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The nonlinear stability of two-fluid Couette flows is studied using a novel evolution
equation whose dynamics is validated by direct numerical simulation (DNS). The
evolution equation incorporates inertial effects at arbitrary Reynolds numbers through
a non-local term arising from the coupling between the two fluid regions, and is
valid when one of the layers is thin. The equation predicts asymmetric solutions
and exhibits bistability, features that are essential observations in the experiments
of Barthelet et al. (J. Fluid Mech., vol. 303, 1995, pp. 23–53). Related low-inertia
models have been used in qualitative predictions rather than the direct comparisons
carried out here, and ad hoc modifications appear to be necessary in order to predict
asymmetry and bistability. Comparisons between model solutions and DNS show
excellent agreement at Reynolds numbers of O(103) found in the experiments. Direct
comparisons are also made with the available experimental results of Barthelet et al.
(J. Fluid Mech., vol. 303, 1995, pp. 23–53) when the thin layer occupies 1/5 of the
channel height. Pointwise comparisons of the travelling wave shapes are carried out,
and once again the agreement is very good.

Key words: nonlinear instability, thin films

1. Introduction

The stability of plane Couette–Poiseuille two-fluid flows was first investigated by
Yih (1967), who showed that the flow is unstable to long waves at non-zero Reynolds
numbers. This instability is due to a viscosity jump across the interface, and depends
on the viscosity and thickness ratios of the two fluid layers (the density and surface
tension ratios were held fixed in Yih’s study). Further work by Hooper & Boyd (1983),
Hooper (1985) and Renardy (1985, 1987) revealed that the flow is always linearly
unstable if the thin layer is also more viscous; this effect is known as the ‘thin-layer
effect’ and is often found in multilayer flows (Craster & Matar 2009).
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The aim of the present study is the analysis of the nonlinear stages of these
instabilities and a direct comparison of a new theory with both direct numerical
simulations (DNS) and the experiments of Barthelet, Charru & Fabre (1995).
Previous attempts have been made using Kuramoto–Sivashinsky (KS) equations –
see for example Hooper & Grimshaw (1985, 1988) and subsequently Charru &
Fabre (1994) and Barthelet & Charru (1995), who take smaller surface tension and
retain higher-order terms corresponding to linear and nonlinear dispersion as well
as nonlinear dissipation. Barthelet & Charru (1995) present a detailed and critical
evaluation of KS-type equations in the light of the experiments by the same authors.
The experiments of Barthelet et al. (1995) are set up in an annular Couette device
which facilitates the generation of periodic waves (described in more detail in § 2),
and predict that as the upper plate speed increases, and for thickness ratios less than
approximately 0.3 (the thin layer is always more viscous), there is a supercritical
bifurcation to non-symmetric nonlinear travelling waves with wavelength equal to the
Couette device length. In addition, bistability is found at larger plate speeds, with
unimodal and bimodal (i.e. wavelengths equal to half the device length) solutions
coexisting and emerging as long-time features in the experiments depending on the
initial conditions. For order-one thickness ratios, subcritical bifurcations are found
with travelling waves of shorter wavelength scaling with the device thickness; this
branch of solutions also supports hysteresis, with the travelling wave persisting as the
plate velocity is gradually decreased (see, for example, figure 10 in Barthelet et al.
(1995)). The main focus of the experiments was on the supercritical waves, and
detailed data are provided for a thickness ratio of 0.25. We will concentrate on this
relatively small thickness ratio regime and develop a novel set of equations capable of
describing these nonlinear phenomena. It is worth noting that the detailed evaluation
of KS-type models by Charru & Fabre (1994) identified some shortcomings of the
models vis a vis the experiments: the KS equation is found to be inappropriate (no
linear dispersion is present and reflectionally symmetric profiles emerge), while a
judicious selection of higher-order terms can reproduce the experimental features, at
least qualitatively. The basis of the weakly nonlinear theory of Hooper & Grimshaw
(1985) and Charru & Fabre (1994) is that given a wave amplitude α � 1, the
wavelength is of order 1/α� 1. This introduces an arbitrarily large wavelength and
as a result inertial effects cannot be accounted for. Our approach is very different –
the wavelength is set by the geometry of the problem (e.g. the channel thickness),
and analytical progress is possible when one of the layers is thin. For the thin layer
the wave is long but for the thicker one it is not – in fact it scales with the thickness
of the respective layer. Asymptotic solutions are sought in each layer and matched at
the interface to provide a single evolution equation for the scaled amplitude which
accounts for the flow in the thick layer at arbitrary Reynolds numbers and in particular
for those of the experiments of Barthelet et al. (1995). In addition to non-symmetric
profiles, our model also predicts the experimentally observed bistability phenomena.
Similar analyses were carried out for pressure-driven two-phase core–annular flows by
Papageorgiou, Maldarelli & Rumschitzki (1990) and by Kalogirou & Papageorgiou
(2016) for a small variation of the present problem but in the presence of insoluble
surfactants. Related non-local equations are found in other physical contexts, for
example turbulent shear flows in riverbed dynamics (Fowler 2011), the dynamics of
electrified falling films (Tseluiko & Papageorgiou 2010) or the dynamics of falling
films below turbulent gas flows (Tseluiko & Kalliadasis 2011).

The structure of the rest of this paper is as follows. Section 2 provides a brief
overview of the experiments of Barthelet et al. (1995) and identifies the ones that
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Two-layer Couette flows

Physical parameter Value Physical parameter Value

Channel mean diameter D= 0.4 m Lower fluid viscosity µ1 = 0.0108 Pa s
Channel width W = 0.04 m Upper fluid viscosity µ2 = 0.0297 Pa s
Channel height (depth) d= 0.02 m Viscosity ratio m=µ2/µ1 = 2.76
Depth ratio h= h2/h1 = 0.25 Lower fluid density ρ1 = 1142 kg m−3

Surface tension γ = 0.03 Pa m Upper fluid density ρ2 = 846 kg m−3

Density ratio r= ρ2/ρ1 = 0.741

TABLE 1. Physical parameters from the experiments of Barthelet et al. (1995). These
are used in the computations of the model equation and the DNS.

are used for direct comparisons. Section 3 presents the asymptotic model and a brief
derivation of the weakly nonlinear interfacial evolution equation. In § 4, numerical
results obtained by the asymptotic model are compared with DNS and the experiments.
Bistability results are also presented. A discussion can be found in § 5.

2. The experiments of Barthelet et al. (1995)

Barthelet et al. (1995) observed long-wave instability in a channel of rectangular
cross-section bent into an annular ring (see their figure 2). The flow was driven
by the rotation of the upper plate, and the position of the interface was measured
with a probe situated in the middle of the cross-section. The lower experimental
fluid selected here was a mixture of distilled water and glycerine in proportions
42 %–58 % – other mixtures were also examined in the experiments. The upper
fluid was a mineral oil. The channel dimensions and the physical properties of the
fluids are given in table 1. The channel width to diameter ratio was 1/10 and so
the two-dimensional flow configuration of figure 1 is appropriate. The experiments
were performed for various values of the depth ratio h = h2/h1, but the case that is
most relevant in comparisons with our asymptotic theory is h = 0.25, which is the
smallest h they investigated.

The experiments show that for h= 0.25 there is a critical upper plate speed above
which a supercritical bifurcation occurs to give a travelling wave whose wavelength is
equal to the mean channel perimeter Lw = πD = 1.257 m, implying a dimensionless
period 2L = Lw/d ≈ 63. In this paper, we focus on data from three experiments,
as detailed in table 2, for three different upper plate speeds U (the definitions of the
Reynolds numbers Re1, Re2, the Weber number We and the capillary number Ca are
given in § 3). As mentioned in the introduction, subcritical shorter waves that scale
with d have also been observed, but at values of the depth ratio h that are of order
one. We do not pursue these here because they are outside the range of validity of
the model equations derived below; DNS may be capable of describing them, but
this is left for future work.

3. Nonlinear evolution equations in the thin-layer limit

Consider the flow of two immiscible, incompressible and viscous fluids of equal
densities ρ1 = ρ2 = ρ and different viscosities µ1 and µ2 in a channel of height d,
driven by the motion of the upper plate with velocity U (figure 1). Using Cartesian
coordinates, the channel walls are at y = 0 and y = d, and the interface separating
the fluids is at y= S(x, t), where t is time. Surface tension is present at the interface
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U

FIGURE 1. Geometry of the problem: two superposed fluid layers in a channel of depth d,
driven by the upper plate motion with speed U.

Experiment U (m s−1) Re1 Re2 We Ca

A 0.184 389 141 25.66 0.182
B 0.218 461 167 36.07 0.216
C 0.244 516 187 45.25 0.242

TABLE 2. Dimensionless parameters for three different upper plate speeds U used in the
experiments of Barthelet et al. (1995) – other parameters are as in table 1.

and has constant value γ . In the undisturbed state, the interface is at y= `d, where
0< ` < 1 is a constant. The domains 0< y< S(x, t) and S(x, t) < y< d are denoted
as regions 1 and 2 respectively. Lengths are non-dimensionalised with d, velocities
with U, time with d/U and pressures with ρU2. The Navier–Stokes and continuity
equations in each phase i= 1, 2 become (gravity is neglected here)

∂ui

∂t
+ ui · ∇ui =−∇pi + 1

Rei
∇2ui, ∇ · ui = 0, (3.1)

where ui = (ui, vi)
T is the velocity field, pi is the pressure and Rei is the Reynolds

number in each fluid,

Re1 = ρUd
µ1

, Re2 = ρUd
µ2
= Re1

m
, (3.2a,b)

with m=µ2/µ1 the viscosity ratio. The boundary conditions are no-slip at the walls,

u1 = v1 = 0 at y= 0, and u2 = 1, v2 = 0 at y= 1, (3.3a−c)

along with continuity of velocities at the interface,

u1 = u2, v1 = v2 at y= S(x, t). (3.4a,b)

In addition, at the interface we need to satisfy a kinematic condition,

vi = St + uiSx, i= 1, 2, (3.5)
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and continuity of normal and tangential stresses,[
−pi(1+ S2

x)+
2

Rei
(S2

xuix + viy − Sx(uiy + vix))

]1

2

= 1
We

Sxx√
1+ S2

x

, (3.6a)[
4
µi

µ1
Sxuix + µi

µ1
(S2

x − 1)(uiy + vix)

]1

2

= 0, (3.6b)

where the jump notation [ fi]12 = f1 − f2 is used. Here, We = ρU2d/γ is the Weber
number, also equal to We=CaRe2, with Ca=µ2U/γ the capillary number.

When the interface is flat, y= `, the system (3.1)–(3.6) admits an exact base state
solution u1 = (U1(y), 0), u2 = (U2(y), 0), where

U1(y)= my
`(m− 1)+ 1

, U2(y)= 1− 1− y
`(m− 1)+ 1

. (3.7a,b)

One of the main objectives of the present work is to study the nonlinear stability of
this state, and in what follows analytical progress is made for thin upper layers – the
theory is also evaluated against DNS and experiments.

Taking the mean thickness of region 2 to be ε � 1 (analogously ` = 1 − ε), we
introduce weakly nonlinear perturbations S(x, t)= (1− ε)− ε2H̃(x, t), with H̃ =O(1).
The canonical scaling Ca= εCa0, with Ca0 =O(1), is introduced to ensure coupling
between the two layers. The analysis follows the work of Kalogirou & Papageorgiou
(2016) (see also Kalogirou 2014), the main difference being that in the present case
the thin layer is in the vicinity of the upper moving plate to enable direct comparisons
with experiments. The expansions in region 1 are u1 = U1(y) + ε2U1(x, y, t) + · · ·,
v1 = ε2V1(x, y, t)+ · · ·, p1 = ε2P1(x, y, t)+ · · ·; in region 2 we introduce a stretched
variable ζ = (1 − y)/ε (the undisturbed interface is now at ζ = 1) and write u2 =
U2(ζ ; ε) + ε3U2(x, ζ , t) + · · ·, v2 = ε4V2(x, ζ , t) + · · ·, p2 = εP2(x, ζ , t) + · · ·. The
solutions then retain a leading-order balance between the pressure gradient and viscous
terms in the momentum equations.

At leading order we have advection with the undisturbed interfacial velocity Us =
U2|y=1−ε =U1|ζ=1, as expected. An evolution equation for H̃ is found at the next order
after transforming to a Galilean frame of reference and introducing a slow time scale

X = x−Us t, t̃= ε2 t, (3.8a,b)

H̃t̃ − 1
m

H̃H̃X + 1
3Ca0

H̃XXXX − 1
2m

T
∣∣∣∣

y=1

= 0. (3.9)

In addition to unsteadiness and nonlinearity, equation (3.9) contains surface tension
and involves the non-local inertial term T (x, y)=U1xy+V1xx which is found by solving
in region 1, as explained next. The slow time dynamics and the O(ε2) perturbations
imply that the flow in region 1 is governed by the linearised steady Navier–Stokes
equations at Re1 = O(1). Taking Fourier transforms, eliminating the pressure P2 and

writing V̂1=−ik(1/m− 1) ̂̃HF(y) (hats denote Fourier transforms), yields the following
Orr–Sommerfeld-type problem:

(F′′′′ − 2k2F′′ + k4F)− ik Re1 y(F′′ − k2F)= 0, (3.10a)

F(0)= 0, F′(0)= 0, F(1)= 0, F′(1)= 1. (3.10b−e)
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The boundary conditions are those of no-slip at the lower wall y= 0 and continuity
of velocities at the interface y= 1. It follows that the non-local term in (3.9) is given
by

T |y=1 = i
π

(
1− 1

m

) ∫ +∞
−∞

N (k; Re1)Ĥ(k)eikx dk, N (k; Re1)=−k
2

F′′(1). (3.11)

The final rescalings H̃= (m/3Ca0)H, t̃= (3Ca0/m)T produce the canonical equation

HT −HHX +HXXXX − iΛ
2π

∫ +∞
−∞

N (k; Re1)Ĥ(k)eikX dk= 0. (3.12)

The parameter Λ=3Ca0(1/m)(1−1/m) represents the effects of viscosity stratification.
Linearising about H = 0 and looking for solutions proportional to eikx+σ t yields

σ =−k4 − ikΛ
4π

F′′(1). (3.13)

Instability is found if Re(σ )= (k/4π)Λ Im(F′′(1))− k4 > 0, where Re and Im denote
the real and imaginary parts of a given quantity. Numerical solution of the boundary
value problem (3.10) predicts that Im(F′′(1)) > 0 (we do not have a proof for this).
Therefore, the flow is unstable only if the film is more viscous than the lower fluid
(Λ> 0), completely in line with the results of Yih (1967).

Equation (3.12) is solved numerically on 2L-periodic domains. The non-local term
becomes a Fourier series, and the initial value problem to solve is

HT −HHX +HXXXX − iΛ
+∞∑

k=−∞
N
(

kπ
L
; Re1

)
Ĥ(k)eikπX/L = 0, (3.14)

H(X, 0)= A sin
(

πX
L

)
, (3.15)

where A> 0 is an amplitude set to 1 unless stated otherwise. Other initial conditions
can be used – for example H(X, 0) = A sin(2πX/L) when searching for bistability.
Equation (3.14) is discretised spectrally in space, and implicit–explicit BDF (backward
difference) schemes are used for the time-stepping. The numerical results that follow
were obtained via a second-order-accurate time-discretisation scheme; for numerical
analysis details including convergence theorems about BDF schemes (with as high as
sixth-order accuracy) see Akrivis, Papageorgiou & Smyrlis (2012).

We conclude this section by constructing the data that are used in experimental and
DNS comparisons discussed in detail in § 4. The experiments of Barthelet et al. (1995)
are in the inertial regime (Re1≈500), and identify, among other phenomena, interfacial
travelling waves of permanent form. The interfacial amplitude is recorded by a fixed
probe, and the spatial profiles follow from this signal if the wave speed is known –
this is also implemented in computations. The value of the spatial period 2L is set by
the experiment (from table 1 we have 2L= 20π≈ 63), and at such values (3.14) has
travelling wave solutions of the form H(X, T)≡ H(X − cT), where c is the constant
phase velocity. In model computations, we record the amplitude at X= 0, and so the
period of oscillation in time is given by 2L/c – this needs to be multiplied by c/Us
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Two-layer Couette flows

in order to compare with experiments and DNS which place a probe at x= 0 and not
x=Ust. In a direct numerical simulation for a given finite ε, we monitor

S(0, t)= 1− ε − f (t), (3.16)

where f (t) is periodic (for small ε, the period is approximately 2L/Us). We scale the
oscillatory part as in the experiments by defining S(t)= S(0, t)− (1− ε) and use the
numerical data to find A+ =max{S(t)} and A− =min{S(t)}. The scaled amplitude is

S(t)
Ssat

, where Ssat = 1
2
(A+ + A−). (3.17)

An analogous amplitude normalisation is used in computations of the model also,
before experimental or DNS comparisons are carried out.

4. Comparison between DNS, model computations and experiments

In this section, we compare computed solutions of (3.14) with those coming from
DNS, and use the model solutions to make quantitative comparisons with experimental
results (the experiments are on very long domains which are challenging to simulate
directly).

4.1. Direct numerical simulations and comparison with model solutions
We carry out DNS of the flow configuration given in figure 1 and the fluids described
in table 1 as reported in the experiments. The initial condition in each fluid layer is
a superposition of the basic states (3.7) and a perturbation (chosen to match initial
condition (3.15)) of the form

S(x, 0)= 1− ε − ε2 sin
(πx

L

)
, (4.1)

with domain lengths 2L= 4, 8, 12.
The problem was implemented using the volume-of-fluid (VOF) open-source

software Gerris (Popinet 2003). The quadtree-based structure of the code enabled
adaptive mesh refinement and efficient parallelisation; the numerical schemes
employed are second-order accurate in both space and time. Periodic boxes
representing the three geometries are constructed in Gerris, and each sub-unit
square is discretised using a uniform grid with 64 nodes in each dimension; two
additional refinement levels are prescribed around the fluid–fluid interface so that
the local grid spacing here becomes 1/4 of the bulk mesh. For the largest and
most expensive geometries, a total of at least 12 288 cells were used to represent
the interfacial vicinity, while the total number of degrees of freedom in the domain
was approximately 6 × 104. All simulations were run for sufficiently large times to
enable the interfacial profiles to reach saturation to travelling waves. In each case,
this required several days of runtime on local high-performance computing facilities,
with calculations executed in parallel on 4, 8 and 12 CPUs respectively.

Numerical computations and comparisons between DNS and the model are
presented in figure 2 for Re1 = 516, corresponding to experiment C in table 2 (the
other parameters Re2, We and Ca are as given in the table). The interfacial amplitude
is monitored at x = 0, the centre of the domain, and normalised as described in § 3
– see (3.16) and (3.17). Computations of the evolution equation (3.14)–(3.15) were
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FIGURE 2. (a,c) Comparison of wave periods (in seconds) computed with the model
(diamonds) and DNS (circles) as a function of ε varying from 0.01 to 0.2. The Reynolds
number is Re1 = 516, and two channels with different aspect ratios are used (4 : 1 (a),
8 : 1 (c)). The period obtained by tracking a particle on the undisturbed interface is
included for reference (filled squares). (b,d) Position of the interface at x = 0 obtained
numerically using the model (solid curves) and DNS (dashed lines). (b) Aspect ratio 4 : 1
and ε = 0.1; (d) aspect ratio 8 : 1 and ε = 0.2.

also carried out, with the value of Λ adjusted in order to obtain the best possible
agreement; it should be noted that the only adjustable parameter in Λ is Ca0, where
Ca= ε Ca0.

A systematic comparison between model and DNS is given in figure 2 for channel
aspect ratios of 4 : 1 and 8 : 1. Panels (a,c) show the computed periods of oscillation
in seconds versus the upper layer thickness ε – open circles are used for the DNS,
diamonds for the model and filled squares represent the time period of a particle
on the undisturbed interface with velocity given by (3.7). The wave speed is found
to be independent of the channel length, and we have confirmed that as ε becomes
smaller it tends to the undisturbed base velocity (this is asymptotically equal to the
upper plate speed U = 0.244 m s−1). We also find that the period of oscillation
increases proportionally to the channel length – for the 8 × 1 channel the period is
approximately double that of the 4× 1 channel (to within an error of O(ε2)). We note
that the periods predicted by the model slightly underestimate the values obtained by
DNS.

A direct comparison of the travelling wave shapes is given in figure 2(b,d) for the
4 : 1 and 8 : 1 aspect ratio geometries respectively. The DNS results are depicted with
a dashed red curve and the model ones with a solid curve – the agreement is seen to
be very good. The model computations were obtained by setting Λ = 0.4, implying
that Ca0≈ 0.577 (the value of m= 2.76 is fixed by the experiments). The simulations
take Ca= 0.242, and using ε= 0.1 predicts Ca0≈ 2.42, which is larger than the value
used in the model. This discrepancy is due to the asymptotic nature of the evolution
equations and we do not expect an exact correspondence at finite ε. In the longer
domain of figure 2(d), the dimensionless film thickness is set to ε= 0.2 and the model
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Two-layer Couette flows

uses Λ = 0.2 and Ca0 = 0.29. Once again, the agreement between DNS results (red
dashed curve) and model predictions (black solid curve) is very good. More notably,
the interfacial shapes in the model–DNS comparisons have the same characteristics,
with features due to the nonlinearity dominating as the domain size increases. Finally,
we note that for both channel aspect ratios, the cases presented correspond to the
largest values of ε, thus providing the most challenging conditions for the comparison.

4.2. Comparisons with the experiments of Barthelet et al. (1995)
Given the success of the model in comparisons with DNS, we turn next to
comparisons with the experiments of Barthelet et al. (1995). As noted earlier, these
require relatively long domains (approximately 63 dimensionless units), which are
challenging for DNS. In what follows, we compare with experiments A, B and C
in table 2, corresponding to Re1 = 389, 461 and 516 respectively. For the model
computations, we set 2L= 20π≈ 62.832, and calculate the required kernels (3.11) at
the different values of Re1. The parameter Λ is set to Λ= 0.0015 in order to retain
a sufficient number of unstable modes to enable dynamical comparisons. Signals are
constructed as described at the end of § 3 and the results are presented in figure 3,
which reproduces the experimental results in (a) and the computational ones in (b).
The wave amplitudes are normalised with the saturated amplitude of the wave for
the largest Reynolds number Re1 = 516, as done in the experiments. In (b), we also
superimpose with dotted curves numerical results obtained by solving the localised
equation

HT −HHX + αHXXXX + 2ΛHX + ΛRe1

20
HXX −Λ

(
2
15
+ 17 Re1

50 400

)
HXXX = 0, (4.2)

which arises by taking the long-wave limit in (3.14) and introducing a ‘correction’
parameter α = 1.125 so that the non-local and local models have the same band of
linearly unstable modes (with this choice, the maximum growth rate of the local
model is 0.01195, compared with 0.01170 for that of the non-local model). The
numerical computations indicate that the non-local model does better in comparisons
with the experiments. The reason for including results from (4.2) is to motivate a
possible rational way of constructing appropriate dispersive Kuramoto–Sivashinsky-like
equations whose dynamics resemble experimental observations – e.g. see Barthelet &
Charru (1995). The use of a local model is not commendable since it nevertheless
requires the analysis of the non-local equation (3.14). The latter is straightforward to
implement numerically and hence preferable. The evolution of the amplitudes of the
first three harmonics of the non-local and local models was also compared for the
parameters of figure 3. We find (results not shown) that for Re1= 389 the local model
underpredicts the amplitudes, whereas for the largest value Re1 = 516 it overpredicts
them.

The waves in figures 3(a) and 3(b) have similar shapes, consisting of steep
wavefronts and sharp troughs which are enhanced as Re1 increases. The period
of oscillation decreases as Re1 increases, and a comparison between theory and
experiment is provided in table 3. The difference ranges from approximately 10 % for
experiment A to 14 % for experiment C. The model underestimates the experimental
values, and this is consistent with the fact that the experiments study stably stratified
flows (the density ratio is approximately 0.74 – see table 1) rather than equal densities.
In fact, preliminary analysis indicates that stable density stratification modifies (3.14)
with a second-order diffusion term that would increase the period of oscillations, all
other parameters being equal.
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FIGURE 3. Position of the interface at a fixed point. (a) Experimental shapes obtained
by Barthelet et al. (taken from Barthelet et al. (1995), p. 36) and (b) interfacial shapes
obtained numerically by solving the model equation (3.14) and its localised version (4.2).
The three plots correspond to the values of upper plate speeds or Reynolds numbers given
in table 2.

Experiment A B C

Period (s) – experiment 9.4 8.1 7.5
Period (s) – model 8.5 7.25 6.45

TABLE 3. Comparison between periods of oscillation for experiments A, B, C given in
table 2 and the corresponding ones from the model computations. All values are given in
seconds.

4.3. Predicting bistability using the model
The experiments of Barthelet et al. (1995) find bistable travelling waves (of
wavelengths equal to the channel perimeter or half the perimeter respectively) for
sufficiently large values of the upper plate speed – see their figures 22–24. This
phenomenon is reproduced by the model equation, as we describe next. In particular,
we model the experiment having upper plate velocity U = 0.335 m s−1, implying
a Reynolds number of Re1 ≈ 709. We use Λ = 0.002 so that two unstable modes
exist, and take initial conditions of the form of either H(X, 0) = 0.005 sin(πX/L)
or H(X, 0) = 0.005 sin(2πX/L) respectively to excite these modes independently to
nonlinear bistable saturated states. The results are shown in figure 4, with the saturated
profiles on the left and the evolution of the corresponding first four harmonics on
the right. Saturation takes place fairly rapidly for the 2L-periodic waves, and the
saturated amplitudes of the harmonics decrease as k increases. For the L-periodic
wave (c,d), saturation takes longer (approximately 6Tsat s, with Tsat = 4.68 s being
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FIGURE 4. Evolution of the interfacial position at a fixed point (a,c), and amplitude
of harmonics (b,d) showing bistability. Parameter values: Re1 = 709, Λ = 0.002. Tsat =
4.68 s is the saturated wave period. The prescribed initial conditions are H(X, 0) =
0.005 sin(πX/L) (a,b) and H(X, 0)= 0.005 sin(2πX/L) (c,d).

the oscillation period after saturation). In addition, the bimodal nature is preserved
throughout the evolution, with only the even modes k = 2 and k = 4 being present.
It is interesting to note that the L-periodic solutions (c) are almost symmetric, in
contrast to the more pronounced asymmetry observed for 2L-periodic ones (a) and
the experiments of Barthelet et al. (1995) (see figure 22 of that paper). A more
detailed study of the dynamical system which fully explores the solution phase space
and tracks bifurcations is warranted and is left for future work.

5. Discussion

A novel evolution equation has been proposed and studied to describe the nonlinear
stability of two-layer Couette flows. The equation is first validated using DNS of
the Navier–Stokes equations, and then used to make comparisons with appropriate
experiments from the work of Barthelet et al. (1995). The analysis is performed for
the thickness ε of the layer adjacent to the moving plate being small. The smallest
thicknesses available in the experiments are ε = 0.2, and, even though this is not
necessarily small, the model does fairly well in reproducing experimental observations
at Reynolds numbers as large as O(103). A crucial aspect of our model is that it fully
captures inertia in the thicker layer through a linear non-local term whose spectral
properties are found by solving an Orr–Sommerfeld-type problem. As a result, we can
set the Reynolds number Re1 and viscosity ratio m directly from an experiment, and
as shown in § 3 this leaves us with the parameter Λ = 3Ca0(1/m)(1 − 1/m), where
Ca= µ2U/γ = ε Ca0 is the canonical scaling for the capillary number which retains
coupling between the two fluid regions. In a given experiment or direct numerical
computation, one can calculate the value of Ca – see table 2 for example – to ensure
that it is small. The value of Ca0 cannot be found from such data, and the parameter
Λ is not fixed. Since the wave periods are fixed by the experiment, Λ is the only
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parameter that must be selected in making comparisons with experiments and DNS
(note that the functional form of the linear spectrum is not affected by Λ since it
enters as a multiplicative factor – see (3.13)). The model is computed and Λ is
modified until agreement is obtained, as shown in the results. If Λ is too small or
too large, the dynamics can range from trivial to chaotic, and hence is at variance
with DNS and experiments.

The model has also been shown to predict bistability, with unimodal and bimodal
solutions coexisting at the same parameter values. This has been demonstrated for
the experimental parameters of figure 22 of Barthelet et al. (1995), and the results
are described in § 4.3. Other phenomenologically motivated model equations – see
Barthelet & Charru (1995) – have been shown to predict bistable steady states, but
it is difficult to make comparisons with experiments, unlike for the inertia-retaining
models derived and studied here.

As far as we know, this work is the first to compare directly solutions of model
equations with those of DNS. The latter take orders of magnitude more time to
run even on state-of-the-art high-performance computers. The excellent agreement
demonstrated makes such models good candidates in the description of dynamics
beyond the capabilities of standard lubrication-type approximations of multi-fluid
flows – see Craster & Matar (2009). Our novel methodology can also be extended
to viscoelastic flows in order to assess the effects of elasticity on the stability and
nonlinear dynamics arising from the interaction between thick and thin layers. Such
extensions are the subject of ongoing work.
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