
Figure 1 illustrates the issue. Consider the set of all possibly
conceivable cognitive phenomena, of which only a subset contains
phenomena that can actually occur in reality. Then the goal of a
theory is to predict which of the conceivable phenomena are ac-
tually possible, and the success of a theory depends on the over-
lap between prediction and reality. The problems of a theory can
be found in two categories: counterexamples, phenomena that are
possible in reality but are not predicted by the theory, and incor-
rect models, predictions of the theory that are not possible in re-
ality. The issue of incorrect models is especially important, be-
cause an unrestricted Turing Machine is potentially capable of
predicting any conceivable cognitive phenomenon. One way to
make the Newell Test more precise would be to stress the falsifi-
ability aspects for each of the items on the test. For some items
this is already more or less true in the way they are formulated by
Anderson & Lebiere (A&L), but others can be strengthened, for
example:

Flexible behavior . Humans are capable of performing some
complex tasks after limited instructions, but other tasks first re-
quire a period of training. The theory should be able to make this
distinction as well and predict whether humans can perform the
task right away or not.

Real-time performance. The theory should be able to predict
human real-time performance, but should not be able to predict
anything else. Many theories have parameters that allow scaling
the time predictions. The more these parameters are present, the
weaker is the theory. Also the knowledge (or network layout) that
produces the behavior can be manipulated to adjust time predic-
tions. Restricting the options for manipulation strengthens the
theory.

Knowledge integration. One property of what A&L call “intel-
lectual combination” is that there are huge individual differences.
This gives rise to the question how the theory should cope with in-
dividual differences: Are there certain parameters that can be set
that correspond to certain individual differences (e.g., Lovett et
al. 1997; Taatgen 2002), or is it mainly a difference in the knowl-
edge people have? Probably both aspects play a role, but it is of
chief importance that the theory should both predict the breadth
and depth of human behavior (and not more).

Use natural language. The theory should be able to use natural
language but should also be able to assert what things cannot be
found in a natural language. For example, the ACT-R model of
learning the past tense shows that ACT-R would not allow an in-
flectional system in which high-frequency words are regular and
low-frequency words are irregular.

Learning. For any item of knowledge needed to perform some
behavior, the theory should be able to specify how that item has
been learned, either as part of learning within the task, or by show-
ing why it can be considered as knowledge that everyone has. By
demanding this constraint on models within a theory, models that
have unlearnable knowledge can be rejected. Also, the learning
system should not be able to learn knowledge that people cannot
learn.

Development. For any item of knowledge that is not specific to
a certain task, the theory should be able to specify how that item
of knowledge has been learned, or to supply evidence that that
item of knowledge is innate. This constraint is a more general ver-
sion of the learning constraint. It applies to general strategies like
problem solving by analogy, perceptual strategies, memorization
strategies, and the like.

Another aspect that is of importance for a good theory of cog-
nition is parsimony. This is not an item on Newell’s list, because it
is not directly tied to the issue of cognition, but it was an impor-
tant aspect of Newell’s research agenda. This criterion means that
we need the right number of memory systems, representations,
processing, and learning mechanisms in the theory, but not more.
An advantage of parsimony is that is makes a stronger theory. For
example, SOAR has only one learning mechanism, chunking. This
means that all human learning that you want to explain with SOAR
has to be achieved through chunking, as opposed to ACT-R, which
has several learning mechanisms. Of course, SOAR’s single mech-
anism may eventually be found lacking if it cannot account for all
human learning.

To conclude, research in cognitive modeling has always had a
positivistic flavor, mainly because it is already very hard to come
up with working models of human intelligence in the first place.
But as cognitive theories gain in power, we also have to face the
other side of the coin: to make sure that our theories rule out
wrong models. This is not only an issue for philosophers of science,
but a major issue if we want to apply our theories in human-com-
puter interaction and education. There, it is of vital importance
that we should be able to construct models that can provide reli-
able predictions of behavior without having to test them first.
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Abstract: Cognitive architectures, like programming languages, make
commitments only at the implementation level and have limited explana-
tory power. Their universality implies that it is hard, if not impossible, to
justify them in detail from finite quantities of data. It is more fruitful to fo-
cus on particular tasks such as language understanding and propose
testable theories at the computational and algorithmic levels.

Anderson & Lebiere (A&L) undertake the daunting task of eval-
uating cognitive architectures with the goal of identifying their
strengths and weaknesses. The authors are right about the risks of
proposing a psychological theory based on a single evaluation cri-
terion. What if the several micro-theories proposed to meet dif-
ferent criteria do not fit together in a coherent fashion? What if a
theory proposed for language understanding and inference is not
consistent with the theory for language learning or development?
What if a theory for playing chess does not respect the known com-
putational limits of the brain? The answer, according to Newell,
and A&L, is to evaluate a cognitive theory along multiple criteria
such as flexibility of behavior, learning, evolution, knowledge in-
tegration, brain realization, and so forth. By bringing in multiple
sources of evidence in evaluating a single theory, one is protected
from overfitting, a problem that occurs when the theory has too
many degrees of freedom relative to the available data. Although
it is noncontroversial when applied to testable hypotheses, I be-
lieve that this research strategy does not work quite as well in eval-
uating cognitive architectures.

Science progresses by proposing testable theories and testing
them. The problem with cognitive architectures is that they are
not theories themselves but high-level languages used to imple-
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Figure 1 (Taatgen). Diagram to illustrate successes and prob-
lems of a theory of cognition.
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ment theories, with only some weak architectural constraints.
Moreover, these languages are computationally universal and thus
are equivalent to one another in the sense that one language can
simulate the other. How does one evaluate or falsify such univer-
sal languages? Are the multiple criteria listed by the authors suf-
ficient to rule out anything at all, or do they simply suggest areas
to improve on? The authors’ grading scheme is telling in this re-
spect. It only evaluates how an architecture satisfies one criterion
better than another criterion, and does not say how to choose be-
tween two architectures. One cannot, of course, duck the question
merely by choosing an architecture based on the criterion one is
interested in explaining. This is precisely the original problem that
Newell was trying to address through his multiple criteria.

The authors suggest that timing constraints and memory limi-
tations imply that one cannot only program arbitrary models in
ACT-R. But that still leaves room for an infinite variety of models,
and ACT-R cannot tell us how to choose between them. To take
an analogy to programming languages: It is possible to design an
infinite variety of cognitive architectures and implement an infi-
nite variety of models in each one. Can we ever collect enough ev-
idence to be able to choose one over another?

This suggests to me that a cognitive theory must be carefully
distinguished from the concrete implementation and the under-
lying architecture. Just as a programming language can implement
any given algorithm, a cognitive architecture can instantiate any
cognitive theory (albeit with some variations in time efficiencies).
This should not count as evidence for the validity of the architec-
ture itself, any more than good performance of an algorithm
should count as evidence for the validity of the programming lan-
guage. Cognitive science can make better progress by carefully
distinguishing the algorithm from the architecture and confining
the claims to those parts of the algorithm that are in fact respon-
sible for the results. Consider, for example, ACT-R’s theory of
past-tense learning by children. More specifically, consider the
empirical observation that the exceptions tend to be high-fre-
quency words. A&L attribute this to the fact that only high-fre-
quency words develop enough base-level activation to be re-
trieved in ACT-R. In more general terms, only high-frequency
words provide sufficient training data for the system to be able to
learn an exception. How much of this explanation is a result of the
particulars of ACT-R theory as opposed to being a necessary con-
sequence of learning in a noisy domain? If any learning system
that operates in a noisy environment needs more training data to
learn an exception, why should this be counted as evidence for the
ACT-R theory? Similar criticisms can be leveled against other cog-
nitive architectures and mechanisms such as SOAR and chunking,
connectionism, and backprop.

In other words, even when multiple criteria are used to evalu-
ate a cognitive architecture, there still remains an explanatory gap
(or a leap of faith) between the evidence presented and the para-
digm used to explain it. To guard against such over-interpretation
of the evidence, Ohlsson and Jewett propose “abstract computa-
tional models,” which are computational models that are designed
to test a particular hypothesis without taking a stand on all the de-
tails of a cognitive architecture (Ohlsson & Jewett 1997). Similar
concerns are expressed by Pat Langley, who argues that the source
of explanatory power often lies not in the particular cognitive ar-
chitecture being advanced but in some other fact such as the
choice of features or the problem formulation (Langley 1999).
Putting it another way, there are multiple levels of explanations for
a phenomenon such as past-tense learning or categorization, in-
cluding computational theory level, algorithmic level, and imple-
mentation level. Computational theory level is concerned with
what is to be computed, whereas algorithmic level is concerned
with how (Marr 1982). Cognitive architecture belongs to the im-
plementation level, which is below the algorithmic level. Where
the explanatory power of an implementation mostly lies is an open
question.

Only by paying careful attention to the different levels of ex-
planations and evaluating them appropriately can we discern the

truth. One place to begin is to propose specific hypotheses about
the algorithmic structure of the task at hand and evaluate them us-
ing a variety of sources of evidence. This may, however, mean that
we have to put aside the problem of evaluating cognitive archi-
tectures, for now or forever.
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Abstract: Modelling human reasoning characterizes the fundamental hu-
man cognitive capacity to describe our past experience and use it to form
expectations as well as plan and direct our future actions. Natural language
semantics analyzes dynamic forms of reasoning in which the real-time or-
der determines the temporal relations between the described events,
when reported with telic simple past-tense clauses. It provides models of
human reasoning that could supplement ACT-R models.

Real-time performance, the second criterion for a human cogni-
tive architecture in Newell (1990), requires the system to operate
as fast (or as slow) as humans (target article, sect. 2, Table 1) on
any cognitive task. Real time is hence considered a constraint on
learning as well as on performance (sect. 5). Although I certainly
consider it an advantage of the ACT-R system that it does not rely
on artificial assumptions about presentation frequency in the way
classical connectionist systems do (Taatgen & Anderson 2002), the
limited focus the two systems share on the acquisition of the mor-
phological variability in the simple past-tense inflection in English
ignores its obvious common semantic properties, which also must
be learned. In this commentary, I propose to include in real-time
performance the characteristic human ability to use time effec-
tively when using language to encode information that systemati-
cally depends on contextual parameters, such as order of presen-
tation or time of utterance.

Human linguistic competence includes automated processes of
temporal reasoning and understanding, evidence of which is pre-
sented in our linguistic intuitions regarding the temporal relations
that obtain between events described in coherent discourse. The
presentation order in which simple past-tense clauses are pro-
duced in real time often contains important clues for the correct
interpretation. As opposed to the past progressive ( John was leav-
ing) and the past perfect ( John had left), the English simple past
tense ( John left) refers to an event that not only precedes the time
of utterance but also is temporally located with respect to other
events described by prior discourse. The following examples, (1)
and (2), show that the order of presentation affects our under-
standing of what happened.

(1) John lit a cigarette. He left.
(2) John left. He lit a cigarette.

From (1) we understand that John left after he had lit a cigarette.
But (2) makes us understand that the described events occurred
in the opposite order. Obviously, the real-time order of presenta-
tion in this case determines the temporal relations between the
events described. But this is not always so, as we see from exam-
ples (3) and (4), where reversing the order of the simple past-tense
clauses does not affect the temporal relations between the events.

(3) John slept for hours. He dreamt of Mary.
(4) John dreamt of Mary. He slept for hours.

Either (3) or (4) makes us understand that John dreamt of Mary
while he slept, which is reinforced by the lexical presupposition of
dreaming requiring that the dreamer be asleep.
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