
J. Appl. Prob. 56, 174–191 (2019)
doi:10.1017/jpr.2019.12

© Applied Probability Trust 2019

MONTE CARLO FUSION

HONGSHENG DAI,∗ University of Essex

MURRAY POLLOCK ∗∗ ∗∗∗ AND

GARETH ROBERTS, ∗∗ ∗∗∗∗ University of Warwick

Abstract

In this paper we propose a new theory and methodology to tackle the problem of unifying
Monte Carlo samples from distributed densities into a single Monte Carlo draw from
the target density. This surprisingly challenging problem arises in many settings (for
instance, expert elicitation, multiview learning, distributed ‘big data’ problems, etc.), but
to date the framework and methodology proposed in this paper (Monte Carlo fusion) is
the first general approach which avoids any form of approximation error in obtaining
the unified inference. In this paper we focus on the key theoretical underpinnings of
this new methodology, and simple (direct) Monte Carlo interpretations of the theory.
There is considerable scope to tailor the theory introduced in this paper to particular
application settings (such as the big data setting), construct efficient parallelised
schemes, understand the approximation and computational efficiencies of other such
unification paradigms, and explore new theoretical and methodological directions.
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1. Introduction

A common problem arising in statistical inference is the need to unify distributed analyses
and inferences on shared parameters from multiple sources into a single coherent inference.
This unification (or what we term ‘fusion’) problem can arise either explicitly due to the nature
of a particular application, or artificially as a consequence of the approach a practitioner takes
to tackling an application.

Typically, there will exist no closed-form analytical approach to unifying distributed
inferences, and so we focus on a Monte Carlo approach. Stated generally, in this paper we
are interested in sampling (without error) the d-dimensional (fusion) target density

f (x) ∝ f1(x) · · · fC(x), (1)

where each fc(x) (c ∈ {1, . . . , C}) is a density (up to a multiplicative constant) representing one
of the C distributed inferences we wish to unify. Each fc(x) (which we term a sub-posterior)
may in practice itself be represented by a Monte Carlo sample ( f̃ c(x)), and in this paper we
assume that we are able to sample (directly and exactly) from each fc(x).
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Specific examples of this problem arising naturally in an application include expert
elicitation ([2] and [13]), in which the (distributional) views of multiple experts on a topic
(or set of parameters) have to be pooled into a single view before a decision-maker can make
an informed decision; and, multiview learning ([29] and [16]) and meta-analysis ([12] and
[24]), in which an interpretation could be that we are synthesising multiple inferences on a
particular parameter set (computed on datasets which may or may not be of the same type),
but the underlying raw data is not directly available for the unified inference. Obtaining the
raw data may itself be an insoluble problem due to reasons including the nature of the original
publication, data confidentiality, or simply time and storage constraints.

This fusion problem also arises artificially in a number of settings, particularly within
modern statistical methodologies tackling ‘big data’. The computational cost of algorithms
such as the Metropolis–Hastings, which is an iterative algorithm requiring full access at every
iteration to the full dataset, scale poorly with increasing volumes of data unless a modification
is found.

One common modification in light of the challenge of big data is to deploy a ‘divide-and-
conquer’ approach (or more accurately termed ‘fork-and-join’ approach ([26])). In this setting
the full dataset is artificially split into a large number of smaller data sets, inference is then
conducted on each smaller data set in isolation, and the resulting inferences are unified (see,
for instance, [1], [15], [18], [19], [23], [25] and [28]). The rationale for such an approach is that
inference on each small data set can be conducted independently, and in parallel, and so one
could exploit large clusters of computing cores to greatly reduce the elapsed time to conduct the
full inference. The weakness of these approaches is that the fusion of the separately conducted
inferences is inexact. It should be noted that divide-and-conquer methodologies will typically
have additional constraints due to hardware concerns—such as minimising or removing any
communication between computing cores to reduce the effect of latency. We focus in this paper
on the general fusion problem, and so do not fully address the problem in the context of big
data (to which we return in subsequent work).

The framework and methodology we outline in this paper (Monte Carlo fusion) for sampling
exactly from (1) can be viewed as a simple rejection sampling scheme on an extended space—
we develop and sample from efficient proposal densities for (1), the samples from which we
retain according to an appropriate acceptance probability. The mathematical complication in
this paper is in computing the intractable acceptance probability—which requires the auxiliary
simulation of collections of Brownian (or Ornstein–Uhlenbeck) bridges. Our fusion approach
provides a principled way to understand the error in existing unification schemes, using a
simple linear combination and correction of Monte Carlo samples (analogous to a traditional
meta-analysis approach).

The presentation of this paper broadly follows this pedagogy. In Section 2 we present a
density on an extended space which admits (1) as a marginal. In the remainder of the paper
we then develop a rejection sampler for the extended density in Section 2. In Section 3
we develop general theory and methodology for sampling (1) based on a collection of
independent Brownian bridges. In Section 4 we present a modification of the theory developed
in Section 3 using Ornstein–Uhlenbeck bridges, resulting in sampling efficiencies for the
particular (common) setting in which the fusion density is believed to be approximately
Gaussian. In Section 5 we consider examples of our methodology applied to both light-tailed
and heavy-tailed fusion target densities. Finally, in Section 6 we conclude by discussing the
exciting new research directions possible using Monte Carlo fusion. Much of the technical
detail in the paper is suppressed for ease of reading, but can be found in the appendices.
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2. An extended fusion density

Consider f (x) and fc(x) as described in (1), where f (x) is integrable and we can sample from
the density proportional to fc(x).

The following simple observation will form the foundation of our approach. Suppose that
pc(y | x) is the transition density (with respect to the Lebesgue measure) of a Markov chain on
R

d with invariant density proportional to f 2
c .

Proposition 1. The (C + 1)d-dimensional (fusion) density proportional to the integrable
function

g(x(1), . . . , x(C), y) =
C∏

c=1

[
f 2
c (x(c)) · pc( y | x(c)) · 1

fc(y)

]
, (2)

admits the marginal density f for y.

The proof of Proposition 1 is elementary and is omitted. The statistical interpretation of
Proposition 1 is simply if it were possible to sample from the (C + 1)d-dimensional (fusion)
density g in (2) then, as a by-product, we would obtain a draw from our fusion target density
f in (1). How to directly sample from (2) is not clear, even if it were possible to simulate
from pc(·| x). Our strategy instead will be to use rejection sampling. Two rejection sampling
methods (which have differing efficiencies) are provided in Sections 3 and 4.

3. A fusion rejection sampler using Brownian bridges

3.1. The methodology

Consider the proposal density for the extended fusion target (2) proportional to the function

hbm(x(1), . . . , x(C), y) =
C∏

c=1

[ fc(x(c))] exp

{
− C‖y − x̄‖2

2T

}
, (3)

where x̄ = C−1 ∑C
c=1 x(c), and T is an arbitrary positive constant.

Simulation from the proposal hbm can be achieved directly. In particular, x(1), . . . , x(C) are
first drawn independently from f1, . . . , fC, respectively, and then y is simply a Gaussian random
variable centred on x̄.

In Proposition 1 we presented a general form of the extended fusion target, in which
pc(y | x) is the transition density (with respect to the Lebesgue measure) of a Markov chain on
R

d with invariant density proportional to f 2
c . In this paper we set pc(y | x) := pdl

T,c(y | x), the
transition density of a double Langevin diffusion for fc (i.e. the transition density of a Langevin
diffusion for f 2

c ) from x to y over a predefined (user-specified) time T > 0. To distinguish the
resulting extended fusion target from the general case, we further denote the extended fusion
target by gdl. In particular, for all 1 ≤ c ≤ C, we consider the d-dimensional (double) Langevin
(DL) diffusion processes X= {X(c)

t , t ∈ [0, T], c = 1, . . . , C}, given by

dX(c)
t = ∇Adl

c (X(c)
t ) dt + dW(c)

t , (4)

where W(c)
t is a d-dimensional Brownian motion, ∇ is the gradient operator over x, and

Adl
c (x) := log fc(x);

https://doi.org/10.1017/jpr.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.12


Monte Carlo fusion 177

X(c)
t has invariant distribution f 2

c (x) for any t ∈ [0, T] ([14]). We also impose the following
standard regularity property (where div denotes the divergence operator)

Condition 1. Define

φdl
c (x) := 1

2 (‖∇Adl
c (x)‖2 + div ∇Adl

c (x)).

There exists constant �bm
c > −∞ such that, for all x and each c ∈ {1, . . . , C}, φdl

c (x) ≥ �bm
c .

Then we have the following proposition which gives a rejection sampling method for
gdl(x(1), . . . , x(C), y).

Proposition 2. Under Condition 1, we can write

gdl(x(1), . . . , x(C), y)

hbm(x(1), . . . , x(C), y)
=

[ √
C√

2πT

]C

× ρbm × Qbm ×
C∏

c=1

e−T�bm
c , (5)

where

ρbm := ρbm(x(1), . . . , x(C)) = e−Cσ 2/2T , σ 2 = C−1
C∑

c=1

‖x(c) − x̄‖2,

and

Qbm =E
W

(Ebm),

with W denoting the law of C Brownian bridges x(1)
t , . . . , x(C)

t with x(c)
0 = x(c) and x(c)

T = y in
the time interval [0, T] (noting that these Brownian bridges are independent conditional on the
starting and ending points), and

Ebm :=
C∏

c=1

[
exp

{
−

∫ T

0
(φdl

c (x(c)
t ) − �bm

c ) dt
}]

. (6)

Proof. From the Dacunha-Castelle representation ([8]) we have

pdl
T,c(y | x(c)) = fc(y)

fc(x(c))

√
C√

2πT
exp

{−‖y − xc‖2

2T

}
E
W

(
exp

{
−

∫ T

0
φdl

c (x(c)
t ) dt

})
.

The result then follows from (2) and (3) by rearrangement and recalling that
∑C

c=1 ‖y −
x(c)‖2 = ∑C

c=1 ‖x(c) − x̄‖2 + C||y − x̄||2. �
Here ρbm and Qbm are both necessarily bounded by 1, and when interpreted method-

ologically (see the next section) correspond to separate acceptance steps within our rejection
sampling framework. An event of probability ρbm can be simulated by direct computation,
and an event of probability Qbm can be simulated using the extensive efficient methodology
on Poisson samplers (using an auxiliary diffusion bridge path-space rejection sampler as
developed in, e.g. [3], [4], [5], [6], [7], [9], [20], [21], and [22]). Note that there is a tradeoff
involved in the (user-specified) choice of T . For small T , ρbm will likely be small while
Qbm is large, whereas, for large T , the opposite will be true. A small value of T is usually
preferred since the computational cost for the diffusion bridge rejection sampling for Qbm is
comparatively expensive.

The algorithm for simulating from f (by means of g) therefore proceeds as per Algorithm 1
(which we term Monte Carlo fusion).
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178 H. DAI ET AL.

Algorithm 1. (Monte Carlo fusion (Brownian bridge approach).)

1. Initialize a value T > 0;

2. For c = 1, . . . , C, simulate xc from the density fc(x) and calculate x̄;

3. Simulate y from the Gaussian distribution, with density exp ( − C‖y − x̄‖2/2T);

4. Generate the standard uniform random variable U1;

5. if log U1 ≤ −Cσ 2/2T then

6. Generate the standard uniform variable U2 and the independent Brownian bridges
x(c)

t , c = 1, . . . , C, in [0, T], conditional on the starting point xc and ending point y;

7. if

U2 ≤ Ebm (7)

then

8. Accept and output y as a sample from f (x);

// Event (7) can be dealt with via the path-space
rejection sampling methods in Beskos and Roberts (2005),
Beskos et al. (2006a), Beskos et al. (2008), and Pollock
et al. (2016a)

9. else

10. Go back to step 2;

11. end

12. else

13. Go back to step 2;

14. end

3.2. Practical interpretation of the algorithm

Remark 1. (Adjustment for the simple average of the sample from subdensities.) In the above
algorithm, for all c, x(c) is simulated from fc(x) as in other Monte Carlo fusion algorithms.
The proposed combined value y, however, is actually generated from a Gaussian distribution
with mean x̄ and covariance matrix C−1TId. Therefore, y can be viewed as a simple average
of the values {x(c), c ∈ C} added to a Gaussian random error term. This algorithm indicates
exactly how the simple average of these independent sub-posterior samples can be adjusted as
a draw from the target distribution. This adjustment is in the form of the accept/reject step with
acceptance probability ρbm × Qbm.

Remark 2. (Implication on Bayesian group decision theory.) In step 5 of Algorithm 1, we can
also write log U1 ≤ −Cσ 2/2T as

σ 2 ≤ −2T log U1

C
. (8)

Note that σ 2 is actually the sample variance of the simulated starting points, x(c) (strictly
speaking, it is the sum of variances for each component of x(c)). Thus, in this step, the
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acceptance condition (8) implies that y will have a reasonable probability of being accepted
as a sample from f (x) only when the variance of the x(c) is small enough. This coincides
with our intuition in group decision making. For example, the small variance of {x(c), c ∈ C}
(satisfying condition (8)) means that the decisions/results from each group are similar, so that
we can combine these decisions/results in step 7, using (7), of Algorithm 1. On the other hand,
if the variance of {x(c), c ∈ C} (not satisfying condition (8)) is large, then {x(c), c ∈ C} provide
contradictory evidence and should usually be rejected. Note that, algorithmically, this initial
rejection sampling step is efficient since early rejection then avoids the need to carry out the
more complicated (and computationally expensive) step 7, via the condition of (7).

Remark 3. (An extreme case.) A very interesting extreme case is to choose T = 0. Then
the event (7) will certainly happen, but the event U1 ≤ exp{−Cσ 2/2T} will occur only if
x(1) = · · · = x(C) = y. Therefore, in such an extreme case, Algorithm 1 (theoretically) draws a
sample y from

hbm(x(1), . . . , x(C), y) ∝
C∏

c=1

fc( y),

which is the target distribution. In practice, however, we have to choose T > 0, since the
independent sub-posterior samples x(c) have zero probability to be the same.

4. A fusion rejection sampler using Ornstein–Uhlenbeck bridges

4.1. The methodology

In the previous section, the proposal density hbm uses a simple average of the sub-posterior
samples x(c) as the mean of the proposal y. Another approach is to consider using a weighted
average of the sub-posterior samples x(c) as the mean of the proposal y. For example, in a
typical meta-analysis, a weighted average from different research outputs is typically used as
the unification mean, and an individual output with more certainty (or, smaller variance) should
consequently have larger weights ([12]).

Denote by μ̂c and �̂c the mean and the inverse of the covariance matrix estimates for
distribution fc(x), respectively. We consider the more general proposal density

hou(x(1), . . . , x(C), y) ∝
[ C∏

c=1

fc(x(c))

]
etr

[
− 1

2
[y − x̃]⊗2D

]
,

where the notation etr is the exponential trace function, ‘⊗’ is the Kronecker product,

D =
C∑

c=1

Dc, Dc = V−1
c − �̂c,

Vc := Vc(T) = var

( ∫ T

0
e�̂c(t−T) dW(c)

t

)
= �̂−1

c

2
(Id − e−2�̂cT ),

and

x̃ = D−1
{ C∑

c=1

(V−1
c mc − �̂cμ̂c)

}
,

mc := mc(x(c), T) = μ̂c + e−�̂cT (x(c) − μ̂c). (9)
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It is also straightforward to simulate from hou( · ), since the x(c) are independently drawn
from fc(x), and then y is generated from a Gaussian distribution with mean x̃ and covariance
matrix D−1.

Here the vector mc and the matrix Vc are actually the mean and covariance matrices,
respectively, for the following Ornstein–Uhlenbeck (OU) process at time T conditional on
the starting point x(c)

0 = x(c) ([17]):

dX(c)
t = ∇Aou

c (X(c)
t ) dt + dW(c)

t , X(c)
0 ∼ f 2

c (x), (10)

with

Aou
c (x) = − (μ̂c − x)tr�̂c(μ̂c − x)

2
.

We shall also require the following regularity property.

Condition 2. Define

φou
c (x) = 1

2 (‖�̂c(μ̂c − x)‖2 − trace(�̂c)). (11)

For any c ∈ {1, . . . , C}, there exists �ou
c > −∞ such that, for all x,

φdl
c (x) − φou

c (x) ≥ �ou
c .

We now have the following result.

Proposition 3. Define function

ρou := ρou(x(1), . . . , x(C)) (12)

= etr
{
− 1

2

[
HD−1 +

C∑
c=1

M1,c(mc + M−1
1,cM2,cVc�̂cμ̂c)⊗2

]}
,

with

M1,c = e2�̂cT�̂c − V−1
c

( C∑
c=1

�̂c

)
D−1,

M2,c = V−1
c

( C∑
c=1

�̂c

)
D−1 − 2�̂ce2�̂cT ,

H =
( C∑

c=1

(mc − Vc�̂cμ̂c)⊗2V−1
c

)( C∑
c=1

V−1
c

)
−

{ C∑
c=1

V−1
c (mc − Vc�̂cμ̂c)

}⊗2

.

Under Condition 2, we can write

gdl(x(1), . . . , x(C), y)

hou(x(1), . . . , x(C), y)
∝ ρou(x(1), . . . , x(C)) × Qou ×

C∏
c=1

e−T�ou
c , (13)

where

Qou =E
O

(Eou),
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with O denoting the law of C OU bridges x(c)
t , c = 1, · · · , C, in time interval [0, T]. These

x(c)
t are independent conditional on the starting point x(c) and common ending point y, and

Eou :=
C∏

c=1

[
exp

{
−

∫ T

0
(φdl

c (x(c)
t ) − φou

c (x(c)
t ) − �ou

c ) dt

}]
. (14)

Proof. See Appendix A. �
Since ρou and Qou in (13) are always no more than 1, we have the following rejection

sampling algorithm.

Algorithm 2. (Monte Carlo fusion (Ornstein–Uhlenbeck approach).)

1. Initialise a value T > 0 and μ̂c, �̂c;

2. For c = 1, . . . , C, simulate x(c) from the density fc(x) and calculate x̃, D;

3. Simulate y from the Gaussian distribution, with mean x̃ and covariance matrix D−1;

4. Generate the standard uniform random variable U1;

5. if U1 ≤ ρou(x(1), . . . , x(C)) (given in (12)) then

6. Generate the standard uniform random variable U2 and independent OU bridges
x(c)

t , c = 1, . . . , C, in [0, T], conditional on the starting point x(c)
0 = x(c) and ending point

y;

7. if

U2 ≤ exp

{
−

C∑
c=1

∫ T

0
(φdl

c (x(c)
t ) − φou

c (x(c)
t ) − �ou

c ) dt

}
(15)

// Event (15) can be dealt with via the path-space
rejection sampling methods in Beskos and Roberts (2005),
Beskos et al. (2006a), Beskos et al. (2008), and Pollock
et al. (2016a)

8. then

9. Accept and output y as a sample from f (x);

10. else

11. Go back to step 2;

12. end

13. else

14. Go back to step 2;

15. end

In Algorithm 2, T is a tuning parameter as well. If we choose a small value of T , the
acceptance probability ρou(x(1), . . . , x(C)) will be very low. This is noticed by the facts that
trace(HD−1) = ∞ and M1,c and M2,c are finite matrices, if T = 0. Therefore, in practice, we
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should choose a reasonably large value T . However, if we choose a large T , the acceptance
probability (15) will be very small. In practice, it is usually preferable to choose a small T
since the computational cost for the acceptance/rejection step of (15) is much higher.

4.2. Connection with consensus Monte Carlo

In practice, people may employ an approximate version of Algorithm 2, since we can ignore
condition (15) in the rejection step 7, if we choose a small value T . In other words, from (13) of
Proposition 3, for small T , the target gdl(·) is approximately equal to a function proportional to

h̃ou = hou · ρou =
[ C∏

c=1

fc(x(c))

]
etr

[
− 1

2
[ y − x̃]⊗2D

]
· ρou(x(1), . . . , x(C)).

Such an approximation will be very good since Qou, the acceptance probability (15), will be
very close to 1 with a small T . In other words, we only simulate y from h̃ou(·) and accept y as
a sample approximately from the target distribution f (·).

We draw xc, c = 1, . . . , C, independently from each fc(x), respectively. Another naive
approach to combine these draws is to use the following linear combination:

y =
( C∑

c=1

�̂c

)−1[ C∑
c=1

�̂cxc

]
. (16)

In practice, �̂−1
c can be obtained via preliminary analysis. Such a y can be viewed as a sample

approximately from f (x) as well. This is named as consensus Monte Carlo in [23].
The following lemma tells us how the simulation of y from h̃ou(·) is related to the consensus

Monte Carlo sample (16).

Lemma 1. If fc(x) is a Gaussian distribution and if we choose T = ∞, then simulating y from
h̃ou(·) will be the same as the consensus Monte Carlo (CMC) method. Both draw samples
exactly from the target distribution.

Proof. See Appendix B. �

This lemma tells us why CMC does not provide good results. It is because CMC simulates
y from h̃ou(·) with T = ∞; however, T should be chosen as a small value to achieve better
approximation or even use the exact Algorithm 2 with the diffusion path rejection sampler.

5. Simulation studies

5.1. Distribution with light tails

We consider the target distribution f (x) ∝ e−x4/2. We choose C = 4 and fc(x) = e−x4/2C,

c = 1, · · · , C. It is easy to check that φdl(x) = 1
2 (4x6/C2 − 6x2/C) satisfies Condition 1. On

the other hand, for any chosen values μ̂c and �̂c, φou
c (x) in (11) satisfies Condition 2 as well.

Therefore, both Algorithm 1 and Algorithm 2 can be applied to simulate from f (x).
We compare the following Monte Carlo (MC) methods for the estimation of the density

function of f (x).

1. Simulating MC samples directly from f (x) via a simple rejection sampling with standard
Gaussian distribution as the proposal.
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FIGURE 1: Kernel density fitting with bandwidth 0.25 for the density proportional to e−x4/2, based on
different MC methods: the standard exact MC (simulation 1, solid curve); Algorithm 1 (simulation
2, dash–dot curve); Algorithm 2 (simulation 3, dotted curve); the CMC algorithm (simulation 4,

dashed curve).

TABLE 1: System running times in seconds for simulating 10 000 realisations.

Algorithm

CMC Algorithm 1 Algorithm 2

Running time (s) 0.05 0.36 4.05

2. Simulating MC samples based on the exact simulation method, Algorithm 1 with T = 1.

3. Simulating MC samples based on the exact simulation method, Algorithm 2 with T = 1.

4. Simulating MC samples based on the consensus method of [23].

The density curve estimation results are summarised in Figure 1. Note that all results are
based on 10 000 realisations. The solid curve (simulation 1, the true fitted density curve), the
dotted curve (simulation 2), and the dash–dot curve (simulation 3) are all exact algorithms and
they are almost identical. The consensus method (simulation 4, the dashed curve) has very
large biases. Note that both the CMC algorithm and Algorithm 2 use the same values of μ̂c

and �̂c based on preliminary analysis.
The running time of the algorithms are presented in Table 1. It seems that Algorithm 2 uses

the most system running time. This is because Algorithm 2 has a smaller acceptance probability
(about 0.011 for the path-space rejection sampling (15)) than that of Algorithm 1 (about 0.139
for the path-space rejection sampling (7)).

Note that Condition 1 is usually satisfied in most applications; however, Condition 2 only
holds when the target f (x) has lighter tails than Gaussian distributions. We present an example
in the following section, where only Condition 1 holds.
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5.2. Beta distribution

Consider the target distribution as the beta distribution with density π (u) ∝ u4(1 − u), u ∈
[0, 1], i.e. Beta(5, 2). To use the proposed algorithms, the support of the target distribution
should be in the whole real axis. Therefore, we need to use the variable transformation
x = log (u/(1 − u)) and consider the target distribution as

f (x) ∝
[ exp (x)

1 + exp (x)

]5[ 1

1 + exp (x)

]2
.

We decompose π (x) into C = 5 components,

f (x) ∝ f1(x) · · · fC(x)

fc(x) =
[ exp (x)

1 + exp (x)

][ 1

1 + exp (x)

]0.4
. (17)

Note that, for this simple example, Condition 1 is satisfied but Condition 2 is not satisfied.
Therefore, we compare the following MC methods for the estimation of the density function
of Beta(5, 2).

(a) Simulating MC samples directly from Beta(5, 2) via the simple R command, rbeta.

(b) Simulating MC samples based on the exact simulation method, Algorithm 1 with T = 3.

(c) Simulating MC samples based on the consensus method of [23], with variable
transformation and with the decomposition in (17).

For simulation (c), μ̂c and �̂c (also known as the weight of each consensus sample in the CMC
algorithm) are respectively chosen as the estimated mean and inverse of the variance of fc(·),
as suggested by [23].

The density curve estimation results are summarized in Figure 2. Note that all results are
based on 10 000 realisations. The solid curve (simulation (a)) and the dotted curve (simulation
(b)) are almost identical, since both of them are based on exact simulation methods. Again, the
CMC algorithm gives very biased results.

Remark 4. (Tuning parameters and the density decomposition.) We may choose any value T
in the proposed algorithms. However, as we mentioned before, value T is a tuning parameter
for the efficiency of Algorithm 1, which is indeed shown by our simulation results. The CPU
running time for simulating 10 000 realisations based on Algorithm 1 for the beta example is
summarized in Figure 3. The optimum value is about T = 2.

We here use Algorithm 1 to provide two empirical approaches to find a good value T in
practice.

Approach 1. Although it is not easy to calculate an explicit value for the overall acceptance
probability

e−Cσ 2/2T︸ ︷︷ ︸
ρbm

E
W

( C∏
c=1

[
exp

{
−

∫ T

0
(φdl

c (x(c)
t ) − �bm

c ) dt

}])
︸ ︷︷ ︸

Qbm

, (18)

where σ 2 is the sample variance of the distributed MC samples, it can be estimated easily using
a small number of preliminary simulation studies. Therefore, in practice, we choose a sequence
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FIGURE 2: Kernel density fitting with bandwidth 0.04 for Beta(5, 2), based on different MC methods:
the standard exact MC (simulation (a), solid curve); Algorithm 1 (simulation (b), dotted curve); the CMC

algorithm (simulation (c), dashed curve).
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FIGURE 3: CPU time (in seconds) for Algorithm 1, based on different T .

of different values of T , say T1, T2, . . . , Tq, and, for each Ti, we carry out a small number of
preliminary simulations to estimate the above probability. Then the value Ti which gives the
largest acceptance probability is chosen.

Approach 2. When dealing with Qbm via path-space rejection sampling, we need upper
bounds �c, φdl

c (xc) ≤ �c for all xc, and we want (�c − �bm
c )T to be as small as possible to

give efficient Poisson thinning steps in path-space rejection sampling for diffusion bridges.
Therefore, if �c (or an approximate value) is available, it makes sense to consider choosing
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a value of T to give a large value for the following probability (replacing φdl
c (x(c)

t ) by �c

in (18)):

e−Cσ 2/2T
C∏

c=1

[
exp

{
−

∫ T

0
(�c − �bm

c ) dt

}]

= exp
{
−

∑C
c=1 ‖x(c) − x̄‖2

2T
−

C∑
c=1

(�c − �bm
c )T

}
.

Each preliminary simulation study simulates values x(c) from each fc(x) and thus gives x̄.
Therefore, we can find the value T∗ which can maximize the above formula in each preliminary
simulation study. The averaged optimal T∗ values corresponding to each preliminary study may
also be used as the value T .

In addition, when we split the target f into f ∝ f1 · · · fC, we actually chose f1 = · · · = fC =
f 1/C, since such a decomposition will always give the smallest variation for x(c), c = 1, . . . , C,
as suggested in [10].

5.3. Normal distribution: comparison of the two algorithms

We have seen in previous sections that Algorithm 2 may have limited applications due to
its complexity and the stronger condition requirement, Condition 2. However, Algorithm 2 can
gain great advantage if the target distribution is very close to a Gaussian distribution, which
is usually true for Bayesian posterior densities under the big data framework. We here use a
simple Gaussian example to compare the two algorithms.

We consider the target distribution as standard normal f (x) ∝ e−x2/2 and φdl
c (x) = 1

2 (x2/C2 −
1/C). We choose the OU process with μ̂c = 0 and �̂c = 1/2C, which gives φou

c (x) =
1
2 (x2/4C2 − 1/2C). The normalising constant �ou

c = −1/4C guarantees that φdl
c (x) − φou

c (x)
is bounded below. Under these settings, the acceptance probability Eou in (14) becomes

Eou :=
C∏

c=1

[
exp

{
−

∫ T

0

3x(c)
t

8C2
dt

}]

and, furthermore, Qou =E
O

(Eou). On the other hand, if we use Algorithm 1, we can choose

�bm
c = −1/2C and the acceptance probability Ebm defined in (6) becomes

Ebm :=
C∏

c=1

[
exp

{
−

∫ T

0

x(c)
t

2C2
dt

}]

and Qbm =E
W

(Ebm). Note that W and O are the probability measures induced by Brownian
bridges and OU bridges, respectively, conditional on the same starting and ending points. It
is clear that, for the same x(c)

t , Eou ≥ Ebm; thus, Qou should be greater than Qbm, if the value
T is not too large. Therefore, Algorithm 2 should have higher acceptance probabilities for the
complicated path-space rejection sampling for diffusions. In addition, we also found that ρou

is higher than ρbm for this toy Gaussian example via 10 000 simulations.
We chose T = 3 for both algorithms, which is about the most efficient tuning parameter

value for both. For Algorithm 2, the overall acceptance probability is about 0.1 with ρou ≈
0.16 and Qou ≈ 0.63. The overall acceptance probability for Algorithm 1 is about 0.07 with
ρbm ≈ 0.14 and Qbm ≈ 0.51. Indeed, Algorithm 2 gains advantages when the target is an
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(approximate) Gaussian distribution. In fact, when using Algorithm 2, if we choose an OU
process such that φdl

c (x) ≈ φou
c (x), the acceptance probability Qou will be almost close to 1,

which is much better than Algorithm 1.

6. Conclusion

In this paper we have introduced a novel theoretical framework, and direct methodological
implementation (Monte Carlo fusion), to address the common (but challenging) ‘fusion’
problem—unifying distributed analyses and inferences on shared parameters from multiple
sources into a single coherent inference—by viewing it as a simple rejection sampler on an
extended space (Section 2), and developing an appropriate sampling mechanism (Section 3).

Our fusion approach in this paper is not only the first to answer in a principled manner
how to combine samples from multiple sources, but (as shown in Section 4) also provides a
principled approach to understand the errors that arise in other existing unification schemes
(such as those in big data divide-and-conquer approaches). The errors in existing unification
schemes can be considerable, even for simple one-dimensional unification targets (such as
those we consider in Section 5).

Characterising the error in existing unification schemes is possible by setting the (proposal)
sampling mechanisms of those schemes within our framework, and finding a representation for
the remaining error (which we could remove by further acceptance or rejection). This opens
interesting avenues of research in which existing unification schemes are adapted within our
framework into efficient proposal mechanisms for our extended fusion target density (2).

A number of avenues to apply our work directly to interesting applications are possible.
In addition to those discussed in Section 1 (namely expert elicitation, multiview learning, and
meta-analysis), other application areas include Bayesian group decision theory (see Remark
2) and Bayesian sensitivity analysis. In the case of Bayesian sensitivity analysis we need
to assess a large number of prior distributions, but existing methods address this by using
approximations ([27]).

A key avenue for (on-going) future research is to fully explore how to use the Monte Carlo
fusion framework we introduce to modify, and remove approximation, from existing Monte
Carlo methods (particularly within the big data setting) that use the divide-and-conquer (fork-
and-join) strategies described in Section 1. In the particular setting of big data the unification
of distributed inferences is only part of the problem—additional constraints are imposed
due to practical computational and hardware concerns (such as avoiding as far as possible
communication between computing cores). As such, key future research will focus on how to
implement Monte Carlo fusion with this particular set of constraints (as direct implementation
is not possible).

Another interesting big data direction would be to blend the multi-core approach of divide-
and-conquer strategies with state-of-the-art single-core approaches for big data (see, for
instance, [22]).

Appendix A. Proof of Proposition 3

To prove the proposition, we first introduce a lemma about a density proportional to the
following function

g̃ou(x(1), . . . , x(C), y)

=
C∏

c=1

[
fc(x(c))pou

T,c(y | x(c)) exp (Aou
c (x(c)) − Aou

c (y))
]
, (19)
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where pou
T,c(y | x(c)) is the transition density from x(c) at time 0 to y at time T for the OU process

given by (10).

Lemma 2. (The expression of g̃ou.) The formula in (19) can be rewritten as

g̃ou(x(1), . . . , x(C), y)

∝
[ C∏

c=1

fc(x(c))

]
etr

[
− 1

2
[yT − x̃]⊗2D

]
ρou(x(1), . . . , x(C)),

where x̃ and ρou are given by (9) and (12), respectively.

Proof. See the supplementary file ([11]). �
Proof of Proposition 3. If we denote DL as the law of C d-dimensional Langevin diffusion

bridges given in (4), with starting points x(c) and common ending point y, the result of
Proposition 2 can be written as

gdl(x(1), . . . , x(C), y)

hbm(x(1), . . . , x(C), y)
× dDL(�x) ∝ ρbm × Ebm ×

C∏
c=1

e−T�c × dW(�x),

where �x = {x(c)
t , c = 1, · · · , C, t ∈ [0, T]} are typical diffusion bridge paths, with starting

points x(c) and common ending point y.
If we consider a very special case where each fc(x) is a Gaussian density exp (Aou

c (x)), we
immediately find that the target gdl becomes

gou =
C∏

c=1

[
e2Aou

c (x(c))pou
T,c(y | x(c))

1

eAou
c (y)

]
.

In addition, the proposal density hbm in Proposition 2 becomes

h̄bm(x(1), . . . , x(C), y) =
C∏

c=1

[eAou
c (x(c))]e−‖y−x̄‖2/2T ,

and, furthermore, the rejection sampling ratio in Proposition 2 becomes

gou(x(1), . . . , x(C), y)

h̄bm(x(1), . . . , x(C), y)
× dO(�x) ∝ ρbm × Eou∗ × dW(�x),

Eou∗ :=
C∏

c=1

[
exp

{
−

∫ T

0
φou

c (x(c)
t ) dt

}]
.

Now we have

gdl

hou

dDL

dO
= gdl

hbm

dDL

dW

h̄bm

gou

dW

dO

gou

hou

hbm

h̄bm

∝ Ebm

Eou∗

∏C
c=1

[
e2Aou

c (x(c))pou
T,c(y | x)/eAou

c (y)
]

[∏C
c=1 fc(x(c))

]
etr [− [y − x̃]⊗2D/2]

[∏C
c=1 fc(x(c))

]
[∏C

c=1 eAou
c (x(c))

]
= Ebm

Eou∗
g̃ou(x(1), . . . , x(C), y)[∏C

c=1 fc(x(c))
]

etr [− [y − x̃]⊗2D/2]
.

https://doi.org/10.1017/jpr.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.12


Monte Carlo fusion 189

Lemma 2 and the expressions for Ebm and Eou∗ immediately give

gdl

hou = Ebm

Eou∗
· ρou ∝ Eou · ρou,

where Eou is given in (14). �

Appendix B. Proof of Lemma 1

We consider the formula for ρou in (12). If T = ∞, we have

mc = μ̂c, Vc = �̂−1
c

2
,

and

D =
C∑

c=1

�̂c, M1,c = e2�̂cT�̂c − 2�̂c,

M2,c = 4�̂c − 2e2�̂cT�̂c = −2M1,c.

Therefore,

lim
T→∞ M1,c(mc + M−1

1,cM2,cVc�̂cμ̂c)⊗2 = lim
T→∞

(
M1/2

1,c μ̂c + M−1/2
1,c M2,c

μ̂c

2

)⊗2

= 0,

and, furthermore, ρou(x(1), . . . , x(C)) becomes a value not depending on X(1:C)
0 at all as T →

∞. Therefore, with T = ∞, the density function h̃ou(·) becomes

h̃ou·(x(1), . . . , x(C), y) ∝
[ C∏

c=1

fc(x(c))

]
etr

[
− 1

2
[ y − x̃]⊗2

( C∑
c=1

�̂c

)]
,

with

x̃ =
( C∑

c=1

�̂c

)−1{ C∑
c=1

�̂cμ̂c

}
.

Then we can generate y as, with some standard Gaussian random errors ε,

y = x̃ +
( C∑

c=1

�̂c

)−1/2

· ε

=
( C∑

c=1

�̂c

)−1{ C∑
c=1

�̂cμ̂c +
( C∑

c=1

�̂c

)1/2

ε

}

D=
( C∑

c=1

�̂c

)−1{ C∑
c=1

�̂cμ̂c +
C∑

c=1

�̂1/2
c εc

}

=
( C∑

c=1

�̂c

)−1{ C∑
c=1

�̂c(μ̂c + �̂−1/2
c εc)

}
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where ‘
D=’ denotes equality in distribution, and εc, c = 1, . . . , C, means C independent

standard normal vectors.
By noting that μ̂c + �̂

−1/2
c εc has the same distribution as x(c) if fc(x) is a Gaussian

distribution, the lemma is proved.
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