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Modeling Weed Emergence in Italian Maize Fields

Roberta Masin, Donato Loddo, Stefano Benvenuti, Stefan Otto, and Giuseppe Zanin*

A hydrothermal time model was developed to simulate field emergence for three weed species in maize (common
lambsquarters, johnsongrass, and velvetleaf). Models predicting weed emergence facilitate well-timed and efficient POST
weed control strategies (e.g., chemical and mechanical control methods). The model, called AlertInf, was created by
monitoring seedling emergence from 2002 to 2008 in field experiments at three sites located in the Veneto region in
northeastern Italy. Hydrothermal time was calculated using threshold parameters of temperature and water potential for
germination estimated in previous laboratory studies with seeds of populations collected in Veneto. AlertInf was validated
with datasets from independent field experiments conducted in Veneto and in Tuscany (west central Italy). Model
validation resulted in both sites in efficiency index values ranging from 0.96 to 0.99. Alertlnf, based on parameters
estimated in a single region, was able to predict the timing of emergence in several sites located at the two extremes of the

Italian maize growing area.
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Integrated Weed Management, a basic component of
Integrated Pest Management, has the objective of developing
effective weed control systems and efficient use of herbicides.
Although PRE herbicides are often considered fundamental in
weed management, as they are often applied without regard
for the density and botanical composition of weed commu-
nities (Lemieux et al. 2003), some applications may not be
necessary (Swanton and Weise 1991). A possible alternative
is POST weed management that entails waiting until weeds
have emerged, evaluating their density and competitiveness,
predicting the crop yield loss they could cause, and then
deciding if a chemical or mechanical control is required.
Systematic PRE applications can therefore be replaced by a
targeted POST control (Lemieux et al. 2003). However, the
knowledge of weed emergence is paramount for specific
POST control. The major cause of poor POST weed control
is improper application timing, which can be either too early
or too late (Battla and Benech-Arnold 2007). If the control is
too early, the flushes of emergence that take place after the
application are not affected by the herbicide action, while if it
is too late, weeds become less sensitive to the herbicide due to
their larger size and moreover they could have already caused
yield losses. Predictive weed emergence models can estimate,
in a given moment of the crop cycle, the percentage of
weeds that have already emerged and the successive seedling
emergence dynamics. Therefore, they may be useful to achieve
well-timed and efficient POST applications. The agronomic
importance of knowing weed emergence patterns has been
recognized for many years (Buhler et al. 2000; Forcella et al.
2000; Masin et al. 2005), and several studies have been
conducted on weed emergence dynamics with various
approaches (Grundy 2003). Significant progress has recently
been made in the development of predictive models (Colbach
et al. 2007; Dorado et al. 2009; Leguizamon et al. 2005).
Both mechanistic and empirical approaches have been used to

DOI: 10.1614/WS-D-11-00124.1

*First, second, and fifth authors: Researcher, Post-Doctoral Fellow, and
Professor, respectively, Dipartimento di Agronomia Ambientale e Produzioni
Vegetali, Universita di Padova, Viale dell'Universita 16, 35020 Legnaro (PD),
Italy; Third author: Researcher, Dipartimento di Biologia delle Piante Agrarie,
Viale delle Piagge 23, 56100, Pisa, Italy; Fourth author: Researcher, Istituto di
Biologia Agroambientale e Forestale — CNR, Viale dell'Universica 16, 35020
Legnaro (PD), Italy. Corresponding author’s E-mail: roberta.masin@unipd.it

254 + Weed Science 60, April-June 2012

https://doi.org/10.1614/WS-D-11-00124.1 Published online by Cambridge University Press

common lambsquarters, Chenopodium album L.,.CHEAL; johnsongrass, Sorghum halepense L. Pers,
SORHA; velvetleaf, Abutilon theophrasti Medik., ABUTH.
Hydrothermal time, emergence prediction, modeling, weed control.

forecast weed emergence and both present advantages and
disadvantages (Grundy 2003). There is no universal best
approach to create an accurate model, since it depends on
many factors, such as application area/areas, local climatic
characteristics, cultivation practices, and uses of the model
(research or production). A commonly used approach is the
hydrothermal time concept (Alvarado and Bradford 2002;
Gummerson 1986), based on the idea that seeds need a
certain amount of hydrothermal time to germinate. Hydro-
thermal time is accumulated according to a comparison
between daily soil conditions (temperature and water
potential) and specific biological thresholds for seed germi-
nation (base temperature and water potential).

In the Italian maize-growing region, crops are not always
irrigated, so periods of water deficiency may affect weed seed
germination. In these conditions, hydrothermal time models,
which consider both soil temperature and water potential,
seem to be the most adequate to predict emergence with some
degree of accuracy (Masin et al. 2010a). The objective of this
study was to construct and evaluate a hydrothermal time
model to predict the emergence of three important weeds in
Italian maize fields: velvetleaf, common lambsquarters, and
johnsongrass. The validation of the model was conducted in
two regions: the one where the model was created (Veneto)
and a region (Tuscany) at the other extreme of the main area
where maize is grown in Italy. This was done to evaluate the
possibility of extending the model, created using datasets from
a single region, to all the regions where maize is grown in Italy
without recalibration. This hypothesis was proposed because
Masin et al. (2010b) reported homogeneous values of base
temperature and water potential for local populations of the
three species present in the two regions.

Materials and Methods

Experimental Sites. Eight field experiments were conducted
from 2002 to 2008 in three localities in the northeastern Po
Valley (northeast Italy): at Montemerlo (2002, 2003, and
2005) in a silty clay loam soil, at Carbonara (2006 and 2007)
in a silty clay loam soil, and at Legnaro (2006, 2007, and
2008) in a loam soil (creation dataset). In all the experimen-
tal sites, seedbed preparation was done according to local
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practices: primary tillage consisted of fall moldboard plowing
and spring harrowing. Maize was sown in late winter (March)
in some experiments and in mid-spring (traditional sowing) in
others. Rows were spaced 0.75 m apart. In the Montemerlo
and Carbonara experiments, the crop was irrigated if required
to avoid yield losses (irrigation timing and amounts were
considered in the model).

In all the experimental sites, weed emergence was
monitored in 33 fixed sampling areas (0.3 by 0.3 m)
positioned on the soil in the interrow. Weed seedlings in
these areas were counted, classified, and removed weekly until
the end of the growing season. The emergence data obtained
from each of the 33 areas of each experiment were summed
for each date and cumulated to obtain the emergence
dynamics. The emergence dynamics of the eight experiments
were used to create an emergence predictive model (creation
dataset) for velvetleaf, common lambsquarters, and johnson-
grass (seedlings from seeds).

Three other experiments were conducted following the same
method at Legnaro in 2010 and at Pisa from 2007 to 2008.
This latter site was chosen because it is located in Tuscany at the
southwestern extreme of the Italian maize-growing area. The
emergence data obtained from these three experiments were
used to validate the model (validation dataset).

The climate of all experimental sites in both regions is
subhumid. The sites in Veneto are less than 50 km apart and
have almost the same climatic conditions. Average annual
rainfall is about 850 mm and fairly uniformly distributed
throughout the year. Average annual temperature of the area is
12.2 C, with temperature increases from January (average
minimum: —1.5 C) to July (average maximum: 27.2 C). Pisa
has average annual rainfall of about 930 mm, mainly during
the spring and fall. Average annual temperature is 15.0 C,
with temperature increases from January (average minimum:
3.2 C) to July (average maximum: 28.0 C).

Weather Monitoring. Average daily precipitation and air
temperature were collected during the experiments from
ARPA  (Regional Environmental Protection Agency of
Veneto) meteorological stations located less than 5 km from
the experimental sites in Veneto and at the on-farm weather
station in Tuscany. Average daily air temperature and
precipitation were used to simulate soil temperature and soil
water potential at a depth of 5 cm by the Soil Temperature
and Moisture model (STM?) (Spokas et al. 2007, http://www.
ars.usda.gov). This model has been used successfully to predict
the soil microclimate used as input for weed emergence
modeling and other applications (Royo-Esnal et al. 2010;
Spokas and Forcella 2009). Soil temperature and water
potential were monitored from the sowing date onwards at
Carbonara in 2009 (with a proper experiment, not repeated at
Montemerlo because the soil is the same as at Carbonara), at
Pisa in both experimental years 2007 to 2008 and in all years
at Legnaro. Temperature was measured using four mini
loggers HOBO (Pendant data logger HOBO UA-001-08,
Onset Computer Corporation, Bourne, MA) buried 5 and
10 cm deep. Soil water potential was monitored using water
moisture probes (253-L Watermark Soil Matric Potential,
Campbell Scientific Inc., Shepshed, U.K.) buried at a depth of
10 cm (to obtain accurate measurement of soil moisture it was
decided to bury the sensors only at the lower depth) and
connected to an external data logger (External data logger
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Table 1. Densities of the three species of interest in all the experimental sites.

Sites ABUTH CHEAL SORHA
(pm?)

Creation dataset
Montemerlo 2002 0.0 26.7 144.4
Montemerlo 2003a 0.0 15.6 0.0
Montemerlo 2003b 43.0 0.0 3.0
Montemerlo 2005 0.0 263.9 174.4
Carbonara 2006 460.0 27.8 92.2
Carbonara 2007 276.6 86.2 115.4
Legnaro 2006 0.0 84.4 520.0
Legnaro 2007 5.1 11.8 3.7
Legnaro 2008 84.2 60.9 64.0

Validation dataset
Legnaro 2010 11.1 52.5 10.1
Pisa 2007 10.9 0.0 0.0
Pisa 2008 0.0 68.8 19.1

HOBO 4-Channel U12-008, Onset Computer Corporation,
Bourne, MA). The data loggers took readings of soil
temperature and water potential every 2 h. The recorded
values were used to test the STM* model simulation and to
calibrate the model for the simulation of temperature and
water potential where they were not directly measured.

Hydrothermal Time and Model Creation. The model
developed in this study is based on the hydrothermal time
concept (Alvarado and Bradford 2002; Gummerson 1986).
According to this approach, all species accumulate hydrothermal
time in proportion to soil temperature only when soil water
potential is above a base value. This base value of water potential
increases linearly as temperature rises above the optimum
temperature (T,) undl it reaches 0 Megapascal (MPa) at a
temperature defined as the ceiling temperature (Bradford 2002).
The hydrothermal time (HT;) is calculated as a combination of
soil temperature and soil water potential as follows:

HT;=n+ max(Ts; — 1;,0)+ HT;_, (1]

when Ts;, < Ty:n = 0if ¥s; = Wy, » = 1if Ws; > Wy,; and
whenTs; > To:n = 0if Ws; = Wy + K. (Ts; — T,), n = 1if
Ys, > W, + K, (Ts; — T,); Ts; and Ws; are the average daily
soil temperature and water potential at 5 cm depth, Ty, and ‘P,
are the base temperature and base water potendal, T, is the
optimum temperature, and K, is the slope of the relationship
between W}, and Ts; in the supra-optimal temperature range.
Base thresholds of the three species were calculated with previous
laboratory experiments (for details see Masin et al. 2010b)
(Table 1). Accumulation of HT starts from the spring tillage
date for seedbed preparation.

Cumulative emergence (CE) is expressed by a Gompertz
function, as follows:

CE = 100exp( — aexp(— b6HT)) 2]

where « is related to a HT lag before emergence starts, and & is
related to the slope of the curve.

The values of T, and K, were estimated by systematically
varying in an iterative way until the best simulations were
obtained for each species. Initially, hydrothermal time was
recalculated for different values of T, and with K, = 0, then
K, was varied incrementally to find the combination between
the values of K, and T, giving the least squares best fit. Weed
emergence recorded at Montemerlo (2002, 2003, and 2005),
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Figure 1. Measured (black circles) and estimated (dashed lines) soil temperature
at 5 cm depth and soil water potential at 10 cm depth (» = 0.95 for temperature,
r = 0.85 for water potential, P < 0.001). The horizontal solid line in the soil
water potential graph indicates the base water potential value (—0.96 MPa) of
common lambsquarters.

Carbonara (2006 and 2007), and Legnaro (2006, 2007, and
2008) and soil temperature and soil water potential at 5 cm
estimated by STM~ were used to estimate K, T,, and the
coefficients @ and & of the Gompertz function. The created
model will henceforth be called “AlertInf.”

AlertInf performance in predicting weed emergence was
evaluated with an efficiency index (EF) (Loague and Green
1991) calculated as:

o

(0,~0)" = 3. (P~ 0,
EF == 3]
,-;1 (0;—0)

where P; is the predicted value, O; the observed value, and O
the mean of observed values. The value of EF can range from
1 downwards. An EF value of 1 would mean that the model
produced exact predictions.

Validation of the Weed Emergence Model with Indepen-
dent Dataset. In order to validate the model, datasets of weed
emergence collected in experiments conducted at Pisa in 2007
(only velvetleaf) and 2008 (common lambsquarters and johnson-
grass) and at Legnaro in 2010 (all three species) were used.

The daily average values of soil temperature and soil water
potential were those estimated by STM? at a depth of 5 cm.
The model was also validated at Pisa to verify its
transferability to a region with a different climate without
recalibrating it. In this way, it was verified if the same
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Table 2. Biological parameters for the calculation of the hydrothermal time and
a and & coefficients of the Gompertz function used for modeling cumulated
emergence. T}, and ‘P, estimated by Masin et al. (2010b).

Species Ty T, ¥, K, a b
© (MPa)

ABUTH 3.9 25 —0.78 0.10 10.28 0.02

CHEAL 2.6 23 —0.96 0.20 3.56 0.01

SORHA 11.8 24 —0.78 0.30 4.72 0.03

biological parameters (Ty,, ¥y, K, and T,) and Gompertz
coefficients (2 and /) estimated in Veneto were usable in
another location at the other extreme of the Italian maize-
growing region. Simulated emergence from AlertInf was
compared with observed emergence data obtained at Legnaro
and at Pisa using the model EF.

Results and Discussion

STM? Model Validation. In the field used for the weed
emergence model creation, STM? simulated the soil environ-
ment with a certain accuracy, indeed the correlation of
measured daily average soil temperatures and soil water
potentials with daily average values estimated with STM?
resulted in 7 > 0.94 for temperature and 7 ranged from 0.65
to 0.82 for water potential (P < 0.001). Figure 1 shows the
comparison between simulated and observed soil temperatures
and soil water potentials at Legnaro during 2010 growing
season, one of the sites and years used for the validation of the
model. Soil temperatures were overestimated by the model
as from July, when no more weed emergences were ob-
served; therefore, this incorrect estimation does not influence
emergence simulations. The model underestimates the low
values of soil water potential when it decreases quickly (the
example of the base water potential of common lambsquarters
is shown in Figure 1). Nevertheless, it is important to note
that the periods of water stress (when the soil water potential
is below the base value and hydrothermal time accumulation
stops) calculated with the observed or predicted daily water
potential values coincide.

Weed Emergence Model Creation. The densities of the three
studied species were very different from one experiment to
another (Table 1). Parameters a and b of the Gompertz
function and the input variables T, and K, are shown in
Table 2 together with base temperatures and base water
potentials determined by Masin et al. (2010b), which were
also used for AlertInf parameterization. The resulting T, of
the three species were from 23 to 25 C. These values were
essentially in agreement with those reported in the literature
for common lambsquarters (Bouwmeester and Karssen 1993;
Roman et al. 1999) and velvetleaf (Leon et al. 2004), while
Benech-Arnold et al. (1990) stated that the interval 30 to 36 C
was the optimum temperature for germination for an
Argentinean population of johnsongrass. This dissimilarity
may be a consequence of genetic differences between the two
studied populations of johnsongrass that have such a different
origin. The model adequately described the cumulated
emergence in the experiments used for its creation, and even
if there is a certain variability of between 20 and 80% of
emergence prediction of johnsongrass, the EF values of the
simulation are high (0.93 to 0.97) (Figure 2).
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Figure 2. Observed vs. predicted cumulated weed emergence (creation datasets) for the three species and relative efficiency index (EF) values.

Validation of the Weed Emergence Model with Indepen-
dent Datasets. Model simulations of emergence in 2010 at
Legnaro and 2007 to 2008 at Pisa (validation dataset) resulted
in EF values ranging from 0.96 to 0.99 (Figure 3), AlercInf
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prediction showed one pause in emergence at the end of April
at Legnaro for all species. In correspondence to this pause, the
model underestimated the percentage of cumulated emer-
gence in velvetleaf and johnsongrass, and overestimated it
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Figure 3. Cumulated emergence predicted using AlertInf (solid line), and observed (black circles) in three experiments conducted at Legnaro in 2010 and at Pisa in 2007

and 2008 (validation datasets).
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in common lambsquarters. The second pause between May
3 and 7 present in the real emergence pattern of common
lambsquarters and johnsongrass was not predicted by the
model. This incorrect estimation is difficult to explain given
that the analysis of soil temperature and soil water potential
showed that neither the estimated nor the measured values of
these two parameters were below the threshold on those 5 d
(Figure 1). Hydrothermal time was therefore accumulated
during this period, and consequently emergence percentage
was supposed to increase, as for velvetleaf. Nevertheless, even
if the estimation did not predict the second pause, all the
simulations were satisfactory both statistically (high EF) and
practically (for practical applications of the model).

It is very interesting that the simulation at Pisa, a different
site from those used to create the model, was satisfactory, as
shown by the high EF values (0.98 to 0.99). The simulated
emergence was delayed in comparison with the real dynamics at
the beginning of emergence for velvetleaf in 2007, and in
advance by some days at the beginning of emergence for
common lambsquarters and johnsongrass in 2008. However,
for practical purposes (i.e., for timing stale seedbed prepara-
tion), estimation errors of a few days at the beginning of
emergence could be acceptable. The more relevant error was in
the simulation of johnsongrass emergence. AlertInf anticipated
and overestimated the initial flush of emergence and then
reported a pause in correspondence to 36% of emergence that
was not present or maybe began later and lasted for less time
in the real emergence pattern of this species. This incorrect
prediction causes an estimation error of more than 20% of
cumulated emergence, i.e., on April 30 the real emergence was
15% but the model estimated a much higher value (36%). A
similar pause is also evident in the simulation of the emergence
pattern of common lambsquarters. However, this pause could
not be confirmed in the real emergence dynamics due to lack of
data for this species in that period.

In conclusion, even if there were some errors of simulation,
the predicted emergences of all three species showed high EF
values in both sites considered for the validation. Results were
accurate not only statistically, but also from a practical point
of view. In general, AlertInf showed difficulties in accurately
forecasting the onset of emergence, which is a critical period
only for implementing weed control practices such as stale
seedbed preparation but not for the use of POST control,
which is applied later in the growing season. In fact, it usually
suggested that farmers apply POST herbicides when most
of the weeds have emerged (70 to 80% of emergence)
(WeedCast Version 4.0 Documentation). In all the model
validations (species and sites), the dates corresponding to this
percentage of emergence were accurately estimated (the
maximum difference was 2 d, an acceptable error for practical
use). Another example can be made analyzing the predicted
percentage required for optimizing weed control using rotary
hoeing or first interrow cultivation according to the Oriade
and Forcella (1999) indications. They observed that the more
consistent efficacy of rotary hoeing could be obtained at 30%
emergence of the species with higher density (in their
experiments green foxtail, Setaria viridis L. Beauv.) and first
interrow cultivation at 60%. AlertInf was also able to
accurately predict these dates for optimizing those practices
in all species and both sites. As previously said, for practical
purposes the more relevant error of the model was in
predicting the emergence of johnsongrass in Pisa. In this case
the prediction of the date when johnsongrass reached 30% of
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emergence (for a hypothetical rotary hoeing), was 5 d in
advance of the real date (the model estimated April 30 and the
real 30% was reached on May 4).

These satisfactory results obtained with the model
validation at Pisa and Legnaro lead to the conclusion that
AlertInf created using a dataset collected in Veneto can be
used to predict velvetleaf, common lambsquarters, and
johnsongrass emergence not only in this region but also
throughout the Italian maize-growing area.

Since 2008, a simplified version of AlertInf has been
available on the website of the ARPAV Agrobiometeorology
Unit (www.arpa.veneto.it) (Masin et al. 2010a). The response
of the users is considered to be positive due to the high
number of recorded visits to the AlertInf webpage throughout
the growing season (about 2000 hits during 2010 growing
season). Similar predictive models for weed emergence in
arable fields accessible through interactive computer software
are also being used by farmers and crop advisors in the United
States (Archer et al. 2001) and Australia (Walsh et al. 2002),
with positive feedbacks. The improved version of AlertInf
described in this article has demonstrated the ability to predict
emergence of the three studied species with good accuracy.
The current objective is to improve this new version of the
model by adding other species and then make it accessible to
farmers and advisors through interactive computer software or
information in bulletins distributed by extension services.
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