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1. The Minkowski—Hlawka theoremf asserts that, if S is any n.-dimensional star
body, with the origin o as centre, and with volume less than 2£(n), then there is
a lattice of determinant 1 which has no point other than o in S. One of the methods
used to prove this theorem splits up into three stages, (a) A function p(x) is considered,
and it is shown that some suitably defined mean value of the sum

p(A) = 2 p(x),
xeA

taken over a suitable set of lattices A of determinant 1, is equal, or approximately
equal, to the integral

over the whole space. (6) By taking p(x) to be equal, or approximately equal, to

00

2 li(r) er(rx),
r= l

where er(x) is the characteristic function of S, and fi(r) is the Mobius function, it is
shown that a corresponding mean value of the sum

<r(A*)= 2 o-(x),
X€A«

where A* is the set of primitive points of the lattice A, is equal, or approximately
equal, to

(c) The final result is deduced from this second mean-value result. Indeed, all the proofs
of the Minkowski-Hlawka theorem with which we are familiar are essentially of this
nature, although in many of the proofs two (or sometimes even all three) of the stages
are condensed into a single stage.

In nearly all the proofs the mean values are taken over sets of lattices, which are
chosen for sake of convenience in proving the required result J; it is only in the proof
given by Siegel(8) that the mean values are taken over all lattices A of determinant 1,
and the lattices are all given equal weight in a certain sense.

j" Minkowski(6), vol. 1, pp. 265, 270 and 277, states the result; the first published proof is
due to Hlawka(4); for a simple proof see, for example, Cassels(l).

% But in special circumstances the set of lattices, over which the mean value is taken, is
chosen for efficiency rather than convenience; see Mahler(5) and Davenport and Rogers(2).
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566 A. M. MACBEATH AND C. A. ROGERS

In order to understand the nature of the results we obtain in this paper, and to
appreciate their connexion with Siegel's results, it is necessary to consider the way in
which Siegel's mean value is defined. Let Ao denote the lattice of all points having
integral coordinates. Then, for any linear transformation 7 of determinant 1, the set
A = yA0 is a lattice of determinant 1; and every lattice A of determinant 1 can be
represented (in an infinite number of ways) in the form A = yA0, where 7 is a linear
transformation of determinant 1. Siegel introduces, into the group V of all linear
transformations of determinant 1, a measure /i(y), which is both left invariant and
right invariant under the operations of the group. Since the total measure of this
group F turns out to be infinite, it is not possible to define the mean value of p(A) to be
the ratio

Siegel overcomes this difficulty by using the Minkowski theory of the reduction of
positive definite quadratic forms to define a fundamental region F of Y such that

(i) F is measurable,
(ii) for almost all y' in V, there is just one y in F such that

yA0 = y'A0.

Then he is able to define his mean value to be

f p(yA0)d/i(y)l!
J F I J

While the definition of F is to some extent arbitrary, it is clear from the in variance of
the measure that the mean value will be the same for any set F satisfying the con-
ditions (i) and (ii). Having introduced this mean value, Siegel shows that it is equal to
the integral

taken over the whole space, provided />(x) is integrable in the Riemann sense and
vanishes outside a bounded domain. He also obtains the corresponding mean value
of the sum, taken over the primitive points of a lattice of determinant 1.

In this paper we work with a mean value defined in a rather different way. We
introduce a bound or norm || 71| into the space V of linear transformations 7 of deter-
mmantl, by writing | | r | | = s u p | y x I

where | y | is the distance of the point y from the origin o. It will be clear that, for any
K > 1, the set of 7 of F with || 71| ̂  K is a compact measurable set with finite measure.
We consider the mean value denned to be the limit

lim I p(yA0)dfi(7) \ dfi(y),

if it exists. We shall prove that it does exist, and that its value is p(x) dx, provided

p(x) is Riemann integrable and vanishes outside a bounded region. Indeed, we shall
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prove more generally that this statement remains true not only if Ao is the lattice
of points with integral co-ordinates, but also if Ao is any discrete set whose
'spherical density' (denned below) is unity.

For example, by taking Ao to be the set of all primitive points of the lattice of
points with integral coordinates, and by homogeneity considerations, we are able
to deduce the corresponding mean value result for the sum taken over the primitive
points of a lattice of determinant 1. The Minkowski-Hlawka theorem is an immediate
consequence of this second mean-value result.

2. In this section we introduce the concept of the spherical density of a set of points,
we explain the method Siegel uses to introduce the measure /i(y) in the space F, and
we state our main result formally in terms of these concepts and the norm introduced
in §1.

If Ao is any discrete set of points, let N(r) denote the number of points of Ao in the
closed sphere S(r) with centre o and radius r, and let V(r) denote the volume of this
sphere. Then we say that Ao has spherical density d, if

N(r)IV(r)->d as r->oo.

In order to introduce the measure (i(y), it is convenient to regard the space F as
a subset of the space F+ of all linear transformations of positive determinant. Further,
we regard each linear transformation-)/as a matrix (y^) and as a point {y^Jm •••,'Ynn)
in n2-dimensional Euclidean space Rn', so that F and F+ are subsets of this Euclidean
space. Let m denote the ordinary Lebesgue measure in Rn%. I t is easy to verify that
this measure is both left and right invariant under the operations of the group F; for,
if c is a fixed matrix of F, it is easy to see that the transformations y->cy and y->yc
are linear transforms of Mn* with determinant

(detc)" = 1,

so that these transformations leave the measure of any set of F+ invariant. If G is any
Borel set of F, we take the measure /i(G) of G in F to be

MG) = m(G+),

where G+ is the ' cone' in F+ with base G and vertex the origin, given by

G+= U Afl>.
0<A«l

It is immediately clear that the function fi, defined in this way, is a countably additive
measure function defined on the Borel sets of F. Further, it is clear from the invariance
properties of the measure m that /t is both left and right invariant under the opera-
tions of F.

With these definitions we can state our main theorem.

THEOREM 1. Let Ao be a discrete set of points with spherical density d. Let p(x) be
a Riemann integrable function vanishing outside a bounded region. Then

as K->ao, the integral on the right being over the whole space.
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3. In this section we state and prove a lemma, which will form the basis of our proof
of Theorem 1. We first introduce some notation. Let 0 denote the space of all points 8
in ?i-dimensional space with | 8 | = 1; so that © is the surface of the unit sphere. Let
/i(B) denote the ordinary solid-angle measuref on this spherical surface, normalized
so that .

J@
LEMMA 1. Let Ao be a discrete set of points, and let p(x) be a continuous function

vanishing outside a bounded domain. Then, for any K>0,

[ p(yA0) dMy) = f k' ! P(y\ x | 8) ̂ (8)) d/i(y), (2)
Jllyll«.E J||y||<xl Je J

where% 2 ' denotes summation over the points x other than o of Ao.
Before proving this lemma, it seems appropriate to explain the part it plays in the

proof of Theorem 1. It enables us, in the integral over the points y of F with || y || < K,
to replace the integrand p(yA0), about which we know little, by the function

Z'f p(y|xj 8)^(8),
J ©

which we may regard as a smoothed form of p(yA0), and which we will be able to show
is, if || y || is large, sensibly constant and equal approximately to the integral

d p(x)dx. (3)
J

This will show that the ratio

f p(yA0)dfi(y)l(
J l l y l l ^ K / J HylKK

is approximately equal to the integral (3), when K is large, and will enable us to prove
Theorem 1.

Proof of Lemma 1. For any point x other than o of w-dimensional space, consider
the function p(y|x|6)

defined on the Cartesian product space F x 0. Since p is a continuous function, it is
clear that p(y | x | 8) is continuous on F x 0. We introduce the product measure
/i(y x 8) in F x 0 (see Halmos(3), §35, pp. 143-5), and consider the integral

J, (4)

Since the set of points y of V with | y || ̂  K is a compact set of F, and 0 is a compact
space, it is clear that the integral (4) is over a compact subset of F x 0. It follows, from

")• Although we use the same letter to denote the measures in the spaces T and 0, the space in
which the measure is denned will always be clear from the argument of ft; further, there should
be no confusion with the Mobius function.

J Here, in the integrand on the right, the linear transformation y operates on the product of
the scalar | x | with the vector 6.
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the general form of Fubini's theoremf, that the integral (4) is equal to both the
repeated integrals r l r \

p(r|x|e)dM7)U*(9) (5)
JeUllylKK I

and f [( p(y\x\e)d^e))dM7). (6)

We show that the integral (5) can be expressed in a simpler form. For any fixed
point 8 of 0, it is possible to choose a transformation w of F having an orthogonal
matrix such that , , _

wx= | x i e.
Thus ff /9(y|x| 6 )^(7) = ( p{y(l)x)d/i{y).

Now changing the variable of integration from y to 8 = yco, and using the in variance
of the measure /i(y), we have

f p(ycox)d/i(y) = f p(8x)dfi{8).
JllrlKx Jll«<u-'|Ks:

But, since (x>~1 has an orthogonal matrix, it is clear, from the definition of the norm, that

for all 8 of F. Hence

f p(Sx)dM8)=! p(yx)d/t(y).

Combining these results, we see that the integral (5) is equal to

N( p(yx)dfi(y))d/i(e) = f

Using the normalization of the measure /<(8), and the equalities of the integrals (5)
and (6), we obtain the result

f p(yx)d/i(y) = f [( p(y\x\B)dfi(6)\dji(y), (7)

for any point x.
The result (2) will follow from the equation (7) once we can show that, when the

integrals in (7) are summed over all the points x other than o of Ao, the order of the
summations and integrations can be changed. To do this, it is sufficient to show that
the integrals in (7) vanish at all but a finite number of the points x of Ao. Since
p(x) vanishes outside a bounded region, we may choose R so large that p(x) = 0 for
all x with | x | > R. So, if one of the integrals in (7) is non-zero, there will be a linear
transformation y in F, such that

and

f See Halmoa(3), §36, pp. 145-8. Note that it would be possible to avoid the use of the
general theory of product spaces by expressing the integrals in the spaces 0, P and F x 0 as
ordinary Lebesgue integrals over appropriate cones in Euclidean spaces of dimensions n, n*
and n(n+ 1), and by using the classical Fubini theorem.
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Now, as 7 is a linear transformation of determinant 1, it can be expressed! in the form
y = w1̂ &»2! where w1 and o)2 are orthogonal matrices and § is a diagonal matrix with
diagonal elements £1; £2» • • • > £n satisfying

and £i£2.. .£n=l.

So [ inf | 7Y |] [sup | yz | ] - i = [ inf | £y |] [sup |
| y |= l W = i |y |= l | z |= l

Hence

[ inf I yy I] [sup I yz I]"-1 > 1,
|y|=i |«l=i

and | x | < RKn~x. Since Ao is discrete, there will only be a finite number of points
x of Ao for which the integrals in (7) are non-zero. This completes the proof of the lemma.

4. In this section we prove two lemmas about the function

f(r) = f
J&

on the assumption thatyo(x) is continuous and vanishes outside a bounded region. The
first lemma summarizes some of the properties of this function; while the second lemma
shows that these properties are sufficient to ensure that the sum

taken over the points other than o of a set of spherical density d is, for large values of
I, approximately equal to the integral

f(r)dJnr\
o

where Jn is the volume of the n-dimensional unit sphere. For the sequel, it is important
to note that all the constants introduced in this section are independent of the hnear
transformation y.

LEMMA 2. The function f(r) satisfies the identity

(8)

t It follows from the theory of the orthogonal reduction of positive definite quadratic forms
that such a representation is always possible. For, as y'y is the matrix of a positive-definite
quadratic form, we have y'y = Wj £§&>2, where £ is a diagonal matrix of the required type and
w2 is an orthogonal matrix. Then the matrix w1( defined by the equation y = w1fw2, is auto-
matically orthogonal.
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There are constants cx and c2, such that

\ \f(r)\dJnr
n^cv (9)

Jo
and Iflrlk^T

for r > 0. For every constant e > 0, there is a constant A > 1, such that

max | / ( r ) - / («) |d / n r»<e. (11)

Proof. In the first place

\dr. (12)

But on writing rb = x, the integral on the right of (12) will be recognized as the integral
of p(yx) over the whole space, expressed in terms of generalized spherical polar
coordinates. Since y is a linear transformation of determinant 1, this integral is

\p(yx)dx= \p(x)dx.

This proves (8). Similarly

J" | J | p(yrB) \ nJnr^d/i(B)] dr

which proves (9), as the integral on the right-hand side is finite and independent of y.
We now obtain the inequality (10). As in the proof of Lemma 1, we may choose

R > 0, so large that/o(x) = 0 for all x with | x | > R. Let <r(x) be a characteristic function
of the set of points x with | x | ̂ R; and let P be the upper bound of |p(x) |, for all
points x. Then

I/WN \p(yre)\dfi(e)^P\ a(yr9)dfi(Q).
J 0 J 0

Now, as above, y can be expressed in the form y = w1 £o»2, where (ox and w2 are orthogonal
matrices and £ is a diagonal matrix with diagonal elements £1;..., £n satisfying

Clearly \\y\\ = sup | yx | = sup | gy | = £v
|i|=i ly|=i

Further, by the symmetry of the function tr, and the invariance of the solid-angle
measure /t(8), we have

I <r(yrB) d/i{6) = I ( 7 ( ^ ^
Je J e

= f <r(ire)dfi(9).
Je
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then | i1rd1 \ > R,

so that | £r8 | > R

and o-(E,r&) = 0.

Hence, writing $ = -R/(r || y ||), we have

/ . •

Expressing this surface integral as an w-dimensional integral, we have

J |0il<

where S is the set of points x with

So, if C is the set of points x with

then C contains S, and d/i(B) < —j- dx = " x.

Our inequalities now show that

n

This proves (10).
. To complete the proof of the lemma, suppose that a positive e is given. Since yo(x) is
continuous, and vanishes outside a bounded region, it is uniformly continuous. So,
for any rj > 0, it is possible to choose a positive number S so small that

for all points x, y with | x —y | < S.

Choose A, with 1 < A < 2, so close to 1 that

Now consider any point x, and any scalar v with

1/A
If | x | ̂  2R, we have

and so |p(x) — p(vx) | ̂ y = i)(r(%x).

If | x | > 2R, then |x|>5, \vx.\>B,

so that | p ( x ) — p(vx) | = 0 = 7/or(%x).

Thus, provided I/A < v < A, we have
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for all x. Hence •
(•CO

max \f(r)-f(s)\dJnr
n

max \f{r)-f(vr)\dJnr
n-r

Jo
< max \p(yrd)—p(yvrQ)\dju(B)\dJnt

Jo Ue I/A<^<A J

*JT[f.

The lemma follows on choosing v so that

7]2nJnR
n<e.

LEMMA 3. Let Ao be a discrete set of points with spherical density d. Then there is
a constant c, such that , „,»., ,. , ,,„,

|S ' / ( | x | ) |<c 4 , (13)
the sum being taken over all points x other than o of Ao. Further, for every constant e > 0
there is a constant G = G(e) such that

•Z'f(\x\)-djy(r)dJnr" <e, (14)
for all yofT with || y || ;* G.

Proof. We arrange the proof so that the first result turns up incidentally during the
proof of the second result. Suppose that e > 0 is a given constant. Write

Let cx, c2 and A be the constants provided by Lemma 2, when the e of Lemma 2 is taken
to be e r Choose a constant 77, with 0 < v < 1, such that

e
' ? < 4c 1 '

Consider the points x, other than o, of Ao. Suppose that these points are xx, x2,...,
when enumerated in some order. It is convenient to write r(t) = | x, | for t = 1, 2,....
Let S(a) and A{a) denote the sphere of points x with | x | < a, and the annular set of
points x with a < \ x | < Xa. For any set E, let N(E), and V(E), denote the number of
points x other than o of Ao in E, and the volume of E. Since Ao has spherical density d,
it follows that, as a ->• 00,

N(A(a)) = N(8(\a))-N(S(a))
= dV(S(Xa))-dV{S{a)) + o(

= dV(A(a)) + o(V(A(a))).
37 Camb. Philos. 51, 4
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So we may choose a so large that

\N(A(b))-dV(A(b))\<VV(A(b))
for all b ^ a.

In order to simplify the notation, let 1(0) denote the half-open half-closed interval
0 < r ̂  a, and let /(«), for s ̂  1, denote the interval aAs-1 < r < aAs. Let N(s) denote the
number of positive integers t for which the number r(t) = \ xt | lies in /(«), and write

V(s) = \ dJnr".
J us)

Then, if s ̂  1, we have

N(s) = N(A(aAs~1)), V{s) = F^CaA8"1));

so that \N(s)-dV(s)\<7jV-(s), (15)
provided s > 1.

Now rearranging the sum over the points x, other than o, of Ao, and dividing up the
range of integration of the integral, we have the identity

= S f S f{r{t))-d\ f{r)dJnrA

= S f(r(t))-d\ f(r)dJnr"

{
Us) -^\s) r(» e/(s)

the division by N(s) being possible, for s ̂  1, since (15) ensures that N(s) is positive, if
O 1. Hence, using (15) and the inequaKties provided by Lemma 2, we have

f
o

2

mi*\f(t)-f(r)\dJnr" + i{ |
/(s) ie/(s) J/(s)

r max |/(<) -f(r) \ dJnr" + VT \f(r
J 0 r/A<«Ar J 0

(16)
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where c3 = 2

is a constant independent of y.
It follows immediately, from (16) and the result (8) of Lemma 2, since || y \\ > 1 for

all y of F, that the result (13) holds with

c4 = c3 + £e +

for any chosen e. Further, it follows from (16) that the result (14) holds with

0 = 2c3le.

This completes the proof of the lemma.

5. Proof of Theorem 1. We first prove the theorem on the assumption that p(x) is
continuous. Let e > 0 be given. For any 0 and K, with 0 < G < K, it follows from
Lemma 1 that

p(yA0) d/i(y) - d p(x) dx
JllylKK J Jl

= f 2'/(| x |) dfi{y) - d [p(x) dx f

+ f
G<||yl|«K

Provided only that G is sufficiently large, it follows from Lemma 2 that the modulus
of the two sides of (17) does not exceed

L + d\ | p(x)dx 1 f d/t(y) + \e \
L |J JJlirlKG Jl

Now d/i(y) -> + oo

asf K->oo. So provided only that if is sufficiently large, the modulus of the two sides
of (17) does not exceed <•

e
Jll

This proves the required result, on the assumption that /o(x) is continuous.
The general result, when p(x) is integrable in the Riemann sense, follows from the

result when p(x) is continuous; since, if p(x) is integrable in the Riemann sense and
vanishes outside a bounded region, then, for any e > 0, there will be continuous
functions K(X), T(X), vanishing outside a bounded region, and satisfying

/c(x) < p(x) ^ T(X) for all x

t This result is well known. It may be easily proved by exhibiting an infinite sequence of
disjoint compact subsets of T, each set having the same positive volume. For example, take
iS to be the set of all y of V with || y [| ^ 2, and consider the sets, obtained by repeatedly applying
to S a diagonal transformation £,, with a norm sufficiently large to ensure that the sets S, £S are
disjoint.

37-2
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and T(X) dx — e ^ p(x) dx < K(X) dx + e.

For the truth of the result for these functions K(X) and a(x) implies that

limsupf p(yA0)d/i(y) \ d/i(y)

^ d T(X) dx < d\ p(x) dx + de,

lim inf I p(yAo) d/i(y)

K(x)dx^d p(x)dx — de.

Since e may be arbitrarily small this completes the proof of the theorem.

6. In this section we show that Theorem 1 essentially contains the following mean-
value result, which differs from Theorem 1 in that the sum is taken over the primitive
points of a lattice.

THEOREM 2. Let A be a lattice with determinant A. Let p(x) be a Eiemann integrable
function vanishing outside a bounded region. Let S* denote summation over the primitive
points of the lattice A. Then

f
Jl

\
\\y\\<K

as K->ao.
Proof. The lattice A is a set of spherical density I/A. It is well knownf that the set

of primitive points of A is a set with spherical density 1/(A£(»)). So the result follows
immediately from Theorem 1.

Note added in proof. The authors have recently established that the result proved
in this paper holds for a Lebesgue integrable function p(x), provided only that it
vanishes outside a bounded set. I t is hoped to publish an outline of the proof of
this slight extension later.
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see, for example, the lemma in Rogers (7), p. 998.
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