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It has been recently shown that the energy-containing motions (i.e. coherent structures)
in turbulent channel flow exist in the form of Townsend’s attached eddies by a
numerical experiment which simulates the energy-containing motions only at a
prescribed spanwise length scale using their self-sustaining nature (Hwang, J. Fluid
Mech., vol. 767, 2015, pp. 254–289). In the present study, a detailed investigation of
the self-sustaining process of the energy-containing motions at each spanwise length
scale (i.e. the attached eddies) in the logarithmic and outer regions is carried out
with an emphasis on its relevance to ‘bursting’, which refers to an energetic temporal
oscillation of the motions (Flores & Jiménez, Phys. Fluids, vol. 22, 2010, 071704).
It is shown that the attached eddies in the logarithmic and outer regions, composed
of streaks and quasi-streamwise vortical structures, bear the self-sustaining process
remarkably similar to that in the near-wall region: i.e. the streaks are significantly
amplified by the quasi-streamwise vortices via the lift-up effect; the amplified streaks
subsequently undergo a ‘rapid streamwise meandering motion’, reminiscent of streak
instability or transient growth, which eventually results in breakdown of the streaks
and regeneration of new quasi-streamwise vortices. For the attached eddies at a given
spanwise length scale λz between λ+z ' 100 and λz ' 1.5h, the single turnover time
period of the self-sustaining process is found to be Tuτ/λz ' 2 (uτ is the friction
velocity), which corresponds well to the time scale of the bursting. Two additional
numerical experiments, designed to artificially suppress the lift-up effect and the streak
meandering motions, respectively, reveal that these processes are essential ingredients
of the self-sustaining process of the attached eddies in the logarithmic and outer
regions, consistent with several previous theoretical studies. It is also shown that the
artificial suppression of the lift-up effect of the attached eddies in the logarithmic and
outer regions leads to substantial amounts of turbulent skin-friction reduction.

Key words: turbulence simulation, turbulence theory, turbulent boundary layers

1. Introduction
Townsend (1961, 1976) originally introduced the concept of the ‘attached eddy’

to describe the energy-containing motions (i.e. coherent structures) populating the
logarithmic region of wall-bounded turbulent flows. Given the length scale of

† Email address for correspondence: y.hwang@imperial.ac.uk
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the logarithmic region, the size of the energy-containing motions there would be
proportional to the distance of their centre from the wall. This implies that, at
least some parts of the energy-containing motions would reach the wall, and, in
this sense, they are expected to be ‘attached’ to the wall. Under the assumption
that these energy-containing motions in the logarithmic region (i.e. attached eddies)
are statistically self-similar to one another, Townsend (1976) theoretically predicted
that turbulence intensity of the wall-parallel velocity components would exhibit a
logarithmic wall-normal dependence as the mean-velocity profile does. The original
theory of Townsend (1976) has been significantly refined over a number of years by
Perry and coworkers (e.g. Perry & Chong 1982; Perry, Henbest & Chong 1986; Perry
& Marusic 1995; Nickels et al. 2005, among many others), who have elaborated to
develop a self-consistent model predicting the statistics of wall-bounded turbulent
flows with a structural model of the attached eddy in the form of a hairpin or Λ
vortex. Especially, these authors further predicted and verified the emergence of
k−1

x law in the spectra of wall-parallel velocity components (kx is the streamwise
wavenumber), which would be linked to the logarithmic wall-normal dependence of
turbulence intensity of these velocity components (Perry & Chong 1982).

A growing body of evidence, which supports the theoretical predictions made
with the attached eddy hypothesis, has emerged, especially over the last decade.
The logarithmic growth of the near-wall streamwise turbulence intensity with the
Reynolds number is an example of this, as it would be given by extending Townsend’s
prediction to the near-wall region (Marusic & Kunkel 2003). The linear growth of
the spanwise integral length scale with the distance from the wall has also been
understood as another important evidence (Tomkins & Adrian 2003; del Álamo
et al. 2004; Monty et al. 2007), as this indicates that the spanwise size of the
energy-containing motions in the logarithmic region is proportional to the distance
from the wall. Lastly, the logarithmic dependence of turbulence intensity of the
wall-parallel velocity components has recently been indeed confirmed at sufficiently
high Reynolds numbers (Jiménez & Hoyas 2008; Marusic et al. 2013; Orlandi,
Bernardini & Pirozzoli 2015), suggesting that the energy-containing motions in
wall-bounded turbulent flow would indeed be organised in the form of Townsend’s
attached eddies.

Very recently, the first author of the present study managed to compute the statistics
of the attached eddies at a given length scale with a numerical experiment performed
at moderate Reynolds numbers (Reτ ' 1000–2000 where Reτ is the friction Reynolds
number) (Hwang 2015). Built upon the linearly growing nature of the spanwise
integral length scale with the distance from the wall, the numerical experiment is
designed to isolate the energy-containing motions only at a given spanwise length
scale using their ‘self-sustaining nature’ (Hwang & Cossu 2010c, 2011). The isolated
self-sustaining energy-containing motions were found to be self-similar with respect
to their spanwise length scale, and their statistical structures were remarkably similar
to those of the attached eddies, demonstrating the existence of Townsend’s attached
eddies as energy-containing motions in wall-bounded turbulent flows. It was also
shown that the single attached eddy is composed of two distinct elements, one of
which is a long streaky motion and the other is a relatively compact streamwise
vortical structure. At the considered Reynolds numbers, the size and the wall-normal
location of the former streaky motion, the major carrier of the streamwise turbulence
intensity, are roughly self-similar along

y' 0.1λz and λx ' 10λz, (1.1a,b)
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where y is the wall-normal direction, λx the streamwise length scale and λz the
spanwise length scale, while those of the latter vortical structure, carrying all the
velocity components, also self-similarly scale with

y' 0.5∼ 0.7λz and λx ' 2∼ 3λz. (1.1c,d)

The scaling also reveals that the smallest attached eddy, given with λ+z ' 100, is
a near-wall coherent motion in the form of a near-wall streak and with several
quasi-streamwise vortices aligned to it (Hwang 2013), while the largest one, given
with λz ' 1.5h in a turbulence channel with the half-height h, is an outer motion
composed of a very-large-scale motion (VLSM) and with several large-scale motions
(LSMs) aligned to it (Hwang 2015). The attached eddies at intermediate length
scales, the size of which is proportional to their distance from the wall, are also in
the form of a long streak and several quasi-streamwise vortices, and contribute to
the logarithmic region by filling the gap caused by the separation between the inner
and outer length scales. It should be mentioned that this scenario incorporates all the
coherent structures currently known and exhibits the behaviour consistent with the
spectra of all the velocities and Reynolds stress (including k−1

x spectra), providing an
integrated description for the coherent structures within the attached eddy scenario
(for further details, see also Hwang 2015).

The present study is an extension of the work by Hwang (2015), and, in particular,
it is aimed to explore the ‘dynamics’ of the self-sustaining attached eddies and its
relevance to the corresponding motions in a fully turbulent environment. For this
purpose, in the present study we consider the smallest computational box which
allows for the self-sustaining mechanism of each of the attached eddies (i.e. the
minimal unit). We then examine the detailed physical processes in the minimal unit
by comparing them with those under fully developed turbulence. Particular emphasis
of the present study is given to relating the self-sustaining process of the attached
eddies with the dynamical behaviour often referred to as ‘bursting’ in the logarithmic
and outer regions (Flores & Jiménez 2010). To this end, we introduce two additional
numerical experiments, designed to examine the physical processes composing the
self-sustaining process of the attached eddies in the logarithmic and outer regions.

The paper is organised as follows. In § 2, we briefly introduce the numerical
methods of extracting self-sustaining attached eddies at a given spanwise length scale
(see also Hwang 2015, for further details). A careful observation of the instantaneous
flow field is then followed in § 3 with examination of auto- and cross-correlation
functions of several flow variables of interest. Especially in this section, we show
that the bursting in the logarithmic and outer regions is likely a consequence of the
self-sustaining process of the attached eddies. In § 4, a comprehensive discussion on
the self-sustaining mechanism of the attached eddies is given with the two numerical
experiments mentioned. The paper finally concludes in § 5.

2. Numerical experiment
2.1. Computation of self-sustaining attached eddies

We consider a turbulent channel, in which we denote x, y and z as the streamwise,
wall-normal and spanwise directions, respectively. The upper and lower walls are
set to be at y = 0 and y = 2h, respectively, where h is the half-height of the
channel. The numerical experiment in the present study is performed using the
Navier–Stokes solver in our previous studies (Hwang & Cossu 2010c, 2011; Hwang
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2013, 2015). In this solver, the streamwise and spanwise directions are discretised
using the Fourier–Galerkin method with the 2/3 rule, and the wall-normal direction
is discretised using a second-order central difference scheme. Time integration is
performed semi-implicitly using the Crank–Nicolson method for the terms with
wall-normal derivatives and a third-order low-storage Runge–Kutta method for the
rest of the terms. The computations are performed by imposing a constant volume
flux across the channel.

As mentioned, the present numerical experiment is largely based on the previous
work by Hwang (2015) (the reader is strongly recommended to refer to this paper in
which the numerical technique introduced in this section is fully verified). In turbulent
channel flow, the spanwise length scale exhibits a linear growth with the distance from
the wall (i.e. y) in the range from λ+z ' 100 to λz ' 1.5h (del Álamo et al. 2004).
The spanwise spectra of the streamwise velocity clearly reveal this feature, and are
approximately aligned along y ∼ 0.1λz (del Álamo et al. 2004; Hwang 2015). The
key idea of Hwang (2015) is to design a numerical simulation only for the energy-
containing motions at a prescribed spanwise length λz = λz,0 between λ+z ' 100 and
λz' 1.5h by artificially removing the motions at the other spanwise length scales (i.e.
λz 6= λz,0).

First, the removal of the motions, the spanwise size of which is larger than the
prescribed spanwise length λz,0 (i.e. λz > λz,0) is implemented by setting the size of
the spanwise computational domain Lz to be identical to the prescribed spanwise
length scale λz,0 (i.e. Lz = λz,0), while keeping a sufficiently long streamwise domain
Lx. However, even in such a computational domain, the motions at λz > λz,0 are not
completely removed, as a spurious motion, uniform along the spanwise direction,
would still survive (Hwang 2013). This spurious motion is subsequently removed
by taking the approach in Hwang (2013) which explicitly filters out the spanwise
uniform components by setting the right-hand side of the discretised momentum
equation at each Runge–Kutta substep as follows:

R̂HSx(y; kx 6= 0, kz = 0)= 0,

R̂HSy(y; kx 6= 0, kz = 0)= 0,

}
(2.1)

where the RHSi the right-hand side of i-component of the discretized momentum
equation, ·̂ denotes Fourier-transformed state in x and z directions and kx and kz are
the streamwise and spanwise wavenumbers, respectively. We note that this technique
is only aimed at removing the two-dimensional spurious motion populating the x–y
plane, thus no action is taken for R̂HSz (for further details, see also Hwang 2013).

Once the motions at λz> λz,0 are removed, the motions at λz< λz,0 are subsequently
quenched using an over-damped large-eddy simulation (LES) (Hwang & Cossu 2010c;
Hwang 2013, 2015). For the given scope of the present study, it is very important for
the residual stress model of the LES not to generate any possible energy transfer to the
resolved quantity. Therefore, as in Hwang (2015), we consider the static Smagorinsky
model in which the residual stress is modelled in a purely diffusive form:

τ̃ij − δij

3
τ̃kk =−2νtS̃ij, (2.2a)

with
νt = (Cs∆̃)

2S̃ D, (2.2b)
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where ·̃ denotes the filtered quantity, Sij the strain rate tensor, Cs the Smagorinsky
constant, ∆̃= (∆̃1∆̃2∆̃3)

1/3 the nominal filter width, S̃ = (2S̃ijS̃ij)
1/2 the norm of the

strain rate tensor and D = 1 − exp[−(y+/A+)3] is the van Driest damping function
(Härtel & Kleiser 1998). The removal of the motions at λz < λz,0 is subsequently
carried out by increasing Cs with the increment 1Cs = 0.05 until we isolate the
self-sustaining motions at λz = λz,0. We note that this approach is equivalent to
increasing the filter width of LES without losing actual resolution (Mason & Cullen
1986). Finally, it should be mentioned that this approach itself does not strongly
depend on the choice of the eddy viscosity model (Hwang & Cossu 2010c, 2011).

The smallest computational domain, which allows for survival of the isolated
self-sustaining attached eddies at a given spanwise length scale λz,0 (i.e. the minimal
unit), is then sought. Since the spanwise size of the target attached eddies determines
the spanwise computational domain Lz (i.e. Lz= λz,0), only the size of the streamwise
computational domain Lx needs to be examined by gradually reducing it from a
sufficiently large value. Such a search of the minimal unit of the self-sustaining
attached eddies at a given spanwise length scale was previously performed in Hwang
& Cossu (2010c) with the present over-damped LES, but without the filtering (2.1).
In the present study, we therefore repeat this search again to check any possible
effect of (2.1). It has been found that the filtering (2.1) does not significantly affect
the size of the minimal unit, resulting in the following streamwise computational
domain size for the self-sustaining attached eddies at λz,0 = Lz:

Lx = 2Lz. (2.3)

In the present study, all the simulations are performed by keeping with this aspect
ratio of the computational domain (see also table 1). We note that the use of this
minimal streamwise computational domain is not a great limitation of the present
study, as the minimal domain is found not to significantly change the second-order
statistics of the isolated self-sustaining attached eddies at λz,0 = Lz. A detailed
discussion on this issue is given in appendix B where the second-order statistics
of the attached eddies with the minimal unit are compared with those with a long
streamwise domain in Hwang (2015). Finally, it should be mentioned that the filtering
of the uniform motion along the streamwise direction, such as (2.1) for the spanwise
direction, is not implemented. As we shall see in §§ 3 and 4, the streamwise uniform
Fourier mode in the minimal unit mainly resolves the long streaky motion observed
in a long computational domain. Indeed, we will see that the streamwise uniform
Fourier mode is strongly correlated with the streaky motion (see § 3), and inhibition
of the related physical process destroys the self-sustaining process in the minimal
unit (see § 4).

The simulation parameters of the present study are summarised in table 1, where six
different simulations are considered at two different Reynolds numbers (Reτ ' 950 and
Reτ '1800). For each computational domain, we consider a pair of simulations for the
purpose of comparison. One is with Cs = 0.05, the value known to provide the best
statistics compared to that of direct numerical simulations (DNS) (Härtel & Kleiser
1998) and is performed to track the attached eddies with background turbulence, and
the other is with an increased Cs and is to study the attached eddies surviving only
through the self-sustaining mechanism. Typical spatial grid spacing of the simulations
is set to be in the range of 1x+ = 50–70, 1y+min = 1–2 and 1z+ = 20–30, in order
to properly resolve the near-wall motions. We note that this grid spacing is finer than
that in Hwang (2015) where the numerical technique applied here is fully verified
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Case Rem Reτ Lx/h Lz/h Nx ×Ny ×Nz Cs Tavguτ/h

L950a 38 133 941 1.5 0.75 24× 81× 24 0.05 247
SL950a 38 133 936 1.5 0.75 24× 81× 24 0.20 246
L950b 38 133 976 2.0 1.0 32× 81× 32 0.05 256
SL950b 38 133 1004 2.0 1.0 32× 81× 32 0.25 263
O950 38 133 997 3.0 1.5 48× 81× 48 0.05 262
SO950 38 133 1152 3.0 1.5 48× 81× 48 0.40 302

L1800a 73 333 1446 0.75 0.375 24× 129× 24 0.05 84
SL1800a 73 333 1438 0.75 0.375 24× 129× 24 0.20 84
L1800b 73 333 1606 1.0 0.5 32× 129× 32 0.05 93
SL1800b 73 333 1685 1.0 0.5 32× 129× 32 0.30 98
L1800c 73 333 1745 1.5 0.75 48× 129× 48 0.05 102
SL1800c 73 333 1954 1.5 0.75 48× 129× 48 0.40 114

TABLE 1. Simulation parameters in the present study. Here, Rem is the Reynolds number
based on the bulk velocity and Tavg is the time interval for the average. In the names of
the simulations, L indicates ‘logarithmic’, O ‘outer’ and S ‘self-sustaining’.

with very long Lx. Finally, it should be mentioned that significantly long average times
(Tavg) are considered to ensure sufficient convergence of the time correlation functions
introduced in § 3. The convergence of the correlation functions have also been checked
by doubling Tavg, but it is not significantly improved.

2.2. Validation and preliminary test
To verify the present LES, a reference simulation for Cs = 0.05 without applying
(2.1) is first performed with the domain of O950: i.e. the minimal unit for the
outer attached eddies (Hwang & Cossu 2010c). Figure 1 shows the mean-velocity
profile and turbulent velocity fluctuations of the reference simulation. The statistics
of the simulation show reasonable agreement with those of DNS by del Álamo et al.
(2004), consistent with Lozano-Durán & Jiménez (2014) who reported the effect of
the computational domain size on the statistics. As discussed in § 2.1, the present
numerical experiment also implements the filtering action (2.1) unlike the ordinary
minimal box simulation which only considers a spatially confined computation box.
Therefore, the statistics of the simulation for Cs= 0.05 with (2.1) is also checked (the
dashed line in figure 1). Although the filtering (2.1) a little distorts the mean-velocity
profile and the velocity fluctuations roughly for y+ > 150 (y > 0.15h), it does not
yield significant change overall in the statistics. Further inspection is performed by
computing the time correlation functions of interest defined in § 3, and reveals that the
filtering (2.1) does not significantly change the dynamical process in the considered
computational domain. For further details, the reader refers to appendix A where a
detailed comparison of the computed time correlation functions is made.

The only difference between the present numerical experiment and that in Hwang
(2015) is the streamwise size of the computational domain. To ensure that the change
of the streamwise computational domain does not affect the self-similar nature of
the computed attached eddies, the statistics of the attached eddies, obtained by
implementing the technique in § 2.1, are also reported. Figure 2 shows the normalised
second-order statistics of the simulations in which the attached eddies at the given
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FIGURE 1. (a) Mean-velocity profile and (b) turbulent velocity fluctuations of the
reference simulation: ——, O950 without the filtering (2.1); – – – –, O950; – - – - –, DNS
at Reτ = 934 (del Álamo et al. 2004).
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FIGURE 2. Normalised second-order statistics of the attached eddies, scaled with the given
spanwise length Lz: (a) streamwise velocity, y= 0.3Lz; (b) wall-normal velocity, y= 0.4Lz;
(c) spanwise velocity, y= 0.4Lz; (d) Reynolds stress, y= 0.2Lz. Here, – – – –, from Reτ '
950 (SL950a, SL950b); ——, from Reτ ' 1800 (SL1800a, SL1800b, SL1800c).

spanwise length scale are isolated (i.e. the simulations tagged with ‘S’ in table 1).
The computed statistics of the attached eddies are approximately self-similar with
respect to their spanwise length scale Lz below certain wall-normal locations: the
streamwise velocity fluctuation is self-similar roughly below y' 0.3Lz (figure 2a), the
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wall-normal and the spanwise velocity fluctuations are below y ' 0.4Lz (figure 2b,c)
and the Reynolds stress is below y ' 0.2Lz (figure 2d). Above these wall-normal
locations, the second-order statistics depend on the box size, as in Hwang (2015).
However, we note that the non-self-similar part of the fluctuations above these
wall-normal locations is merely a fluctuation induced by the self-similar part in the
wall-normal locations supposed to be ‘empty’, due to the absence of the motions
larger than the attached eddies of interest (for further discussion, see also Hwang
2013, 2015). Finally, it should be mentioned that the second-order statistics of the
wall-parallel velocity components show non-negligibly large contributions to the
region close to the wall (figure 2a,c), whereas those of the wall-normal velocity
and the Reynolds stress are fairly small (figure 2b,d): for example, at y = 0.05Lz,
the normalised streamwise and the spanwise velocity fluctuations are respectively
approximately 0.98 and 0.68 times their maxima, whereas the wall-normal velocity
and Reynolds stress are respectively found to be approximately 0.28 and 0.45 times
their maxima. This is essentially due to the impermeability condition caused by the
presence of the wall, and is exactly as in the statistical structure of the single attached
eddy hypothesised by Townsend (1976).

3. Results
3.1. The largest attached eddies: large-scale and very-large-scale motions

We first explore the temporal evolution of the largest attached eddies (i.e. the energy-
containing motions at λz= 1.5h) in the minimal unit (O950 and SO950 in table 1). As
discussed in Hwang (2015), the largest attached eddy is composed of a VLSM (outer
streaky motion) and LSMs (outer streamwise vortical structures) aligned with it. In
a large computational domain, the VLSM is typically featured to be a long structure
mainly carrying a large amount of the streamwise turbulent kinetic energy, and this
is quite similar to the behaviour of the streaks in the near-wall region (Hwang 2015).
Therefore, in the outer minimal unit, in which only single VLSM would be resolved
mainly by zero streamwise wavenumber due to its long length (i.e. kx = 0; see also
figure 6), its temporal evolution would be well tracked by

Eu = 1
2Vh

∫
Ωh

u2 dV, (3.1a)

where u is the streamwise velocity fluctuation, Ωh the lower (or upper) half of the
computational domain of interest and Vh the volume of the half of the computational
domain.

On the contrary, the LSM is a relatively short structure given with its streamwise
length scale at λx ' 3–4h. The structure at this length is identical to that often
postulated as a hairpin vortex packet by Adrian and coworkers (Adrian 2007).
This structure is relatively isotropic, compared to the VLSM which mostly carries
the streamwise velocity fluctuation, in the sense that it contains all the velocity
components (Hwang 2015). It is important to mention that this structure was found
to share a number of statistical similarities with quasi-streamwise vortex in the
near-wall region (Hwang 2015). This suggests that the LSMs would likely to be
quasi-streamwise vortical structures in the outer region, although they are much more
disorganised due to small-scale turbulence associated with cascade and turbulent
dissipation (Jiménez 2012). It should be mentioned that this view is consistent with
del Álamo et al. (2006) who called this structure the ‘tall-attached vortex cluster’.
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FIGURE 3. Time evolution of the flow field of O950: (a) time trace of E+u (solid) and
E+v (dashed); (b) magnification of (a) for tuτ/h∈ [158, 164]; (c–f ) the corresponding flow
visualisation at tuτ/h = 159, 160.2, 160.9, 162. In (c–f ), the red and blue iso surfaces
indicate u+ =−3.2 and v+ = 1.4, respectively.

Since the VLSM carries very little wall-normal or spanwise turbulent kinetic energy,
in the minimal unit, the LSMs would be well characterised by either

Ev = 1
2Vh

∫
Ωh

v2 dV, (3.1b)

or
Ew = 1

2Vh

∫
Ωh

w2 dV, (3.1c)

where v and w are the wall-normal and spanwise velocity fluctuations, respectively.
Later, we shall see that these two variables are indeed strongly correlated to each
other (figure 5c,d). Here, it should also be pointed out that the use of the primitive
variables in characterising the quasi-streamwise vortical structure instead of enstrophy
or streamwise vorticity is intentionally introduced to track their behaviour more
precisely. Given the significant amount of small-scale turbulence associated with
energy cascade and turbulent dissipation in the logarithmic and the outer regions, the
variables such as enstrophy or streamwise vorticity would not faithfully represent the
large-scale organised vortical structure. Indeed, Jiménez (2012) recently showed that
such variables carry dominant energy around turbulent dissipation length scales.

A set of the flow fields of O950, in which the largest attached eddies are contained
with other smaller-scale turbulent motions, are first examined. Figure 3 shows the
time trace of Eu and Ev, and the corresponding evolution of the flow field in time.
Both Eu and Ev show large-scale temporal oscillations with a time scale roughly at
Tuτ/h' 2–5 (figure 3a). This is exactly the feature known as ‘bursting’ by Flores &
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FIGURE 4. Time evolution of the flow field of SO950: (a) time trace of E+u (solid) and
Ev (dashed); (b) magnification of (a) for tuτ/h ∈ [564, 572]; (c–f ) the corresponding flow
visualisation at tuτ/h = 565, 568.5, 569.3, 570. In (c–f ), the red and blue iso surfaces
indicate u+ =−4 and v+ = 1.5, respectively.

Jiménez (2010). A careful observation reveals that Eu and Ev oscillate with a certain
phase difference: for example, at tuτ/h= 159, Ev is around the local maximum while
Eu being at fairly low-energy state (figure 3b), and, at tuτ/h= 160.2, Ev reaches the
local minimum whereas Eu becomes considerably larger (figure 3b). Visualisation of
the corresponding flow fields in figure 3(c–f ) suggests that this is likely due to the
interactive dynamics between the VLSM (streak) and the LSMs (streamwise vortical
structures). At tuτ/h = 159 (figure 3c), the flow field exhibits a few fairly strong
large-scale v structures, which would be a part composing the LSMs in the minimal
unit. On the other hand, u structures in the flow field are fairly weak at this time,
and they appear to be collectively gathered around the v structures. At tuτ/h= 160.2
(figure 3d), the v structures become considerably weakened whereas the u structures
are significantly amplified, forming a strong streaky structure extending over the
entire streamwise domain. This amplification of the streaky structure appears to
be a consequence of the ejection of the streamwise momentum by the strong v
structures observed at tuτ/h = 159 (figure 3c), clearly reminiscent of the ‘lift-up’
effect predicted by previous theoretical studies (del Álamo & Jiménez 2006; Cossu,
Pujals & Depardon 2009; Pujals et al. 2009; Hwang & Cossu 2010b). The amplified
streaky structure subsequently meanders along the streamwise direction (figure 3e).
This process eventually leads to regeneration of new v structures with the breakdown
of the streaky motion (figure 3f ).

Qualitatively the same behaviour is observed in the over-damped simulation SO950,
in which only the energy-containing motions at λz = 1.5h are isolated by replacing
all the smaller-scale motions with a crude eddy viscosity given with the increased
Cs. Figure 4 shows the time trace of Eu and Ev, and the corresponding evolution of
the flow field of SO950. As in O950 (figure 3a), both Eu and Ev exhibit temporal
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oscillations with the time scale at Tuτ/h = 2–5 (figure 4a). In this case, a more
prominent phase difference is observed between the oscillations of Eu and Ev
(figure 4a,b), presumably because the smaller-scale surrounding turbulent motions
are removed in SO950. However, this could also be partially due to the increased
oscillation amplitude of Eu in SO950, which has previously been shown to be
an artefact caused either by the crude eddy viscosity itself or by the lack of the
energy-containing motions in the near-wall and logarithmic regions (Hwang 2015).
Not surprisingly, the flow fields of SO950 are composed of much smoother structures
than those of O950 (figure 4c–f ). However, the temporal evolution of the u and
v structures of SO950 are remarkably similar to that of O950: the v structures
significantly amplify the streaky u structure via the lift-up effect (figure 4c,d); the
amplified streaky u motion subsequently meanders along the streamwise direction
(figure 4e); the v structures are finally regenerated with breakdown of the streaky u
motion (figure 4f ).

To statistically quantify this cyclic dynamical process, auto- and cross-correlations
of several variables of interest are computed. It is also useful to introduce two
additional variables, such that:

E0 =
∫
Ωy,h

|û(y; kx, kz)|2 + |v̂(y; kx, kz)|2 + |ŵ(y; kx, kz)|2 dy, (3.2a)

for kx = 0 and kz = 2π/Lz, and

E1 =
∫
Ωy,h

|û(y; kx, kz)|2 + |v̂(y; kx, kz)|2 + |ŵ(y; kx, kz)|2 dy, (3.2b)

for kx = 2π/Lx and kz = 2π/Lz. Here, ·̂ denotes the Fourier-transformed state in the x
and z directions, and Ωy,h is the lower (or upper) half of the wall-normal domain. We
note that, in (3.2), E0 is introduced to compute the energy of the streamwise uniform
component of the motions at λz= 1.5h, while E1 is to compute the energy of the first
streamwise Fourier component, which would measure the meandering motion observed
in figures 3 and 4. The correlation functions are defined as

Cij(τ )= 〈Ei(t+ τ)Ej(t)〉√
〈Ei

2(t)〉
√
〈Ej

2(t)〉
, (3.3)

where i, j= u, v,w, 0, 1 and 〈·〉 indicates average in time. In the present study, all the
correlation functions are computed by averaging the lower and upper half-channels.

Figure 5 shows the correlation functions computed with Eu, Ev and Ew from O950
and SO950. In the case of O950, all the auto-correlations decay to zero at |τuτ/h| '
1–2, although Cuu tends to drop a little more slowly than Cvv and Cww (figure 5a). The
size of the time interval, in which the auto-correlations remain positive, is Tuτ/h '
2–4, and this roughly corresponds to the single period of the temporal oscillation of
Eu and Ev (figure 3a). The cross-correlation Cuv of O950 also reveals that there is
indeed a phase difference between Eu and Ev (figure 5c): the peak of Cuv is located at
τuτ/h'−0.6, indicating that Eu statistically reaches its local extremum approximately
1τuτ/h' 0.6 before Ev reaches its local extremum. On the other hand, Ev and Ew are
found to be strongly correlated to each other: Cvw(τ = 0)' 0.7 and Cuw also exhibits
a peak at τuτ/h'−0.6 as Cuv does (figure 5c).
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FIGURE 5. Time correlation functions of (a,c) O950 and (b,d) SO950. In (a,b), ——,
Cuu(τ ); – – – –, Cvv(τ ); – - – - –, Cww(τ ). In (c,d), ——, Cuv(τ ); – – – –, Cuw(τ ); – - – - –,
Cvw(τ ).

Qualitatively the same behaviour is observed in the correlation functions of SO950
in which only the energy-containing motions at λz ' 1.5h are isolated (figure 5b,d).
All the auto-correlations drop to zero near |τuτ/h| ' 1.5–2 (figure 5b), resulting in
the time interval of positive auto-correlation to be Tuτ/h' 4. As for O950, this time
scale reasonably well quantifies a single period of the temporal oscillations of Eu and
Ev (figure 4a). The phase difference between Eu and Ev is also seen in Cuv of SO950
(figure 5d) which shows the peak at τuτ/h'−1.7. Finally, Ev and Ew are also found
to be strongly correlated to each other, as seen in Cvw (figure 5d).

The correlation functions with E0 and E1 are also presented in figure 6. The auto-
and cross-correlations obtained only with E0 and E1 (i.e. C00, C11 and C01) are given in
figure 6(a,b). The correlation functions of O950 show fairly similar behaviour to those
of SO950: C00 and C11 of O950 exhibit similar time scales to those of SO950, and C01
of both O950 and SO950 has a phase difference between E0 and E1 with 1τuτ/h= 1.
The phase difference between E0 and E1 implies that the streamwise uniform motion
occurs first and the meandering motion follows, as in the instantaneous fields shown in
figures 3 and 4. Here, it is interesting to note that the time scale of C11 (Tuτ/h' 2)
appears to be much smaller than that of C00 as well as that of Cuu, Cvv and Cww

(Tuτ/h ' 4; see also figure 5a,b). This suggests that the meandering motion of the
streak (figures 5c and 6c), which would be characterised by E1, is a rapid process
which persists only for roughly half of the bursting period.

Cross-correlations are further computed by also considering Eu, Ev and Ew, as
shown in figure 6(c,d). The correlation C0u shows that E0 and Eu are strongly
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FIGURE 6. Time correlation functions of (a,c) O950 and (b,d) SO950. In (a,b), ——,
C00(τ ); – – – –, C11(τ ); – - – - –, C01(τ ). In (c,d), ——, C0u(τ ); – – – –, C0v(τ ); – - – - –,
C1v(τ ).

correlated to each other in both O950 and SO950, indicating that the streamwise
uniform mode (kx= 0) at λz= 1.5h well represents the streaky motion (i.e. VLSM) in
the minimal unit. This feature can also be confirmed from C0v of O950 and SO950,
which behaves very similarly to Cuv (figure 5c,d). Finally, the peak of C1v for both
O950 and SO950 is found roughly at τuτ/h'−1. This indicates that the meandering
motion of the streak statistically appears before the vortical structures (LSMs) are
fully amplified, consistent with the instantaneous flow fields given in figures 3 and 4.

Despite many qualitative similarities between the dynamical behaviours of the
energy-containing motions in O950 and SO950, it should be pointed out that the
correlation functions of the two simulations (O950 and SO950) are not quantitatively
the same, although this is not very surprising given the aggressive nature of the
present numerical experiment: for example, the time intervals of Cvv > 0 and Cww > 0
of O950 are smaller than those of SO950 (figure 5a,b), and the peak locations of
Cuv, Cuw and C0v of O950 are a little different from those of SO950 (figures 5c,d,
6c,d). Apparently, these differences could stem from two possible origins: one is that
Eu, Ev and Ew of O950 contain the effect of the surrounding smaller-scale turbulent
motions, and the other is that the dynamical behaviour of the motions in SO950 is
probably a little distorted by the artificially increased eddy viscosity of SO950. The
issue of which of the two more dominantly yields the differences could be clarified
by further inspecting C00, C11 and C01 (figure 6a,b), as they are, in a way, obtained
by applying cutoff filters to both of O950 and SO950. It appears that the correlation
functions of O950 are not exactly the same as those of SO950, suggesting that
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increasing Cs a little distorts the motions at λz = 1.5h. However, the times scales of
these correlation functions for O950 do not appear to be significantly different from
those for SO950. This implies that the correlation functions obtained with Eu, Ev
and Ew of O950 do not precisely represent the dynamical behaviour of the largest
attached eddies at λz = 1.5h due to the contribution by the surrounding smaller-scale
turbulent fluctuations.

3.2. The attached eddies in the logarithmic region

Now, we consider the attached eddies in the logarithmic region. As shown in § 2.2,
the attached eddies in the logarithmic region generate a self-similar statistical structure
with respect to the spanwise length scale λz,0 (= Lz). This self-similar part, which
contains the essential physical process of the energy-containing motions in the
logarithmic region, appears mainly below y ' 0.3–0.4Lz (figure 2). To trace the
dynamical behaviour of this self-similar part more precisely, the definitions of Eu, Ev,
Ew, E0 and E1 given in (3.1) and (3.2) are a little modified, so that the wall-normal
domain of the integration becomes only [0, 2/3Lz]. We note that this new definition
is still consistent with (3.1), as the wall-normal domain of the integration becomes
[0, 1] for Lz = 1.5h, which is the spanwise length scale of the VLSM and the LSM.

Inspection of the instantaneous flow fields of all the simulations in the logarithmic
region (see also table 1) reveals that basically the same dynamical process occurs in
the attached eddies, given with streaks and quasi-streamwise vortical structures,
at each of the spanwise length scales belonging to the logarithmic region: i.e.
amplification of the streaks by the quasi-streamwise vortical structures, subsequent
meandering of the streaks along the streamwise direction and breakdown of the streaks
with regeneration of the quasi-streamwise vortical structures. To avoid repetition of
the same discussion given in § 3.1, here we only report auto- and cross-correlation
functions of the simulations concerning the logarithmic region with a focus on the
scaling of the computed correlation functions.

Figure 7 shows auto-correlations obtained from all the simulations concerning the
energy-containing motions in the logarithmic region. All the correlation functions
from both full (figure 7a,c,e) and over-damped simulations (figure 7b,d, f ) scale fairly
well with the spanwise size of the attached eddies Lz (= λz,0), suggesting that the
attached eddies in the minimal unit are ‘dynamically’ self-similar with respect to the
spanwise size. The auto-correlation functions Cuu and Cvv in figure 7(a–d) reach zero
at τuτ/Lz '±1, indicating that the single period of the self-sustaining process would
be roughly given by Tuτ/Lz ' 2. As in the case of the outer attached eddies, C11,
which characterises the time scale of the meandering motion of the streak, is found
to have much shorter time scale Tuτ/Lz ' 1 than that of Cuu and Cvv.

Figure 8 shows several cross-correlations obtained from the same simulations.
The cross-correlation Cuv of both full (figure 8a) and over-damped simulations
(figure 8b) exhibits a phase difference between Eu and Ev (or Ew), similar to that of
the simulations concerning the outer-scaling motions (figure 5c,d). A strong correlation
between Ev and Ew is also observed in the motions in the logarithmic region, similarly
to those in the outer region (figure 8c,d). Finally, the cross-correlation C1v also
confirms that amplification of Ev appears a little after E1 is amplified, indicating that
the vortical structures in the logarithmic region are regenerated after the meandering
motion (figure 8e, f ).
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FIGURE 7. Auto-correlation functions: (a,b) Cuu(τ ); (c,d) Cvv(τ ); (e, f ) C11(τ ). In (a,c,e),
—— L950a; – – – – L950b; – - – - – L1800a; –··–··– L1800b; · · · · · · L1800c, while, in
(b,d, f ), —— LS950a; – – – – LS950b; – - – - – LS1800a; –··–··– LS1800b; · · · · · · LS1800c.

4. Discussion
Thus far, we have explored the dynamical behaviour of the attached eddies in

the logarithmic and outer regions. The attached eddies in the minimal unit exhibit
relatively large-scale temporal oscillations, ‘bursting’ as reported by Flores & Jiménez
(2010). The bursting is also observed in the over-damped simulations, in which
the attached eddies only at the given spanwise length scale survive through their
self-sustaining mechanisms. The qualitatively good comparison of instantaneous flow
fields and correlation functions between the full and the over-damped simulations
suggests that the bursting is presumably the reflection of the self-sustaining process
of the attached eddies with the characteristic turnover time scale given by:

Tuτ
λz
' 2, (4.1)
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FIGURE 8. Cross-correlation functions: (a,b) Cuv(τ ); (c,d) Cvw(τ ); (e, f ) C1v(τ ). In (a,c,e),
—— L950a; – – – – L950b; – - – - – L1800a; –··–··– L1800b; · · · · · · L1800c, while, in
(b,d, f ), —— SL950a; – – – – SL950b; – - – - – SL1800a; –··–··– SL1800b; · · · · · · SL1800c.

where λz is the spanwise size of the given attached eddies, which corresponds to the
spanwise domain size of the minimal unit Lz. Here, we note that if the spanwise
length scale is chosen as λ+z ' 100, (4.1) gives T+ ' 200, the well-known bursting
period of the near-wall coherent structures in the minimal unit (Hamilton, Kim &
Waleffe 1995; Jiménez et al. 2005). On the other hand, if λz=1.5h is considered, (4.1)
yields Tuτ/h' 3, which roughly corresponds to the bursting time scale of the largest
attached eddies composed of VLSMs and LSMs (see § 3.1). The attached eddies the
spanwise size of which is between λ+z = 100 and λz = 1.5h burst in a self-similar
manner with the time scale given by (4.1) (see § 3.2). We note that if λz = 3y is
chosen, the time scale given in (4.1) becomes consistent with the bursting time scale
of Tuτ/y ' 6 reported by Flores & Jiménez (2010) who extracted this time scale
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Streamwise
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FIGURE 9. A schematic diagram of self-sustaining process of the attached eddies
(originally proposed by Hamilton et al. (1995) for the near-wall motions). The diagram
incorporates the streak transient growth proposed by Schoppa & Hussain (2002) for the
near-wall motions as well as the Orr mechanism proposed by Jiménez (2013, 2015). Here,
us denotes the streamwise velocity given with the amplified streaks.

from a direct numerical simulation, and, interestingly, λz= 3y corresponds well to the
scaling y ' 0.3–0.4λz, below which the computed statistics of the isolated attached
eddies are found to be self-similar (see also figure 2).

In the present study, it is also shown that the self-sustaining process of the attached
eddies involves its two dynamically interconnected structural elements: one is the
long streaky motion extending over the entire streamwise domain of the minimal
unit (figure 6c,d), and the other is the vortical structure which would be statistically
in the form of quasi-streamwise vortices given the strong correlation between the
wall-normal and spanwise velocities (figures 5c,d and 8c,d). The interactive dynamics
between the two elements appears to be the backbone of the self-sustaining process
of the attached eddies in the logarithmic and the outer regions, and is remarkably
similar to that in the near-wall region (Hamilton et al. 1995; Schoppa & Hussain
2002). It should be pointed out, however, that this should not be very surprising,
given the fact that the near-wall motion in the form of the near-wall streak and the
quasi-streamwise vortices would simply be the smallest attached eddy (Hwang 2015).

Figure 9 is a schematic diagram of the self-sustaining process of the attached
eddies at a given spanwise length scale proposed in the present study based on the
observations made in the previous section. This schematic diagram is originally from
Hamilton et al. (1995), and, here, we further incorporate several previous contributions
in this context (Schoppa & Hussain 2002; Jiménez 2013, 2015). The streaks are
amplified via the ‘lift-up’ effect by which the streamwise vortical structures transfer
energy of the mean shear to streaks (figures 3c,d and 4c,d). The amplified streaks
then undergo ‘rapid’ meandering or oscillatory motion in the streamwise direction via
streak instability or transient growth (see also § 3.2; Hamilton et al. 1995; Schoppa &
Hussain 2002; Park, Hwang & Cossu 2011). The quasi-streamwise vortical structures
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are finally regenerated with breakdown of the streak via linear and/or nonlinear
mechanisms (Hamilton et al. 1995; Schoppa & Hussain 2002; Jiménez 2013, 2015).
In order to provide more solid evidence on the existence of these physical processes,
we now introduce two additional numerical experiments, designed to examine the
lift-up effect (the left branch from streamwise vortical structures to streaks in figure 9)
and the streak meandering and regeneration of the streamwise vortical structures (the
right and lower branches from streaks to streamwise vortical structures in figure 9),
respectively.

4.1. Streak amplification: lift-up effect
The ‘lift-up’ effect has been very well understood as the robust mechanism for
generation of the streaky motions both in transitional (Ellingsen & Palm 1975;
Landahl 1980; Gustavsson 1991; Butler & Farrell 1992; Reddy & Henningson 1993;
Schmid & Henningson 2001) and turbulent flows (Landahl 1990; Butler & Farrell
1993; Kim & Lim 2000; Chernyshenko & Baig 2005; del Álamo & Jiménez 2006;
Cossu et al. 2009; Pujals et al. 2009; Hwang & Cossu 2010a,b; Willis, Hwang &
Cossu 2010). From a vortex dynamical viewpoint, it simply represents tilting of the
streamwise vortices by mean shear: i.e.

Dωy

Dt
∼ dU

dy
ωx, (4.2)

where D/Dt is the material time derivative, ωx and ωy are the streamwise and wall-
normal vorticities, respectively. The ‘lift-up’ effect is an important origin of the ‘non-
normality’ of the linearised Navier–Stokes operator, leading to a large amplification of
an initial condition as well as a body forcing containing a significant amount of the
wall-normal velocity component. Therefore, the non-modal stability analysis (Schmid
& Henningson 2001; Schmid 2007), which quantifies the amplification mechanism of
the stable linearised Navier–Stokes operator, has been a popular methodology of most
of the previous investigations. However, direct relevance of the ‘lift-up’ effect to fully
developed turbulence has been very rarely shown, except by Kim & Lim (2000) who
demonstrated its importance on the near-wall turbulence at a low Reynolds number
by performing a direct numerical simulation without the off-diagonal term of the Orr–
Sommerfeld–Squire operator representing (4.2).

The goal of this section is to demonstrate that the ‘lift-up’ effect is the essential
part of the self-sustaining process of the attached eddies in the logarithmic and outer
regions with a similar approach of Kim & Lim (2000). To this end, we modify their
approach to suppress the lift-up effect only at a prescribed spanwise length scale. In
the minimal unit, the streak amplification by the lift-up effect is found to be dominant
at infinitely long streamwise wavelength (figure 6c,d). To artificially suppress this lift-
up effect at zero streamwise wavenumber (kx= 0), the following modified streamwise
momentum equation is solved with the minimal unit:

∂ ū
∂t
+ (u · ∇)ū− ([v̂eikzz + v̂∗e−ikzz]|(kx,kz)=(0,2π/Lz)

) dU
dy
=− 1

ρ

∂p
∂x
+ (ν + νT)∇2ū, (4.3)

where the superscript ∗ denotes the complex conjugate, ū is the streamwise velocity
and U is the streamwise velocity averaged along the streamwise and spanwise
directions at each time. In (4.3), the energy extraction mechanism from the mean
shear U by the wall-normal velocity (i.e. lift-up effect) is now artificially eliminated
for the streamwise uniform streaky motions (kx = 0) at λz = Lz by adding the third
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FIGURE 10. Time trace of Eu and Ev of SO950. At tUe/h= 7500 (Ue is the centreline
velocity of the laminar velocity profile with the same volume flux), the streamwise
momentum equation is replaced by (4.3). Here, Eu and Ev are normalised with Ue.

term on the left-hand side. We also note that this is equivalent to removing the
off-diagonal term of the Orr–Sommerfeld–Squire operator for kx= 0 and kz=±2π/Lz,
as in the approach by Kim & Lim (2000) whose numerical solver is written in the
wall-normal velocity and vorticity form.

The designed numerical experiment is first performed with SO950 in which only the
largest attached eddies sustain themselves without any smaller-scale turbulent motions.
Figure 10 shows time trace of Eu and Ev. Initially, a normal SO950 simulation is
performed, yielding the non-trivial fluctuations of Eu and Ev via the self-sustaining
process. At tUe/h= 7500 (Ue is the centreline velocity of the laminar velocity profile
with the same volume flux), the streamwise momentum equation is replaced by
(4.3). Immediately after this time, Eu, which characterises the temporal evolution of
the streak (the VLSM in this case), very rapidly decays, indicating that the streaky
motion is very quickly destroyed by implementing (4.3) (figure 10a). We note that,
in tUe/h ∈ [7500, 7600], this decay of Eu appears to be even faster than Ev, finally
resulting in complete suppression of the self-sustaining process in SO950. The very
rapid destruction of the streaky motion by implementing (4.3) is consistently observed
with a few other initial conditions. This clearly suggests that the amplification of the
long streaky motion is indeed governed by the ‘lift-up’ effect, consistent with a
number of previous theoretical predictions along this line (del Álamo & Jiménez
2006; Pujals et al. 2009; Hwang & Cossu 2010b).

The numerical experimentation with (4.3) is also applied to O950 in which the
largest attached eddies are resolved with turbulent motions at other length scales.
Not surprisingly, O950 is not completely suppressed by (4.3), as the self-sustaining
mechanisms at other scales would still be undisturbed. In figure 11, we compare
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FIGURE 11. One-dimensional spanwise wavenumber spectra of (a,b) the streamwise and
(c,d) the wall-normal velocities: (a,c) O950; (b,d) O950 with (4.3). Here, the spectra are
normalised with Ue for the purpose of comparison.

the spanwise wavenumber spectra of O950 (figure 11a,c) with those of O950 with
(4.3) (figure 11b,d). The streamwise velocity spectra of O950 with (4.3) clearly
show a significant amount of reduction of the streamwise turbulent kinetic energy
at λz = 1.5h compared to those of O950 (figure 11a,b), indicating that the streaky
motion at λz = 1.5h (VLSM) under full turbulence is also destroyed by inhibiting
the lift-up effect. This also appears to yield reduction of the wall-normal turbulent
kinetic energy at λz= 1.5h for y> 0.5h (figure 11c,d), as this length scale corresponds
to that of the streamwise vortical structures involved in the self-sustaining process
at λz = 1.5h (see also (1.1c,d) with λz = 1.5h). However, it is quite interesting to
note that the wall-normal turbulent kinetic energy at other spanwise wavelengths,
particularly the ones near λz ' 0.75h, appears to be significantly amplified with the
removal of the streaky motions at λz = 1.5h, and generates additional energy even
at λz = 1.5h. This suggests that the non-trivial scale interactions exist between the
attached eddies at neighbouring length scales, although the detailed investigation of
this issue is beyond the scope of the present study. Inspection of the streamwise
wavenumber spectra shown in figure 12 also allows us to reach the same conclusion.
Since (4.3) only applies to the streamwise uniform streaky motion (i.e. kx = 0), the
spectra of the streamwise velocity show only a little change (figure 12a,b). However,
with the destruction of the streaky motions uniform along the streamwise direction,
the spectra of the wall-normal velocity at λx ' 3h show a considerable amount of
reduction of energy for y> 0.5h (figure 12c,d), indicating that the streamwise vortical
structures associated with the self-sustaining process at λz = 1.5h are destroyed. We
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FIGURE 12. One-dimensional streamwise wavenumber spectra of (a,b) the streamwise and
(c,d) the wall-normal velocities: (a,c) O950; (b,d) O950 with (4.3). Here, the spectra are
normalised with Ue for the purpose of comparison.

note that the increased energy at λx ' 1.5h in the streamwise wavenumber spectra
of the wall-normal velocity should be associated with the increased energy of the
wall-normal velocity near λz ' 0.75h (figure 12d).

Finally, it has been robustly found that suppressing the lift-up effect through
(4.3) yields a considerable amount of turbulent skin-friction reduction, as reported
in table 2 showing that the smaller the computational box is, the larger the drag
reduction achieved. A considerable amount of turbulent skin-friction reduction by
suppressing the lift-up effect here suggests that generation of turbulent skin-friction
at high Reynolds numbers would be associated with the momentum transfer to the
wall by the self-sustaining processes of the attached eddies in the logarithmic and
outer region. This result also indicates that applying a linear flow control, e.g. with
the approaches in Kim & Bewley (2007), to relatively large-scale attached eddies
would be a promising strategy for turbulent drag reduction. Despite many interesting
further issues, a detailed investigation on the relation between turbulent skin friction
and the self-sustaining process (or lift-up effect) in the logarithmic and outer regions
is beyond the scope of the present study and is currently a subject of on-going
investigation.

4.2. Streak breakdown and regeneration of streamwise vortical structures
In contrast to the ‘lift-up’ effect which has been an issue in a number of previous
studies, the breakdown of amplified streaks and the subsequent regeneration of the
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Case 1Cf (%) Case 1Cf (%)

L950a 20 L1800a 30
L950b 13 L1800b 25
O950 8 L1800c 18

TABLE 2. Skin-friction reduction 1Cf by suppressing the lift-up effect with (4.3).

streamwise vortical structures (see figure 9) have been much less studied, even for
the near-wall motions. In the case of the near-wall motions, which would be the
smallest attached eddies (Hwang 2015), the amplified streak typically experiences a
rapid sinuous meandering or oscillatory motion before the streamwise vortices are
generated (Hamilton et al. 1995; Schoppa & Hussain 2002). This sinuous meandering
motion is a consequence of the streak instability or transient growth (Hamilton et al.
1995; Schoppa & Hussain 2002), although, in practice, distinguishing one from
another appears to be almost impossible, given the fact that both of the processes
are basically a consequence of the interaction with the same sinuous-mode instability
(Hœpffner, Brandt & Henningson 2005). It should also be mentioned that the sinuous
mode instability essentially originates from the ‘spanwise shear’ generated by the
amplified streak (i.e. ∂us/∂z where us is the streamwise velocity with the amplified
streak; see also Park & Huerre (1995), Cossu & Brandt (2002), Hœpffner et al.
(2005), Park et al. (2011)). It is therefore physically not meaningful to analyse
this process using the approaches based on the linearised Navier–Stokes equation
around ‘mean shear’, as the equation does not carry any relevant physics relating to
this mechanism.

The sinuous meandering motion of the amplified streak feeds a small amount of
the streamwise vortical structures, and they are subsequently amplified via nonlinear
mechanisms (Hamilton et al. 1995; Schoppa & Hussain 2002). Hamilton et al.
(1995) proposed that wall-normal advection of the streamwise vortices would be
the leading nonlinear regeneration mechanism based on a minimal Couette flow
simulation (Dωx/Dt∼v∂ωx/∂y; figure 9). On the other hand, with a minimal
channel flow simulation, Schoppa & Hussain (2002) showed that stretching of
the streamwise vortices by the streamwise meandering (or wavy) motion caused
by the streak instability or transient growth would play an important role in this
process (Dωx/Dt∼ωx∂u/∂x; figure 9). More recently, Jiménez (2013, 2015) proposed
that the Orr mechanism, a process by which the wall-normal velocity takes energy
from the mean shear, also appears to play a role in this process especially for the
motions in the logarithmic and outer regions. At this moment, it is quite difficult to
convincingly argue which of the mechanisms would be dominant or most important
among the three, especially for the generation of the streamwise vortical structures
in the logarithmic and outer regions. However, it does not appear that solely the Orr
mechanism (Jiménez 2013, 2015), which merely concerns the amplification of the
wall-normal velocity only, would play a dominant role, given the strong correlation
between the wall-normal and spanwise velocities (figures 5c,d and 8c,d).

In the present study, it has been found that the rapid sinuous meandering motion
of the amplified streak and the subsequent generation of the streamwise vortical
structures are also robust features of the self-sustaining processes in the logarithmic
and outer regions (figures 3c, 4c, 6c,d, and 8e, f ). This suggests that the streak
instability, which was previously analysed by Park et al. (2011) for the outer
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FIGURE 13. Time trace of Eu and Ev of SO950. At tUe/h= 7500, (4.4) is applied. Here,
Eu and Ev are normalised with Ue.

attached eddies using the Floquet theory, or transient growth would also be an
important process associated with the subsequent generation of the streamwise
vortical structures. It is worth mentioning that this process is intricately tangled
with the subsequent nonlinear amplification of the streamwise vortical structures,
especially via the vortex stretching mechanism proposed by Schoppa & Hussain
(2002), as the vortical structures take the energy required for the amplification from
the meandering (or wavy) streaky motion (i.e. ∂us/∂x).

Given this observation, it is very tempting to postulate that the streak meandering
motion, presumably caused by the streak instability or transient growth, would play
a crucial role in regeneration of the streamwise vortical structures. The goal of this
section is to examine this mechanism. For this purpose, here, we introduce a numerical
experiment which artificially damps the sinuous meandering motion of the amplified
streak. Since the streak meandering motion is dominant at λx'Lx in the minimal unit
(figures 3c and 4d), we implement a damping of this wave component by modifying
the right-hand side of the discretised streamwise momentum equation at each
Runge–Kutta substep, such that:

R̂HSx

(
y; kx = 2π

Lx
, kz =±2π

Lz

)
→µR̂HSx

(
y; kx = 2π

Lx
, kz =±2π

Lz

)
, (4.4)

where µ is a factor which should be µ<1 for damping. Here, we again stress that this
technique is implemented only to the streamwise momentum equation to only suppress
the meandering motion of u.

The damping technique (4.4) is applied to both O950 and SO950 by considering a
few different µ (= 0.85, 0.90, 0.95). However, the results are found to be qualitatively
independent of the choice of µ, thus the results only for µ = 0.95 are reported in
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FIGURE 14. One-dimensional spanwise wavenumber spectra of (a,b) the streamwise and
(c,d) the wall-normal velocities: (a,c) O950; (b,d) O950 with (4.4). Here, the spectra are
normalised with Ue for the purpose of comparison.

the present study. Figure 13 shows time trace of Eu and Ev of SO950 in which
(4.4) is applied at tUe/h = 7500. Immediately after (4.4) is applied, Ev decays very
quickly. Examination with a few other initial conditions reveals that this behaviour is
qualitatively independent of the initial condition, suggesting that the streak meandering
motion observed in SO950 is indeed directly involved in generation of the streamwise
vortical structures. In SO950, both Eu and Ev eventually decay to zero after application
of (4.4), but, in this case, it is quite interesting to note that Eu persists for a
substantially long time. This certainly differs from the behaviour of Eu observed after
applying (4.3) (compare figure 13a with 10a), implying that the lift-up effect is a
very strong amplification process of the streamwise velocity (or streak) even with a
small amplitude of the vortical structures.

The damping technique (4.4) is also applied to O950. The streamwise and spanwise
wavenumber spectra of the streamwise and the wall-normal velocity are compared
with those of O950, as respectively reported in figures 14 and 15. Consistent with
the case of SO950, application of (4.4) to O950 yields significant reduction of the
wall-normal turbulent kinetic energy at λz = 1.5h (figure 14c,d), despite the increase
of the streamwise turbulent kinetic energy in the spanwise wavenumber spectra
(figure 14a,b; see also the next paragraph for a further discussion). The streamwise
wavenumber spectra of the wall-normal turbulent kinetic energy also clearly exhibits
a significant amount of reduction of the energy at λx = 3h (figure 15c,d), indicating
that the artificial damping of the streak meandering motion significantly destroys the
generation mechanism of the streamwise vortical structures at this wavelength.
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FIGURE 15. One-dimensional streamwise wavenumber spectra of (a,b) the streamwise and
(c,d) the wall-normal velocities: (a,c) O950; (b,d) O950 with (4.4). Here, the spectra are
normalised with Ue for the purpose of comparison.

Despite the consistent result with SO950, in O950, application of (4.4) does not
appear to completely destroy the structures at λz = 1.5h. Although the streamwise
wavenumber spectra of the streamwise velocity show a large diminishing of the energy
at λz=1.5h (figure 15a,b), confirming that (4.4) indeed inhibits the meandering motion
of the streak at this wavelength, the increase of the streamwise turbulent kinetic energy
in the spanwise wavenumber spectra (figure 14b) imply that the streamwise uniform
streaky motion (i.e. kx = 0 mode in the minimal unit) is amplified on average. This
also appears to be consistent with little change of the skin-friction drag, despite the
significant destruction of the vortical structures at λx = 3h.

The intensification of the energy of the streamwise uniform motion is surprising,
at least to us, given the complete suppression of the self-sustaining process in SO950.
The increase of the energy of the streamwise uniform motion might be explained
by the lack of a proper breakdown mechanism through the streak instability or
transient growth artificially suppressed, as weaker vortices could also sustain stronger
streaks which can breakdown at shorter streamwise wavelengths with the elevated
breakdown threshold. However, the persisting streaky motion even with the damaged
breakdown mechanism can also suggest that there may exist some additional feeding
mechanisms of the streamwise vortical structures. Currently, we do not have a precise
understanding of these mechanisms, although they might be from scale interaction or
from the Orr-mechanism proposed by Jiménez (2013, 2015). However, in any case,
the result of the present numerical experiment directly supports the notion that the
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streak instability (or transient growth) and the following nonlinear vortex stretching of
the streamwise vortical structures play a crucial role in the formation of the vortical
structures in the logarithmic and the outer regions as well as in the determination of
their streamwise length scale (Schoppa & Hussain 2002; Park et al. 2011; Hwang
2015).

5. Concluding remarks

Thus far, we have investigated the self-sustaining process of the energy-containing
motions in the logarithmic and outer regions (the attached eddies) by examining their
dynamical behaviour in the minimal unit. The present study is summarised as follow:

(i) The attached eddies at a given spanwise length scale in the minimal unit exhibit
a statistically recurrent dynamical behaviour which has been called ‘bursting’
(Flores & Jiménez 2010). The bursting is also observed in the over-damped
simulations in which the attached eddies survive only through their self-sustaining
mechanisms, and is remarkably similar to that in the full simulations, indicating
that the bursting is the reflection of the self-sustaining process of the attached
eddies. For the attached eddies at the given spanwise length scale λz, the time
period of the bursting (i.e. the self-sustaining process) is found to scale with
Tuτ/λz ' 2, suggesting that the statistically self-similar attached eddies in the
logarithmic region (Hwang 2015) are also ‘dynamically’ self-similar.

(ii) It is shown that the self-sustaining process of the attached eddies in the
logarithmic and outer regions is very similar to that of the near-wall motions
(Hamilton et al. 1995; Schoppa & Hussain 2002), which would be the smallest
attached eddies (Hwang 2015). The attached eddies in the minimal unit in
the logarithmic and outer regions, composed of two elements, the streak and
the streamwise vortical structures, sustain themselves through the interactive
dynamics between the two: (a) the streak is significantly amplified by the
streamwise vortical structures via the lift-up effect; (b) the amplified streak
subsequently experiences very rapid meandering motion along the streamwise
direction; and (c) the meandering streaks breakdown with regeneration of new
streamwise vortical structures.

(iii) To provide more convincing evidence on the existence of the proposed
self-sustaining process in the logarithmic and outer regions, two numerical
experiments are further performed. One is to artificially suppress the lift-up
effect by modifying the technique introduced by Kim & Lim (2000), and
the other is to artificially damp out the streak meandering motion, which would
probably be a consequence of the streak instability or transient growth (Park et al.
2011). It is shown that the artificial suppression of the lift-up effect inhibits the
amplification of the streak and subsequently suppresses the self-sustaining process
of the attached eddies. Also, the artificial inhibition of the streak meandering
motions destroy the generation of the streamwise vortical structures, significantly
affecting the self-sustaining process. The numerical experiments also reveal that
there are non-trivial scale interactions among the attached eddies.

The importance of the present study probably lies in the identification of the
self-sustaining process of the energy-containing motions in the logarithmic and outer
regions, given in the form of Townsend’s attached eddies. The existence of the
self-sustaining process in these regions, which appears to be basically the same
as that of the near-wall region, would provide some evidence on the relevance of
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the so-called ‘exact coherent structures’ at high Reynolds numbers: i.e. the exact
solutions of the Navier–Stokes equation in the form of unstable stationary/travelling
waves and relative periodic orbits (e.g., Nagata 1990; Kawahara & Kida 2001; Waleffe
2001; Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Jiménez et al. 2005). At
low Reynolds numbers, these solutions have been shown to form a skeleton of the
basin of attraction of turbulent solutions in phase space (e.g., Gibson, Halcrow &
Cvitanovic 2008), and their discovery has played a crucial role in recent advancement
on understanding bypass transition and low Reynolds number turbulence. It should
be mentioned that the exact coherent structure, typically given in the form of a
wavy streak and flanked streamwise vortices, physically represents the self-sustaining
process given in figure 9 (e.g., Waleffe 2003). This therefore suggests that the attached
eddies in the logarithmic and outer regions, which bear such a self-sustaining process,
would be linked to the exact coherent structures at high Reynolds numbers at least
to some extent.

Nevertheless, it is not yet clear how much such dynamical-system-based approaches
could be extended further especially for describing the dynamics of coherent structures
in high Reynolds number wall turbulence. Perhaps, one of the most important
challenges would be description of the complex scale interactions between the
self-sustaining structures at different length scales. In fact, the dynamical-system-based
approaches implicitly assume that turbulence is a chaos occurring in a finite
dimensional nonlinear system. Unfortunately, turbulence is, however, a chaos occurring
in a spatially extended system, the dimension of which is virtually infinite, and is
inherently a multi-scale phenomenon involving daunting scale interactions. Given this
difficulty, the full suitability of the dynamical system approach especially to high
Reynolds number turbulence is yet an open question, although the approach may
enlighten at least some important aspects of turbulence.
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Appendix A. Effect of the filtering (2.1) on time correlation functions

As mentioned, all the simulations of the present study are performed with the
filtering technique (2.1) which removes the two-dimensional spurious motions
populating the x–y plane in the spanwise minimal unit simulations; for further
details, the reader is also referred to Hwang (2013) in which a detailed discussion
on this spurious motion is given. In figure 16, a set of time correlation functions of
O950 without (2.1) are compared with those of O950. All the presented correlation
functions of O950 without (2.1) show good agreement with those of O950, except
Cuv(τ ). It appears that Cuv(τ ) of O950 without (2.1) is a little larger than that of
O950, although the peak location of Cuv(τ ) itself shows good agreement. However,
this may have been expected in a way, given the nature of the filtering technique (2.1)
which removes the streamwise and wall-normal motions in the x–y plane. Overall
good agreement of the correlation functions from the two simulations suggests that
application of (2.1) does not significantly affect the motions in O950, as in our
previous studies (Hwang 2013, 2015).
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FIGURE 16. Time correlation functions of (a) O950 without (2.1) and (b) O950. Here,
——, Cuu(τ ); – – – –, Cvv(τ ); – - – - –, Cuv(τ ); –··–··–, Cvw(τ ).
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FIGURE 17. Comparison of the second-order statistics of the self-sustaining attached
eddies in the minimal unit (SL1800c in the present study) with those in the long
streamwise domain (L1800c in Hwang 2015): (a) the streamwise, wall-normal and
spanwise velocities; (b) Reynolds stress. Here, ——, SL1800c in the present study; – – – –,
L1800c in Hwang (2015).

Appendix B. Comparison of statistics between attached eddies in the minimal
and long computational domains

Here, we compare the statistics of the self-sustaining attached eddies in the minimal
streamwise domain (Lx = 2Lz; SL1800c in the present study) with those in a long
streamwise domain (Lx = 8πh; L1800c in Hwang 2015). We note that the two
simulations share the same spanwise computational domain size, Lz= 0.75h, although
the resolution of the present study is a little finer than that in Hwang (2015). Except
this, all the simulation parameters of the two simulations are identical to each other.
Figure 17 shows the second-order statistics of SL1800c in the present study and those
of L1800c in Hwang (2015). The second-order statistics obtained with the streamwise
minimal domain tend to generate larger velocity fluctuations and Reynolds stress in
the region relatively close to the wall, except the streamwise velocity fluctuation
showing a non-trivial difference. However, overall, the second-order statistics with
the streamwise minimal domain do not considerably deviate from those with the
long domain, indicating that the minimal domain does not significantly distort the
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second-order statistics of the interest. It should mentioned that qualitatively the same
behaviour is observed in all the other minimal unit simulations in the present study in
comparison to those with sufficiently long computational domains in Hwang (2015).
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