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We introduce a new concept of continuity of posets, called θ-continuity. Topological

characterizations of θ-continuous posets are put forward. We also present two types of

dcpo-completion of posets which are Dθ-completion and Ds2 -completion. Connections

between these notions of continuity and dcpo-completions of posets are investigated. The

main results are (1) a poset P is θ-continuous iff its θ-topology lattice is completely

distributive iff it is a quasi θ-continuous and meet θ-continuous poset iff its Dθ-completion is

a domain; (2) the Dθ-completion of a poset B is isomorphic to a domain L iff B is a

θ-embedded basis of L; (3) if a poset P is θ-continuous, then the Dθ-completion Dθ(P ) is

isomorphic to the round ideal completion RI(P ,�θ).

1. Introduction

Domain theory, initiated by Dana Scott in the late 1960s, has been widely studied

and applied to various areas of mathematics, logic and computer science (Gierz et al.

1980). For different purposes, the concept of domains has been generalized in different

ways. Quasicontinuous domains were introduced as a common generalization of both

generalized continuous lattices and domains by Gierz et al. (1983). They extended the way

below relation between points to that of subsets of dcpos, and proved that quasicontinuous

domains equipped with the Scott topologies are precisely the spectra of distributive

hypercontinuous lattices. In Mao and Xu (2006), the concept of quasicontinuous posets

was introduced using the Scott topology on posets instead of the way below relation

on subsets of posets. The concept of quasicontinuous posets generalizes the spectral

characterization of quasicontinuity from dcpos to posets. To avoid the requirement of

the existence of directed joins, Erné introduced s2-continuous posets, which allow to

generalize important characterizations of continuity from complete lattices to arbitrary

posets (Erné 1981). In the manner of Erné, Zhang and Xu came up with a new way below

relation and used it to define s2-quasicontinuous posets as a common generalization of

both s2-continuous posets and quasicontinuous domains (Zhang and Xu 2015). Recall

that a complete lattice L is called meet continuous if it satisfies the distributive law that

binary meets distribute over directed joins. Kou, Liu and Luo extended the definition

of meet continuity to general dcpos and presented a purely topological characterization

(Kou et al. 2003). A further generalization of meet continuity from dcpos to the setting

of posets has been studied in the literature (Mao and Xu 2009). The study of domain

theoretic concepts generalized from dcpos to posets is attracting more and more attention
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(Huang et al. 2009; Keimel and Lawson 2009, 2012; Xu 2006; Zhao 2015). One orientation

of the study is dcpo-completion of posets. In Zhao and Fan (2010), with the motivation

to answer the question of whether posets and dcpos define the same class of Scott closed

set lattices, Zhao and Fan introduced a new type of dcpo-completion of posets which is

idempotent, called the D-completion. They showed that every poset and its D-completion

have isomorphic Scott closed set lattices, which gave a positive answer to the problem.

Similarly, a new question naturally arises: Do posets and dcpos have the same class

of closed set lattices with respect to the s2-topologies? We also observe that if there is

an ideal without upper bounds in a poset, which is very common, then in the sense

of s2-approximation, all points can only be approximated by points in the ideal. To be

s2-continuous, there should be no points isolated from the ideal, i.e., every point should

be directedly approximated by points in the ideal, in a precise sense explained in Section

2. This indicates that the concept of s2-continuity is stronger than that of continuity.

In this paper, we introduce a new relation, called θ-approximation. It has the advantage

that the existence of directed joins is not necessarily required and is weaker than

s2-approximation, which avoids the situation we mentioned above. The θ-continuous

posets and the θ-topologies coincide with domains and Scott topologies in the case

of dcpos. Two kinds of dcpo-completion of posets are put forward here, which we

refer to as the Dθ-completion and Ds2 -completion. Every poset and its Dθ-completion

(resp., Ds2 -completion) have isomorphic lattices of open sets with respect to the θ-

topologies (resp., s2-topologies). This gives a positive answer to the above question,

and, moreover, establishes the same result for lattices of θ-open sets. Additionally, the

Dθ-completion (resp., Ds2 -completion) can be extended to a reflector from the category

POS θ (resp., POS s2 ) of posets and continuous mappings with respect to the θ-topologies

(resp., s2-topologies) to the full subcategory DCPO of dcpos and Scott continuous

mappings.

2. Preliminaries

The following are definitions of domain theory that will be used later, which can be found

in the literature (Abramsky and Jung 1994; Gierz et al. 2003).

Let P and Q be posets. For A ⊆ P and x ∈ P , we write: ↓A = {y ∈ P : y � a for some

a ∈ A} and ↓x = ↓{x}; A↓ = {y ∈ P : y � a for all a ∈ A}. ↑A, ↑x, and A↑ are defined

dually. We say that x is way below y, written x � y, if whenever D ⊆ P is directed for

which
∨
D exists (where

∨
D denotes the supremum of D), the relation y �

∨
D always

implies x ∈ ↓D. We write ↓↓x = {u ∈ P : u � x}, ↑↑x = {v ∈ P : x � v}. A subset U of

P is Scott open if (i) U = ↑U; (ii) for each directed subset D, D
⋂
U �= � whenever

∨
D

exists and
∨
D ∈ U. Let σ(P ) = {U ⊆ P : U is Scott open} denote the Scott topology

of P and σ(P )c be the set of all Scott closed sets of P . Let clσ(A) and intσ(A) denote

the closure and interior of A with respect to the Scott topology. P is called continuous if

↓↓x is directed and x =
∨

↓↓x for all x ∈ P . A mapping f : P → Q is Scott continuous if

f(
∨
D) =

∨
f(D) holds for any directed subset D with existing

∨
D.

Let Aδ = (A↑)↓. We say that x s2-approximates y, written x �s2 y, if for each directed set

D ⊆ P with y ∈ Dδ , there exists d ∈ D with x � d. Recall the situation mentioned in the
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Introduction, if there is a directed subset D without upper bounds in P , i.e., D↑ = �, then

Dδ = P and thus x �s2 y always implies that x ∈ ↓D. We write ↓↓s2x = {u ∈ P : u �s2 x}
and ↑↑s2x is defined dually. P is called s2-continuous if for all x ∈ P , x =

∨
↓↓s2

x, and

↓↓s2
x is directed. A subset U ⊆ P is called s2-open if (i) U = ↑U; (ii) for every directed

subset D, D
⋂
U �= � whenever Dδ

⋂
U �= �. Note that s2-open is exactly the σ2-

open in Zhang and Xu (2015). In order to avoid confusion and misunderstanding, we

use s2 in place of σ2 in this paper. Similar to the definition of Scott topology, the s2-

topology of P will be denoted by s2(P ) and the set of all s2-closed subsets of P will be

denoted by s2(P )c. In the same way, we have an s2-closure operator cls2 and an s2-interior

operator ints2 .

A subset A of P is called D-closed if for all directed subsets D ⊆ A, if
∨
D exists, then∨

D ∈ A. The set of complements of all D-closed sets of P forms a topology, which will

be called the D-topology of P . Let cld, called D-closure, be the closure operator with

respect to the D-topology. A D-completion of a poset P is a dcpo L together with a Scott

continuous mapping η : P → L, such that for any Scott continuous mapping f : P → M

into a dcpo M, there exists a unique Scott continuous mapping f̂ : L → M satisfying

f = f̂ ◦ η.

Lemma 2.1 (Zhao and Fan 2010). If f : P → Q is a Scott continuous function between

posets, then for any X ⊆ P , f(cld(X)) ⊆ cld(f(X)).

Lemma 2.2 (Zhao and Fan 2010). If X is a subset of a poset P and f, g : cld(X) → Q are

Scott continuous mappings into a poset Q such that f|X = g|X , then f = g.

For a topological space (X, τ), a binary relation �τ is defined as follows: x �τ y ⇔
x ∈ clτ(y). Let ↑τA = {x ∈ X : a �τ x for some a ∈ A}. A topological space (X, τ) is called

locally finitary compact if for each U ∈ τ and x ∈ U, there exists a finite subset F such

that x ∈ intτ(↑τF) ⊆ ↑τF ⊆ U.

Lemma 2.3 (Xu and Yang 2009). For a topological space (X, τ), the following conditions

are equivalent:

1. (X, τ) is locally finitary compact.

2. (τ,⊆) is a hypercontinuous lattice.

3. θ-continuous posets

Recall that in a dcpo L, we say x � y if y �
∨
D always implies x � d for some d ∈ D

where D is directed. The idea behind the notion of θ-approximation comes from the fact

that the condition y �
∨
D is equivalent to say that D has an upper bound and y is below

every upper bound of D. In this manner, the directed completeness is not necessarily

required. Before giving the definition of θ-approximation, we introduce the following map

to formalize the idea. For any poset P , let Θ : 2P → 2P be defined by Θ(A) = ↓A, if

A↑ = �, and Θ(A) = Aδ , if A↑ �= �. In the case of dcpos, if D is directed in P , then

Θ(D) = Dδ = ↓
∨
D.
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Definition 3.1. Let P be a poset and x, y ∈ P .

i. We say that x θ-approximates y, in symbols x �θ y, if for all directed subsets D ⊆ P ,

y ∈ Θ(D) always implies x ∈ ↓D. An element satisfying x �θ x is said to be θ-compact.

We write ↓↓θ
x = {a ∈ P : a �θ x} and ↑↑θx = {a ∈ P : x �θ a}.

ii. P is called θ-continuous if for all x ∈ P , the set ↓↓θ
x is directed and x =

∨
↓↓θ
x.

Proposition 3.1. Let P be a poset and x, y, u, v ∈ P .

1. x �θ y implies x � y.

2. u � x �θ y � v implies u �θ v.

3. u �θ x, v �θ x and u ∨ v exists imply u ∨ v �θ x.

4. If a smallest element ⊥ exists, then ⊥ �θ x.

5. x �s2 y implies x �θ y.

6. x �θ y implies x � y.

7. If P is a dcpo, then x �s2 y ⇔ x �θ y ⇔ x � y.

8. If every directed subset in P has at least one upper bound, then P is θ-continuous iff

P is s2-continuous.

Proof. (1)–(4) are straightforward.

For (5), suppose x �s2 y and D a directed set such that y ∈ Θ(D). Then, y ∈ Dδ by

Θ(D) ⊆ Dδ , thus x ∈ ↓D by x �s2 y and hence x �θ y.

For (6) and (7), given any directed set D with existing sup, we have Dδ = Θ(D) = ↓
∨
D.

Hence, y �
∨
D ⇔ y ∈ Θ(D) ⇔ y ∈ Dδ , which completes the proof.

For (8), if every directed subset D has an upper bound, then we always have Θ(D) = Dδ .

Thus, x �θ y iff x �s2 y, the proof is complete.

By Proposition 3.1, we know �θ is stronger than � and weaker than �s2 . The following

examples show differences among these three relations.

Example 3.1. The constructions below are illustrated in Figure 1.

1. Let P1 = {p}
⋃

[0, 1)
⋃

(1, 2], endow [0, 1)
⋃

(1, 2] with the natural order, p � x iff 1 < x

or x = p, and no other relations. Then, p � p but p /�θp since Θ([0, 1)) = [0, 1)δ =

{p}
⋃

[0, 1). We conclude that P1 is a continuous poset, however, not θ-continuous.

2. Let P2 = {q}
⋃

[0, 1] × {0}
⋃

[0, 1) × {1}, the partial order � on P2 is defined by

(x1, y1) � (x2, y2) iff x1 � x2 and y1 = y2, and q has no order relations with other

points except itself. Then, P2 is a poset, q �θ q, (x0, y0) �θ (x1, y1) iff x0 < x1

and y0 = y1. However, ([0, 1) × {1})δ = P2, thus q /�s2
q, (x0, 0) /�s2

(x1, 0) for any

x0, x1 ∈ [0, 1]. Then, P2 is a θ-continuous poset, but it is not s2-continuous.

Definition 3.2. Let P be a poset. A subset U ⊆ P is called θ-open if it satisfies

i. U = ↑U;

ii. Θ(D)
⋂
U �= � implies D

⋂
U �= � for all directed sets D ⊆ P .

For any poset P , the set θ(P ) = {U ⊆ P : U is θ-open} forms a topology, called the

θ-topology of P . The set of all θ-closed sets of P is denoted by θ(P )c = {P\U : U ∈ θ(P )}.
Recall that a subset F of P is a filter if every finite subset of F has a lower bound in F
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Fig. 1. Example 3.1.

and F = ↑F . Let ΘFilt(P) = {F : F is a θ-open filter of P } denote all θ-open filters. For

any subset A ⊆ P , let clθ(A) denote the closure of A and intθ(A) denote the interior of A

with respect to the θ-topology.

Proposition 3.2. Let P be a poset, ∀x, y, z ∈ P , ∀A,U ⊆ P .

1. A is θ-closed iff D ⊆ A implies Θ(D) ⊆ A for any directed subset D of P .

2. s2(P ) ⊆ θ(P ) ⊆ σ(P ).

3. clσ(A) ⊆ clθ(A) ⊆ cls2 (A).

4. ints2 (A) ⊆ intθ(A) ⊆ intσ(A).

5. U is a co-prime in θ(P ) iff U ∈ ΘFilt(P).

6. If y ∈ intθ(↑x), then x �θ y.

Proof.

1.By the definition of θ-closed sets.

2.Let U be an s2-open set in P , for every directed subset D, Θ(D)
⋂
U �= � ⇒

Dδ
⋂
U �= � ⇒ D

⋂
U �= �, therefore U is θ-open. In a similar way, one has that U

is θ-open implies U is Scott open. Thus, s2(P ) ⊆ θ(P ) ⊆ σ(P ).

3.and 4. are the consequences of (2).

5.⇒ : It suffices to show that U is a filter. Suppose x, y ∈ U. By (1), we have ↓x and ↓y are

θ-closed. Thus, P\↓x and P\↓y are θ-open and U � (P\↓x)
⋃

(P\↓y) = P\(↓x
⋂

↓y)
since U is a co-prime in θ(P ). Hence, ∃z ∈ U such that z ∈ ↓x

⋂
↓y.

⇐ : Suppose that U is not a co-prime in θ(P ). Then, ∃V ,W ∈ θ(P ) such that

U ⊆ V
⋃
W and ∃x ∈ U\V and ∃y ∈ U\W . There exists z ∈ U such that z � x

and z � y since U is a filter. As θ-open sets are upper sets, we have z /∈ V
⋃
W , a

contradiction to U ⊆ V
⋃
W .

6.For every directed set D such that y ∈ Θ(D), we have Θ(D)
⋂
intθ(↑x) �= � since

y ∈ intθ(↑x). By the Definition 3.2, D
⋂
intθ(↑x) �= �. Then, x ∈ ↓D and thus x �θ y.

Remark 3.1. Note that for any directed subset D ⊆ P , Dδ is always s2-closed. However,

this is not the case with Θ(D) in the θ-topology. For example, let R be the set of all real

numbers and N all natural numbers, P = {A : A ⊆ R}\{R} be a poset with the partial

order of inclusion. Then, D = {F ⊆ R : F is finite} and C = {F ⊆ N : F is finite} are
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directed subsets of P . We have Θ(D) = D and C ⊆ D, but Θ(C) = {A : A ⊆ N} � Θ(D).

Thus, Θ(D) is not θ-closed by Proposition 3.2(1).

The following theorem is a generalization of Theorem II –1.14 in Gierz et al. (2003).

Theorem 3.1. For any poset P , the following conditions are equivalent:

1. P is a θ-continuous poset.

2. P is continuous and x � y implies x �θ y for all x, y ∈ P .

3. Each ↑↑θx is θ-open, and if U ∈ θ(P), then U =
⋃

{↑↑θx : x ∈ U}.
4. P is continuous and σ(P ) = θ(P ).

5. ΘFilt(P ) is a basis of θ(P) and θ(P) is a continuous lattice.

6. θ(P ) has enough co-primes and is a continuous lattice.

7. θ(P ) is completely distributive.

8. both θ(P ) and θ(P )c are continuous.

Proof. (1) ⇒ (2): Suppose x � y, then x � d for some d ∈ ↓↓θy since ↓↓θ
y is directed

and y =
∨

↓↓θ
y, hence x �θ y by Proposition 3.1(2). Thus, x � y iff x �θ y and P is

continuous by Proposition 3.1(6).

(2) ⇒ (1): Straightforward.

(2) ⇒ (3): For every directed set D with Θ(D)
⋂ ↑↑θx �= �, ∃y ∈ ↑↑θx

⋂
Θ(D). Then, there

exists z ∈ P such that x �θ z �θ y by (2) and the interpolation property of continuous

posets. Thus, z ∈ ↓D
⋂ ↑↑θx and ↑↑θx is θ-open. It is clear that

⋃
{↑↑θx : x ∈ U} ⊆ U. If

u ∈ U, then Θ(↓↓θu) = ↓u by θ-continuity. Thus, ↓↓θ
u
⋂

U �= � and ∃v ∈ U such that

u ∈ ↑↑θv, the proof is complete.

(3) ⇒ (1): Let x ∈ P , obviously, ↓↓θx is directed and not empty. For each y ∈ (↓↓θx)↑,

if y /∈ ↑x, then L \ ↓y is θ-open and contains x. By (3), there exists z ∈ L \ ↓y such that

x ∈ ↑↑θz, hence z � y, a contradiction. And x ∈ (↓↓θx)↑, therefore, x =
∨

↓↓θx.

(3) ⇒ (4): (4) is clear from (1), (2) and (3).

(4) ⇒ (7): This is obvious.

(6) ⇔ (7) ⇔ (8) : See Theorem I –3.16 in Gierz et al. (2003).

(6) ⇔ (5): Consequence of Proposition 3.2(5).

(5) ⇒ (1): For any x ∈ P , let D = {y ∈ P : x ∈ intθ(↑y)}. Then, ∀y ∈ D, y �θ x by

Proposition 3.2(6). We claim D is directed as for any U ∈ θ(P ) containing x, there exists

y ∈ U such that x ∈ intθ(↑y). Suppose not, there exist V ∈ θ(P ) and F ∈ ΘFilt(P ) such

that x ∈ F ⊆ V � U since θ(P ) is a continuous lattice and ΘFilt(P ) is a basis of θ(P ).

Then ∀y ∈ U, we have y ∈ Fy ⊆ P \ ↓z ∈ θ(P ) for some z ∈ F and Fy ∈ ΘFilt(P ). Thus,

F ⊆ V ⊆
⋃
i∈G

Fyi for some finite set G and yi ∈ Fyi ⊆ P \ ↓zi. Then, ∃z0 ∈ F such that

z0 � zi for all i ∈ G. However, z0 /∈ Fyi for all i ∈ G, a contradiction. This proves the

claim. If z ∈ D↑, we can show x � z in the way that given in (3) ⇒ (1). Thus, x =
∨
D

and x ∈ Θ(D). Then, ↓↓θ
x = ↓D = D and hence P is a θ-continuous poset.

Theorem 3.2. Let P be a poset. Then the following statements are equivalent.

1. P is s2-continuous.

2. P is θ-continuous and x �θ y implies x �s2 y for all x, y ∈ P .

3. P is continuous and x � y implies x �s2 y for all x, y ∈ P .
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4. P is θ-continuous and θ(P ) = s2(P ).

5. P is continuous and σ(P ) = s2(P ).

Proof. (1) ⇒ (2): By s2-continuity, we have ↓↓s2x is directed and x ∈ Θ(↓↓s2x). Thus,

↓↓θ
x ⊆ ↓↓s2

x. Hence, ↓↓θ
x = ↓↓s2

x by Proposition 3.1(5).

(2) ⇒ (3): By the equivalence of (1) and (2) in Theorem 3.1.

(3) ⇒ (1): Straightforward.

(3) ⇒ (4): We have ↑↑θx = ↑↑s2x, and {↑↑θx : x ∈ P } is a base of θ(P ) by Theorem 3.1.

Moreover, {↑↑s2
x : x ∈ P } is a base of s2(P ) since P is s2-continuous, this can be proved

in the way of (2) ⇒ (3) in Theorem 3.1. Thus, θ(P ) = s2(P ).

(4) ⇒ (5): By the equivalence of (1) and (4) in Theorem 3.1.

(5) ⇒ (1): All we need to show is that x � y implies x �s2 y. For any directed D

with y ∈ Dδ , we have Dδ
⋂ ↑↑x �= �. Thus, D

⋂ ↑↑x �= � since ↑↑x ∈ σ(P ) = s2(P ). Hence,

x ∈ ↓D. Therefore, x � y implies x �s2 y as desired.

4. Quasi θ-continuous posets

Recall that for a dcpo L, the following two conditions are equivalent: (1) L is a

quasicontinuous domain; (2) For all x ∈ L and U ∈ σ(L), x ∈ U implies that there

is a non-empty finite F ⊆ L such that x ∈ intσ(L)↑F ⊆ ↑F ⊆ U (Heckmann 1992). The

concept of quasicontinuous posets was introduced in the manner of the condition (2)

(Mao and Xu 2006). And a poset is s2-quasicontinuous iff the s2-topology is locally

finitary compact (Zhang and Xu 2015).

Definition 4.1. A poset P is called a quasi θ-continuous poset if for all x ∈ P and

U ∈ θ(P ), x ∈ U implies that there is a non-empty finite subset F ⊆ P such that

x ∈ intθ(P )(↑F) ⊆ ↑F ⊆ U.

Proposition 4.1. Let P be a poset.

1. If P is a θ-continuous poset, then P is quasi θ-continuous.

2. P is s2-quasicontinuous ⇒ P is quasi θ-continuous ⇒ P is quasicontinuous.

Proof.

1. If x ∈ U ∈ θ(P ), then x ∈ ↑↑θy ∈ θ(P ) for some y ∈ U by Theorem 3.1. Thus,

x ∈ intθ(P )(↑{y}) ⊆ ↑{y} ⊆ U.

2. Consequence of x ∈ ints2(P )(↑F) ⇒ x ∈ intθ(P )(↑F) ⇒ x ∈ intσ(P )(↑F) by Proposition

3.2(4).

Theorem 4.1. A poset P is quasi θ-continuous iff the latice θ(P ) of all θ-open subsets

with inclusion order is a hypercontinuous lattice.

Proof. P is quasi θ-continuous iff (P , θ(P )) is locally finitary compact by Definition 4.1.

Now apply Lemma 2.3.

Definition 4.2. A poset P is called meet θ-continuous if for any x ∈ P and any directed

subset D ⊆ P with x ∈ Θ(D), then x ∈ clθ(↓x
⋂

↓D).
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Proposition 4.2.

1. If P is a θ-continuous poset, then P is meet θ-continuous.

2. If P is meet s2-continuous, then P is meet θ-continuous.

Proof.

1. Let x ∈ P and D be a directed set with x ∈ Θ(D). Clearly, ↓↓θ
x ⊆ ↓D. Thus,

clθ(↓↓θ
x) ⊆ clθ(↓x

⋂
↓D) and clθ(↓↓θx) = ↓x by θ-continuity, as required.

2. Recall that if P is a meet s2-continuous poset, then for any x ∈ P and any directed

set D, x ∈ Dδ always implies x ∈ cls2 (↓x
⋂

↓D) (see Zhang and Xu 2015). For any

A ∈ θ(P )c with ↓x
⋂

↓D ⊆ A ⊆ ↓x, and any directed subset B ⊆ A. Then, B↑ �= �.

Thus, Bδ = Θ(B) ⊆ A. Hence, A ∈ s2(P )c and clθ(↓x
⋂

↓D) = cls2 (↓x
⋂

↓D). Moreover,

x ∈ Θ(D) always implies x ∈ Dδ . Therefore, P is meet θ-continuous.

Theorem 4.2. Let P be a poset. Then the following conditions are equivalent:

1. P is a meet θ-continuous poset.

2. For all U ∈ θ(P ) and all x ∈ P , one has ↑(U
⋂

↓x) ∈ θ(P ).

3. θ(P )c is a complete Heyting algebra.

Proof. (1) ⇒ (2): Let D be a directed set such that Θ(D)
⋂

↑(U
⋂

↓x) �= �, then ∃y ∈
Θ(D)

⋂
↑(U

⋂
↓x). By meet θ-continuity, we have y ∈ clθ(↓y

⋂
↓D). Thus, ↓D

⋂
↓y

⋂
U �=

�. Since ↓D
⋂

↓y
⋂
U ⊆ ↓D

⋂
↓x

⋂
U, we have D

⋂
↑(U

⋂
↓x) �= � which shows that

↑(U
⋂

↓x) is θ-open.

(2) ⇒ (3): Suppose A, Bi ∈ θ(P )c (i ∈ I). Then we immediately have
∨
i∈I

(A∧Bi) ⊆ A∧
∨
i∈I
Bi.

In order to show A ∧
∨
i∈I
Bi ⊆

∨
i∈I

(A ∧ Bi), let x ∈ A ∧
∨
i∈I
Bi and U ∈ θ(P ) with x ∈ U, we

conclude x ∈ ↑(U
⋂
A) ∈ θ(P ) since A is obvious a downset and ↑(U

⋂
A) =

⋃
a∈A

↑(U
⋂

↓a).

Then, ↑(U
⋂
A)

⋂
(
⋃
i∈I
Bi) �= � because x ∈

∨
i∈I
Bi = clθ(

⋃
i∈I
Bi). Thus, U

⋂
(A

⋂ ⋃
i∈I
Bi) =

U
⋂

(
⋃
i∈I

A
⋂

Bi) �= �. Hence, x ∈
∨
i∈I

(A ∧ Bi) and therefore
∨
i∈I

(A ∧ Bi) = A ∧
∨
i∈I
Bi.

(3) ⇒ (1): For any x ∈ Θ(D), where D is a directed subset. If D↑ = �, then Θ(D) = ↓D
and x ∈ clθ(↓x) = clθ(↓x

⋂
↓D). Else then Θ(D) = Dδ ∈ θ(P )c by Proposition 3.2(2). Thus,

x ∈ ↓x
⋂

Θ(D) = ↓x
⋂ ∨

d∈D
↓d =

∨
d∈D

(↓x
⋂

↓d) = clθ(↓x
⋂

↓D) by (3). This shows that P is

meet θ-continuous.

Theorem 4.3. P is a θ-continuous poset iff P is a meet θ-continuous and quasi θ-continuous

poset.

Proof. ⇒ : By Proposition 4.1, 4.2.

⇐ : By Theorem 4.1 and 4.2, we have θ(P ) is a hypercontinuous lattice and θ(P )c is a

complete Heyting algebra. Thus, θ(P ) is completely distributive (see Theorem 5.6 in Mao

and Xu (2006)). We obtain that P is θ-continuous by Theorem 3.1.
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5. Dθ-completion and invariant properties

Definition 5.1. Let P and Q be posets, a map f : P → Q is called θ-continuous (resp.,

s2-continuous), if f is continuous with respect to the θ-topologies (resp., the s2-topologies).

Proposition 5.1. Let P and Q be posets, a map f : P → Q. Then,

1. f is θ-continuous iff f is monotone and for any directed subset D ⊆ P , Θ(f(Θ(D))) =

Θ(f(D));

2. f is s2-continuous iff f is monotone and for any directed subset D ⊆ P , f(Dδ)δ = f(D)δ;

3. f is s2-continuous ⇒ f is θ-continuous ⇒ f is Scott continuous;

4. if P and Q are dcpos, then f is s2-continuous ⇔ f is θ-continuous ⇔ f is Scott

continuous.

Proof.

1. ⇒ : For all x, y ∈ P with x � y, we have x ∈ ↓y ⊆ f−1(↓f(y)) since f−1(↓f(y)) is

θ-closed by θ-continuity of f. Thus, f(x) ∈ ↓f(y). By arbitrariness of x and y, we

obtain that f is monotone. For any directed set D, if D↑ = �, then Θ(D) = ↓D, hence

Θ(f(Θ(D))) = Θ(f(↓D)) = Θ(f(D)); else D↑ �= �, then f(D)↑ �= � by monotonicity

of f that we have proved. Thus, Θ(D) and Θ(f(D)) are θ-closed. To show that

Θ(f(Θ(D))) = Θ(f(D)), we only need to prove f(Θ(D)) ⊆ Θ(f(D)). Again by θ-

continuity of f, we have D ⊆ f−1(Θ(f(D))) ∈ θ(P )c. Thus, Θ(D) ⊆ f−1(Θ(f(D))).

Hence, f(Θ(D)) ⊆ f(f−1(Θ(f(D)))) ⊆ Θ(f(D)), as required.

⇐ : For any U ∈ θ(Q), f−1(U) ⊆ P is an upper set since f is monotone. Suppose

D is a directed subset of P such that Θ(D)
⋂
f−1(U) �= �. Then, f(Θ(D))

⋂
U �= �.

Hence, Θ(f(Θ(D)))
⋂
U �= �. By the condition, we have Θ(f(D))

⋂
U �= �. Therefore,

f(D)
⋂
U �= � and then D

⋂
f−1(U) �= �, which shows f−1(U) is θ-open.

2. The proof is similar to (1). Note that for any directed set D, we always have that Dδ

and f(D)δ are s2-closed.

3. Since f(Dδ)δ = f(D)δ implies Θ(f(Θ(D))) = Θ(f(D)) for any directed subsets D, we

conclude f is s2-continuous ⇒ f is θ-continuous. And if
∨
D exists, then Θ(D) = ↓

∨
D.

Thus, if f is θ-continuous, then ↓f(
∨
D) = Θ(f(Θ(D))) = Θ(f(D)). Hence, f(

∨
D) =∨

f(D) and f is Scott continuous.

4. Since s2(L) = θ(L) = σ(L) for all dcpos L.

Definition 5.2. A Dθ-completion (L, ηθ) of a poset P is a dcpo L together with a θ-

continuous map ηθ , such that for any dcpo B and θ-continuous map f : P → B, there

exists a unique θ-continuous map f̂ satisfying f = f̂ ◦ ηθ .

Theorem 5.1. Let P be a poset, cld(PI(P )) be the D-closure of PI(P ) = {↓x : x ∈ P } in

θ(P )c, and define ηθ : P → cld(PI(P )) by ηθ(x) = ↓x for all x ∈ P . Then, (cld(PI(P )), ηθ)

is a Dθ-completion of P .

Proof. To show ηθ is θ-continuous, we only need to prove that for every directed

set D, ηθ(Θ(D)) ⊆ Θ(ηθ(D)) by Proposition 5.1(1). If D↑ = �, then Θ(D) = ↓D, thus

ηθ(Θ(D)) = {↓x : x ∈ ↓D} ⊆ Θ({↓d : d ∈ D}) = Θ(ηθ(D)). Else D↑ �= �, then Θ(D) = Dδ
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is θ-closed and is the supremum of {↓x : x ∈ Θ(D)}. Hence, ηθ(Θ(D)) = {↓x : x ∈ Θ(D)} ⊆
{A ∈ θ(P )c : A ⊆ Θ(D)} = Θ({↓d : d ∈ D}) = Θ(ηθ(D)). Therefore, ηθ is θ-continuous.

Now consider a θ-continuous map f : P → B, where B is a dcpo. Define g : θ(P )c →
θ(B)c by g(A) = clθ(f(A)). For proving that g is θ-continuous, it suffices to show g(

∨
i∈I
Ai) ⊆

∨
i∈I
g(Ai), Ai ∈ θc(P ) for all i ∈ I . Since f is θ-continuous, we have f−1(

∨
i∈I
g(Ai)) =

f−1(clθ(f(
⋃
i∈I
Ai))) ⊇

∨
i∈I
Ai. Thus, g(

∨
i∈I
Ai) = clθ(f(

∨
i∈I
Ai)) ⊆ clθ(f(f−1(

∨
i∈I
g(Ai))))⊆clθ(

∨
i∈I
g(Ai))

=
∨
i∈I
g(Ai). Hence, g preserves arbitrary joins between dcpos, and therefore g is Scott

continuous and θ-continuous. By Lemma 2.1, g(cld(PI(P ))) ⊆ cld(g(PI(P ))) = cld({↓f(x) :

x ∈ P }) ⊆ PI(B) since B is a dcpo. Let f̂ =
∨
g|cld(PI(P )). Then, f̂ : cld(PI(P )) → B is a

θ-continuous map and f = f̂ ◦ ηθ . By Lemma 2.2, we know for any h : cld(PI(P )) → B

such that f = h ◦ ηθ , then h = f̂. Therefore, (cld(PI(P )), ηθ) is a Dθ-completion of P .

We shall use Dθ(P ) to denote the dcpo of a Dθ-completion of a poset P . Clearly, Dθ(P )

is unique up to isomorphism and idempotent, i.e., if P is a dcpo, then P ∼= Dθ(P ). Let Dθ

: POSθ → DCPO be a functor defined by the following:

where Dθ(f) = ̂ηθ(Q) ◦ f is the unique θ-continuous mapping such that the diagram

commutes. Then, Dθ is a reflector and thus the full subcategory DCPO of POS θ is

reflective in POS θ .

Lemma 5.1. If A is a subset of a poset P with P = cld(A). Then for any B ∈ θ(P )c,

B = clθ(B
⋂
A).

Proof. Since B ∈ θ(P )c, we have B ∈ σ(P )c. And by Lemma 7 in Zhao and Fan (2010),

B = clσ(B
⋂
A). But clσ(B

⋂
A) ⊆ clθ(B

⋂
A) ⊆ B, hence B = clθ(B

⋂
A).

Theorem 5.2. If Dθ(P ) is the dcpo of a Dθ-completion of a poset P , then θ(P ) ∼= θ(Dθ(P )).

Proof. By Theorem 5.1, it is equivalent to show θ(P )c ∼= θ(cld(PI(P )))c. Let Φ :

θ(P )c → θ(cld(PI(P )))c be defined by Φ(X) = clθ({↓x : x ∈ X}) for all X ∈ θ(P )c. Then,

Φ(X) ⊆ cld(PI(P ))
⋂

{A ∈ θ(P )c : A ⊆ X} since cld(PI(P )) is a subdcpo of θ(P )c and

{A ∈ θ(P )c : A ⊆ X} ∈ θ(θ(P )c)c. For any X,Y ∈ θ(P )c such that X �= Y , without loss

of generality, let y ∈ Y \ X. Then, ↓y /∈ {A ∈ θ(P )c : A ⊆ X} and thus ↓y /∈ Φ(X). But

↓y ∈ Φ(Y ). Therefore, Φ(X) �= Φ(Y ) and hence Φ is injective.

Next, assume that B ∈ θ(cld(PI(P )))c. Let C =
⋃
B∈B

B, we claim that C ∈ θ(P )c.

Suppose D ⊆ C ⊆ P is directed, if D↑ = �, then Θ(D) = ↓D ⊆ C since it is

obvious that C = ↓C; else D↑ �= �, then Θ(D) ∈ θ(P )c, we obtain Θ(D) ∈ B since
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; Θ(D) =
∨

{↓d : d ∈ D} ∈ cld(PI(P )) and {↓d : d ∈ D} ⊆ B. This proves the claim.

Then, Φ(C) = clθ({↓c : c ∈ C}) = clθ(B
⋂
PI(P )) = B by Lemma 5.1. Hence, Φ is

surjective. And clearly, Φ preserves inclusion order. Therefore, Φ is an isomorphism and

thus θ(P )c ∼= θ(cld(PI(P )))c.

The following Corollary is an immediate consequence of Theorems 5.2, 3.1, 4.1 and 4.2.

Corollary 5.1. For every poset P and consider the following statements:

1. P is a θ-continuous poset.

2. θ(Dθ(P )) is a completely distributive lattice.

3. Dθ(P ) is a domain.

4. P is a meet θ-continuous poset.

5. θ(Dθ(P ))c is a complete Heyting algebra.

6. Dθ(P ) is a meet continuous dcpo.

7. P is a quasi θ-continuous poset.

8. θ(Dθ(P )) is a hypercontinuous lattice.

9. Dθ(P ) is a quasicontinuous domain.

Then, (1) ⇔ (2) ⇔ (3), (4) ⇔ (5) ⇔ (6), (7) ⇔ (8) ⇔ (9) and (1) ⇔ (4) + (7).

6. Comparisons of several dcpo-completions

Definition 6.1. A Ds2 -completion (L, ηs2 ) of a poset P is a dcpo L together with a s2-

continuous map ηs2 , such that for any dcpo B and s2-continuous map f : P → B, there

exists a unique s2-continuous map f̂ satisfying f = f̂ ◦ ηs2 . The dcpo of a Ds2 -completion

of a poset P is denoted by Ds2 (P ).

There are many parallel results to the Dθ-completion of posets. We only exhibit the

following two key theorems here.

Theorem 6.1. Let P be a poset, cld(PI(P )) be the D-closure of PI(P ) = {↓x : x ∈ P }
in s2(P )c, define ηs2 : P → cld(PI(P )) by ηs2 (x) = ↓x. Then, (cld(PI(P )), ηs2 ) is a Ds2 -

completion of P .

Proof. The proof is analogous to Theorem 5.1 and thus is omitted here.

Theorem 6.2. If Ds2 (P ) is the dcpo of a Ds2 -completion of a poset P , then s2(P ) ∼=
s2(Ds2 (P )).

Proof. This can be verified by the way of Theorem 5.2. In fact, analogous to Lemma

5.1, we have if A is a subset of a poset P with P = cld(A), then for any B ∈ s2(P )c,

B = cls2 (B
⋂
A).

Proposition 6.1. For every poset P , we have the following:

1. If P is θ-continuous, then Dθ(P ) ∼= D(P ).

2. If P is s2-continuous, then Ds2 (P ) ∼= Dθ(P ) ∼= D(P ).
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Proof.

1.If P is θ-continuous, then θ(P ) = σ(P ) by Theorem 3.1. Thus, cld(PI(P )) in θ(P ) and

in σ(P ) are the same. Since cld(PI(P )) in σ(P ) is a D-completion of P (see Theorem

1 in Zhao and Fan (2010)) and Theorem 5.1, we obtain Dθ(P ) ∼= D(P ).

2.By (1), Theorems 3.2 6.1.

Now we have three types of dcpo-completion of posets including the D-completion

given in Zhao and Fan (2010). The following examples show differences and connections

among the D-completion, Dθ-completion and Ds2 -completion based on Example 3.1.

Example 6.1. Please refer to Figure 2 for better understanding. Let D(P ) denote the dcpo

of a D-completion of P .

1. The poset P1 is a continuous poset but not θ-continuous as we have showed in

Example 3.1(2). We have D(P1) = {↓x : x ∈ P1}
⋃

{[0, 1)} is a domain; however,

Dθ(P1) = {↓x : x ∈ P1}
⋃

{{p}
⋃

[0, 1)} which is not a continuous dcpo.

2. The poset P2 is a continuous poset and also θ-continuous which is not s2-continuous in

Example 3.1(3). It can be verified that D(P2) = Dθ(P2) = {↓x : x ∈ P2}
⋃

{[0, 1) × {1}}
and thus both the D-completion and Dθ-completion of P2 are continuous dcpos.

However, Ds2 (P2) = {↓x : x ∈ P2}
⋃

{P2} is not a domain as expected since P2 is not

an s2-continuous poset.

In theoretical computer science, domains are usually wanted to be objects suitable for

computation. The notion of a basis is presented to find a proper notion of a recursive or

recursively enumerable domain. Recall that a subset B of a domain L is called a basis

iff (i) ↓↓x
⋂

B is directed for all x ∈ L, and (ii) x =
∨

(↓↓x
⋂

B) (Gierz et al. 2003). In Xu

(2006), Xu introduced the following concept of an embedded basis. Let B and L be posets.

If there is an order-embedding map j : B → L preserving existing directed sups such

that j(B) is a basis for L, then (B, j) is called an embedded basis of L. For convenience,

if (B, j) is an embedded basis of L, then we also say that B is an embedded basis of L

and take B as a subset of L with j as the inclusion map. Obviously, B is an embedded

basis of L iff B is a basis of L and for every directed subset D of B with existing
∨

B D,

one always has
∨

B D =
∨

L D. Xu proved that if a poset B is an embedded basis for a

dcpo L, then L is isomorphic to the round ideal completion RI(B,�) (see Theorem 3.8 in

Xu (2006)).

Definition 6.2. Let B be a poset and L a domain. If there is an order-embedding, θ-

continuous (resp., s2-continuous) map j : B → L such that j(B) is a basis for L, then

(B, j) is called a(n) θ-embedded (resp., s2-embedded) basis of L.

Proposition 6.2. Let B be a poset and L a domain, a map j : B → L.

1. (B, j) is an s2-embedded basis ⇒ (B, j) is a θ-embedded basis ⇒ (B, j) is an embedded

basis.

2. If (B, j) is a θ-embedded basis of L, then for any x, y ∈ B, we have x �θ y in B iff

x �L y in L, and thus B is a θ-continuous poset.
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Fig. 2. Example 6.1.

3. If (B, j) is an s2-embedded basis of L, then for any x, y ∈ B, we have x �s2 y in B iff

x �L y in L, and thus B is an s2-continuous poset.

Proof.

1.By Proposition 5.1(3).

2.For any directed subset D ⊆ B, we have ΘL(ΘB(D)) = ΘL(D) since we take j as an

inclusion map. If x �L y with y ∈ ΘB(D) (⊆ ΘL(ΘB(D))), then y ∈ ΘL(D). Thus,

x � d for some d ∈ D and hence x �θ y in B. If x �θ y in B, then y =
∨

L(↓↓Ly
⋂
B) =∨

B(↓↓L
y

⋂
B) since B is a basis of L and y ∈ B. Thus, y ∈ ΘB(↓↓Ly

⋂
B) and hence

x � d �L y for some d ∈ ↓↓Ly
⋂
B.

3.Similar to the proof of (2).

Theorem 6.3. Let L be a domain and B a poset, then

1. D(B) ∼= L iff B is an embedded basis of L;

2. Dθ(B) ∼= L iff B is a θ-embedded basis of L;

3. Ds2 (B) ∼= L iff B is an s2-embedded basis of L.

Proof. (1) ⇐ : It is evident that ↓x
⋂

B is Scott closed in B for all x ∈ L by the

definition of an embedded basis. If x � y in L, then ↓x
⋂

B ⊆ ↓y
⋂
B, and vice versa,
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since x =
∨

(↓x
⋂
B) �

∨
(↓y

⋂
B) = y. Thus, L ∼= {↓x

⋂
B : x ∈ L}. Let cld(PI(B)) be the

D-closure of PI(B) in σ(B). We shall show that cld(PI(B)) = {↓x
⋂
B : x ∈ L}. Let clσ(B)

be the Scott closure operator of poset B. We claim that clσ(B)(↓↓x
⋂

B) = ↓x
⋂

B. Clearly,

clσ(B)(↓↓x
⋂

B) ⊆ clσ(B)(↓x
⋂

B) = ↓x
⋂

B. Assume that ∃y ∈ (↓x
⋂

B)\clσ(B)(↓↓x
⋂

B). Then,

↓↓y
⋂
B ⊆ ↓↓x

⋂
B. Thus, y ∈ clσ(B)(↓↓x

⋂
B) since ↓↓y

⋂
B is directed with supremum y

in B, a contradiction which proves the claim. Applying the claim, we have
∨

{↓b
⋂

B :

b ∈ ↓↓x
⋂

B} = ↓x
⋂
B in σ(B)c. Therefore, PI(B) ⊆ {↓x

⋂
B : x ∈ L} ⊆ cld(PI(B)).

Now we only need to prove that {↓x
⋂

B : x ∈ L} is a subdcpo of σ(B)c. For any

directed set D ⊆ L, we immediately have
∨

{↓d
⋂

B : d ∈ D} ⊆ ↓(
∨
D)

⋂
B in σ(B)c.

Let c ∈ ↓(
∨
D)

⋂
B. Then, ↓↓c

⋂
B ⊆

⋃
{↓d

⋂
B : d ∈ ↓D} ⊆

∨
{↓d

⋂
B : d ∈ D}. Thus,

c ∈ clσ(B)(↓↓c
⋂

B) ⊆
∨

{↓d
⋂

B : d ∈ D}. Therefore,
∨

{↓d
⋂

B : d ∈ D} = ↓(
∨
D)

⋂
B, and

cld(PI(B)) = {↓x
⋂

B : x ∈ L}. We obtain D(B) ∼= L.

⇒ : Clearly, B is an embedded basis of L iff PI(B) is an embedded basis of cld(PI(B)).

By Theorem 4 in Zhao and Fan (2010), we have that B is a continuous poset. Then,

D(B) ∼= cld(PI(B)) = Spec(σ(B)c) = {clσ(B)(D) : D is a directed subset of B} by Remark

3 and Lemma 12 in Zhao and Fan (2010). All we need to prove is that PI(B) is an

embedded basis of Ψ := {clσ(B)(D) : D is a directed subset of B}. Here we consider posets

B and Ψ. Let x, y ∈ B with x � y. For any directed subset {clσ(B)(Di) : i ∈ I} of Ψ

with ↓y �
∨
i∈I
clσ(B)(Di) implies ↓y ⊆ clσ(B)(

⋃
i∈I
Di) = B\

⋃
{↑↑d : d ∈ B\↓

⋃
i∈I
Di} since B is a

continuous poset. Thus, x ∈ ↓
⋃
i∈I
Di and hence x � y in B implies ↓x � ↓y in Ψ. For any

directed subset D of B, we claim that ↓↓clσ(B)(D)
⋂
PI(B) = {↓b : b ∈

⋃
{↓↓d : d ∈ D}},

where ↓↓clσ(B)(D) = {A ∈ Ψ : A � clσ(B)(D) in Ψ}. If b � d ∈ D, then ↓b � ↓d � clσ(B)(D).

Thus, {↓b : b ∈
⋃

{↓↓d : d ∈ D}} ⊆ ↓↓clσ(B)(D)
⋂
PI(B). But {↓b : b ∈

⋃
{↓↓d : d ∈ D}} is

directed and
∨

{↓b : b ∈
⋃

{↓↓d : d ∈ D}} = clσ(B)(
⋃

{↓b : b ∈
⋃

{↓↓d : d ∈ D}}) = clσ(B)(D)

since B is continuous. Thus, ↓↓clσ(B)(D)
⋂
PI(B) = {↓b : b ∈

⋃
{↓↓d : d ∈ D}} and hence

PI(B) is a basis of Ψ. For any directed D ⊆ B with
∨

BD, obviously we have
∨

PI(B){↓x :

x ∈ D} = ↓
∨

BD =
∨

Ψ{↓x : x ∈ D}. Therefore, PI(B) is an embedded basis of Ψ, the

proof is complete.

(2) ⇐ : We have B is a θ-continuous poset by Proposition 6.2(2). Then, it is

straightforward from (1) and Propositions 6.1(1).

⇒ : By Corollary 5.1, we have B is θ-continuous. Thus, B is a θ-embedded basis since

(1) and Proposition 6.1(1).

(3) This can be verified directly by (1), Theorem 6.2, Proposition 6.1(2) and Proposition

6.2(3).

Corollary 6.1. If a poset P is continuous, resp. θ-continuous, resp. s2-continuous, then

D(P ) ∼= RI(P ,�), resp. Dθ(P ) ∼= RI(P ,�θ), resp. Ds2 (P ) ∼= RI(P ,�s2 ).

Proof. A direct consequence of Theorem 3.8 in Xu (2006) and Theorem 6.3.

From Corollary 6.1, we know that the D-completion of a poset P is exactly the

round ideal completion RI(P ,�) in the continuous case. However, the Dθ-completion

and Ds2 -completion provide another two different ways of dcpo-completion of continuous

posets.
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