the water-polluting industries in India. The large
differences in the estimates of shadow prices of pollutants bring out clearly
the case for using economic instruments, like pollution taxes or marketable
pollution permits, in India instead of the currently used command and
control instruments.

In an economy in which industries are meeting the pollution standards
fixed for the sustainable use of environmental resources, the distance func-
tion approach in the theory of production can be used to estimate the
maintenance cost of environmental resources. This can be a methodology
that can be potentially used for estimating the environmentally corrected
GDP by making use of the maintenance cost version of the United Nations
methodology of ‘Integrated Environmental and Economic Accounting’.

The estimates of production efficiency for water-polluting industries in
India reported in this paper explain production efficiency with a joint pro-
duction of good and bad outputs. For the Indian water-polluting
industries as a whole, the estimated efficiency index is approximately 90
per cent. It means that by employing the same set of inputs, the good
output can be further increased by 10 per cent. Among the industries for
which an efficiency index is estimated, distillery has the lowest, while iron
and steel has the highest efficiency in the sample of 60 firms from 17 water-
polluting industries in India.

The estimates of economies of scale show that the water-polluting
industry as a whole has decreasing returns to scale. Estimates show that
three industries, that is, fertilisers, refinery, and drugs, have increasing
returns to scale, while others have decreasing returns to scale. There is a
positive correlation between the economies of scale and the turnover of a
firm. Also, there is a positive association between pollution control and
economies of scale (the higher the scale economies, the lower the
effluent–influent quality ratio).

The shadow prices of pollutants estimated in this study may be inter-
preted as the marginal costs of respective pollutants. The result that there
is a negative relationship between pollution load reductions and the
shadow prices across the firms found in this study confirm the presence of
scale economies in pollution abatement found in the earlier studies on
industrial water pollution abatement in India.
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Appendix A
Table A1. Estimates of shadow prices of BOD and COD and technical efficiency

and economies of scale

Industry Firm Efficiency Economies Shadow prices

estimates of scale BOD COD

Fertilizer 1 0.997 1.028 �0.086 �0.019
2 1.000 1.451 �0.061 �0.003
3 0.388 0.686 �0.083 �0.063
4 0.828 0.903 �0.024 �0.010

Sugar 5 1.000 1.184 �0.414 �0.047
6 0.763 1.106 �0.799 �0.264
7 0.902 1.098 �0.099 �0.055
8 0.790 1.217 �0.250 �0.152
9 0.983 0.792 �0.007 �0.007

10 0.994 0.751 0.000 0.000
11 0.828 0.803 �0.010 �0.006
12 0.998 1.035 �0.021 �0.015
13 0.942 0.99 �0.046 �0.018
14 0.821 1.067 �0.066 �0.024
15 0.983 0.942 �0.035 �0.013

Distillery 16 0.747 0.575 �0.077 �0.035
17 1.000 0.343 0.000 0.000
18 0.718 0.338 �0.325 �0.108
19 0.738 0.281 �0.001 0.003
20 0.777 0.155 �0.001 0.000

Chemical 21 0.788 0.623 0.102 �0.017
22 0.743 0.849 �2.138 �0.406
23 1.000 �1.477 �0.503 �0.217
24 0.93 0.823 �0.056 �0.016
25 0.915 0.348 �0.012 �0.035
26 0.873 0.645 �0.028 �0.003
27 0.841 0.64 �0.013 �0.007
28 0.944 0.348 �0.137 �0.015
29 0.80 0.572 �0.106 �0.013
30 0.926 0.937 �0.051 �0.004
31 0.998 0.748 �0.013 �0.003

Refinery 32 0.862 1.469 �0.471 �0.167
33 0.916 0.877 �0.024 �0.013

Tannery 34 0.887 0.848 �0.293 �0.149
35 0.793 0.502 �0.016 �0.008
36 0.962 0.772 0.000 0.000
37 0.858 0.509 �0.056 �0.071

Iron and steel 38 1.000 0.768 �0.007 0.001
Paper and paper products 39 0.999 0.575 �0.005 �0.001

40 0.841 0.54 �0.004 �0.001
41 0.936 0.481 �0.002 �0.000
42 0.997 0.402 �0.000 0.000
43 0.803 0.460 �0.003 �0.002
44 1.000 0.437 �0.001 0.000
45 0.802 0.372 �0.002 �0.007
46 1.000 0.62 �0.006 �0.001
47 0.888 0.498 0.012 �0.001
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Table A1. Continued

Industry Firm Efficiency Economies Shadow prices

estimates of scale BOD COD

Paper and paper products 48 1.000 0.557 �0.002 0.000
49 0.998 0.386 0.000 0.000
50 1.000 �0.514 �0.003 �0.000
51 1.000 0.62 �0.003 0.000
52 0.835 0.576 �0.013 �0.001
53 0.867 0.601 �0.003 �0.001
54 0.998 0.551 �0.005 �0.001

Drug 55 0.645 0.418 �0.005 �0.019
56 1.000 1.115 �1.090 �0.094
57 0.925 0.787 �0.060 �0.014
58 1.000 0.657 �0.018 �0.002

Misc. 59 1.000 0.667 �0.088 �0.008
60 0.987 1.805 �1.091 �0.182
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