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Previous clinical, in vitro experimental and in silico simulation studies have shown
the complex dynamics of flow through prosthetic heart valves. In the case of bileaflet
mechanical heart valves (BMHVs), complex flow phenomena are observed due to
the presence of two rigid leaflets. A numerical method for this type of study must
be able to accurately simulate pulsatile flow through BMHVs with the inclusion
of leaflet motion and high-Reynolds-number flow modelling. Consequently, this
study aims at validating a numerical method that captures the flow dynamics for
pulsatile flow through a BMHV. A 23 mm St. Jude Medical (SJM) RegentTM valve
is selected for use in both the experiments and numerical simulations. The entropic
lattice-Boltzmann method is used to simulate pulsatile flow through the valve with
the inclusion of reverse leakage flow, while prescribing the flowrate and leaflet
motion from experimental data. The numerical simulations are compared against
experimental digital particle image velocimetry (DPIV) results from a previous study
for validation. The numerical method is shown to match well with the experimental
results quantitatively as well as qualitatively. Simulations are performed with efficient
parallel processing at very high spatiotemporal resolution that can capture the finest
details in the pulsatile BMHV flow field. This study validates the lattice-Boltzmann
method as suitable for simulating pulsatile, high-Reynolds-number flows through
prosthetic devices for use in future research.
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1. Introduction
Heart valves are essential to the cardiovascular circulatory system and function

by maintaining unidirectional flow of blood in the heart. Native heart valves may
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FIGURE 1. Schematic of forward and reverse BMHV flows and the popular SJM valve
design: (a) BMHV flow directions; (b) St. Jude Medical BMHV.

become defective due to congenital birth defects or disease. Prosthetic valves have
been used for over 50 years to replace defective valves, and mechanical heart valves
are currently one of the most popular prosthetic valve designs (Black & Drury 1994).
Among mechanical heart valves, the bileaflet mechanical heart valve (BMHV) is the
most popular design and accounts for 80 % (Yoganathan et al. 2003) of implanted
mechanical heart valves. Its popularity over other prosthetic heart valves is mainly
due to its superior durability, function and bulk flow hemodynamics.

Figure 1(a) shows a schematic of a BMHV that shows the range of leaflet motion,
the hinges to which the leaflets are attached, and flow regions. The circular wall of the
valve is referred to as the valve housing. During forward flow, most of the blood flows
through three orifices formed by the open leaflets (figure 1(a)). The three forward flow
jets are through the two lateral orifices, and the central orifice. In reverse flow, there is
leakage flow through the hinges, the gap between the closed leaflets and valve housing
and through the central b-datum plane.

Despite improvements in design evolution, BMHVs still cause serious complications
such as platelet activation and thromboembolism (Giersiepen et al. 1990; Grunkemeier
& Anderson Jr 1998). These complications are thought to be due to non-physiologic
shear stress levels imposed on blood elements by complex flows through BMHVs
(Ellis et al. 1996; Ellis & Yoganathan 2000). This may lead to thrombus formation
in the valves, and emboli may detach and become lodged in smaller blood vessels,
leading to stroke and death. Various experimental studies have been performed on flow
through prosthetic heart valves to study the complex flow dynamics (Lim et al. 1994;
Manning et al. 2003). A common limitation of experimental studies is the lack of
optical access within the valve, particularly close to the leaflets. This prevents detailed
and full-view analysis of the complex flows caused by the BMHV geometry.

An advantage of computational fluid dynamics (CFD) in exploring BMHV
flows is the ability to model three-dimensional flows with high spatiotemporal
resolution, whereas experimental studies are mostly limited to data in 2D planes.
The vorticity dynamics in pulsatile BMHV flows were explored in one dual
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experimental-computational study (Dasi et al. 2007). 3D vorticity dynamics was
explored computationally, showing rich, complex three-dimensional vortex structures
with greater clarity than experimental results. Computational simulations of flow
through BMHVs have also included dynamic leaflet motion using two-way fluid–solid
interaction (FSI), including one study by De Tullio et al. (2010) that employed
an immersed boundary method to simulate pulsatile 3D flow through a BMHV.
Computational methods have also expanded in modelling beyond simplified in vitro
geometries, focusing on more physiological geometries that include bends in the
domain and more anatomical features. Studies by Borazjani et al. (Borazjani, Ge
& Sotiropoulos 2008; Borazjani & Sotiropoulos 2010) examined pulsatile 3D flow
through a BMHV in an anatomic aorta, characterizing the effect of realistic geometries
on the BMHV flow fields.

Although blood damage experiments are possible for flow through BMHVs or
BMHV-like geometries (Fallon et al. 2008), these experiments can only give bulk
blood damage results and cannot pinpoint the locations and times of greatest damage.
CFD studies have employed particle tracking methods in order to quantify blood
damage in these flows (Simon et al. 2010; Xenos et al. 2010). However, these
methods are limited in modelling only single-phase flows, and evaluating fluid shear
stresses as the assumed shear stresses experienced by platelets. CFD studies have
also been performed characterizing complex three-dimensional flows through the
hinge (Simon et al. 2009), and have also included suspended platelets to track blood
element damage in BMHV 3D hinge flows (Wu et al. 2011; Yun et al. 2012).

CFD can exploit parallel processing capabilities and large computational cluster
resources to model high-resolution, 3D, pulsatile flows through prosthetic heart valve
designs with the inclusion of suspended blood elements for accurately tracking
damage. This will allow for the improved understanding of how blood damage
occurs in these flows and lead to the eventual optimization of various prosthetic
device designs in order to reduce complications. In order to capture the smallest
relevant scales in pulsatile, high-Reynolds-number BMHV flows, high spatiotemporal
resolution is required, which lead to high computational expenses. A true suspension
flow solver is also required to accurately quantify blood element damage. To
accomplish these goals, an efficient, parallel, multiscale suspension flow modelling
method is required. This method must first be validated with experimental flow data
in order to show that it can accurately model complex, pulsatile BMHV flows before
being used to assess blood element damage.

The objective of this study is to validate a numerical entropic lattice-Boltzmann
method (LBM) for modelling pulsatile, high-Reynolds-number BMHV flows by
comparison with experimental data. First, comparisons are made for cases of steady
forward flow through a BMHV. Both laminar and turbulent regimes are modelled
for the steady flow cases to show the accuracy of the numerical method to model
different Reynolds numbers. Next, pulsatile flow through a BMHV is simulated
and results are compared to pulsatile flow experimental data both quantitatively and
qualitatively to demonstrate the ability of the numerical method to capture pulsatile,
high-Reynolds-number BMHV flows.

The paper is organized as follows. In § 2, we present the entropic LBM for
simulating flow, the experimental and numerical design, and details of the validation
with experiments. In § 3, we simulate steady and pulsatile flow past a BMHV and
show comparisons with experiments. In § 4, we discuss the results of our simulations
and their implications, as well as the future research use of the numerical method.
Concluding remarks are made in § 5.
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FIGURE 2. Simplified illustration of streaming and collision processes for the LBM,
shown for a 2D, nine-vector model.

2. Methodology
The numerical flow methodology for this study is based on the LBM. The appeal of

LBM lies in the nature of its local, linear calculations, which make it highly efficient
when used for parallel simulations. FSI is derived from the lattice-Boltzmann standard
bounce-back (SBB) methodology as described by Aidun et al. (Aidun & Lu 1995;
Aidun, Lu & Ding 1998; Aidun & Clausen 2010) and Macmeccan et al. (2008). A
modification to the LBM to allow for very high-Reynolds-number flow simulations is
implemented by the entropic lattice-Boltzmann (ELB) method (Keating et al. 2007).
These numerical methodologies have been extensively validated in the cited previous
studies with a variety of single-phase flow simulations as well as suspended particle
flow validation simulations.

2.1. LBM
The LBM is a direct numerical simulation (DNS) method used for solving fluid flow,
and is based on kinetic gas theory. The review by Aidun & Clausen (2010) presents
an overview of LBMs for modelling complex flows. The method described by Aidun
et al. (1998), as employed in this study, is a single-relaxation method. The method is
normally applicable to low- to moderately low-Reynolds-number flows.

In the LBM, the fluid is modelled as a continuous distribution of fictitious fluid
particles that exist on a fixed regular lattice grid that discretizes 3D velocity space.
Each node on this grid is linked to neighbouring nodes through lattice velocity vectors.
In the simulations of this study, a 3D, 19-vector Cartesian velocity set (D3Q19) is
employed.

The fluid particle distribution changes with time through processes known
as ‘streaming’ and ‘collision’ (figure 2). In streaming, fluid particles move to
neighbouring grid nodes that are connected by lattice velocity links. In collision,
fluid particles arriving at a node collide with each other and change the fluid particle
distribution at that node. These processes dictate the time evolution of the fluid
particle distribution at each node and only require knowledge of the fluid particle
distributions at neighbouring nodes, making all calculations localized in space. The
lattice-Boltzmann equation, using the single-relaxation-time Bhatnagar–Gross–Krook
(BGK) collision operator, is given as

fi(r + ei, t+ 1)= fi(r, t)− 1
τ
(fi(r, t)− f (0)i (r, t)), (2.1)

where fi is the fluid particle distribution function, f (0)i is the equilibrium distribution
function, r is the spatial location of the fluid particles, ei is the lattice velocity vector,
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τ is the single relaxation time and t is time. The index i varies from 0 to 18 for the
D3Q19 model, where i= 0 is the rest particle.

The solution of the lattice-Boltzmann equations converges to the solution of the
incompressible Navier–Stokes equations for fluid flow when the lattice spacing is
much smaller than a characteristic simulation length scale. The method uses a
pseudo-sound speed of cs = √1/3. The relation between kinematic viscosity ν and
single relaxation time τ is

τ =
(

1
cs

)2

ν

(
1t
(1x)2

)
+ 0.5, (2.2)

where the time and length discretizations are normalized such that 1t=1x= 1.
The equilibrium distribution function is given by

f (0)i (r, t)= ρwi

[
1+ 1

c2
s

(ei · u)+ 1
2c4

s

(ei · u)2 − 1
2c2

s

(u · u)
]
, (2.3)

where ρ is density, u is macroscopic fluid velocity and wi are the lattice weights. The
lattice weights for the D3Q19 model are wi= 0 for i= 0, wi= 1/18 for non-diagonal
lattice velocity directions and wi = 1/36 for the diagonal directions.

The macroscopic flow properties (density, velocity and pressure) are recovered by
the moments of the equilibrium distribution function, and are given as

ρ =
∑

i

f (0)i (r, t) (2.4)

ρu =
∑

i

f (0)i (r, t) ei (2.5)

c2
sρ I + ρuu =

∑
i

f (0)i (r, t) eiei, (2.6)

where I is the identity tensor. In the LBM, the pressure is proportional to the density
by p= c2

sρ = ρ/3.
The boundaries between the fluid and solid surfaces are connected via ‘links’, and

the FSIs are dealt with via the SBB method. As the BGK collision operator and all
streaming are localized in space, parallelization of the LBM is straightforward. For
complete details on the LBM or SBB, please refer to Aidun et al. (1998) and Aidun
& Clausen (2010).

2.2. ELB
The LBM is a DNS method for solving fluid flow and thus no special turbulence
modelling is required. However, when the flow velocity or its spatial gradient becomes
too large for the lattice, numerical instabilities arise in the form of negative fluid
distribution values. These instabilities become a significant problem when simulating
higher-Reynolds-number flows. In order to eliminate these instabilities, a special ELB
method has been proposed for modelling high-Reynolds-number flows (Keating et al.
2007). Briefly, a discrete H-theorem constraint is applied which enforces universal
positive-definiteness on all particle distribution values. These methods lead to stable
explicit algorithms even at very low viscosities, allowing for the modelling of very
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high-Reynolds-numbers with good accuracy. The ELB equation is a modification of
the single-relaxation lattice-Boltzmann equation, and is written as

fi(r + ei, t+ 1)= fi(r, t)− γ

2τ
(fi(r, t)− f (0)i (r, t)) (2.7)

where γ is the non-trivial root of

H[ f ] =H[ f − γ ( f − f (0))]. (2.8)

The term H[ f ] is the discrete form of the standard continuum Boltzmann H function,
given as

H[ f ] =
N−1∑
i=0

fi ln
(

fi

wi

)
(2.9)

where N is the number of lattice velocity directions (19 for the D3Q19 model). The
ELB method is only applied at nodes where instabilities are determined for the fluid
particle distributions. The γ root value is determined in (2.8) by using a rapidly
converging Newton–Raphson procedure at each time iteration for unstable grid points.
After the ELB method stabilizes a fluid grid node, the original single-relaxation
lattice-Boltzmann equation (2.1) is again employed. More details on ELB methods
can be found in the methodology paper by Keating et al. (2007).

2.3. Experimental work
To validate the numerical method as appropriate for modelling pulsatile BMHV flows,
comparisons are made between the numerical simulations and previous experimental
data. In vitro particle image velocimetry (PIV) experiments were performed of steady
flow past fully open leaflets of an SJM valve (figure 1b) in the aortic position using
a blood analogue fluid (Ge et al. 2005). An averaged 2D flow field was determined
over 100–200 samples for various Reynolds numbers and used for validation.

The same in vitro flow loop was used to recreate pulsatile flow through a SJM
valve throughout the cardiac cycle (Dasi et al. 2007). A cardiac cycle with a period
of 860 ms was employed, corresponding to 70 beats min−1. The mean flow rate was
adjusted to 4.5 l min−1 with a peak flow rate of 25.0 l min−1 and a forward flow
duration of approximately 340 ms. A blood analogue fluid was used that matched the
kinematic viscosity of whole human blood (3.5 × 10−6 m2 s−1), and was composed
of 79 % saturated aqueous sodium iodide, 20 % glycerin and 1 % water by volume.
The density of this blood analogue was approximately 1620 kg m−3, as compared
with 1060 kg m−3 for whole human blood. This was necessary to match the refractive
index of the fluid to the experimental chamber for optimal visualization. Although
the blood analogue density does not match that of whole blood, matching kinematic
viscosity was determined as most important to modelling pulsatile BMHV flows.

Figure 3 shows a schematic of the SJM valve in the experimental flow chamber.
The chamber was made of rigid straight tubes with a diameter of 25.4 mm. The valve
itself is a 23 mm SJM valve with an inner diameter of 21.4 mm. Downstream of
the valve on the aortic side is a sudden axisymmetric expansion to a diameter of
31.75 mm representing the idealized aortic sinus root immediately downstream of the
aortic valve. Figure 3 shows the longitudinal cutplanes at which PIV measurements
are made, perpendicular to the leaflets and in the centre of the valve in the side view.
The spatial resolution of the PIV flow data used for comparison is approximately
134 µm. Figure 4 shows the ensemble-averaged flow rate and leaflet angle as they
vary throughout the cardiac cycle for the pulsatile flow experiments. More descriptions
of the experimental set-up can be found in the literature (Dasi et al. 2007).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

54
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.54


176 B. M. Yun, L. P. Dasi, C. K. Aidun and A. P. Yoganathan

Housing 

Leaflet
PIV measurement planes

Chamber Sinus

TOP VIEW SIDE VIEW

x 

r 

Side orifices 

Central orifice 

FIGURE 3. Experimental set-up.
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FIGURE 4. Flowrate and leaflet angle variation for one cardiac cycle. (a) Flowrate curve.
(b) Leaflet angle curve.

2.4. Numerical set-up and boundary conditions
The exact in vitro experimental set-up was recreated computationally using micro
computed tomography (microCT) and is shown in figure 5. A quarter-cut scan of
the valve was employed and then reflected twice to create a perfectly symmetric
geometry across the two cross-section axes. For comparison with experiments for
steady flow, the numerical fluid domain employed uniform 3D grid spacing with
a spatial resolution of 160 µm and a temporal resolution of 4.8 µs per numerical
timestep. The flow domain is discretized into a mesh of 2432 × 204 × 204 grid
nodes at this 160 µm spatial resolution for the axial and cross-sectional directions,
respectively. Although the spatial resolution is not high enough to resolve flow
through the hinge regions or through the gap between the closed leaflets and the
valve housing, it is sufficient to resolve the bulk flow through the valve while
minimizing computational costs. In addition, the PIV flow data-averaged flow features
due to the 200 µm laser sheet thickness and laser pulse separation. Thus the 160 µm
computational spatial resolution is deemed suitable for capturing all important bulk
flow features for experimental comparison. This resolution is employed for steady
flow and qualitative pulsatile flow comparisons.

Although the two gap regions are important in a complete study of BMHV flows,
only the bulk flow field is of interest for this specific study. The very high temporal
resolution allows for accurate direct modelling of unsteady non-periodic and turbulent
flow at high Reynolds numbers with small time scales. For closer examination of the
pulsatile flow fields, an additional simulation is performed with a high spatiotemporal
resolution of 80 µm and 2.4 µs per numerical timestep and is also presented in § 3.
This higher-resolution simulation is used for quantitative comparison with the pulsatile
flow experiments. The flow domain is discretized into a mesh of 4824 × 408 × 408
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FIGURE 5. Computational model of the experimental in vitro flow loop.

grid nodes at this 80 µm spatial resolution for the axial and cross-sectional directions,
respectively. An analysis on whether this spatial resolution captures the smallest
Kolmogorov scales in pulsatile BMHV flows is made in § 4.3. Although the fluid
domain employs uniform 3D grid spacing with no near-wall clustering, the resolution
of the simulations is sufficiently high to accurately resolve the solid boundaries for
both the valve housing and the leaflets.

The solid domain is created using Gambit c©software, where the microCT scan and
recreation of the experimental set-up is imported. The internal surface of the flow
loop and the leaflet surfaces are discretized using an unstructured triangular mesh,
which is immersed into the 3D fluid domain. The solid domain employed variable
spatial resolution meshing: the ventricular inlet and aortic outlet cylinder lengths
employ 320 µm length grid spacing, the valve region employs variable grid spacing
from 20 to 40 µm, and the leaflets employ grid spacing from 20 to 50 µm.

Blood is modelled computationally as an incompressible Newtonian fluid, with the
same physical properties as the blood analogue solution that was used experimentally.
This computational matching of blood kinematic viscosity was also deemed suitable
when validating against experimental blood damage studies (Wu et al. 2011).

The Womersley number, a dimensionless number of pulsatile flow frequency in
relation to viscosity, and the Reynolds number are defined as

Wn = D
2

√
ω

ν
(2.10)

Re = UavgD
ν

(2.11)

where ω is the angular frequency of the pulsatile flow, D is the inlet diameter, ν
is the kinematic viscosity and Uavg is the average velocity at the inlet based on
experimental flowrate data. At the inlet of the domain (ventricular side), a plug
flow profile is prescribed based on the time-varying flowrate curve data from the
experimental study for pulsatile flow (figure 4(a)). A plug flow profile is employed
due to the high Womersley number (Wn = 18) for this pulsatile BMHV flow. The
maximum Reynolds number at peak flow of the cardiac cycle based on the inlet
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Rotation

Hinge

FIGURE 6. Demonstration of prescribed leaflet rotational motion about hinge fulcrum.

diameter is Re= 5780. For steady flow simulations, a fully-developed Poiseuille flow
profile is prescribed at the ventricular inlet.

At the outlet of the domain (aortic side), a stress-free boundary condition is applied.
This boundary condition is somewhat artificial when modelling higher-Reynolds-
number flows, but necessary due to a finite length domain. In order to reduce its
effects on the fluid flow in the region of interest, the outlet of the domain is extended
in length before the stress-free boundary condition is applied on the aortic side. The
flowrate inlet and stress-free outlet boundary conditions are applied as described for
LBMs by Aidun et al. (1998).

Although pressure boundary conditions are not used in these simulations, it should
be noted that in LBMs, pressure boundary conditions and velocity boundary conditions
are similar in that they have the same effect of generating a fluid distribution function
difference in the flow. Thus, the prescribed flowrate inlet and stress-free outlet
boundary conditions act similar to pressure boundary conditions when used in LBMs.
For details on pressure and velocity boundary condition implementation in LBM,
refer to Zou & He (1996).

During the diastolic phase when the flowrate becomes negative, the inlet and
outlet boundary conditions are switched, allowing two-way pulsatile flow. This allows
the numerical method to accurately model the flow field during leaflet closing,
leaflet-valve closing impact and diastolic reverse flow with fully closed leaflets. For
diastole, the ventricular inlet length is observed to be sufficient so that the flow field
is not affected by the presence of the stress-free condition on the ventricular side.
No flow instabilities are found with this switching of boundary conditions to enable
two-way flow. The high temporal resolution of the simulations results in near-zero
flowrates when the boundary conditions are switched from forward to reverse flow
(or vice versa), and thus flow instability issues at the inlet and outlet boundaries are
not present.

Leaflet motion is prescribed throughout the cardiac cycle by prescribing the
leaflet angle based on the experimental study results (figure 4b). The two leaflets
of the BMHV design rotate about a hinge fulcrum line, with an angular sweep of
approximately 55◦ for the SJM valve (see figure 6). This angular sweep is from 5 to
60◦, with 0◦ referenced as parallel to the axial direction. The fulcrum line fixed at the
hinges is parallel to the leaflet leading edge. The real SJM valve has tolerances with
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the leaflet ear and hinge recess that allow for minimal translational motion along the
parallel fulcrum axis. Although translational motion does occur in real SJM valves,
the simulations of this study restrict leaflets to rotational motion only. No contact
modelling is required and no singularity issues are found when the leaflets close
against the valve housing. When the leaflets are fully open or fully closed, they are
constrained in this position and no leaflet fluttering is modelled.

In these simulations, only one-way FSI is performed from the solid phase onto the
fluid flow. This FSI is performed via the SBB method, where the motion of the leaflets
imparts forces to the fluid phase via bounce-back links. As this study is performed for
validation of the numerical method against experimental data, one-way FSI prescribing
leaflet motion was deemed most suitable to match with experiments. The LBM is an
explicit time-marching computational flow methodology, and although this might be
an issue if the temporal resolution is low, the simulations of this study employ very
high temporal resolution (2.4–4.8 µs per timestep). It is found in the pulsatile flow
simulations that even with the explicit time-marching methodology, flowrates at cross-
sections throughout the BMHV flow domain are consistently within 1 % of each other.
This is found even in cases of high flowrate variation in the cardiac cycle, and thus
there are no issues with flow ‘lag’ while using one-way FSI. Two-way FSI is possible
with this numerical methodology, and will be briefly discussed in § 2.6.

Owing to the parallel computing capabilities of LBM, approximately 1000–3000
processor cores are used in parallel for all simulations with excellent scaling efficiency.
The LB numerical method employed in this study has previously shown near perfect
scaling efficiency up to 16 000 processor cores as demonstrated in Clausen, Reasor Jr
& Aidun (2010). This scaling efficiency is performed with minimal FSI, and is thus
considered optimal.

For the high 80 µm and 2.4 µs spatiotemporal resolution, one full cardiac cycle
can be simulated in parallel with 2592 processors with a run time of less than 20 h.
However, this corresponds to approximately 50 000 computational resource hours, and
thus multiple cardiac cycles of simulation become very expensive. Thus, the pulsatile
flow simulations of this study employ only one or two cardiac cycles for the highest
spatiotemporal resolution due to computational resource constraints.

2.5. Numerical–experimental comparison
For initial validation of the LBM, axial velocity comparisons are made between the
numerical simulations and experimental PIV data for steady flow past the fully open
leaflets of a 23 mm SJM valve. This is performed with 160 µm spatial resolution
for the numerical simulations. Quantitative comparisons are made for Re = 750
and 1250 for laminar flow, Re = 2400 representing the mid-acceleration phase and,
finally, Re = 5000 representing the higher-Reynolds-number flows of the cardiac
cycle with possible turbulent flow. For the experiments, an average flow field was
computed over 100 time samples. For Re = 750 and 1250, due to the steady nature
of laminar flows, only 1–5 computational time samples are needed for averaging for
comparison with experiments. For Re= 2400 and 5000, due to the unstable nature of
the higher-Reynolds-number flow, 200 experimental and computational time samples
are used to determine an average flow field for comparison. The comparisons are
made for axial velocity at perpendicular cross-section lines past the fully open leaflet
trailing edges.

A mesh resolution comparison is also performed for the numerical simulations at
varying spatial resolution. This is performed for steady flow at Re=5780, representing
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the peak flow Reynolds number of the cardiac cycle. A total 200 samples of numerical
data are averaged for comparison between 160 and 80 µm spatial resolution. The
mean flow fields for axial velocity are compared, as well as root-mean-square (r.m.s.)
values for axial velocity.

For quantitative validation of pulsatile flow, simulations are performed for the
cardiac cycle at 80 µm and 2.4 µs spatiotemporal resolution and comparisons
are made with experiments at the high accelerating flow (Re = 4700), peak flow
(Re = 5780) and decelerating flow (Re ∼ 1000) timepoints. These quantitative
comparisons are made for mean flow fields and r.m.s. values for axial velocity.
These flow regimes are of interest for comparison due to high Reynolds number
(accelerating and peak flow) and potential turbulence (peak and decelerating flow).
Ideally, the quantitative comparison would be performed with numerical samples
taken at these flow regimes and 200 cardiac cycles being simulated to match the
experimental methods. However, this would result in a cost of approximately 10
million computational hours, which is beyond available resources.

As an alternative, 200 numerical samples are taken from the pulsatile flow
simulations within one cardiac cycle. These samples are taken within a time range,
centred about the flow timepoints of interest. The time range of numerical sampling
is the integral time scale, also known as the turnover time of the largest eddies of
the flow. The integral time scale, τ0, is approximated from the Kolmogorov small
eddy time scales as

τ0 = τη · Re1/2. (2.12)

For peak flow, this is calculated as τ0 = 58.7 ms, based on Re = 5780 and τη =
772 µs (as determined in § 4.3). This is a simplification as compared with modelling
200 separate cardiac cycles to determine averaged flow fields as in experiments, but
necessary due to resource limitations. However, the numerical samples are still taken
within the integral time scale, where the largest and most significant flow structures
would still be captured.

For accelerating and decelerating flow, the numerical time averaging is centred about
the desired timepoint of comparison and the flowrate variation is close to linear within
the integral time range. Thus, no flowrate normalization is required for comparison
with experimental data as the averaged flowrate of the numerical samples is equivalent
to the flowrate of the comparison timepoint. It is noted that the decelerating flow
phase shows high variability from cycle-to-cycle in experiments such that Reynolds
number is approximated (Re∼ 1000). Although this flow regime is of interest, good
matching of simulations with experiments is not expected due to these cycle-to-cycle
variations.

For peak flow, it is noted that there are cycle-to-cycle variations in the flowrate
curves in the experiments, and thus the experimental sampling of the peak flow
timepoint may not truly be capturing peak flow at every cardiac cycle. Thus averaging
of 200 cardiac cycles of experimental data may similarly capture timepoints within
the integral time range of peak flow, as is performed with numerical data. Once again,
flowrate normalization is not required for this peak flow case.

It should also be noted that the use of 200 cardiac cycles in experiments is
required due to cycle-to-cycle variation in leaflet motion and flowrates. The numerical
simulations employ averaged leaflet motion and flowrate curves, thus prescribing 200
cardiac cycle averaged leaflet motion and flowrate from the experiments. The sampling
of 200 numerical timepoints from one cardiac cycle of averaged experimental
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conditions can be considered time averaging of flow data from an ‘average’ cardiac
cycle. Mean flow fields at peak flow are compared using the same time sampling
method for two different numerical cardiac cycles. Good comparison between the
two cardiac cycles will demonstrate the appropriateness of the numerical sampling
methodology.

For comparison of instantaneous features of pulsatile flow for the cardiac cycle, a
qualitative comparison between the simulations and experimental data is performed.
The comparisons are performed at key points of the cardiac cycle, namely: the
opening phase (leaflets beginning to open at onset of systole), the acceleration phase
(leaflets fully open with increasing flowrate), peak flow (leaflets fully open with
maximum flowrate), deceleration phase (leaflets fully open with decreasing flowrate)
and closing phase (sudden leaflet closing). Flow features, shown in the form of
2D out-of-plane vorticity contour plots, are compared downstream of the leaflets at
instantaneous timepoints. Both the experiments and simulations employ the same
contour scaling in all cases.

In summary, the numerical validation of LBM against experimental data will
involve: quantitative comparison for steady flow at various Reynolds numbers,
quantitative comparison for pulsatile flow and qualitative comparison of instantaneous
pulsatile flow features, as well as numerical mesh resolution and data sampling
comparison.

2.6. FSI with the LBM
The FSI in this study is enforced with the SBB method, which is capable of two-
way FSI. The accuracy of two-way FSI with the SBB method has been documented
extensively (Aidun & Lu 1995; Aidun et al. 1998; Macmeccan et al. 2008; Aidun
& Clausen 2010) for the LBM. Two-way FSI with the leaflets of the BMHV is also
possible for this numerical method.

A simulation is performed at 160 µm spatial resolution employing two-way FSI of
the leaflets. Forces across the leaflet meshed surface are determined using the SBB
method, and torques are accumulated for each leaflet based on calculated forces and
the moment arm to the hinge fulcrum line. Allowing only for rotational motion about
the hinge fulcrum line, the rotation of the leaflets is determined by solving Newtonian
angular dynamics equations, with a moment of inertia of 4.375× 10−9 kg m2 for each
leaflet. No hinge friction modelling is employed for this simulation, as this information
is not known. The two-way FSI simulations are performed for a cardiac cycle after
modelling an initial cardiac cycle with prescribed leaflet motion. This was performed
to capture a more realistic starting flow field for two-way leaflet motion FSI with the
remnants of the diastolic flow phase. Figure 7 shows the angle variation of the top
and bottom leaflets from two-way FSI as compared with the experimental data.

For leaflet opening, the experimental data shows a 66.7 ms opening time from the
fully closed to fully open leaflet positions. For the numerical simulations, the top
leaflet opening time is 81 ms, and the bottom leaflet opening time is 64 ms. As flow
inlet conditions and solid domain geometry are perfectly symmetric in the simulations,
this shows natural asymmetry in leaflet motion due to the disorganized nature of the
pulsatile BMHV flow field. Although there is noted asymmetry in leaflet opening, the
leaflets are fully open at relatively close times in the cardiac cycle. The asymmetry
in leaflet motion was also noted in the experimental study (Dasi et al. 2007).

For leaflet closing, the experimental PIV data shows a 40 ms closing time from the
fully open to fully closed leaflet positions. For two-way FSI modelling, the top leaflet
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FIGURE 7. Angle variation from two-way FSI simulations as compared with experimental
data.

closing time is 39 ms, and the bottom leaflet closing time is 38.5 ms. The ventricular
side must be extended in length for two-way FSI simulations, causing a slight offset
in the leaflet motion timing. Nevertheless, the leaflet motion time periods show very
good comparison from simulations to experimental data when the leaflet motion start
times are matched, as shown in figure 7.

Although two-way FSI with LBMs are possible and can even be employed in
these BMHV flow simulations, the computational flow results of this study use only
one-way FSI with prescribed leaflet motion. For best comparison of the flow fields,
the conditions of the experiments must be matched as closely as possible. One-way
FSI with prescribed leaflet motion ensures the best matching of conditions between
simulations and experiments and is more reliable than using two-way FSI modelling.
Real leaflet motion includes aspects such as friction with the hinges and slight
translational shifting motion, neither of which is included in the computational model.
Thus, it is determined that one-way FSI modelling is most appropriate for this work.

3. Results
3.1. Steady flow comparison

Figure 8 shows axial velocity comparisons between the numerical simulations and the
experimental data for laminar flow at Re= 750. This represents the early acceleration
phase of the cardiac cycle. These velocity comparisons are taken at perpendicular
(x–y) cutplanes taken at the tube centre (z = 0 mm). The numerical results agree
very well with the experimental data, particularly for the bottom jets. The first plot
is taken immediately downstream of the end tips of the leaflets (x = 2.2 mm). The
slight asymmetry of the experimental results is apparent as the flow is stronger
through the bottom jet than the top jet. The bottom jet shows excellent agreement
between the numerical and experimental data. The remaining five plots, showing
comparisons further downstream, indicate good matching between the numerical
results and experimental data. The asymmetry of the experimental data is apparent
in all of the experimental plots as the top jet is consistently weaker than the
bottom jet. This lack of perfect symmetry in the experimental data was noted in
the previous computational–experimental steady flow validation work as well (Ge
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FIGURE 8. Steady flow comparison at Re= 750: (a) x= 2.2 mm; (b) x= 10.3 mm; (c)
x= 20.1 mm; (d) x= 30.9 mm; (e) x= 40.7 mm; (f ) x= 50.6 mm.

et al. 2005). Nevertheless, the middle jets and particularly the bottom jets show good
numerical–experimental agreement for all plots.

Comparisons at Re= 1250 (figure 9) represent the early-to-mid acceleration phase
of the cardiac cycle. As flow at Re = 1250 is still laminar in nature, only five
computational time samples are averaged for comparison with experiments. The
comparisons at this second laminar flow regime again show very good matching
between simulations and PIV data. Once more, the slight asymmetry of the
experimental results is demonstrated, as the bottom jet flow is consistently stronger
than the top jet. This asymmetry of experimental data is demonstrated in all plots.
The bottom jets show the best numerical-to-experimental agreement, with the middle
jets showing good agreement as well. The simulations are also able to capture some
negative axial velocities near the housing walls in the sinus expansion, representing
recirculating flow.

Comparisons at Re = 2400 (figure 10) represent the mid-acceleration phase of the
cardiac cycle, where some disorganized flow is present. Due to some unsteadiness
in vortex shedding at this Reynolds number, 100 computational time samples are
averaged for comparison with experiments. The plots show good comparison between
the simulations and experiments at this representative mid-acceleration Reynolds
number. The experimental results show the triple orifice jets to have slightly more
blunted profiles than in the numerical results. Although the lateral jets match well
between simulations and experiments, the slightly more blunted profiles near the peak
values is not precisely matched by the simulations.

The central jet in the experiments is also consistently weaker than the lateral jets.
This is in contrast to the simulations where the central jet is consistently stronger than
the lateral jets. This trend is particularly noted 20.0 mm downstream of the leaflets.
Nevertheless, all comparisons taken downstream of the leaflet tips show similar good
agreement between simulations and experiments for the lateral jets. The negative
axial velocities near the valve housing are again shown in both the experiments and
simulations, representing the recirculation region in the aortic sinus expansion.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

54
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.54


184 B. M. Yun, L. P. Dasi, C. K. Aidun and A. P. Yoganathan

(b)

(d )(c)

(a) 20

10

0

–10

–20

20

10

0

–10

–20

20

10

0

–10

–20

20

10

0

–10

–20

–0.05 0.05 0.15 0.25 0.35 –0.05 0.05

PIV

0.15 0.25 0.35

–0.05 0.05 0.15

y 
(m

m
)

y 
(m

m
)

0.25 0.35 –0.05 0.05 0.15 0.25 0.35

LBM

FIGURE 9. Steady flow comparison at Re = 1250: (a) x = 2.2 mm; (b) x = 6.7 mm;
(c) x= 10.2 mm; (d) x= 20.1 mm.

(c)(b)(a)

(d ) (e) ( f)

20

10

0

–10

–20

20

10

0

–10

–20

20

10

0

–10

–20

20

10

0

–10

–20

20

10

0

–10

–20

20

10

0

–10

–20

–0.5 0 0.5 1.0 1.5 –0.5 0 0.5 1.0 1.5 –0.5 0 0.5 1.0 1.5

–0.5 0 0.5 1.0 1.5 –0.5 0 0.5 1.0 1.5 –0.5 0 0.5 1.0 1.5

y 
(m

m
)

y 
(m

m
)

PIV
LBM

FIGURE 10. Steady flow comparison at Re = 2400: (a) x = 3.1 mm; (b) x = 5.8 mm;
(c) x= 7.5 mm; (d) x= 10.3 mm; (e) x= 13.8 mm; (f ) x= 20.0 mm.

Figure 11 shows axial velocity comparisons for flow at Re = 5000. Comparisons
at this Reynolds number represent the near-peak-flow phase of the cardiac cycle,
with highly disorganized and unstable flow structures. The plots show very good
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FIGURE 11. Steady flow comparison at Re = 5000: (a) x = 3.1 mm; (b) x = 7.5 mm;
(c) x= 13.8 mm; (d) x= 18.3 mm.

comparison between simulations and experiments at this representative peak-flow
Reynolds number. Both the experiments and numerical simulations show blunted
profiles for the three orifice jets. For the lateral jets, the simulations slightly overshoot
the peak velocities compared with experiments, but still match well. The highly
disorganized flow at this Reynolds number is apparent from these comparisons as well,
as the flow profiles are not symmetric even with averaging over 200 computational
and experimental samples. This is in contrast to lower-Reynolds-number cases that
show symmetric flow profiles for simulations when averaging over sufficient time
samples.

Like the Re = 2400 case, the central jet is consistently weaker than the lateral
jets for the experiments. For the simulations at Re = 5000, the central jet is of the
same strength when compared with the lateral jets. All comparisons show very good
agreement between simulations and experiments for the lateral jets. The negative axial
velocities near the valve housing are highlighted in the simulation results, which show
strong reverse velocities in the sinus expansion region.

The comparison locations and maximum mean flow axial velocities at these
locations are summarized for steady flow experiments and simulations at various
Reynolds numbers in table 1. Not all comparison points are listed, but one comparison
location close to the leaflets and one farther downstream are listed for all Reynolds
numbers. For higher Reynolds numbers (Re = 2400 and Re = 5000), the maximum
velocity values do not match as well as for lower Reynolds numbers. Comments are
made about the central jet matching for Re= 2400 and 5000 in § 4.
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FIGURE 12. (Colour online) Comparison of mean axial flow (a–c) and r.m.s. (d–f )
velocity values at steady peak flow (Re= 5780) for numerical simulations at varying fluid
spatial resolution: (a) x = 5.0 mm; (b) x = 10.1 mm; (c) x = 20.1 mm; (d) x = 5.0 mm;
(e) x= 10.1 mm; (f ) x= 20.1 mm.

Re Distance from leaflet Max Uavg (experiment) Max Uavg (LBM)
(mm) (m s−1) (m s−1)

750 2.2 0.25 0.27
750 30.9 0.22 0.24

1250 2.2 0.38 0.36
1250 20.1 0.37 0.36
2400 3.1 0.75 0.81
2400 20.1 0.69 0.80
5000 3.1 1.4 1.62
5000 18.3 1.27 1.48

TABLE 1. Steady flow comparison.

3.2. Numerical mesh resolution comparison
Figure 12 shows comparison of mean axial flow velocities and r.m.s. values at
perpendicular lines for numerically simulated flows resolved at 160 µm versus 80 µm.
The numerical comparisons are performed at steady flow past the open leaflets with
Re = 5780, representing the peak flow regime. Computational resource limitations
prohibit the calculation of mean flow fields and r.m.s. data for 200 separate cardiac
cycles of pulsatile flow through a BMHV, and thus a mesh comparison is performed
for steady flow only.

Mean flow fields are computed by averaging 200 computational time samples. The
mean flow results (figure 12a–c) taken downstream of the trailing leaflet tips show that
the peak orifice velocities at 160 µm resolution are slightly higher with sharper flow
profiles when compared with the flow resolved at 80 µm. Although the 80 µm flow
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FIGURE 13. (Colour online) Comparison of mean axial flow (a–c) and r.m.s. (d–f )
velocity values at accelerating flow (Re = 4700) for simulations against experiments for
pulsatile flow: (a) x= 5.0 mm; (b) x= 10.1 mm; (c) x= 20.0 mm; (d) x= 5.0 mm; (e)
x= 10.1 mm; (f ) x= 20.0 mm.

profiles are smoother, the overall flowrate at the perpendicular lines are very similar
for both spatial resolutions. The mean flow fields, though showing some differences
at the flow peaks, are still very similar and well captured at the coarser 160 µm
resolution.

Figure 12(d–f ) shows axial velocity r.m.s. values taken at the same perpendicular
lines. For the central flow emerging from the valve, the comparison of r.m.s. values is
excellent from 160 to 80 µm. The largest discrepancies are found outside the central
region, representing the sudden sinus expansion region. This difference could be
explained by the disorganized nature of flow within this expansion recirculation region,
and also by the 160 µm case interpolating a sharper expansion step due to coarser
resolution of the FSI boundary. Nevertheless, the central orifice r.m.s. comparison
shows very good agreement.

Combined with the good agreement for mean flow fields, this justifies the 160 µm
resolution simulation as suitable for comparison against PIV experimental data
for mean steady flow and pulsatile bulk flow features. However, for quantitative
comparison of pulsatile flow and finer details in pulsatile flow visualization, and for
highly accurate flow simulations, 80 µm resolution simulations are desirable.

3.3. Pulsatile flow quantitative comparison
Quantitative comparisons of pulsatile flow are shown in figures 13–15 for three
representative flow regimes. The high-resolution simulations (80 µm and 2.4 µs)
take 200 samples for each flow regime but only from one cardiac cycle, and are
compared with 200 cardiac cycle ensembles from the experiments. The three flow
regimes, high accelerating flow (Re= 4700), peak Reynolds number flow (Re= 5780)
and decelerating flow (Re ∼ 1000), demonstrate the most unstable and possibly
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FIGURE 14. (Colour online) Comparison of mean axial flow (a–c) and r.m.s. (d–f )
velocity values at peak flow (Re = 5780) for simulations against experiments for
pulsatile flow: (a) x = 5.0 mm; (b) x = 10.1 mm; (c) x = 20.0 mm; (d) x = 5.0 mm;
(e) x= 10.1 mm; (f ) x= 20.0 mm.

turbulent flow. Thus quantitative comparison is performed by computing mean flow
fields and r.m.s. data. A total of 200 numerical samples are used to match the number
of experimental samples taken for averaging flow fields. However, it is determined
that even 50 numerical samples are sufficient to determine mean flow fields, and thus
200 samples are used to obtain improved r.m.s. data.

Figure 13 shows comparisons at the high accelerating flow phase (Re = 4700).
This flow regime is considered transitional, if not turbulent, flow. Mean flow field
comparisons at three axial locations show good matching between simulations and
experiments. Both simulations and experiments also capture negative axial velocities at
the sinus expansion regions, although the simulations show larger negative velocities.
The simulations also show smoother profiles than experiments, which could be due
to the higher resolution of the numerical data in comparison with the experiments.
Overall, the simulations and experiments match very well.

The r.m.s. data also shows good matching, particularly at 5.0 mm downstream
of the leaflet tips. The biggest mismatch at all comparison points lies in the sinus
expansion regions, which can be explained by the disorganized mixing that occurs in
this region. At 20.0 mm downstream of the leaflets, this difference is more apparent,
but it should be noted that the experimental r.m.s. data is cut off near the sinus
expansion. Overall, the r.m.s. data shows good matching between simulations and
experiments.

At peak flow (figure 14), the numerical simulations and experiments compare very
well for mean flow fields at various distances from the leaflet tips. The experimental
profiles are slightly lower in magnitude and have sharper orifice flow profiles. The
sharper profiles may be attributed to the experimental data resolution being coarser
than the numerical simulations. Nevertheless, the comparison still shows very good
agreement even at peak Reynolds number.
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FIGURE 15. (Colour online) Comparison of mean axial flow (a–c) and r.m.s. (d–f )
velocity values at decelerating flow (Re ∼ 1000) for simulations against experiments for
pulsatile flow. (a) x = 5.0 mm. (b) x = 10.1 mm. (c) x = 20.0 mm. (d) x = 5.0 mm.
(e) x= 10.1 mm. (f ) x= 20.0 mm.

Quantitative comparisons are also made for the deceleration phase of the cardiac
cycle (figure 15), which is a highly disorganized and unstable flow period. The
deceleration phase Reynolds number is approximated at Re ∼ 1000, although this
may vary highly from cycle to cycle. The mean flow fields show similar velocity
magnitudes and overall flowrates at perpendicular lines past the leaflet tips, but the
matching of velocity profile is not as good as in the comparison of the accelerating
and peak flow phases. The experimental data show more blunted profiles, likely due
to coarser resolution and flow averaging across highly varying cardiac cycles. The
experimental data also show lower velocity magnitudes further from the centre of the
cross-section, at each perpendicular line. Although the mean flow comparison between
simulations and experiments is not very good at this deceleration phase, the overall
flowrates are similar. It is emphasized that the deceleration phase is very unstable
and varies highly from cycle to cycle in the experiments, and thus good matching
with simulations is not expected.

The r.m.s. data comparison shows that experimental r.m.s. values are consistently
much higher than the numerical simulations. This r.m.s. data comparison again
demonstrates the high variation in experiments from cycle-to-cycle in the deceleration
phase, once again showing the difficulty of comparison between simulations and
experiments at this representative flow regime.

Further comments on the quantitative pulsatile flow matching between simulations
and experiments will be made in § 4. The comparison locations and maximum mean
flow axial velocities at these locations are summarized for accelerating flow, peak flow,
and decelerating flow in table 2. The PIV data and simulations compare well for these
maximum axial velocity values, even for these complex and unstable flows.

The same numerical averaging method of using 200 time samples within one cardiac
cycle is used for a second modelled cardiac cycle. The comparison of mean flow
fields for these two separate cardiac cycles is given in figure 16. Although the mean
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FIGURE 16. (Colour online) Comparison of mean axial velocity values at peak flow (Re=
5780) for simulations at two different cardiac cycles: (a) x= 5.0 mm; (b) x= 10.1 mm;
(c) x= 20.0 mm; (d) x= 30.0 mm; (e) x= 50.0 mm; (f ) x= 70.0 mm.

Flow regime Re Distance from leaflet Max Uavg (experiment) Max Uavg (LBM)
(mm) (m s−1) (m s−1)

High acceleration 4700 5.0 1.24 1.16
High acceleration 4700 10.1 1.19 1.13
High acceleration 4700 20.0 0.97 0.89

Peak 5780 5.0 1.31 1.38
Peak 5780 10.1 1.31 1.35
Peak 5780 20.0 1.30 1.25

Deceleration 1000 5.0 0.27 0.30
Deceleration 1000 10.1 0.32 0.34
Deceleration 1000 20.0 0.37 0.39

TABLE 2. Pulsatile flow comparison.

flow fields are taken from two cardiac cycles, flowrate and leaflet motion conditions
are identically prescribed as ‘averaged’ experimental conditions. The comparison of
mean flow fields between the two cardiac cycles is very good, matching well as
far as 70 mm downstream of the leaflet tips. For 5 and 10 mm downstream of the
leaflet, the comparison is excellent. This good matching between two cardiac cycles
demonstrates the appropriateness of the numerical time averaging from one cardiac
cycle. This shows that the computational method is able to model an ‘average’
cardiac cycle repeatably, using average flowrate and leaflet motion data from 200
experimental cardiac cycles.
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FIGURE 17. 2D vorticity magnitude comparison between simulation and experiments
for pulsatile BMHV flow at opening, acceleration and peak flow phases: (a) opening,
computational; (b) opening, experimental; (c) acceleration, computational; (d) acceleration,
experimental; (e) peak, computational; (f ) peak, experimental.

3.4. Pulsatile flow qualitative comparison

For qualitative validation of pulsatile flow, comparisons are made at instantaneous
time points throughout the cardiac cycle. This is because ensemble averaging of
experimental data removes some key flow features that are important for instantaneous
time comparison. In all comparisons, the same vorticity scaling is employed for both
experiments and simulations. Figure 17(a,b) shows instantaneous out-of-plane vorticity
magnitude at the opening phase of the cardiac cycle (Re=240), which is characterized
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by two notable features. One shear layer exists from separation of flow at the edge
of the valve housing to the sudden sinus expansion region, and another exists from
flow separation at the tip of the leaflets as they suddenly open. These are opposite in
magnitude and good qualitative comparison is shown with the experiments for both
of these features. Figure 17(c,d) shows the accelerating phase (Re = 2070) where
the leaflets are fully open and the flow rate past the valve increases. Here the flow
past the leaflet tips causes two coherent von Karman vortex wakes. In addition,
recirculation vortices are seen in the sinus aortic expansion region. The numerical
simulations and experiments match very well qualitatively during this phase of the
cardiac cycle.

Figure 17(e, f ) is at peak flow, with a Reynolds number of 5780. The same
qualitative flow features of vortex shedding wakes and recirculation vortices from the
acceleration phase are shown in this peak flow phase, but with more unstable motion
due to the higher Reynolds number. Although it appears that there are still two vortex
shedding wakes from flow past the leaflet tips, this becomes highly disorganized and
breaks apart quickly downstream of the valve in the sinus expansion. The shear
layer from the sinus step also results in a recirculation region in the sinus expansion,
but is broken into smaller scale structures. Downstream, the coherent structures
completely break apart into small-scale vortices, which eventually wash out due to
viscous dissipation. Qualitatively, the simulations and experiments agree well at this
high-Reynolds-number flow regime.

Figure 18(a,b) shows the deceleration phase (Re ∼ 1000), with the leaflets still
fully open, but with a rapidly decelerating flowrate. The decelerating flow leads to a
breakup of the coherent vortical structures downstream of the valve, shown in both
the simulations and experiments. The shear layer from the valve housing into the
sinus expansion still exists, but no longer develops into a significant recirculation
region. Although the vortex shedding past the leaflet tips still exists, it does not
form coherent vortex streets, instead immediately breaking down into smaller eddies.
Downstream of the sinus region, only small-scale structures exist that are rapidly
dissipated. The experimental results show more viscous dissipation than the numerical
results downstream of the sinus region but the two still compare well.

Figure 18(c,d) is a final timepoint at the closing phase (Re = 580 in reverse
direction flow), where the leaflets slam shut due to an adverse pressure gradient.
Here, the sudden leaflet closing motion results in vortex wakes that are seen in both
the simulations and experiments. The downstream flow is primarily characterized by
smaller scale structures that are dissipating rapidly due to the lower flowrate and
viscous dissipation.

4. Discussion
4.1. Comparison with experiments

A primary concern exists as to whether the LBM is appropriate for modelling BMHV
flows. For experimental validation, the pulsatile PIV data averaged flow features due
to cycle-to-cycle variability and lower spatial resolution. Despite these limitations,
the experimental data is enough to delineate the key bulk flow features of pulsatile
BMHV flow, but would average out the turbulent Kolmogorov scales. Thus, for
qualitative comparison of bulk flow features with the pulsatile experimental data, the
160 µm resolution of the computational simulations is sufficient. For steady flow,
comparison at Re = 750 does not require a high spatial resolution due to the flow
being in the laminar regime. For steady flow at Re= 2400 and 5000, the comparison
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FIGURE 18. 2D vorticity magnitude comparison between simulation and experiments for
pulsatile BMHV flow at deceleration and closing phases: (a) deceleration, computational;
(b) deceleration, experimental; (c) closing, computational; (d) closing, experimental.

is made for mean flow with an average of 100–200 time samples for both the
experiments and simulations, making the Kolmogorov turbulent fluctuation scales
irrelevant in this steady flow comparison. Thus, the turbulent Kolmogorov scales
are not important for all cases of steady flow comparison as well as for qualitative
pulsatile flow comparison. The comparison between 80 and 160 µm resolution shown
in figure 12 also demonstrates that the mean flow fields are sufficiently captured at
coarser 160 µm resolution for use in experimental comparisons in these cases.

The numerical-to-experimental comparison was performed to prove the validity of
LBM for use in modelling BMHV flows. For quantitative comparison, cases of steady
flow past the fully open leaflets are used. This was chosen as a more reliable way
to compare simulations with experiments quantitatively without having the issues of
cycle-to-cycle variability that exists in pulsatile flow experiments. When comparing
in the laminar regimes of Re= 750 and 1250 (figures 8 and 9), it is noted that the
LBM compares very well with the experimental PIV data. Even as far downstream
as 50.6 mm past the leaflet tips, the numerical simulations match the flow profile and
velocity magnitudes of the triple jet flow structure well. It is noted in the previous
work (Ge et al. 2005) and from the comparison in this study that a natural asymmetry
of the top and bottom orifice flows exists in the experimental data due to design
imperfections. Owing to the perfect top–bottom symmetry in the computational model,
this asymmetry is not present in the numerical results. Despite this, the numerical
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results show good quantitative agreement with the experiments, particularly in the
central and bottom orifice flows.

For Re= 2400 and 5000 (figures 10 and 11), the LBM compares well in the lateral
jets but not as well in matching the central jet. In all cases, the numerical simulations
overshoot the peak velocities of the triple orifice flow structure. For the previous study
of numerical-to-experimental quantitative comparison at Re = 5000 (Ge et al. 2005),
the simulations of a different numerical method were also shown to consistently
overshoot the peak velocities of the triple flow jets as well as show sharper jet
profiles. It is possible that the experimental data show a more blunted profile with
lower peak velocities due to the averaging of the instantaneous realizations of flow.
Even though the flow is steady, at higher Reynolds number there are smaller features
that vary between instantaneous time samples of experimental data which are lost
due to ensemble averaging, resulting in a more blunted profile.

The central jet in the simulations is consistently stronger than the lateral jets at
all comparison points, which is opposite of the experimental results. It is noted in
the experiments that the maximum flow velocity does occur in the central orifice
jet, as expected due to the minimal orifice area. However, in the experiments, this
maximum velocity value is found within the valve in the axial location between the
leading and trailing leaflet edges. The experimental data comparison points, however,
are downstream of the leaflet tips, where the lateral jet velocities become stronger
than the central orifice jet velocities. A possible reason for this inconsistency may
be due to the computational recreation of the leaflets. The leaflets in the simulations
were created by scaling down the original microCT scanned leaflet geometry. This
was performed due to the constraints of a numerical method used in a previous study.
In addition, the leading edge tips of the leaflet were slightly cut off during scanning.
These modifications to the original geometry led to a slight increase in the central
orifice area. However, the increased central orifice area was within the range given
by SJM valve standards and did not affect the bulk flow. Although this modified
leaflet geometry and increased b-datum area do not affect the overall results of this
study, it can explain why the simulations show consistently stronger central orifice jets
downstream of the trailing leaflet edges.

For comparison between 160 and 80 µm resolution simulations at steady Re= 5780
flow, the mean flow fields show good agreement. The slightly sharper profiles at
160 µm can be attributed to the coarser resolution. In addition, the coarser resolution
of the FSI boundary at the valve surfaces could lead to the sharper profile for the
lateral jets at 160 µm. For r.m.s. comparison, the central orifice values compare
very well, with the major differences located in the sinus expansion region. The
nature of the recirculating flow in the sinus region at peak Reynolds number is very
unstable and disorganized, and thus some discrepancy can be expected. In addition,
the coarser resolution would once again interpret the sudden sinus expansion step
differently between 160 and 80 µm. Despite these differences, the mean flow and
r.m.s. values between the two resolutions show good agreement, and thus validate
the 160 µm case for comparison against experimental data. Bulk flow features are
well-captured at 160 µm, which is key for experimental comparison. However, for
the finest details of this pulsatile BMHV flow, future simulations should use the
higher resolution at 80 µm.

Quantitative comparisons of mean flow fields and r.m.s. values are also made for
pulsatile flow at three flow regimes, using the higher 80 µm numerical simulations
(figures 13–15). For the mean flow fields at accelerating and peak flow (figures 13
and 14), the experimental data show sharper profiles in axial velocities for both flow
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regimes. The sharper flow profile of the experimental data can be attributed to the
lower PIV data resolution. For peak flow (figure 14), the experimental data show
slightly lower axial velocity magnitudes in each comparison. However, it is noted that
the experimental data is taken from 200 cardiac cycles of pulsatile flow. As there are
cycle-to-cycle variations in the experiments, it is likely that the PIV system is unable
to exactly capture peak flow timepoints for every cardiac cycle ensemble. Thus, as
peak flow cannot be exactly captured consistently, the overall mean flow velocities
are expected to be lower in magnitude for the experiments. Nonetheless, it is noted
that the mean flow fields still match well from simulations to experiments for all
comparison points at the accelerating and peak flow regimes. At decelerating flow
(figure 15), the overall flowrates are matched between simulations and experiments,
but the flow profiles do not match very well due to high cycle-to-cycle variations of
the deceleration flow phase. This may also explain the more blunted velocity profiles
for mean flow fields in the experiments for decelerating flow.

For r.m.s. values at accelerating and peak flow (figures 13 and 14), the comparison
between experiments and simulations generally matches well. A primary difference
in r.m.s. values is noted at peak and decelerating flow (figures 14 and 15) in the
higher magnitude of r.m.s. peak values in experiments compared with simulations.
These r.m.s. values for experiments and simulations include fluctuations due to the
disorganized and unstable nature of the peak and decelerating flow regimes. However,
the experimental data also have fluctuations due to strong cycle-to-cycle variations in
the flow field. These cycle-to-cycle fluctuations are not present in the r.m.s. values of
the simulations due to the numerical time averaging from within one cardiac cycle.
Thus, the overall r.m.s. values for experimental data are increased, which can explain
the higher peak r.m.s. values for experiments as compared with the simulations. This
is particularly apparent at the deceleration flow phase where cycle-to-cycle variability
results in much higher r.m.s. values for the experiments.

A limitation of the numerical simulations is that 200 cardiac cycles cannot be
simulated due to resource limitations. Ideally, quantitative comparison for pulsatile
flow would include the modelling of many cardiac cycles in order to more accurately
compare mean flow fields and r.m.s. values as is performed experimentally. The
numerical simulations are performed for pulsatile flow, but the data samples are
taken from one cardiac cycle. This is time averaging and not ensemble averaging,
but the numerical data samples are taken within a time range corresponding to
the integral time scale for each Reynolds number. This should capture the major
flow structures for each flow regime that is compared. The noted cycle-to-cycle
variability in experiments could similarly lead to experimental data samples taken
within this time range for pulsatile flow. In addition, the 200 cardiac cycles are
necessary for experiments to average leaflet motion and flowrate cycle-to-cycle
variation. Numerically, this variation does not exist as the averaged flowrate and
leaflet motion is prescribed exactly. Thus, the numerical method of attaining 200
time samples of pulsatile flow is a viable alternative for comparison to experiments,
and also shows good matching with experiments in figures 13–15. In addition, the
comparison of mean flow fields between two cardiac cycles using the same numerical
sampling method (figure 16) shows very good matching, further demonstrating its
applicability.

Although cycle-to-cycle variations exist in pulsatile flow through the SJM valve,
good qualitative agreement is observed when comparing simulations to experiments at
multiple instantaneous timepoints throughout the cardiac cycle. The LBM is able to
match key flow features very well, particularly during the opening and acceleration
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phases of the cardiac cycle (figure 17). During these two time points, the flow is
still highly organized and experimental data show clear features such as von Karman
vortex streets or sinus recirculation regions, which are also reproduced numerically.
The vortex shedding in accelerating flow is still in the laminar regime and repeatable
from cycle to cycle.

During the more chaotic peak flow and deceleration flow phases (figures 17 and 18),
these features become highly disorganized and it is difficult to pick out clear features
in the experimental data. Cycle-to-cycle variability is also more prevalent in these
flow phases. Although the vortex streets and recirculation regions are present, they are
not clearly discernible in either the simulations or experiments and thus it becomes
difficult to show a clear matching. The deceleration and closing phases are also
characterized by high dissipation of vorticity and turbulent mixing, which also makes
comparison difficult. However, in the closing phase (figure 18), the key feature of
vortex wakes caused by rapid leaflet closing compares well between simulations and
experiments. The overall good quantitative and qualitative agreement of numerical
simulations with experiments validates the use of LBM for modelling various cases
of pulsatile flows through BMHVs.

4.2. Higher-resolution modelling and lattice-Boltzmann advantages
Figure 19 shows out-of-plane vorticity contours for two timepoints of systolic flow:
mid-acceleration (Re = 2070) and peak flow (Re = 5780). These detailed plots show
the ability of high spatiotemporal LBM simulations to capture important details,
particularly for high-Reynolds-number flows. At mid-acceleration (figure 19(a)),
vortex shedding occurs past the open leaflet tips. However, this vortex shedding
is coherent and results in two distinct von Karman vortex streets. Although vortex
shedding occurs past the sinus expansion step as well, this recirculation region does
not interact with the von Karman vortex streets and is not highly disorganized.

For peak flow (figure 19b), it is observed that the coherent von Karman vortex
streets that shed past the leaflet tips immediately break down into smaller eddies.
These detailed fine-scale vortices are not captured in the coarser resolution simulations,
instead appearing as a blurred mixing of flow. Similar blurred results for high-
Reynolds-number BMHV flow are demonstrated in other coarse resolution experimental
and CFD studies of pulsatile BMHV flows (Dasi et al. 2007; De Tullio et al. 2010).
The small eddies in peak flow continue to form and disperse throughout the domain,
eventually mixing with each other as well as with vortex shedding in the sinus
expansion regions.

It is important to note that these small eddies form downstream of the valve, and
persist beyond the sinus expansion. Thus, it is important to maintain high spatial
resolution for the entire BMHV domain. For future simulations, these fine-scale
features must be resolved to fully capture and understand the pulsatile BMHV flow
physics. In addition, for simulations involving blood elements, accurate modelling of
these small eddies could play a very important role in damage to blood elements such
as red blood cells and platelets. For steady flow comparison of mean flow fields, or
qualitative comparison against coarser resolution experimental data, the Kolmogorov
scales are not important. However, for the purposes of more accurate BMHV flow
modelling or for future blood damage modelling, the inclusion of fine-scale flow
features is crucial.

Simulations modelling these problems at high resolution are very expensive, as
the domain length scale is of the order of tens of millimetres, and the Kolmogorov
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FIGURE 19. Pulsatile flow visualization of (a) mid-acceleration and (b) peak flow.

length scales are of the order of tens of micrometres. Thus, numerical flow domains
would lie in the range of hundreds of millions to billions of fluid grid points.
For these large-scale biomedical flow simulations, efficient parallel algorithms are
necessary. Although the high-resolution simulation of this study is expensive, it is
performed with optimal parallelization and excellent efficiency, and takes less than
20 h to model a cardiac cycle. Thus, future simulations can be performed using
this numerical method that can capture the finest details of similar, but novel flows
with optimal parallel processing to obtain results in very short times. This can be
performed to observe novel cardiovascular flow physics, as well as accurate modelling
of blood damage complications in various cardiovascular flows.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

54
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.54


198 B. M. Yun, L. P. Dasi, C. K. Aidun and A. P. Yoganathan

4.3. Turbulence in lattice-Boltzmann modelling of BMHV flows
For this study and for future studies, a question exists as to whether the entropic LBM
is able to capture turbulence in pulsatile BMHV flows. The LBM is a DNS method,
and thus matching spatial and temporal resolutions to the small eddy Kolmogorov
scales will allow for LBM to capture turbulent flows. The entropic LBM employed
in this study has been shown to be able to capture turbulence at Re = 25 000 in
free-decaying turbulence simulations (Vahala et al. 2008, 2009) by matching the
Kolmogorov k−5/3 scaling for energy spectra. A separate free-decaying turbulence
study showed that entropic LBM could match the k−5/3 scaling at Re = 16 000 and
4000, as well as accurately compare to a DNS spectral element method at Re= 4000
(Chikatamarla et al. 2010).

The Kolmogorov scales for turbulent flow are calculated from mean dissipation rate
as

η =
(
ν3

ε

)1/4

(4.1)

τη =
(ν
ε

)1/2
(4.2)

where η is the Kolmogorov length scale, τη is the Kolmogorov time scale and ε is
the mean dissipation rate. Using a calculated maximum value of ε = 5.87 m2 s−3 for
peak flow past the leaflet tips (Yun 2014) and a kinematic viscosity of blood of ν =
3.5 × 10−6 m2 s−1, this yields Kolmogorov scales of approximately η = 52 µm and
τη = 772 µs. As the numerical temporal resolution is between 2.4 and 4.8 µs, the
simulations are certainly resolving the turbulent time scales for pulsatile BMHV flow.

The higher spatial resolution for the pulsatile flow simulation in this study is 80 µm
throughout the entire fluid domain. To the best of the authors’ knowledge, no other
study (computational or experimental) has resolved full-BMHV pulsatile flow fields at
this high spatiotemporal resolution. The pulsatile flow results of this study show the
smallest-scale vortices to occur outside of the valve region (figure 19b), sometimes
several diameters downstream of the valve. Thus, other computational methods that
match high spatial resolution only inside the valve are not adequate to accurately
capture the entire turbulent flow field. Although the entropic LBM is highly efficient
and parallelized, limited computational resources prohibit simulations matching the
required Kolmogorov spatial scale throughout the domain. The spatial resolution of
80 µm under-resolves the required Kolmogorov scale by a factor of 1.54.

It is important to note that in the previous entropic LBM studies, turbulence was
captured even in cases of under-resolved spatial resolutions. In the studies by Vahala
et al. (2008, 2009), free-decaying turbulence was captured at Re = 25 000 while
under-resolving the required Kolmogorov scale by a factor of 1.24. In the study
with comparison to a DNS spectral element method (Chikatamarla et al. 2010), the
entropic LBM showed excellent matching with both the spectral element method and
with the Kolmogorov k−5/3 scaling at Re= 4000 while under-resolving the spatial grid
by a factor 1.43. At Re= 16 000, the spatial grid was under-resolved by a factor of 4
and captured the Kolmogorov k−5/3 scaling, although no comparison was performed
with the spectral element method.

These previous studies show the ability of entropic LBM to capture turbulence in
high-Reynolds-number flows, even while under-resolving the Kolmogorov scales. It
should also be noted that the Kolmogorov scales are not strict thresholds required for
capturing the smallest eddies, but are more representative of the order of magnitude

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

54
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.54


Computational modelling of flow through prosthetic heart valves 199

of the scales. The study by Yeung & Pope (1989) has also shown that numerical
simulations are still able resolve the lower-order moments of turbulent flow if the
spatial resolution is within two times the lowest Kolmogorov length scale.

5. Conclusion

The LBM has been used in this study to simulate full-BMHV pulsatile flows
with leaflet motion and two-way flow at the highest spatiotemporal resolution to
date. These simulations are performed with prescribed leaflet motion and flowrates
from experimental data. Quantitative comparison with steady flow experiments show
very good velocity matching even at near peak flow, where the flow becomes highly
disorganized and unstable. Pulsatile flow simulations show very good agreement with
experiments both quantitatively and qualitatively, with good matching of mean flow
fields and r.m.s. values and the ability to match key instantaneous flow features at
various points in the cardiac cycle. This validates the LBM for use in modelling
pulsatile, high-Reynolds-number BMHV flows. This study has also shown the
applicability of a numerical time-averaging method for use in comparison with
experimental data. Finally, this study has demonstrated the advantages of using LBM
to model high resolution, complex biomedical flows with high parallel efficiency in
order to capture fine-scale flow features.

The authors have demonstrated in previous studies that LBM in combination with
the external boundary force (EBF) method is able to accurately quantify platelet
damage in BMHV flows on a smaller scale in the hinges when compared with blood
damage experiments (Wu et al. 2011; Yun et al. 2012). With this study’s validation of
LBM to accurately model bulk BMHV pulsatile flows, the EBF method can now be
included to accurately quantify platelet damage in pulsatile flows throughout the entire
BMHV geometry in future studies. The highly parallelized nature of the numerical
method allows for efficient simulations at the high spatiotemporal resolution required
to capture the finest details of pulsatile BMHV flow, which are important in the
accurate modelling of platelet damage in these flows.
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