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Abstract. Small solid metallic objects in relative motion to thermal plasmas are
studied by numerical simulations. We analyze supersonic motions, where a dis-
tinctive ion wake is formed behind obstacles. At these plasma drift velocities, ions
enter the wake predominantly due to deflections by the electric field in the sheath
around the obstacle. By irradiating the back side of the object by ultraviolet (UV)
light, we can induce also an enhanced photo-electron population there. The resulting
charge distribution gives rise to a pronounced local potential and plasma density
well behind the object. This potential variation has the form of a three-dimensional
ion acoustic double layer, containing also an ion phase space vortex. The analysis is
supported also by one-dimensional numerical simulations to illustrate the import-
ance of boundary conditions, Dirichlet and von Neumann conditions in particular.

1. Introduction

In the present work we study the interactions between small solid objects and warm
plasmas. This field of plasma physics contains a variety of often very complicated
problems (Shukla and Mamun 2002), where not all questions are amenable for
theoretical or analytical studies, not even when individual objects, such as dust
grains are considered (Piel and Melzer 2002; Fortov et al. 2005; Ishihara 2007).
In previous studies we analyzed the charging of a single dust grain by numerical
methods (Miloch et al. 2007). We demonstrated two properties of the dust grains
to be important: There is a pronounced distinction between perfectly conducting
and insulating materials. Also the shape and the surface roughness of the material
influence the results noticeably. For isotropic thermal plasmas some of our results
could be foreseen, at least qualitatively, by simple arguments. The situation is,
however, significantly more complicated when the solid objects move relative to
the plasma. In this latter case, ions can for instance be focused behind the obstacle,
a phenomenon observed also in laboratory experiments (Svenes and Trøim 1994).
We can outline the following scenario: for an isolated object at rest in a thermal

plasma (allowing for Te �= Ti) we will observe the standard Debye shielding, possibly
modified by nonlinear effects if the floating potential is very negative (Sivukhin
1966). In the most relevant cases, as also studied here, we have Te > Ti . If we
now allow for a small relative motion between the plasma and the solid object, the
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shielding will become asymmetric. With increasing relative flow velocities (i.e. flow
velocity U0 comparable to or larger than the ion thermal velocity uth,i), a wake
will form on the shadow side of the object. Depending on conditions, the size and
composition of the object in particular, the electric fields around the object will
act as an electrostatic lens (Lawson 1988) with ions being focused in the wake at a
distance of the order of the Debye length from the back surface of the object, the
distance increasing with increasing U0 (Miloch et al. 2008a). Velocities comparable
to electron thermal velocities are not relevant for the present study. As far as
the electron dynamics are concerned, we can ignore the relative drift between the
object and the electron component. For the conditions described here a metallic
object will be at a negative floating potential, and the potential in the wake will
be negative as well. The population of plasma particles in the wake is formed by
electrons reflected from the negative potential and having a distribution which
does not appreciable deviate from a local Boltzmann distribution. Thermal ions are
streaming past the wake with supra-thermal velocities when U0 > uth,i . The only
ions entering the wake are primarily those focused by the electrostatic potentials
around the object. We now introduce a photon flux, illuminating the back side of
the object. The photo-electrons emitted from the solid surface will contribute to the
total charge as an energetic negative component. The photo-emission will change
the floating potential of the object, and if the photon flux is sufficiently intense,
the potential can even become positive. If we consider a solid object in the Earth’s
upper ionosphere, we have an ultraviolet (UV) solar photon flux which is almost
constant, but the plasma density changes significantly with altitude. An object at
low altitudes will be at a negative potential, while the same object may acquire a
positive potential at higher altitudes.

2. Numerical results

We have studied a variety of plasma conditions, also objects of different shapes and
material properties, and with varying relative velocities between object and plasma.
The present analysis was carried out in two spatial dimensions with Cartesian
coordinates: this restricted geometry is sufficient for illustrating the basic concepts
of the problem. The results can be directly relevant for elongated objects (manmade
or natural) embedded in warm laboratory or space plasmas, for instance long wires
with diameters larger than the Debye length. In the present study we use the same
particle-in-cell (PIC) code as used before, adding the possibility of photo-electrons
emitted from the surface of the solid particle (Miloch et al. 2008c, 2009). The number
of simulation particles is 107 and the ion-to-electron mass ratio is M/m = 120. We
study the charging of dust particles with scale sizes exceeding the Debye length
λDe . The present results are obtained for a flat, narrow conducting slab, immersed
in the plasma flow, with the plate perpendicular to the flow direction. We use a
simplified method for imposing the condition of vanishing internal electric fields as
appropriate for a conducting material, at the expense of a slight underestimation
of the charges at the corners. In Fig. 1 we show the spatial variation of the ion
density and the electrostatic potential. Only a part of the numerical plane is
shown. The electrons are not in local Boltzmann equilibrium, due to the presence
of the nonthermal photo-electrons (Miloch et al. 2008c). These simulations were
carried out at a relative velocity of U0 = 1.2Cs . We have Te/Ti = 10. Outside the
wake we note Cerenkov radiation patterns of emitted sound waves, as expected for
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Figure 1. (Color online) Spatial variations of the ion density and electrostatic potential from
a numerical PIC simulation in two spatial dimensions. The obstacle, here a narrow metal
plate, is indicated in red color. Only a part of the simulation domain is shown.

the present supersonic flow velocities. These patterns have been analyzed for the
present plasma conditions with results summarized elsewhere (Guio et al. 2008a, b)
in two as well as three spatial dimensions.
In Fig. 2 we show electron (top) and ion (bottom) phase space variations along

the flow direction, here the positive x-axis. For varying x positions, we show particle
velocities along the flow direction as well as the velocity in the perpendicular
direction. The data are obtained from a slab of thickness Δy = 0.8λDe along
the x-axis at the position y = 50λDe . To a good approximation, the background
thermal electron component can be assumed to be in local Boltzmann equilibrium,
ne = n0 exp(eφ/κTe), at all times. The photo-electrons can clearly be identified
as an energetic component on the back or downstream side of the obstacle in the
{x : ux} representation. They are first decelerated, and after passing by a local
potential minimum (see Fig. 3) they are accelerated again. The focused ions can
be identified as having an average ux velocity close to U0 , while they have the
largest uy velocity right behind the object. These ions are moving in the positive
x direction, away from the obstacle. Background ions have supersonic velocities in
the positive x direction, and cannot reach the obstacle or the potential minimum
from the downstream side.
In Fig. 3 we show the potential variation in the x direction, along the position y =

50λDe , that is, along a line through the center of the object. We note that the poten-
tial variations are similar to the one found for electrostatic double layers in plasmas
(Schamel 1986; Raadu 1989), where the charge neutral zero potential part is at
large positive x values, while the solid object takes the role of a positive potential,
charge neutral part. The potential is continuous at the conducting surface but its
first derivative is discontinuous there, so this double-layer has to be understood in a
general sense. We note the formation of a localized potential well behind the object.
The potential depletion is supported by the thermal background electrons, the
energetic photo-electrons and the focused ions. Ions are scattered into the potential
minimum to constitute a trapped component. The local potential minimum has the
main characteristics of a potential vortex which is a well-known structure, observed
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Figure 2. Phase space sections for electrons and ions. Vertical solid lines indicate the
position of the obstacle.
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Figure 3. Potential variation with varying x, along y = 50λD e . The vertical line indicates
the position and width of the narrow metallic plate. The dashed line shows the potential
variation obtained without photo-electrons.
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in numerical simulations (Sakanaka 1972; Pécseli et al. 1984; Guio et al. 2003) and
laboratory experiments (Pécseli et al. 1981; Chan et al. 1984; Pécseli et al. 1984).
These vortical structures are a special example of a general class of Bernstein-
Greene-Kruskal (BGK) equilibria (Bernstein et al. 1957). Formally a very large
class of such equilibria can be constructed, but relatively few types are generated
under natural conditions.
Most of the analytical studies refer to one spatial dimension, but it has been

demonstrated that even a weak magnetic field suffices to support stable phase space
vortices in three dimensions (Børve et al. 2001; Daldorff et al. 2001; Guio et al. 2003).
The stability of two- or three-dimensional phase space vortices in unmagnetized
plasmas is an unsettled issue, although some analytical stationary solutions have
been suggested (Kato 1976; Ishibashi and Kitahara 1992). These latter studies refer
to free phase space vortices, while the one observed in our simulations is supported
by a solid object which is at floating potential in the plasma.
The problem analyzed here has in many respects similarities with electron emit-

ting probes (Schrittwieser et al. 2008). Our results can have relevance also for this
problem. A basic difference is that in our case electrons are emitted in a preferred
direction, while the emissive probes usually have an approximately isotropic emis-
sion. The potential of a solid object can be controlled also by an external circuit.
One of the interesting aspects of the present study is that we have no external
circuit, which is otherwise known to have a strong influence on the double layer
characteristics (Smith 1982).

3. One-dimensional double-layer simulations

The potential structures discussed in Sec. 2 are independent of any external circuit
and the only perturbations we can introduce are obtained by modifying the plasma
flow or the photo-electron intensity. We have no simple means of investigating the
stability conditions of the seemingly stationary structures we have found. To obtain
a somewhat more detailed insight we perform a different numerical PIC simulation
where we can specify the potential at two points in the structure. Carrying out
the analysis in one spatial dimension for simplicity, we choose to select one half of
the potential variation from the bottom of the parabolic potential well (see Fig. 3)
forming the ion phase space vortex to a position somewhat to the right-hand side
of this, so the potential difference between the two points is φ = κTe/e and the
spatial length of the simulation box is 15λDe . At these two end points we can then
impose different conditions; here we use Dirichlet and von Neumann conditions,
corresponding to fixed potentials and fixed electric fields, respectively.

3.1. Setting up the simulations

The initial conditions for the model are set up as follows.We have Poisson’s equation

∂2

∂x2 φ = − ζ

ε0
≡ dV (φ)

dφ
, (3.1)

with ζ ≡ e(ni −ne) being the initial charge density, with e > 0 being the elementary
charge, and we assume singly charged ions. We have the Sagdeev “pseudo potential”

V (φ) = − 1
ε0

∫ φ

0
ζ(φ) dφ . (3.2)
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We rewrite (Raadu 1989) the expression (3.1) as
(

dφ

dx

)2

− V (φ) = C , (3.3)

where C is an integration constant. By this we obtain an initial relation between a
position x(φ) and V (φ) as

x(φ) − x0 = ±
∫ φ

φ0

dφ√
C + V (φ)

, (3.4)

giving x = x(φ) rather than φ = φ(x). Either representation is equally useful
for the initial condition. We can choose φ0 = 0 without loss of generality. Given
the initial boundary conditions, we let the entire potential drop be Δ�φ, and have
� = ±

∫ Δ � φ

0 dφ/
√

C + V (φ), where � is the length of the system. We retain the ‘±’
sign to accommodate both signs of Δ�φ.
The standard formulation (Bernstein et al. 1957) of the problem for finding

stationary solutions of the Vlasov equation assumes the potential variation to
be a priori given. A prescription for determining self-consistent particle velocity
distributions is then given. Some problems can be solved by other assumptions also
(Sivukhin 1966; Schamel 1986).
We here assume that the potential is monotonically increasing or decreasing

with position. Thereby we consider only that part of the ion acoustic double layer
in Fig. 3 which extends from the local potential minimum to the boundary of
the object to the left, or alternatively the boundary of the simulation box to the
right. There are no internally trapped particles within this model. Thus, with
this restriction we do not have to prescribe ζ(x, t = 0) or φ(x, t = 0), only the
distributions of particles injected at the boundaries and the total potential drop. We
can then express ζ = ζ(φ), which is what we need to find the pseudo-potential V (φ)
from (3.2).
The full nonlinear stationary Vlasov’s equations becomes

v
∂

∂x
fs(x, v) − qs

ms

∂

∂x
φ(x)

∂

∂v
fs(x, v) = 0 (3.5)

for each particle specie s. The assumption is that a frame of reference exists, so
that φ(x) represents a stationary potential variation. We have solutions fs =
Fs

( 1
2 msv

2 + qsφ(x)
)
of (3.5), where Fs � 0 is arbitrary. We choose to prescribe

the total potential drop Δ�φ, and also the parts of Fs corresponding to particles
entering the simulation domain at the boundaries. Given Δ�φ, we can distinguish
transiting FT

s and reflected FR
s particles. The distributions of reflected particles

have to be symmetric in phase space with respect to v = 0. Prescribing FT
s and

FR
s at the boundaries, we obtain an expression for ζ, which subsequently
determines φ.
For simplicity, we assume that the only particle species present are electrons

and singly charged positive ions, denoted by indices e and i. The particle energies
Ee,i = 1

2 me,iv
2 + qe,iφ(x) with qe = −qi = −e are introduced as variables, using

that

dv =
dEe,i

me,iv
=

dEe,i√
2me,i(Ee,i − qe,iφ(x))

.

https://doi.org/10.1017/S002237780999064X Published online by Cambridge University Press

https://doi.org/10.1017/S002237780999064X


Ion acoustic double layers 435

We have for the local charge density

ζ = e

∫ ∞

0

F 0,T
i (Ei)√

2mi(Ei − eφ)
dEi + e

∫ 0

eφ

F 0,R
i (Ei)√

2mi(Ei − eφ)
dEi

− e

∫ 0

−∞

F 0,T
e (Ee)√

2me(Ee + eφ)
dEe

− e

∫ 0

−∞

F�,T
e (Ee)√

2me(Ee + eφ)
dEe − e

∫ 0

−eφ

F �,R
e (Ee)√

2me(Ee + eφ)
dEe

+ e

∫ ∞

0

F�,T
i (Ei)√

2mi(Ei − eφ)
dEi (3.6)

in terms of transiting and reflected electron and ion species, assuming φ(�) = 0 and
φ(0) = Δ�φ, for instance. We can prescribe the curvature of φ(x) at x = 0 and
x = � by imposing conditions on the net charges injected at the two end points of
the system. We give the energy distributions an index for their origin at x = 0 or
x = �, respectively, e.g. as F�,T

i (Ei), etc.
By (3.6) we have obtained an expression for the local charge density in terms of

the electrostatic potential, ζ = ζ(φ) which we need in order to obtain the pseudo-
potential V (φ) by (3.2). By this procedure we do not know the potential variation
φ = φ(x) a priori, only the total potential drop Δ�φ.
When modeling the distribution functions, we use Maxwellians, truncated at the

velocity corresponding to the separatrix in phase space, that is, giving the boundary
between reflected and transiting particles. The integrals like those in (3.6) are solved
numerically.
The set-up outlined here is used for all of our one-dimensional PIC simulations.

For the double-sided Dirichlet conditions we subsequently keep the initial values
of the potential at the two end points of the simulation constant at their initial
values. We can, however, retain the initial velocity distributions at the boundaries
and prescribe not the potential but its derivative at one or both end points.

3.2. Consequences of changes in boundary conditions

With the set-up outlined in Sec. 3.1 we have four combinations: Dirichlet–Dirichlet,
Dirichlet–von Neumann, von Neumann–Dirichlet, and von Neumann–von Neu-
mann conditions at the two ends, respectively. All combinations have been studied,
but we find the case where at least one of the conditions corresponds to the von
Neumann condition most interesting, i.e. a condition where ∂φ/∂x = −E is fixed
at all times at one end point (or possibly both ends), while the potential difference
is then free to vary with time.
In Fig. 4 we show the initial set-up of the phase space distributions obtained as

discussed in Sec. 3.1. We have the equivalent of photo-electrons from the left side,
thermal electrons entering from the right-hand side, an ion component represent-
ing the deflected ions from the ion focusing process and finally a very dilute ion
population being the ions trapped in the parabolic well. Since we have restricted
the present study to one spatial dimension, we can not self-consistently account
for the changes in ion density from the focused population, so the model is only
qualitative on this point.
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Figure 4. (Color online) Initial electron and ion phase space variations in the double layer
simulations in one spatial dimension. The mass ratio is here M/m = 250 and velocities are
measured in units of the electron thermal velocity. The conditions imposed on the boundaries
correspond to von Neumann and Dirichlet conditions on the left- and right-hand sides,
respectively.
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Figure 5. (Color online) Variations in ΔRM S ≡
√∫ L

0 (φ(x, 0) − φ(x, t))2 dx/Δ�φ(0) with
red line, Δφ ≡ Δ�φ(t)/Δ�φ(0) with green line, and ΔE ≡ Δ� (∂φ(t)/∂x)/Δ� (∂φ(0)/∂x)
with blue color, shown to the left for the case where Dirichlet–von Neumann conditions are
imposed. See text for more details. The figure to the right shows the same quantities but for
the case where von Neumann–Dirichlet conditions are imposed.

In Figs 5(a) and 5(b) we show the variations in the root mean square defined by

ΔRM S (t) ≡

√∫ �

0 (φ(x, 0) − φ(x, t))2 dx

Δ�φ(0)

with red color, where Δ�φ(0) is the initial potential difference imposed on the two
boundaries. In the same figure we also have Δφ(t) ≡ Δ�φ(t)/Δ�φ(0) given with
green line. The two curves are similar, indicating that most of the variation is due
to changes at the free end point, and not in changes of the shape of the potential
φ(x, t) as such. Finally, we show the normalized variation in potential derivative
differences at the two end points

ΔE (t) ≡ Δ�(∂φ(t)/∂x)
Δ�(∂φ(0)/∂x)

with blue color. In Fig. 5(a) we imposed the Dirichlet condition at the potential
minimum, and the von Neumann condition to the right of the minimum at a
distance at x = 15λDe .
For comparison, in Fig. 5(b) we show corresponding data for different boundary

conditions, with the von Neumann condition at the potential minimum, and the
Dirichlet condition to the right at x = 15λDe .
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4. Conclusions

By numerical methods, we have studied the formation of coherent nonlinear elec-
trostatic structures around solid objects moving in collisionless plasmas. These
structures have the form of double layers adjacent to a localized potential depletion,
an “ion acoustic double layer”, a form having also analytical support (Schamel 1986;
Raadu 1989). The two-dimensional electrostatic structure is in our case supported
by a solid conducting object, constituting the high potential side of the double
layer. Photo-electron emission from the solid object plays an important role for the
formation of the structure by the contribution to the charge density near the surface
of the object. Large-scale double layers are known in nature, although often identi-
fied by indirect means (Ergun et al. 2003). We found that under proper conditions,
small-amplitude double layers can be found also in plasmas with embedded small
objects (natural or man made). The structures seem to be fixed behind the struc-
ture at least within the time span of the present simulations. Different numerical
simulations (Guio and Pécseli 2005) demonstrated the possibility of slow, large-scale
electrostatic fluctuations in the distant wake of a solid object moving relative to
an unmagnetized plasma, but these studies did not include photo-electrons.
The physical size of the object has a role for the ion focusing (Miloch et al. 2008b),

but otherwise it is of little relevance for the interpretation of the observed potential
variation in terms of an ion acoustic double layer.
We also analyzed the stability of the stationary structures obtained in Sec. 2 by a

dedicated PIC simulation carried out in one spatial dimension. We have chosen here
to simulate a part of the structure, placing the local potential minimum at one end
of the simulation domain and a position at x = 15λDe to be the other end. We could
then vary the numerical conditions at these positions, where we considered here four
possible combinations of von Neumann and Dirichlet conditions. The most stable
ones are, as could be expected, the condition with Dirichlet conditions on both
sides. The main conclusion of these simulations is that the structures are robust
and do not change significantly if we perturb the potentials: here the changes were
imposed by changing the numerical boundary conditions. In particular, we saw no
evidence for oscillatory variations. The most significant time variation was found in
a short transient time interval. Other studies (Daldorff et al. 2001) found evidence
of internal oscillatory modes excited in ion phase space vortices, but in those cases
the relative number of trapped ions was larger.
The results presented in Sec. 3.2 refer to the positive x side of the local potential

minimum. We analyzed also the other side in a similar manner, to reach the same
conclusions. These one-dimensional simulations are not as computer time consum-
ing as those discussed in Sec. 2, so we could more easily carry out studies of realistic
mass ratios as well. We found that variations of M/m or the number of simulation
particles used (for the present results 107) had no consequences for the conclusions
summarized here.
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