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The influence of finite Larmor radius correction, tensor viscosity and uniform rotation
on self-gravitational and firehose instabilities is discussed in the framework of the
quantum magnetohydrodynamic and Chew–Goldberger–Low (CGL) fluid models.
The general dispersion relation is obtained for transverse and longitudinal modes of
propagation. In both the modes of propagation the dispersion relation is further
analysed with respect to the direction of the rotational axis. In the analytical
discussion the axis of rotation is considered in parallel and in the perpendicular
direction to the magnetic field. (i) In the transverse mode of propagation, when
rotation is parallel to the direction of the magnetic field, the Jeans instability criterion
is affected by the rotation, finite Larmor radius (FLR) and quantum parameter but
remains unaffected due to the presence of tensor viscosity. The calculated critical
Jeans masses for rotating and non-rotating dense degenerate plasma systems are
3.5M� and 2.1M� respectively. It is clear that the presence of rotation enhances the
threshold mass of the considered system. (ii) In the case of longitudinal mode of
propagation when rotation is parallel to the direction of the magnetic field, Alfvén
and viscous self-gravitating modes are obtained. The Alfvén mode is modified by
FLR corrections and rotation. The analytical as well as graphical results show that
the presence of FLR and rotation play significant roles in stabilizing the growth rate
of the firehose instability by suppressing the parallel anisotropic pressure. The viscous
self-gravitating mode is significantly affected by tensor viscosity, anisotropic pressure
and the quantum parameter while it remains free from rotation and FLR corrections.
When the direction of rotation is perpendicular to the magnetic field, the rotation of
the considered system coupled the Alfvén and viscous self-gravitating modes to each
other. The finding of the present work is applicable to strongly magnetized dense
degenerate plasma.
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1. Introduction
In dense astrophysical plasma, electron species are found in a degenerate state

and when the de Broglie wavelength associated with the electron species becomes
comparable to or greater than the inter-particle separation, the quantum Bohm force
is produced in the plasma. Such dense quantum plasma situations are ubiquitous
in many astrophysical objects like supernovas, magnetars, white dwarfs and neutron

† Email address for correspondence: preranaiitd@rediffmail.com

https://doi.org/10.1017/S0022377817000769 Published online by Cambridge University Press

mailto:preranaiitd@rediffmail.com
https://doi.org/10.1017/S0022377817000769


2 P. Sharma and A. Patidar

stars (Jung 2001; Opher et al. 2001). The field of quantum plasma has widely
attracted the attention of several researchers (Pines 1961; Haas 2005; Manfredi
2005) and investigations have been motivated by a number of possible applications
in microelectronics, nanotechnology, laser fusion and ultracold plasma (Markovich,
Ringhofer & Schmeiser 1990; Craighead 2000; Glentzer et al. 2007). Furthermore,
whenever the balance between internal pressure and self-gravitational pressure gets
disturbed, gravitational collapse in the plasma system occurs. This process is termed
as self-gravitational instability and is responsible for fragmentation and structure
formation. The concept of self-gravitational instability was first noticed by Jeans
(1929) and then followed by several investigators (Kato & Kumar 1960; Kumar
1960). The self-gravitational instability in quantum plasma has been also studied
considering various parameters. Lundin, Marklund & Brodin (2008) have studied
the self-gravitational instability including the effect of intrinsic magnetization in
a magnetized plasma. The influence of resistivity on Jeans instability in quantum
plasma has been investigated by Ren et al. (2009). The work of Ren et al. (2009)
has been extended by Wu et al. (2010) incorporating the Hall parameter to study
self-gravitational instability with resistivity in a quantum plasma.

Moreover, a lot of studies have been done by considering the zero Larmor radius of
ions which is applicable in various astrophysical situations. However, it is found that
in many astrophysical regions, this assumption is not valid. The dynamics of the ions
is supposed to be classical as the de Broglie wavelength associated with the ions is
much smaller than that of the electrons. The gyro-radius of the electrons is negligibly
small because of their lighter mass as compared to the ions so the finite Larmor
radius (FLR) corrections of the electrons is ignored and considered only for ions,
therefore the concept of finite Larmor radius of the ions has been considered by many
researchers in their work. In this connection, the stabilizing influence of the FLR
corrections on plasma instability has been investigated by Roberts & Taylor (1962).
The influence of FLR on Jeans instability of a quantum magneto plasma has been
studied by Sharma & Chhajlani (2013). One of the interesting features of the strongly
magnetized plasma is that it is anisotropic. The presence of a strong magnetic field
splits up the plasma pressure into parallel and perpendicular components with respect
to the direction of the magnetic field and makes the plasma anisotropic (Mahmood
et al. 2009; Dzhalilov, Kuznetsov & Staude 2011). The Chew–Goldberger–Low
(CGL) fluid model has been given by Chew, Goldberger & Low (1956) to study
such anisotropic pressure in a strongly magnetized plasma. Several studies have
been done in the context of self-gravitational instability in the anisotropic plasma
system (Gliddon 1966; Singh & Kalra 1986). The self-gravitational instability of an
anisotropic plasma with FLR corrections has been studied by Bhatiya (1968a,b). The
propagation of magnetoacoustic waves has been studied by Yajima (1966) using the
modified CGL equations with FLR corrections. It is well known that the quantum
effects play a significant role at larger number density and such a condition is easily
met in highly dense astrophysical bodies. The regime of the quantum plasma as to
whether it is collisional or collisionless can be decided on the basis of the quantum
coupling parameter (Gq) that can be defined as

Gq =
Eint

EF
=

2me2

32/3ε0}2π4/3

(
1

n1/3

)
, (1.1)

where Eint and EF represents the interaction energy and Fermi energy respectively.
The symbol m and n is mass and number density of fluid particle respectively and
e represents electronic charge.
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The quantum plasma is collisionless for Gq < 1 and collisional otherwise. It is
clear from the above expression that the quantum coupling parameter is found to
be much smaller than unity at higher density. Thus, the dense degenerate bodies
are collisionless and the presence of a strong magnetic field in it modifies the
characteristics of the system. In this direction, Shukla & Stenflo (2008) have
derived the nonlinear quantum Hall-magnetohydrodynamic (MHD) equations in a
dense magnetoplasma including anisotropic pressure of degenerate electrons. The
self-gravitational instability in an anisotropic plasma with degenerate electrons has
been studied by Prajapati (2014). Paret, Martinez & Horvath (2015) have investigated
the role of anisotropic pressure in the structure formation of a white dwarf.

However, for anisotropic plasma systems the viscosity of the plasma is also divided
into parallel and perpendicular components (Campos & Mendes 2000; Pandey &
Dwivedi 2007; Tessema & Torkelsson 2010). The magnetohydrodynamic waves in
an incompressible plasma with tensor viscosity have been investigated by Hollweg
(1987). The effect of anisotropic viscosity on magnetohydrodynamic wave propagation
has been studied by Cherkos & Tessema (2013). The self-gravitational instability in
anisotropic plasma incorporating tensor viscosity has been investigated by Cherkos &
Tessema (2013). Recently, Sharma (2017) has presented the role of tensor viscosity in
a self-gravitational anisotropic plasma with FLR corrections. Furthermore, the role of
rotation in a plasma system becomes of great interest due to its wide applications in
neutral beam injection (Strait et al. 2007), fusion research (i.e. tokamaks and helical
systems) (Ida & Rice 2014), special technical arrangements (i.e. condensers, plasma
gun propulsion etc.) and in cosmical physics etc. It also plays a prominent role
in fragmentation and star formation. In this regard, the effect of rotation on Jeans
instability has been studied by many researchers. Chandrasekhar (1961) investigated
the effect of a magnetic field and rotation on the Jeans instability in a homogeneous
plasma system. The effect of rotation on the self-gravitational instability of an
anisotropic plasma with FLR has been studied by Bhatiya (1968a,b). Prajapati,
Parihar & Chhajlani (2008) have investigated the role of rotation and heat flux
on the self-gravitational instability of an anisotropic plasma. Sharma et al. (2015)
have presented the modified self-gravitational instability of a rotating visco-elastic
magnetized plasma. They found that the growth rate of the instability stabilizes due
to the presence of rotation. Jain, Sharma & Chhajlani (2015) have investigated the
effect of FLR and rotation on self-gravitational instability of a viscous quantum
plasma. Moreover, rotation also plays a crucial role in stabilizing the white dwarf
stars. Several researchers have mentioned that the stability of a white dwarf is only
up to the Chandrashekhar mass limit (≈1.4M�) while in some studies, it has been
observed that the strong magnetic field and rapid rotation in a white dwarf maintained
its stability even above the mass limit 1.4M� (Subramanian & Mukhopadhyay 2015).
This type of star is named a super Chandrashekhar white dwarf and produces
luminous supernovae such as SN 2007if, SN 2009dc, SNLS-03 D3bb, SN 2003 fg
(Howell et al. 2006). Franzon & Schramm (2015) have studied the effect of rotation
and magnetic field on the white dwarf stars and observed that for a 1015 Guass
magnetic field strength, the mass of the star can be 2.9M�. The roles of rotation
and magnetic field in a white dwarf star have been also studied by Subramanian &
Mukhopadhyay (2015). Das & Mukhopadhyay (2015) have found that the mass of a
strongly magnetized white dwarf can be of the order of 3.4M�.

Thus, the strong magnetic field allows us to consider the FLR corrections and
tensor viscosity to study the gravitational instability in a degenerate anisotropic
plasma. The strong magnetic field is particularly significant when coupled with
other features of dense degenerate plasma systems i.e. rotation. The present study is

https://doi.org/10.1017/S0022377817000769 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000769


4 P. Sharma and A. Patidar

motivated by the observations of Shukla & Stenflo (2008) and Prajapati (2014) in a
dense degenerate plasma. The nonlinear quantum Hall-MHD equations are obtained
by Shukla & Stenflo (2008) in a dense magnetoplasma including anisotropic pressure.
The effect of the quantum parameter on self-gravitational instability in an anisotropic
plasma has been observed by Prajapati (2014). Both of the above mentioned works
have not considered the effect of FLR corrections, rotation and tensor viscosity in
an anisotropic quantum plasma. Hence the formulation of the present work is done
using the quantum magnetohydrodynamic and CGL fluid equations to study the
self-gravitational instability of an anisotropic quantum plasma incorporating tensor
viscosity, rotation and FLR corrections. To present a systematic analysis of the work,
we have assumed the direction of rotation in the parallel and perpendicular directions
of the magnetic field. However, in the present study our aim is to study how the
rotation affects the gravitational instability. Therefore, the effect of rotation in a
magnetized system is analysed in following ways

(i) with the propagation wave vector is perpendicular to the magnetic field (i.e.
k⊥H0);

(ii) with the propagation wave vector is parallel to the magnetic field (i.e. k ‖H0).

Further, to observe the effect of rotation on the above cases, we have taken the
rotational frequency parallel and perpendicular to the direction of magnetic field in
each case so that when k⊥H0, we have taken Ω ‖H0 and Ω⊥H0. Similarly for k ‖H0,
we have taken Ω ‖H0 and Ω⊥H0.

The paper is organized in the following way; in § 2 the basic set of equations for
a self-gravitational anisotropic quantum plasma incorporating tensor viscosity, rotation
and FLR corrections is given. The perturbed set of equations and dispersion relation
are presented in § 3. The analytical and graphical discussions are shown in § 4. The
conclusion is given in the last section.

2. Basic equations
We consider an infinite homogeneous viscous quantum magnetoplasma with

uniform rotational frequency Ω(Ω⊥, 0, Ω‖) and FLR corrections. The basic governing
momentum, magnetic induction, Poisson and continuity equations for the considered
viscous magneto quantum plasma system are as follows

du
dt
+
∇ ·Π

ρ
+
∇ · p
ρ
−

1
4πρ

(∇× H)× H

+∇ψ − 2 (u×Ω)−
}2

2memi
∇

(
∇

2√ρ
√
ρ

)
= 0. (2.1)

The symbols u, p, ψ, Π and ρ represent the velocity, pressure, gravitational
potential, tensor viscosity and density of the fluid respectively. The ion and electron
mass are symbolized by mi and me respectively. The uniform magnetic field H
(0, 0, H0) is assumed to be in the z-direction.

∂H
∂t
=∇× (u× H) , (2.2)

∇
2ψ = 4πGρ, (2.3)

where G is the gravitational constant

∂ρ

∂t
+∇ · (ρu)= 0. (2.4)
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The tensor viscosity Π represented by the second term in (2.1) can be defined
in terms of the coefficient of compressive viscosity (η0), shear viscosity (η1 and η2)
and perpendicular viscosity (η3 and η4) such that Πij = −η0τ0ij − η1τ1ij − η2τ2ij −

η3τ3ij − η4τ4ij, where τij = (∂ui/∂xj) + (∂uj/∂xi) − (2/3)δij(∇ · u). The components of
the viscous stress tensor Πij are as follows

Πxx =−
η0

2

(
τxx + τyy

)
−
η1

2

(
τxx + τyy

)
− η3τxy,

Πyy =−
η0

2

(
τxx + τyy

)
−
η1

2

(
τxx + τyy

)
+ η3τxy,

Πxy =Πyx =
η3

2

(
τxx − τyy

)
+ η1τxy,

Πxz =Πzx = η2τxz − η4τyz,
Πyz =Πzy = η2τyz + η4τxz, Πzz =−η0τzz.


(2.5)

Now, considering the condition η0� η1, η2, η3 and η4 in (2.5) and using the value
of τxx, τyy and τzz in the form of fluid velocity, the components of the tensor viscosity
Πij can be given as

Πxx =−
η0

3

(
∂ux

∂x
− 2

∂uz

∂z

)
, (2.6)

Πyy = 0, (2.7)

Πzz =−
η0

3

(
−2
∂ux

∂x
+ 4

∂uz

∂z

)
. (2.8)

The system of equations is closed with an equation of state for pressure.
Theoretically, the pressure p of the system contains both the ion and electron
pressure. Hence the pressure of the system is written in the form ∇ p= c2

s∇ρ, where
cs is speed of sound. Further, in the white dwarf stars and inside of neutron stars the
gravitational force is accountable for new structure formations at quantum scales. The
quantum effects manage the dynamics of the particles in dense degenerate systems
when the de Broglie wavelength of the plasma particles becomes similar to or greater
than the average inter-particle separation. Therefore the wave functions correspond
to the particles overlaps with each other. Equivalently, for the temperature (T) less
than the Fermi temperature TF (where TF = meV2

F/KB is the Fermi temperature and
VF = }(π2ne)

1/3/me is the Fermi velocity, here ne stands for number density of
electrons), the plasma particles which obey Maxwell–Boltzmann distribution in the
classical regime becomes invalid and new statistics, Fermi–Dirac statistics, describes
the plasma dynamics (Haas 2005; Lundin et al. 2008; Ren et al. 2009; Shukla &
Eliasson 2009; Prajapati 2014; Irfan, Ali & Mirza 2017). The effective speed of
sound on the quantum scale is c2

s = V2
t + V2

F/3, where Vt is the thermal velocity of
the fluid particle. Thus, following Haas (2005), the modified pressure term containing
the Bohm potential can be represented as ∇ p + (}2ρ/2memi)∇(∇

2√ρ/
√
ρ) where

∇ p = (V2
t + V2

F/3)∇ρ. Moreover, the strong magnetic field in the plasma system is
associated with anisotropic and FLR pressure. Hence the total pressure ( p) in the
momentum transfer (2.1) is incorporated by the anisotropic and FLR pressure as
mentioned in Bhatiya (1968a,b)

p= paniso + Pflr, (2.9)

where paniso= (p‖ − p⊥)bb+p⊥ I in which p⊥ is pressure perpendicular to the magnetic
field and p‖ is the pressure along the magnetic field, b is a unit vector directed along
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the magnetic field and I is a unit dyadic. The parallel and perpendicular components
of pressure can be written as

d
dt

(
p‖H2

ρ3

)
= 0, (2.10)

d
dt

(
p⊥
ρH

)
= 0. (2.11)

The corrected FLR pressure is represented by Pflr and its components are given as
(Roberts & Taylor 1962)

Pxx =−ρν0

(
∂ux

∂y
+
∂uy

∂x

)
, Pxy = Pyx = ρν0

(
∂ux

∂x
−
∂uy

∂y

)
,

Pxz = Pzx =−2ρν0

(
∂uz

∂y
+
∂uy

∂z

)
, Pyy = ρν0

(
∂uy

∂x
+
∂ux

∂y

)
,

Pyz = Pzy = 2ρν0

(
∂uz

∂x
+
∂ux

∂z

)
, Pzz = 0,


(2.12)

where ν0 is the kinematic viscosity.

3. Linearized perturbed equations and dispersion relation
The governing basic equations are first converted into linearized and perturbed form

to derive the general dispersion relation for a viscous quantum magneto plasma system
using the following linearized form of the physical quantities

ρ = ρ0 + ρ1, u= u0 + u1, ψ =ψo +ψ1,

H = H0 + H1, Π =Π0 +Π1, p= p0 + p1.

}
(3.1)

Moreover, we shall assume the perturbations in space and time dependent physical
quantities to vary in the form ei(k⊥x+k‖z−σ t), where k⊥ and k‖ are the wavenumbers
perpendicular and parallel to the direction of the magnetic field and σ represents the
frequency of wave perturbations. Now using the linearized and perturbation form in
(2.1)–(2.12) one can write the linearized perturbed set of equations as follows

− iσu1 +
ik · p1

ρ0
−

1
4πρ0

(ik× H1)× H0

+ ikψ1 − 2 (u1 ×Ω)+
ik ·Π1

ρ0
+

}2

4memi
ikk2ρ1 = 0, (3.2)

−k2ψ1 = 4πGρ1, (3.3)
−σρ1 + ρ0k · u1 = 0, (3.4)
−σH1 = k× (u1 × H0) , (3.5)

Πxx =−
iη0

3

(
k⊥ux1 − 2k‖uz1

)
, (3.6)

Πzz =−
iη0

3

(
−2k⊥ux1 + 4k‖uz1

)
, (3.7)

p1 =
(
p‖1 − p⊥1

)
bb+ p⊥1 I +

(
p‖0 − p⊥0

)
(b1b+ bb1)+ Pflr1, (3.8)
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p‖1
p‖0
=

3ρ1

ρ0
−

2H1

H0
, (3.9)

p⊥1

p⊥0
=
ρ1

ρ0
+

H1

H0
. (3.10)

The solution of (3.2)–(3.10) gives the components of the momentum transfer
equation which can be represented in matrix form as



σ 2
+

iη0

3ρ0
k2
⊥
σ −1sk2

‖
−

T2
2⊥

ρ0
k2
⊥
−

H2
0

4πρ0
k2

(
−2Ω‖ +

pi⊥0ω
−1
L

2ρ0

(
k2
+ k2
‖

))
iσ −

(
2iη0

3ρ0
σ +

T2
⊥

ρ0

)
k⊥k‖(

2Ω‖ −
pi⊥0ω

−1
L

2ρ0

(
k2
+ k2
‖

))
iσ σ 2

−1sk2
‖
−

H2
0

4πρ0
k2
‖

−

(
2Ω⊥ +

pi⊥0ω
−1
L

ρ0
k⊥k‖

)
iσ

−

(
2iη0

3ρ0
σ +

T2
⊥

ρ0

)
k⊥k‖

(
2Ω⊥ +

pi⊥0ω
−1
L

ρ0
k⊥k‖

)
iσ

(
σ 2
+

4iη0

3ρ0
σk2
‖
−

T2
3‖

ρ0
k2
‖

)


×

ux

uy

uz

= 0, (3.11)

where T2
2⊥ = 2p⊥0 − (4πGρ2

0/k
2)+Q2k2ρ0, T2

⊥
= p⊥0 − (4πGρ2

0/k
2)+Q2k2ρ0,

T2
3‖ = 3p‖0 − (4πGρ2

0/k
2)+Q2k2ρ0, 1s= (p⊥0 − p‖0)/ρ0,

Q2
= (}2k2/4memi). (3.12a−c)

The solution of the above third order matrix yields the following expression which is
the general dispersion relation for an anisotropic viscous quantum plasma.[

2
(

2iση0

3
+ T2

⊥

)
k‖k⊥
ρ0

(
2Ω‖ − ν0(k2

+ k2
‖
)
) (

2Ω⊥ + 2ν0k⊥k‖
)

−
(
2Ω‖ − ν0(k2

+ k2
‖
)
)2

(
σ 2
+

4iη0

3ρ0
k2
‖
σ −

T2
3‖

ρ0
k2
‖

)
−

(
2iση0

3ρ0
+

T2
⊥

ρ0

)2 (
k⊥k‖

)2

]
σ 2

+

(
σ 2
+

iη0

3ρ0
k2
⊥
σ −1sk2

‖
−

T2
2⊥

ρ0
k2
⊥
−

H2
0

4πρ0
k2

)[(
σ 2
− 1sk2

‖
−

H2
0

4πρ0
k2
‖

)

×

(
σ 2
+

4iη0

3ρ0
k2
‖
σ −

T2
3‖

ρ0
k2
‖

)
− 4σ 2

(
Ω⊥ + ν0k⊥k‖

)2

]
+

(
2iση0

3
+ T2

⊥

)2

×

(
k⊥k2

‖

ρ0

)2 (
1s+

H2
0

4πρ0

)
= 0. (3.13)

The above general dispersion relation is obtained for an anisotropic plasma
incorporating quantum, FLR, tensor viscosity and rotation. In the absence of rotation,
FLR and tensor viscosity, (3.13) resembles the result of Gliddon (1966). If we ignore
the effect of the quantum parameter, FLR, rotation and self-gravitation in (3.13)
then the general dispersion relation takes the same form as the result obtained by
Cherkos & Tessema (2013). Equation (3.13) reduces to the dispersion relation given
by Prajapati (2014) in the absence of rotation, FLR and tensor viscosity. Thus the
tensor viscosity, FLR and rotation significantly modify the dispersion relation of a
quantum anisotropic plasma.
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4. Discussion of the dispersion relation

Further, we discuss the general dispersion relation (3.13) for transverse and
longitudinal modes of propagation to see the importance of rotation with tensor
viscosity.

4.1. Transverse mode of propagation (i.e. k⊥H0)
The dispersion relation (3.13) reduces, for the propagation perpendicular to the
direction of the magnetic field, as

σ 4
+

iη0

3ρ0
k2σ 3
−

{(
2Ω‖ − ν0k2

)2
+ 4Ω2

⊥
+

(
T2

2⊥

ρ0
+

H2
0

4πρ0

)
k2

}
σ 2

− 4Ω2
⊥

iη0

3ρ0
k2σ + 4Ω2

⊥

(
T2

2⊥

ρ0
+

H2
0

4πρ0

)
k2
= 0. (4.1)

The obtained dispersion relation (4.1) clearly shows that it is affected due to the
quantum, tensor viscosity, FLR corrections and rotation. The constant term of (4.1)
is free from the FLR, tensor viscosity and rotation parameter which shows that these
parameters do not contribute in the condition of gravitational instability.

To discuss the effect of tensor viscosity with rotation and FLR corrections on self-
gravitational instability conveniently we consider the following two cases: rotational
axis parallel to the direction of the magnetic field and rotational axis perpendicular to
the direction of the magnetic field.

4.1.1. Rotating axis parallel to the magnetic field (i.e. Ω ‖H0)
When the rotation of system is along the direction of the magnetic field, the

dispersion relation (4.1) reduces to the following form

σ 2
+

iη0

3ρ0
k2σ −

(
2Ω − ν0k2

)2
−

(
T2

2⊥

ρ0
+

H2
0

4πρ0

)
k2
= 0. (4.2)

Equation (4.2) is a quadratic equation and has two roots which satisfy the above
expression.

σ1,2 =

−
iη0k2

3ρ0
±

√
−

(
η0k2

3ρ0

)2

− 4
(
−

2p2
⊥0

ρ0
k2 −

H2
0k2

4πρ0
−Q2k4 +ω2

J − ν
2
0 k4 − 4Ω2 + 4Ων0k2

)
2

.

(4.3)

The obtained roots of (4.2) are purely imaginary and reduce to the roots obtained
by Sharma (2017) excluding rotation of the system. The quantum parameter, tensor
viscosity, rotation and FLR decreases the growth rate of viscous self-gravitating mode
and thus oppose the gravitational instability of the system while the coupling of FLR
and rotation supports the gravitational pressure in enhancing the growth rate of mode.
Further if the tensor viscosity of the system is ignored then the obtained expression
can be written as

σ 2
−

2p2
⊥0

ρ0
k2
−

H2
0k2

4πρ0
−Q2k4

+ω2
J − ν

2
0 k4
− 4Ω2

+ 4Ων0k2
= 0. (4.4)
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The above dispersion relation describes the role of rotation, quantum parameter
and FLR corrections on the self-gravitational instability. The obtained expression (4.4)
becomes identical to the result given by Sharma (2017) in the absence of rotation
and the quantum parameter. Thus, the rotation, FLR and its coupling effect modifies
the dispersion relation of anisotropic quantum plasma. The instability of the system
can be expressed as

(
ν2

0 +Q2
)

k4
+

(
2p⊥0

ρ0
+

H2
0

4πρ0
− 4Ω‖ν0

)
k2
+ 4Ω2

‖
<ω2

J . (4.5)

The inequality (4.5) shows the condition of a self-gravitational instability which is
strongly influenced by rotation, FLR and quantum parameter.

The system is unstable for all values of wavenumbers k < kJ1 where the critical
wavenumber is given as

k2
J1 =

(
4Ων0 −D2

⊥a

)
±

√{(
4Ων0 −D2

⊥a

)2
− 4(Q2 + ν2

0)(4Ω2 −ω2
J)
}

2(Q2 + ν2
0)

, (4.6)

where D2
⊥a = 2p⊥0/ρ0 +H2

0/4πρ0.
Equation (4.6) shows the modified Jeans critical wavenumber for self-gravitational

instability in terms of FLR, quantum and rotation. The modification in wave number
due to presence of FLR, rotation and quantum parameter can be seen if one ignores
these terms from (4.6), the obtained critical wave number takes the same form as
given by Gliddon (1966).

Furthermore, the critical Jeans mass MJ1 (=1.33πλ3
J1ρ0) of the rotating anisotropic

quantum plasma can be expressed by using the critical Jeans wavenumber in
λJ (=2π/kJ) and after that substituting it’s expression in (4/3)πλ3

J1ρ0. Thus the
obtained critical Jeans mass can be written as

MJ1 =
64
√

2π4ρ0

3

×

 Q2
+ ν2

0

−(D2
⊥a − 4Ων0)±

√{
(D2
⊥a − 4Ων0)2 − (Q2 + ν2

0)(16Ω2 − 4ω2
J)
}
3/2

. (4.7)

Using the physical value of the magnetic field strength 106–1016 G, temperature
T ≈ 105–107 K and number density n0 ≈ 1029–1034 m−3 (Haas 2005; Mushtaq &
Vladimirov 2011; Franzon & Schramm 2015) in the expression of the critical
wavenumber (kJ1) and critical Jeans mass (MJ1) for a non-rotating white dwarf,
the obtained numerical values of the critical wavenumber and Jeans mass are
1.34× 10−7 m−1 and 2.1M�. Similarly, including the effect of rotation, the obtained
numerical values are 1.2× 10−7 m−1 and 3.5M� respectively. Usually it is observed
that the white dwarf mass is comparable to the solar mass and it’s stability against
gravitational collapse is maintained by the degeneracy pressure of the electrons.
Chandrashekhar (1931) found a limit for the existence of white dwarfs beyond which
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the degeneracy pressure becomes weak in stabilizing a white dwarf star. As a result,
gravitational collapse and evolution into, for example, black holes, neutron stars etc.
occurs. Howell et al. (2006) and Yamanaka et al. (2009) and Scalzo et al. (2010)
have mentioned that the progenitor of more luminous supernovae could be white
dwarfs of mass greater than the Chandrashekhar mass limit (1.4M�). Such special
types of progenitors are named super Chandrashekhar white dwarf stars. The fast
rotation and strong magnetic field strength occupy a vital position in the existence of
super Chandrashekhar white dwarfs (Roxburgh 1965; Yoon & Langer 2005; Franzon
& Schramm 2015).

The comparison of critical wavenumber and Jeans mass of non-rotating with rotating
white dwarfs reveals that the presence of rotation works against the self-gravitational
collapse and thus makes it more stable.

4.1.2. Rotating axis perpendicular to the magnetic field (i.e. Ω⊥H0)
In this case the influence of rotation, FLR and tensor viscosity in an anisotropic

quantum plasma are studied considering the axis of rotation perpendicular to the
direction of magnetic field. Therefore, Ω‖ is ignored from the dispersion relation
(4.1) and the reduced form is represented as

σ 4
+

iη0

3ρ0
k2σ 3
−

(
ν2

0 k4
+ 4Ω2

+
T2

2⊥

ρ0
k2
+

H2
0

4πρ0
k2

)
σ 2

− 4
iη0

3ρ0
Ω2k2σ + 4Ω2

(
T2

2⊥

ρ0
+

H2
0

4πρ0

)
k2
= 0. (4.8)

The fourth degree algebraic polynomial (4.8) shows the dispersion relation for an
anisotropic plasma. It contains the combined effect of FLR, tensor viscosity, quantum,
rotation and Alfvén velocity in an anisotropic plasma system. In a rotating anisotropic
quantum plasma, the presence of FLR coupled the rotating and viscous gravitating
mode. This equation reduces to the dispersion relation obtained by Gliddon (1966)
for the classical non-rotational anisotropic plasma with the consideration of zero FLR
corrections. We can recover the result obtained by Cherkos & Tessema (2013) if
we neglect the effect of quantum, self-gravitation, FLR and rotation parameter in
the present work. In the absence of quantum, rotation and FLR effect in (4.8), the
obtained relation agrees with the dispersion relation given by Cherkos & Tessema
(2013).

To analyse the influence of rotation and tensor viscosity on self-gravitational
instability, the FLR corrections is ignored in the dispersion relation (4.8). The
obtained form can be written as(

σ 2
+

iη0

3ρ0
k2σ −

T2
2⊥

ρ0
k2
−

H2
0

4πρ0
k2

) (
σ 2
− 4Ω2

)
= 0. (4.9)

The presence of FLR coupled the pure rotational and viscous gravitating modes with
each other and in its absence both the modes in expression (4.9) shows their individual
behavior.

σ 2
+

iη0

3ρ0
k2σ −

2p⊥0

ρ0
k2
+ω2

J −Q2k4
−

H2
0

4πρ0
k2
= 0. (4.10)

The dispersion relation (4.10) describes the role of tensor viscosity with FLR
corrections, quantum and anisotropic pressure on the self-gravitating mode in
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magnetized plasma. Equation (4.10) is a quadratic equation and its roots (σ1 and
σ2) satisfy the above equation.

σ1,2 =−
iη0

6ρ0
k2
±

1
2

√
4
(

2p⊥0

ρ0
k2 −ω2

J +Q2k4 +
H2

0

4πρ0
k2

)
−

(
η0

3ρ0

)2

k4. (4.11)

Now the sum and product of the roots are

σ1σ2 =
−2p⊥0

ρ0
k2
+ω2

J −Q2k4
−

H2
0

4πρ0
k2 (4.12)

σ1 + σ2 =
−iη0

3ρ0
k2. (4.13)

Hence it is clear from (4.12) and (4.13) that the presence of tensor viscosity has
no significant role in self-gravitational instability of a rotating anisotropic quantum
plasma.

The second factor of (4.9) shows the pure rotating mode which remains unaffected
by the quantum, anisotropic pressure and tensor viscosity.

The effect of tensor viscosity and rotation on the growth rate of a self-gravitational
instability is examined numerically. The dispersion relations (4.2) and (4.8) are written
in dimensionless form using σ = iγ and the following dimensionless quantities

η∗
⊥
=
η0ωJ

p⊥0
, γ ∗ =

γ

ωJ
, k∗

⊥
=

k
ωJ

√
p⊥0

ρ0
, ν∗

⊥
=
ν0 ρ0ωJ

p⊥0
, (4.14a−d)

V∗a⊥ =
H0

√
4πp⊥0

, Ω∗ =
Ω

ωJ
, Q∗

⊥
=

}ρ0ωJ
√

4memip⊥0
. (4.15a−c)

Thus,

γ ∗2 +
η∗
⊥

3
k∗2
⊥
γ ∗ + 4Ω∗2 + ν∗2

⊥
k∗4
⊥
− 4Ω∗ν∗

⊥
k∗2
⊥
+ 2k∗2

⊥
− 1+Q∗2

⊥
k∗4
⊥
+ V∗2a⊥k∗2

⊥
= 0

(4.16)

and

γ ∗4 +
η∗
⊥

3
k∗2
⊥
γ ∗3 +

(
ν∗2
⊥

k∗4
⊥
+ 4Ω∗2 + 2k∗2

⊥
− 1+Q∗2

⊥
k∗4
⊥
+ V∗2a⊥k∗2

⊥

)
γ ∗2

+
4η∗
⊥

3
Ω∗2k∗2

⊥
γ ∗ + 4Ω∗2

(
2k∗2
⊥
− 1+Q∗2

⊥
k∗4
⊥
+ V∗2a⊥k∗2

⊥

)
= 0. (4.17)

Equation (4.16) is plotted in figures 1 and 2 to see the variation of growth rate of
a self-gravitational instability against the wavenumber for different values of tensor
viscosity η∗

⊥
and rotation Ω∗ respectively. The value of quantum (Q∗

⊥
), FLR (ν∗

⊥
) and

Alfvén velocity (V∗a⊥) are taken as 2.0, 1.4 and 0.9 respectively. In figures 1 and 2,
the growth rate is higher for the lower values of tensor viscosity and rotation and thus
one can says that both the parameters (tensor viscosity and rotation) have a stabilizing
effect on the growth rate of an anisotropic self-gravitating quantum plasma system.

We have solved (4.17) numerically and plotted in figures 3–5 the variation of
growth rate of a self-gravitational instability for several values of FLR, quantum and
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FIGURE 1. Normalized wave frequency versus normalized wavenumber plotted for various
values of tensor viscosity when the rotational axis is parallel to the perpendicular mode
of propagation.

FIGURE 2. Normalized wave frequency versus normalized wavenumber is plotted for
different values of rotation when rotational axis is parallel and wave propagation is
perpendicular to the magnetic field.

Alfvén velocity respectively. The solid curve is for the FLR corrections ν∗
⊥
= 0.0, the

dashed curve is for ν∗
⊥
= 1.4 and the dotted curve is for ν∗

⊥
= 2.0. It is observed

that the growth rates corresponding to the solid curve are higher as compared to
the dashed and dotted curves which reveals that the FLR corrections maintains a
crucial role in stabilizing the self-gravitational collapse of the viscous anisotropic
quantum plasma system. Similarly, observing the behaviour of the curves in figures 4
and 5 one can conclude that the quantum and Alfvén velocity both work against
the self-gravitational collapsing pressure and thus try to move the considered plasma
system towards stability.
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FIGURE 3. Normalized wave frequency versus normalized wavenumber is plotted to see
the effect of FLR corrections when rotational axis and wave propagation are transverse to
the magnetic field.

FIGURE 4. Normalized wave frequency versus normalized wavenumber is plotted to see
the effect of quantum when rotational axis and wave propagation are transverse to the
magnetic field.

4.2. Longitudinal mode of propagation (i.e. k ‖H0)
In this section the perturbations of the considered system are assumed to be move
along the direction of the magnetic field. Therefore, the perpendicular wave vector
(k⊥) is ignored from the dispersion relation (3.13) and the obtained form is{

−4
(
Ω‖ − ν0k2

)2
σ 2
+

(
σ 2
−1sk2

−
H2

0

4πρ0
k2

)2
}(

σ 2
+

4iη0

3ρ0
k2σ −

T2
3‖

ρ0
k2

)

− 4σ 2Ω2
⊥

(
σ 2
−1sk2

−
H2

0

4πρ0
k2

)
= 0. (4.18)
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FIGURE 5. Normalized wave frequency versus normalized wavenumber is plotted to see
the effect of magnetic strength when rotational axis and wave propagation are transverse
to the magnetic field.

Expression (4.18) clearly represents that the dispersion relation for anisotropic
quantum plasma in the longitudinal mode of propagation is affected by rotation,
FLR corrections and tensor viscosity. Further, we discuss the effect of rotation with
tensor viscosity on the Jeans instability of an anisotropic quantum plasma considering
similar cases to those mentioned in § 4.1

4.2.1. Rotating axis parallel to the magnetic field (i.e. Ω ‖H0)
The dispersion relation is obtained by substituting the rotation longitudinal to the

magnetic field and ignoring transvers rotational axis i.e. Ω⊥ = 0 in (4.18). Thus the
reduced form is{(

σ 2
−1sk2

−
H2

0

4πρ0
k2

)2

− 4σ 2
(
Ω − ν0k2

)2

}(
σ 2
+

4iη0

3ρ0
k2σ −

T2
3‖

ρ0
k2

)
= 0.

(4.19)

The absence of rotational axis perpendicular to the direction of the magnetic field
splits the dispersion relation of the longitudinal mode of propagation into two separate
modes. Thus, the coupled modes (Alfvén and viscous self-gravitating) in the absence
of a perpendicular rotational axis are separated out from each other.

The obtained Alfvén mode can be written in expanded form as

σ 4
− 2

{(
p⊥0

ρ0
−

p‖0
ρ0
+

H2
0

4πρ0
− 4Ων0

)
k2
+ 2

(
Ω2
+ ν2

0 k4
)}
σ 2

+

(
p⊥0

ρ0
−

p‖0
ρ0
+

H2
0

4πρ0

)2

k4. (4.20)

The presence of the tensor viscosity and quantum parameter have no influence
on the Alfvén mode. In the absence of rotation, the mode (4.20) resembles (31) of
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Sharma (2017). The expression (4.20) recovers the Alfvén mode obtained by Gliddon
(1966), Cherkos & Tessema (2013), Prajapati (2014) if we ignore rotation and the
FLR corrections in the present work. Thus, the rotation of the system and FLR
corrections modify the Alfvén mode given by Gliddon (1966), Cherkos & Tessema
(2013), Prajapati (2014) and Sharma (2017). Expression (4.20) is a quadratic equation
in σ 2, where σ is the growth rate of the Alfvén mode and can be given as

σ 2
1,2 =

(
1s+

H2
0

4πρ0
− 4Ων0

)
k2
+ 2$ 2

± 2
{
$ 4
+$ 2

(
1s+

H2
0

4πρ0
− 4Ωυ0

)
k2

− 2Ωυ0

(
1s+

H2
0

4πρ0
− 2Ων0

)
k4

}1/2

, (4.21)

where $ 2
= (Ω2

+ ν2
0 k4).

It is clear that the growth rate of the Alfvén mode is modified by the rotation and
FLR corrections. The modified Alfvé modes propagate with two different velocities
due to the influence of the FLR corrections and the rotation of the system. Now, to
discuss the instability of the mode we write the sum and product of the roots as

σ 2
1 + σ

2
2 = 2

{(
p⊥0

ρ0
−

p‖0
ρ0
+

H2
0

4πρ0
− 4Ων0

)
k2
+ 2

(
Ω2
+ ν2

0 k4
)}

(4.22)

σ 2
1 σ

2
2 =

(
p⊥0

ρ0
−

p‖0
ρ0
+

H2
0

4πρ0

)2

. (4.23)

Hence, for (p⊥0/ρ0)+ (H2
0/4πρ0)< (p‖0/ρ0) there exist imaginary roots which make

the Alfvén mode unstable and it results in the firehose instability in the anisotropic
plasma system due to the dominance of the parallel anisotropic pressure over the sum
of the magnetic pressure and perpendicular anisotropic pressure.

If we ignore the FLR corrections to see the influence of rotation on the Alfvén
mode, (4.20) reduces as

σ 4
− 2

{(
p⊥0

ρ0
−

p‖0
ρ0
+

H2
0

4πρ0

)
k2
+ 2Ω2

}
σ 2
+

(
p⊥0

ρ0
−

p‖0
ρ0
+

H2
0

4πρ0

)2

k4. (4.24)

Equation (4.24) shows the role of rotation on the propagation of the Alfvén mode.
The solution of (4.24) can be written as

σ 2
1,2 =

(
p⊥0

ρ0
−

p‖0
ρ0
+

H2
0

4πρ0

)
k2
+ 2Ω2

± 2Ω

√
Ω2 +

(
p⊥0

ρ0
−

p‖0
ρ0
+

H2
0

4πρ0

)
k2. (4.25)

It is clear from the above solution that the rotation of the system has a reducing effect
on the parallel anisotropic pressure and thus opposes the firehose instability.

Now, the obtained gravitating mode is

σ 2
+

4iη0

3ρ0
k2
‖
σ −

3p‖0
ρ0

k2
‖
+ω2

J −Q2k4. (4.26)
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The presence of tensor viscosity plays a significant role in the self-gravitating mode
while the FLR corrections and rotation have no influence. In the absence of tensor
viscosity, the gravitating mode recovers the mode given by Prajapati (2014). For a
classical anisotropic plasma, the expression (4.26) takes the same form as the result
obtained by Sharma (2017). Thus, the obtained gravitating mode is improved by the
presence of tensor viscosity and quantum in an anisotropic self-gravitating plasma.

The growth rate of gravitating mode (4.26) is found to be

σ =−
2iη0

3ρ0
k2
±

√
3p‖0
ρ0

k2 −ω2
J +Q2k4 −

(
2η0

3ρ0

)2

k4. (4.27)

In the absence of tensor viscosity, (4.27) reduces to

σ =±

√
3p‖0
ρ0

k2 −ω2
J +Q2k4. (4.28)

Clearly the parallel anisotropic and degeneracy pressure opposes the growth rate of
gravitational collapse.

4.2.2. Rotating axis perpendicular to the magnetic field (i.e. Ω⊥H0)
In this subsection the rotation of the system is considered to be across the direction

of the magnetic field in the longitudinal mode of propagation. Therefore the parallel
rotational frequency Ω‖ is ignored from the dispersion relation (36) and the reduced
form is(

σ 2
+

4iη0

3ρ0
k2σ −

3p‖0
ρ0

k2
+ω2

J −Q2k4

){
−4υ2

0 k4σ 2
+

(
σ 2
−1sk2

‖
−

H2
0

4πρ0
k2

)2
}

− 4Ω2σ 2

(
σ 2
−1sk2

−
H2

0

4πρ0
k2

)
= 0. (4.29)

The presence of rotation couples the viscous gravitating mode with the modified
Alfvén mode. In the absence of quantum and rotation, (4.29) recovers the result of
Sharma (2017). The dispersion relation (4.29) reduces to the result given by Prajapati
(2014) in the absence of tensor viscosity, rotation and FLR corrections. Thus the
presence of rotation, tensor viscosity, quantum and FLR corrections modified the
dispersion relation of anisotropic plasma.

In the absence of rotation, the dispersion relation (4.29) separates out into viscous
gravitating and Alfvén modes. The obtained viscous gravitating mode is similar to the
gravitating mode (4.26) and the Alfvén mode is similar to (31) of Sharma (2017).

Now, to see the influence of rotation we have ignored the FLR corrections, equation
(4.29) takes the form(

σ 2
−1sk2

−
H2

0

4πρ0
k2

){
σ 4
+ iσ 3

(
4η0

3ρ0
k2

)
+ σ 2

(
−1sk2

−
H2

0

4πρ0
k2
−

3p‖0
ρ

k2

+ ω2
J −Q2k4

− 4Ω2
)
+ iσ

4η0

3ρ0
k2

(
−1sk2

−
H2

0

4πρ0
k2

)
+

(
−

3p‖0
ρ0

k2
+ω2

J −Q2k4

)(
−1sk2

−
H2

0

4πρ0
k2

)}
= 0. (4.30)
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FIGURE 6. Growth rate of Alfvén mode versus wavenumber is plotted to see the effect
of rotation and FLR corrections.

The first factor of (4.30) represents the Alfvén mode which is identical to the result
of Gliddon (1966), Cherkos & Tessema (2013), Prajapati (2014) and Sharma (2017).
Now, if we put the constant term of the second factor of (4.23) to be less than zero
then it gives imaginary roots which are responsible for the instability of the system.
Hence from the second factor of (4.30)(

−
3p‖0
ρ0

k2
+ω2

J −Q2k4

)(
−1sk2

−
H2

0

4πρ0
k2

)
< 0. (4.31)

It gives the gravitational instability criterion (3p‖0/ρ0)k2
+ Q2k4 < ω2

J and firehose
instability condition (p⊥0 +H2

0/4π) < p‖0. The presence of rotation has no influence
on both the instability criteria in the longitudinal mode of propagation when rotation
is perpendicular to the direction of the magnetic field.

To study the effect of rotation and FLR corrections on the Alfvén mode
numerically, the dispersion relation (4.24) is plotted. Figure 6 depicts the variation
of growth rate of Alfvén mode as a function of wavenumber for the presence
and absence of rotation and FLR corrections. Curves A1 and A2 are for stable
(p⊥0 +H2

0/4π = 2.5ρ0, p‖0 = 0.5ρ0) and unstable (p⊥0 +H2
0/4π= 0.5ρ0, p‖0 = 2.5ρ0)

firehose modes respectively. The curves B1 and B2 are for stable and unstable firehose
modes with rotation respectively, and C1 and C2 are for stable and unstable firehose
mode with rotation and FLR corrections respectively. The presence of rotation and
FLR corrections reduces the unstable region and thus has a stabilizing effect on the
firehose mode by reducing the effect of parallel anisotropic pressure.

Moreover, to analyse the influence of tensor viscosity on the growth rate of the
Jeans instability in the longitudinal mode of propagation for the rotational axis
perpendicular to the magnetic field the second factor of the dispersion relation (4.30)
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FIGURE 7. Normalized wave frequency versus normalized wavenumber is plotted to
compare the effect of tensor viscosity in transverse and longitudinal modes of propagation
when the rotational axis is perpendicular to magnetic field

is normalized as

γ ∗4 +
4η∗
‖

3
k∗2
‖
γ ∗3 +

(
−χk2

‖
+ V∗2a‖ k

∗2
‖
+ 3k2

‖
− 1+Q∗2k∗4

‖
+ 4Ω∗2

)
γ ∗2

+
4η∗
‖

3
k∗2
‖

(
−χk2

‖
+ V∗2a‖ k

∗2
‖

)
γ ∗ +

(
3k2
‖
− 1+Q∗2k∗4

‖

) (
−χk2

‖
+ V∗2a‖ k

∗2
‖

)
= 0,

(4.32)

where

k∗
‖
=

k
ωJ

√
p‖0
ρ0
, χ =

p‖0 − p⊥0

p‖0
, η∗

‖
=
η0ωJ

3p‖0
,

Q∗
‖
=

}ρ0ωJ
√

4memip‖0
, ν∗

‖
=
ν0 ρ0ωJ

p‖
, V∗a‖ =

H0√
4πp‖0

.

 (4.33)

The normalized growth rate versus normalized wavenumber has been plotted in
figure 7 to compare the growth rate of the self-gravitational instability in both
transverse and longitudinal modes of propagation by solving (4.17) and (4.32). The
solid and dashed curves represent the variation of growth rate in the transverse and
longitudinal modes of propagation respectively. The nature of the curves shows that
the growth rate stabilizes faster in the longitudinal mode.

5. Conclusion
We have focused on investigating the influence of rotation, FLR corrections and

tensor viscosity on the self-gravitational instability of an anisotropic quantum plasma.
It is found that in the transverse mode of propagation with a parallel rotational
axis, the obtained critical Jeans mass is affected by the rotation, quantum and FLR
corrections while it remains unaffected by tensor viscosity. The estimated Jeans mass
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for rotating and non-rotating white dwarf stars is 3.5M� and 2.1M� respectively. The
difference in these masses reveals that the rotational frequency has a significant role
in stabilizing the white dwarf star. The FLR corrections, rotational frequency and
quantum parameter has a stabilizing influence on the growth rate of self-gravitational
collapse. In the case of a longitudinal mode of propagation for a rotational axis
parallel to the magnetic field, the analytical as well as numerical results show that
the growth rate of the self-gravitating instability stabilizes due to the tensor viscosity
and quantum parameter while the growth rate of the firehose instability is stabilized
by the FLR corrections and rotational frequency due to suppression of the parallel
anisotropic pressure. The presence of a perpendicular rotational frequency in the
longitudinal mode coupled the viscous gravitating mode with the modified Alfvén
mode. The growth rate of self-gravitational instability of the viscous anisotropic
degenerate plasma stabilizes faster in the longitudinal mode than the transverse mode
of propagation.
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