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We examine the interactions between two three-dimensional quasi-geostrophic hetons.
The hetons are initially translating towards one another. We address the effect of
the vertical distance between the two poles (vortices) constituting each heton on
the interaction. We also examine the influence of the horizontal separation between
the poles within each heton. In this investigation, the two hetons are facing each
other. Two configurations are possible depending on the respective locations of
the like-signed poles of the hetons. When they lie at the same depth, we refer
to the configuration as symmetric; the antisymmetric configuration corresponds to
opposite-signed poles at the same depth. The first step in the investigation uses point
vortices to represent the poles of the hetons. This approach allows us to rapidly
browse the parameter space and to estimate the possible heton trajectories. For a
symmetric pair, the hetons either reverse their trajectory or recombine and escape
perpendicularly depending of their horizontal and vertical offsets. On the other hand,
antisymmetric hetons recombine and escape perpendicularly as same-depth dipoles.
In a second part, we focus on finite core hetons (with finite volume poles). These
hetons can deform and may be sensitive to horizontal-shear-induced deformations, or
to baroclinic instability. These destabilisations depend on the vertical and horizontal
offsets between the various poles, as well as on their width-to-height aspect ratios.
They can modify the volume of the poles via vortex merger, breaking and/or shearing
out; they compete with the advective evolution observed for singular (point) vortices.
Importantly, hetons can break down or reconfigure before they can drift away as
expected from a point vortex approach. Thus, a large variety of behaviours is observed
in the parameter space. Finally, we briefly illustrate the behaviour of tall hetons which
can be unstable to an azimuthal mode l= 1 when many vertical modes of deformation
are present on the heton.

Key words: geophysical and geological flows, quasi-geostrophic flows, vortex dynamics

1. Introduction
Vortices are a key ingredient of oceanic and atmospheric dynamics (Carton 2001).

Vortices are horizontally recirculating fluid motions which trap air or water masses
characteristic of their region of formation in their core. The combination of relative
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Head-on collisions between quasi-geostrophic hetons 145

vorticity, Coriolis effect and local anomaly of stratification, specific to vortices, is best
represented via a single scalar variable called potential vorticity. Since Ertel potential
vorticity also exists in the absence of vortices, the anomaly of Ertel potential vorticity
with respect to its value at rest characterises the vortex. In the absence of forcing
and of dissipation, potential vorticity is conserved in a Lagrangian manner by each
fluid element. It can also be stated that, even when lateral friction acts between
fluid columns, the horizontal integral of the potential vorticity is conserved between
two isentropic (atmosphere) or isopycnic (ocean) surfaces (a property called the
impermeability principle; Haynes & McIntyre 1990).

For stably stratified rapidly rotating flows, such as large- and mesoscale oceanic
flows, the quasi-geostrophic approximation holds (Charney 1947). In this case, the
potential vorticity can be inverted to obtain the streamfunction, from which all
dynamical fields (velocity and density anomaly) can be derived (a property called
the invertibility principle). In particular, the streamfunction can be obtained from the
distribution of potential vorticity via a convolution product with a Green’s function
of 1/r for continuously stratified quasi-geostrophic flows, where r is the 3D distance
between the source and the evaluation points, and with other Green’s functions
(logarithm and Bessel functions of the horizontal distance) for layerwise flows.

Vortex dynamics in the oceans and the atmosphere has been investigated for
several decades, but in this field two subjects have attracted particular attention:
vortex interactions and vortex stability. Vortices can interact in complex ways, and
binary interactions have been extensively studied in continuously stratified fluid.
Like-signed vortices sharing some common horizontal levels may merge (completely
or partially) provided that their separation distance is smaller than a given threshold.
This threshold is the margin between regions of stability and instability for the pair
of vortices. Examples of studies of such configurations include von Hardenberg et al.
(2000), Dritschel (2002), Reinaud & Dritschel (2002, 2005), Bambrey, Reinaud &
Dritschel (2007) and Ozurgurlu, Reinaud & Dritschel (2008). It should be noted that
like-signed vortex interaction has been observed at sea (Carton et al. 2010). Two
opposite-signed vortices cannot merge but strongly pair as a dipole to propagate
away. When the dipole is asymmetric, vortex interaction may lead to the breaking up
of the larger pole. Reinaud & Dritschel (2009) studied such configurations for unit
height-to-diameter aspect ratio vortices, where the vertical direction is rescaled by
the ratio N/f of the buoyancy to the Coriolis frequencies. Thus, this strong vortex
interaction is associated with an instability mode which deforms the vortices. Again,
this instability occurs when vortices are closer than a critical distance (Reinaud &
Carton 2009).

Gryanik (1983) and Hogg & Stommel (1985) introduced a baroclinic dipolar vortex
structure able to self-propagate and to transport scalar properties (salt, heat, energy)
across the oceans. These structures, named ‘hetons’, consist of vortices placed at
different vertical levels and with opposite polarities. Their first studies of hetonic
motion were carried out in the frame of a two-layer quasi-geostrophic model with
singular vortices. Flierl (1988) and Helfrich & Send (1988) assessed the stability of
such structures when they have a finite extent, and when the two opposite vortices
(with uniform potential vorticity) lie on top of each other; they found that finite area
hetons may be prone to baroclinic instability. Reinaud & Carton (2009) readdressed
the problem introducing a vertical gap between the two poles of the hetons. They used
both a continuously stratified model with fine vertical resolution and a three-layer
quasi-geostrophic model. In the layered model, the vertical gap was obtained by
introducing a layer with zero potential vorticity between the two layers where the
vorticity poles were lying.
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146 J. N. Reinaud and X. Carton

There are two fundamental differences between the few-layer and many-level
continuously stratified models. This first one is the relation between the streamfunction
and the potential vorticity (the Green’s functions depend on 2D or 3D distances). The
second obviously lies in the possibility to represent the vertical deformation of the
vortices. In few-layer models, the vortices are often contained in one or two layers,
inside which the horizontal velocity is vertically uniform (Taylor–Proudman theorem);
thus vertical deformation can only occur as a horizontal shift of the vortex axis
between layers. On the contrary, in a many-level continuously stratified model, the
vertical deformation of vortices can be accurately represented. Obviously, many-layer
models are equivalent to many-level models in that respect. In particular, tall and thin
vortices, in a vertical shear, can break vertically. The model must be able to simulate
this process.

Reinaud & Carton (2009) concluded that hetons with large radius-to-height aspect
ratios and moderately offset in the vertical may be unstable. This confirmed earlier
studies in slightly different contexts, such as in Sokolovskiy (1997), where the author
studied a three-layer vortex. However, in these studies, the vortices were axisymmetric
and aligned along the same vertical axis. This meant that, by symmetry, the vortices
were not translating.

To induce a global translation on one another, the poles of the hetons must be offset
in the horizontal as well. The stability of hetons with horizontally offset poles has
been recently addressed by Reinaud (2015). The additional effect of the horizontal
offset is first to suppress the baroclinic instability if the offset is larger than a critical
value. More interestingly, the offset breaks a symmetry in the system, and the poles
become more deformed in the vertical. This has a profound impact on the stability
properties of the hetons. Again, these effects can only be seen in a many-level (many-
layer) model.

A pair of translating hetons can collide and strongly interact, displacing vorticity
poles relative to each other and destabilising them. This destabilisation may have
different origins: the baroclinic instability due to the interaction of opposite-signed
vortices lying at different levels or other shear-induced effects due to interactions
between vortices lying at the same depth (such as merger or straining out). In
practice, all of these processes may compete. Baroclinic dipole collision has been
observed at sea and is a complex phenomenon (L’Hegaret et al. 2014).

This paper addresses this issue in a simplified context. We impose many symmetries
on the system. The hetons are similar and initially translating along the same axis
in opposite directions, leading to a ‘head-on collision’. Despite these symmetries, the
dynamics is non-trivial and extremely rich.

Heton interactions were first studied by Valcke & Verron (1993). Head-on collision
was further studied in a different context by Sokolovskiy & Verron (2000a,b) for
the symmetric case. Sokolovskiy & Carton (2010) addressed the interaction of two
antisymmetric hetons which are initially collinear. These studies used a two-layer
model, with no vertical separation between the poles of the hetons, and no vertical
deformation of these poles. As explained above, although few-layer and many-level
hetonic dynamics may share a few similarities, there are essential differences in their
distant interactions and in their vertical evolution, as this paper will show.

This paper is organised as follows. Section 2 introduces the mathematical model
used. Section 3 presents our results. These are in two parts. The first part investigates
the problem using point vortices. The second part considers deformable finite core
vortices. A short § 4 follows addressing the behaviour of very tall hetons. These
hetons may behave in a way that cannot be modelled by a three-layer model. Finally,
conclusions are drawn in § 5. Appendices A and B complete the paper addressing
technical details.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

42
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.422


Head-on collisions between quasi-geostrophic hetons 147

2. The numerical model and basic equations
We present the equations governing a continuously stratified and rapidly rotating

flow within the quasi-geostrophic (QG) approximation. We take the buoyancy
frequency N to be constant. Within the Boussinesq approximation, this means that
we assume a linear background stratification of the density. We also take the Coriolis
frequency f to be constant, neglecting its background latitudinal variation. These two
simplifying assumptions allow us to rescale the problem in the vertical direction by
the ratio N/f , and the linear relation between the streamfunction ψ and the potential
vorticity anomaly q is a Poisson’s equation. The full governing equations read

dq
dt
= 0, (2.1)

1ψ = q, (2.2)

u=−∂ψ
∂y

and v = ∂ψ
∂x
, (2.3a,b)

where d/dt= ∂/∂t+ u∂/∂x+ v∂/∂y is the material derivative, (u, v) is the advecting
(geostrophic) velocity and ∆ is the three-dimensional scalar Laplace’s operator
∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2.

For finite core hetons, the method used to solve these equations is the purely
Lagrangian contour advection (see Dritschel 2002; Reinaud & Dritschel 2002). Hence,
the problem does not suffer from the influence of periodic images of the vortices and
the flow is unbounded with ψ→ 0 when x, y, z→∞. The flow velocity is recovered
by inversion of (2.2), and by taking explicit derivatives of the streamfunction following
(2.3) (see Dritschel 2002, appendix A). The resulting volume integrals are performed
in the vertical by explicitly integrating the Green’s function over the thickness of
the horizontal layers spanning the vortices, and the horizontal surface integral is
transformed into a contour integral over the nodes discretising the potential vorticity
jumps.

Time integration is performed using a fourth-order Runge–Kutta scheme. Contour
surgery is applied every 20 time steps to control the number of points used, as well
as the accuracy (note that due to the volume integrals, the computational cost grows
as the square of the total number of nodes used).

3. Results
3.1. General geometries

We consider the interaction between two hetons which initially move towards one
another. Each heton consists of two vortices (poles of the hetons) of equal and
opposite strength (κ , the volume integral of the potential vorticity (PV)), placed at
different depths. Globally the hetons have zero strength, and the velocity field they
induce falls off rapidly with the distance. For the sake of simplicity, we consider
a number of symmetries in the problem. The four poles defining the two hetons
have the same volume and their PV is uniform. The lower poles of the heton
centres (respectively upper poles) are placed at the same depth z=−zinit (respectively
z = zinit). It should be noted that their z positions are time-independent due to the
lack of vertical advection. Each individual heton is set up such that it translates
along the x direction. One heton is initially placed at x = −xinit and the second
one is placed at x = xinit. Moreover, the poles of the hetons are initially placed
at y = ±yinit. For the heton placed at x < 0 (respectively x > 0) to translate with
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FIGURE 1. Geometry for head-on interactions: symmetric configuration (a) and
antisymmetric configuration (b). Filled circles indicate the centre the positive pole and
unfilled circles indicate the centre of the negative pole; 1z= 2zinit, 1y(t= 0)= 2yinit. The
numbers are the pole labels.

a velocity u > 0 (respectively u < 0), the negative pole must be placed at y < 0
(respectively y > 0), while the positive pole must be placed at y > 0 (respectively
y < 0). However, we have a choice for the z location of each pole. There are two
possible geometries. If the like-signed poles are placed at the same depth, we call the
configuration symmetric. If the opposite-signed poles are at the same depth, we call
the configuration antisymmetric. We refer to them as head-on interactions as there is
no global y offset between the two hetons. The general geometry of the problem is
shown in figure 1. It should be noted that the time-dependent horizontal separation
distances are labelled 1x, 1y. For consistency we also denote 1z= 2zinit.

3.2. Point vortices
We first consider point vortices to represent the poles of the hetons. This allows us
to have a general view of the problem. It should be noted, however, that there are
some fundamental limitations to this approach. The inability of the singularities (point
vortices) to deform makes the hetons insensitive to the baroclinic instability or to
horizontal-strain-induced deformation. On the other hand, a point vortex approach can
still provide some information on how the poles are advected.

The problem has three length scales xinit, yinit and zinit, and one time scale implicitly
set by the strength of the poles to |κ| = 4π. Since x is the initial direction of the
motion for the hetons (at leading order), the choice of xinit is not important, as long as
it is large enough. We take the arbitrary choice of xinit= 6 max(yinit, zinit). We can now
set one of the lengths to non-dimensionalise our problem, and we take zinit = 1. We
label the four singularities i, 16 i6 4, where 1 is the bottom left (xinit< 0) singularity,
2 is the top left singularity, 3 is the bottom right (xinit > 0) singularity and 4 is the
top right one.

The velocity field u induced at x= (x, y, z) by the singularity i is

u(x)= κi

4π

(−(y− yi), (x− xi))

((x− xi)2 + (y− yi)2 + (z− zi)2)3/2
, (3.1)

while the full velocity is the sum of the four induced velocities by linearity of
the Poisson’s equations (2.2) and (2.3). This equation comes from the explicit
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FIGURE 2. Top view of the trajectories of the ‘symmetric’ vortices for yinit/zinit= 2/3 (a),
yinit/zinit = 1 (b) and yinit/zinit = 2 (c). The square symbols label the time by indicating the
location of pole 1 every 1t= 1.

differentiation of the streamfunction, following (2.3). The streamfunction itself is
recovered by inverting (2.2),

ψ(x)=− κi

4π|x− xi| , (3.2)

see, for example, Gryanik (1983).
The trajectory of the vortices is determined numerically and the time integration is

performed with a fourth-order Runge–Kutta scheme with 1t= 0.01.

3.2.1. Symmetric cases
We first examine the symmetric cases where like-signed vortices lie at equal depth.

We vary the ratio yinit/zinit and we find a systematic trend. If yinit/zinit < 1, the poles
of each heton reverse their trajectory by exchanging their horizontal location with
the second pole within the same heton, as seen in figure 2(a). For yinit = zinit = 1, the
vortices (singularities) reach an (unstable) steady state as they reach the vertices of
a cube, see figure 2(b). The situation is unstable in the sense that any perturbation
in y imposed on one pole will result in a change of trajectory from reverse (as in
yinit/zinit < 1) to escape at a right angle (as in yinit/zinit > 1), see figure 2. This
statement, based on physical arguments, can be mathematically justified by a linear
stability analysis proposed in appendix A. For yinit/zinit>1, the point vortices exchange
partners and escape perpendicularly as new hetons, see figure 2(c). To understand
this trend, one can look at the velocity v1 of the point vortex 1, lying at the bottom
right initially for x< 0 in the symmetric configuration. In the calculation we rescale
1y and 1z by 1x for convenience (and as the discussion is on 1y and 1z),

v1 = κ

4π[(1+1y2)(1+1z2)]3/2 ((1+1z2)3/2 − (1+1y2)3/2). (3.3)

We see that the sign of v1 depends on the sign of

(1+1z2)3/2 − (1+1y2)3/2, (3.4)

i.e. only on
α =1y/1z. (3.5)
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150 J. N. Reinaud and X. Carton

Hence, if 1y < 1z (α < 1, which means initially yinit/zinit < 1), vortex 1 has a
velocity v1 > 0 and tends to move in the positive y direction. If 1y=1z, v1= 0, the
vortex does not deviate in the y direction. It is easy to show that when 1x=1y=1z,
i.e. when the point vortices are located at the vertices of a cube, u1, the velocity of all
vortices in the x direction, becomes zero as well. We recall that the vertical velocity
is zero at all times. Consequently, in this case, the singularities are steady, and the
four point vortices are in mutual equilibrium. It should be noted, however, that any
perturbation in y will make the system bifurcate to one of the two other situations.
Finally, if 1y > 1z (α > 1), v1 < 0, and vortex 1 goes to further negative y values,
escaping the initial hetonic configuration.

This velocity v1 comes from the influence of poles 3 and 4 on pole 1. Pole 2 does
not induce a velocity in the y direction on pole 1 (as 1 and 2 are aligned along the
x direction). The sign of v1 depends on which of the two poles (3 or 4) is closest to
pole 1.

Figure 3 illustrates the streamlines in three configurations, depending on the
respective values of 1y and 1z. In the first configuration, we take 1y/1z = 2/3,
while 1x= 21z= 2 max(1y, 1z). In the second, we have 1x=1y=1z= 1. Finally,
in the third and last one, we take 1y/1z = 3/2, while 1x = 21y = 2 max(1y, 1z).
We plot the streamlines in two horizontal planes, z = −21x and z = 0. In practice,
the streamlines are obtained as curves of isovalue of the streamfunction, rather than
(equivalently) integrating dx/u= dy/v.

The bottom cross-section, at z=−21x, lies below the hetons. Here, the two bottom
singularities have the strongest influence as they are the closest to the cross-section.
We recall that the streamfunction is inversely proportional to the distance, ψ ∝ 1/r,
where r is the three-dimensional distance between the source and the evaluation points.
Hence, we recover closed streamlines surrounding the two bottom negative poles, each
pole belonging to a different heton. This renders a classical pattern for two co-rotating
vortices. Moving away from the vortices, the influences of the two vortices combine
and the streamlines tend to circles around the pair of vortices. It should be noted that
this pattern is still influenced by the positive poles located at z> 0. The second cross-
section at z= 0 corresponds to a cross-section lying at the plane of symmetry of the
structure. Here, the poles are located at equal vertical distance from the plane z= 0.
Hence, the sign of their contribution to the total streamfunction is only set by their
strength (we cannot distinguish from the figure alone a pole above or below z= 0). It
should be noted than a third cross-section at z=+21x would give a picture similar
to the one for z = −21x, symmetric with respect to the plane y = 0, with opposite
sign.

Qualitatively similar trajectories were observed in Sokolovskiy & Verron (2000b),
where the authors varied the internal Rossby radius of deformation. However, these
similarities remain qualitative, as the problem is fundamentally different. In the
two-layer model, the vortices fill the full depth of the layers and the two layers are
adjacent. This translates as a different inversion relation between the PV and the
streamfunction.

3.2.2. Antisymmetric cases
We now look at the antisymmetric cases where the vortices that are at the same

depth have opposite sign. In each case the vortices escape perpendicularly from their
original trajectory. It should be noted that they no longer behave as hetons but as
barotropic dipoles. By ‘barotropic dipole’ (hereinafter referred to as dipoles for short)
we refer to the situation one may think of as a vortex dipole in two dimensions,
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 3. Streamlines for (a,b) 1x= 2, 1y= 1, 1z= 1.5 and −2 6 x, y 6 2, z=−2 (a)
and z= 0 (b); (c,d) 1x= 1, 1y= 1, 1z= 1 and −1 6 x, y 6 1, z=−1 (c) and z= 0 (d);
(e,f ) 1x= 2, 1y= 1.5, 1z= 1 and −2 6 x, y 6 2, z=−2 (e) and z= 0 (f ).

i.e. here two opposite-signed vortices at the same depth. This is in contrast to a heton
which is a baroclinic structure and consists of two opposite-signed vortices at different
depths. The trajectory of the vortices is illustrated for three different cases in figure 4.
It is shown that they are qualitatively similar.

We identify the conditions when the vortices escape by looking at the ‘corner’ in
their trajectory. We associate the corner with the condition when |v1/u1| = 1, i.e. the
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FIGURE 4. Top view of the trajectories of the ‘antisymmetric’ vortices for yinit/zinit = 2/3
(a), yinit/zinit = 1 (b) and yinit/zinit = 2 (c). The square symbols label the time by indicating
the location of pole 1 every 1t= 1.
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FIGURE 5. Isovalues of |v1/u1| for 0.8 61x 6 2.05 and 0.2 61y 6 1.45.

threshold between a trajectory mostly in the x direction and a trajectory mostly
along y. The ratio v1/u1 is∣∣∣∣v1

u1

∣∣∣∣= ∣∣∣∣1x
1y

(1y2 + 1)3/2

1x3

1x3 − (1x2 +1y2 + 1)3/2

(1x2 +1y2 + 1)3/2 − (1y2 + 1)3/2

∣∣∣∣ , (3.6)

where here for convenience the horizontal distances 1x and 1y are rescaled by 1z
(i.e. 1z= 1). To view the limit separating the regions |v1/u1|> or < 1 in the plane
1x–1y, we plot contours of isovalues of |v1/u1|, see figure 5. The limit can only be
obtained from the implicit (3.6). It does not correspond to a simpler relation between
1x and 1y. In particular, because of the influence of pole 4, the corner does not
correspond to the situation when pole 3 becomes as close to pole 1 as pole 2. Indeed,
when poles 2 and 3 are equidistant from pole 1, we have s2= (1y2 + 1)/1x2= 1 and
|v1/u1| = |1x/1y| 6= 1.

Figure 6 gives an illustration of the topology of the streamlines for antisymmetric
pairs of hetons. Here, the pattern is different from the symmetric case. This is due
to the fact that the point vortices at the same depth now have opposite sign and
behave as vortex dipoles rather than vortex pairs. This topological difference is not
apparent in the plane of symmetry z=0. This is due to the fact that the streamfunction
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(a) (b)

FIGURE 6. Streamlines for 1x= 2, 1y= 1, 1z= 1.5 and −2 6 x, y 6 2, z=−2 (a) and
z= 0 (b).

depends on the polarity of the singularities and the inverse separation distance between
them and the evaluation point only, and not on whether the singularities are above
or below the plane z = 0. However, the topological difference from the symmetric
case becomes clear in a plane closer to one of the dipoles, see figure 6(a). Again,
we observed nearly circular streamlines in the vicinity of the vertical axes where
the singularities lie. However, between the two centres, the streamlines flatten and
are nearly parallel, indicating translation of the structure. This is in contrast to the
stagnation point observed for the symmetric case. The pattern shown in the figure 6
is generic for all antisymmetric cases investigated.

3.3. Hamiltonian
Another way to determine the possible trajectories of the poles of the hetons is to use
the conservation of the Hamiltonian of the system,

H =−1
2

∫∫∫
q(x)ψ(x) dv, (3.7)

where

ψ(x)=− 1
4π

∫∫∫
q(x′)
|x− x′| dv

′. (3.8)

It should be noted that the other three invariants of the system which are the linear
impulses along x and along y together with the angular impulse are zero by symmetry.
Possible trajectories must coincide with isovalue lines of H. In our discrete point
vortex approach we plot contours of

H = 1
2

4∑
i=1

4∑
j=1,j6=i

κi
κj

4π

1
|xi − xj| , (3.9)

which is the interaction Hamiltonian. This Hamiltonian may be positive or negative
due to the products of the form κiκj which can be either positive of negative. It
should be noted that fundamentally this approach is the same as before as the
time-dependent solution found in the two previous subsections derives from the
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FIGURE 7. Isovalues of H for the ‘symmetric’ hetons. Forty-one isovalue contours are
plotted for 1.2 6 H 6 24.6 and −3 6 1x, 1y 6 3; 1x and 1y are rescaled by 1z (i.e.
1z= 1).

Hamiltonian formulation of the system. Given the location of one of the poles, we
can deduce by symmetry the positions of all four poles (this is due to the symmetry of
the initial conditions and the fact that the symmetries in the equation ensure that these
symmetries are conserved). Therefore, we calculate the Hamiltonian corresponding
to this configuration. Thus, we have a simple map of the Hamiltonian values for all
values of 1x and 1y. This would not be the case if there was an asymmetry in the
initial condition such as a global offset in y between the two hetons. In that case,
the locations of the four poles can no longer be determined ad hoc using symmetry
arguments by the location of pole 1 alone. The positions must be determined by time
integration of the system. The other invariants are the two linear impulses

Px =
∫∫∫

x q(x) dv and Py =
∫∫∫

y q(x) dv (3.10a,b)

and the angular impulse

I =
∫∫∫

|x|2q(x) dv, (3.11)

see, for example, Gryanik (1983). By symmetry, these three invariants are all zero in
our cases.

Results for the symmetric hetons are presented in figure 7. It should be noted that
in the symmetric case, H simplifies to

H = 8π

(
1√

1x2 +1y2
− 1√

1y2 +1z2
− 1√

1x2 +1z2

)
. (3.12)

We recover both the turning and escaping trajectories as well as the limiting case
between the two different kinds of trajectories where the vortices reach an equilibrium
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FIGURE 8. Isovalues of −H for the ‘antisymmetric’ hetons. Forty-two isovalues of H
are plotted for 1.8 6H 6 8, −3 61x, 1y 6 3 and 1z= 1.

at the vertices of a cube. It should be noted that we also find (by symmetry) images
of the trajectories for hetons starting from 1yinit >1xinit.

Results for the antisymmetric hetons are presented in figure 8 (for −H ). In this
case

H = 8π

(
1√

1x2 +1y2 +1z2
− 1√

1y2 +1z2
− 1
|1x|

)
. (3.13)

We recover the escape trajectories for the poles of the hetons. It should be noted that
the trajectories do not share the same level of symmetry as the symmetric case. This is
also visible from earlier results, e.g. formula (2.3), where 1x and 1y do not appear
in a symmetric pattern. It should also be noted that we do not consider situations
starting from 1xinit <1yinit where we would just have two dipoles moving away from
one another (pairs of opposite-signed vortices at the same depth).

3.4. Finite core hetons
We now turn our attention to the more realistic case of finite core vortices. Each
pole consists of a cylinder of uniform PV. The dynamics is expected to be richer
as the poles of the hetons now have the freedom to deform and therefore may be
sensitive to baroclinic instability as well as other shear-induced effects. An individual
heton may be baroclinically unstable. This instability affects wide hetons whose poles
are not much separated vertically or horizontally. Wider poles are sensitive to higher-
wavenumber azimuthal modes.

The wider the poles are, the higher the azimuthal wavenumber associated with the
instability is.

When two hetons interact, they can form structures with several poles of PV,
which themselves may be barotropically unstable. In the symmetric case for two
hetons, their poles lying at the same depth are like-signed. Co-rotating equilibria of
like-signed vortices exist, but up to marginal configurations. For vortices closer than a
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x

z

yr

h

Dz

FIGURE 9. Geometry of one finite core heton and definition of the main symbols.

threshold distance, these configurations become unstable. Deformed by the horizontal
shear created by the companion vortex, the vortices merge. In the antisymmetric
case, the same-depth vortices are opposite-signed. Translating steady states of two
opposite-signed vortices at the same depth can exist but again up to a critical distance.
When closer, they undergo a destructive process.

The instability of horizontal, like-signed or opposite-signed, vortices can be
associated with the phase-locking of Rossby waves along their boundary (PV
interface). The phase-locking itself is due to the individual velocity field of each
vortex and to the mutual influence of the vortices.

These modes of instability may enter in competition with the behaviour observed
from singularities (e.g. poles breaking up or merging before they can evolve as
described in the previous section). The geometry of a given heton is described in
figure 9. It should be noted also that an extra length scale appears naturally in the
problem linked to the size of the poles, for example their horizontal radius r. This
also means that there is another parameter describing the poles: their aspect ratio
%= r/h, where h is the full height of a pole.

It should be noted that we use the full height h and the horizontal radius rather
than the half-height (to be consistent with the radius) and r because previous studies
made use of layered models where vortices would occupy the full vertical extent of
a layer denoted by h. Each pole is assigned a PV of qi = ±2π and a volume Vi =
πr2h=π%2h3. The strength of the pole i is κ1=

∫∫∫
Vi

qi dV =±2π2%2h3, which is now
set by the value of h (given %). To determine the value of h in practice, we set the
full extent of the flow in the vertical, Htot, to 1; Htot is measured from the bottom of
the bottom pole to the top of the top pole. We denote by Dz the vertical separation
between the poles (vertical space with no PV, see figure 9). It should be noted that
the vertical distance between the two pole centres is 1z=Dz+ h or h(`z+ 1), where
`z=Dz/h is a specified parameter. Finally, we relate h to Htot, i.e. Htot =Dz+ 2h= 1,
so h= (`z + 2)−1 and κi =±2π2%2(`z + 2)−3.

The stability of isolated hetons has been studied in the case where the two poles are
aligned in Reinaud & Carton (2009) and more recently in Reinaud (2015) when the
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two poles are offset horizontally (as is the case here). The upshot of these studies is
as follows. For small aspect ratios, the heton may be stable. On increasing the radius
of the poles, we reach the first unstable modes with azimuthal wavenumber l= 2, then
l= 3, and so on. The instability also depends on the vertical offset between the two
hetons. The margins between stability and instability and between the emergence of
the various modes l is shifted to wider vortices as the vertical offset is increased. This
indicates a weakening of the interaction as the overall distance between the two poles
is increased. The influence of a horizontal offset between the poles is somehow similar
in the sense that it weakens the instabilities. Modes become stable after the horizontal
gap between the poles reaches a marginal value. This value is aspect-ratio-dependent
and vertical-offset-dependent. This margin is typically only a fraction of the vortex
radii. However, the influence of a horizontal offset is different from that of a vertical
one as it breaks some degrees of symmetry in the flow configuration. The equilibria
can no longer be axisymmetric. Reinaud (2015) has shown that this has a profound
impact on the spatial structure of the instability modes and their growth rates. The
vortices also need to tilt with respect to the vertical axis to withstand the vertical
shear. The vertical shear in the system is discussed in appendix B, using a simplified
point vortex model. The conclusion of these studies is that small-aspect-ratio vortices
that are well separated in the vertical and/or in the horizontal are expected to be
stable while wide vortices with moderate vertical and horizontal separation distances
are expected to be unstable.

3.4.1. Symmetric hetons
We start the investigation with the symmetric hetons. The parameter space is

spanned by dy=1y/r, %= r/h and `z=Dz/h. Here, 1y has the same meaning as in
the previous sections; it is the distance in the y direction between the pole centres of
a heton. For convenience, its non-dimensional form dy is measured as a fraction of the
horizontal radius of the pole, hence dy > 2 would mean that the poles do not overlap.
We investigate five values for each of the parameters, dy = (0.1, 0.25, 0.5, 0.75, 1),
% = (1.5, 2.5, 3.5, 4.5, 5.5) and `z = (0.5, 1, 1.5, 2, 2.5), hence 125 cases in
total. For all cases the simulation is started with the poles situated at x0 = ±5r at
least. There are 100 horizontal layers representing the full vertical extent of the flow
(i.e. from the bottom of the bottom pole to the top of the top vortex). This includes
also the vertical gap between the two poles. The equations are marched in time with
the fourth-order Runge–Kutta scheme and the time step is 1t = |q|/40, where |q| is
the PV magnitude. These are the standard set-ups of the method.

Table 1 defines the symbols used to describe the sort of nonlinear interaction
that the symmetric pair of hetons undergoes. The range of potential behaviours is as
follows. Three main effects are competing. First, the finite core hetons may reproduce
the global behaviour predicted by the point vortices. Second, there is the possibility
that the hetons break baroclinically. Third, the poles belonging to different hetons,
at the same depth, may strongly interact. Different initial conditions can favour one
or a combination of such behaviours. The latter two effects are instabilities and
are therefore associated with a time scale over which they can develop during the
dynamical process.

We know from the point vortex calculation that the global behaviour is influenced
by the ratio α of the horizontal offset of the poles within the heton to their
vertical offset. This ratio can be evaluated from the parameters dz, % and `z as
α = %(dy/(`z + 1)). Small values of this parameter trigger a reverse motion of the
hetons while a large value triggers an escape of the recombined poles perpendicularly
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Symbol Meaning

B Hetons reverse trajectories.
D Hetons reverse trajectories after temporary merger.
× Hetons break baroclinically into four hetons then move away.
A Hetons break baroclinically into four or more hetons. The two remaining main

hetons escape.
@ Hetons recombine and escape as hetons.
♦ Hetons break into several vortices (turbulent-like behaviour).

TABLE 1. Meaning of the symbols used to describe the outcome of the interactions
between two symmetric hetons.

to their original trajectory. On the other hand, we know that hetons are more stable
when their aspect ratio is small and the poles are separated by either or both large dy
and large `z. Finally, we know that for two co-rotating vortices, they must be close
enough to one another to merge.

Therefore, in our parameter space, we can expect that for small aspect ratios, large
vertical offset (for stability) and moderate horizontal offset dy (α < 1) the hetons
are likely to reverse trajectory. However, in the symmetric case, since the co-rotating
vortices are at the same depth, vortex merger is possible. For larger values of the
aspect ratio the vortices may merge during the phase when they approach one another.
Larger vortices are able to merge from further apart. To merge, the poles must also
remain in the vicinity of one another for a sufficiently long period of time. Indeed, the
merger process is fundamentally linked to an instability mode of a pair of co-rotating
vortices. This means that the instability must have enough time to develop before the
dynamics of the hetons (reverse trajectory) takes over and separates the poles. On the
other hand, for large aspect ratio and small dy, the translation velocity bringing the
hetons together can be too low to prevent the hetons from becoming baroclinically
unstable first. In that case each heton may break before reversing and/or being close
enough to experience vortex merger with the poles of the other heton.

For larger values of α, the hetons may recombine and new hetons may escape.
However, this also implies that % must be sufficiently large in our parameter space
as dy is taken as a fraction of r. Hence, there is a possibility that in these cases the
hetons may undergo a baroclinic breakup (albeit partial) in the process. Finally, the
hetons may just be strongly unstable and break up before strongly interacting with one
another. All of these scenarios are observed in practice. We summarise the general
behaviour in figure 10 using the symbols defined in table 1. This table shows that
for five nonlinear regimes out of six, finite core effects are essential, and that these
regimes cannot be simply reproduced with point vortices.

We next illustrate examples of the typical evolution of the interacting hetons in each
category of behaviour. Figure 11 shows the nonlinear evolution of a symmetric pair of
hetons with %= 1.5, dy= 0.5, `z= 1.5, such that α= 0.2< 1. Equivalent point vortices
would reverse trajectory. Moreover, from the stability results in Reinaud (2015), each
heton should be baroclinically stable in isolation (and if they were at equilibrium).
The result first shows that the hetons indeed do not break baroclinically. Moreover, the
minimum separation distance reached by two co-rotating poles is d/r = 4.77, which
is likely to be larger than the margin of stability for vortex merger, even in a static
situation. By static situation we refer to an isolated couple of co-rotating poles. In that
case, the separation distance is invariant and the instability has all the time to develop.
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(a) (b)

(c) (d)

1.0

(e)

1.5 2.5 3.5 4.5 5.5

0.5

1.5

2.0

2.5

FIGURE 10. Finite core symmetric hetons: regimes in the plane %–`z for (a) dy=1y/r=
0.1, (b) 0.25, (c) 0.5, (d) 0.75 and (e) 1. The solid lines indicate the threshold 1y/1z= 1.
The axis labels are all identical and are defined in (e). The meaning of all symbols is
defined in table 1. An underlined symbol indicates that the vortices produced by the first
main interaction experience further strong interaction as they reverse velocity or escape.

Here, the poles are usually further apart than this minimum distance. For comparison,
two spherical vortices only merge (partially) for d/r = 2.7, see Reinaud & Dritschel
(2002). This case is representative of all cases indicated by the symbolB in figure 10.

We illustrate in figure 12 the behaviour of the hetons when vorticity poles
temporarily merge before the hetons reverse trajectory. Here, the vortices are slightly
larger (% = 2.5) and we take dy = 1 while retaining `z = 1.5, so that α = 1. In this
case the hetons are offset enough in the vertical to be baroclinically stable. However,
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(a) (b)

(c) (d )

FIGURE 11. Flow evolution for symmetric finite core hetons with % = 1.5, dy = 0.5 and
`z= 1.5. The figure is ordered in increasing time (a–d). The times displayed are t= 0, t=
50, t= 100 and t= 150. The vortices are viewed orthographically at an angle of 60◦ from
the vertical. The front and back panels indicate the side of a virtual viewing square box
centred around the vortices. The hetons reverse velocity (labelB in table 1).

(a) (b)

(c) (d )

FIGURE 12. Flow evolution for symmetric finite core hetons with % = 2.5, dy = 1 and
`z = 1.5. The times displayed are t= 0, t= 37.5, t= 75 and t= 100. The hetons reverse
velocity after temporary merger (labelD in table 1).

now the vortices can get closer together, and within a limit in d/r where they can
merge. The vortex structure thus formed is itself unstable and breaks down back
into individual vortices which reverse trajectories. Such behaviour is common for
like-signed vortices, see Reinaud & Dritschel (2002). These interactions are referred
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(a) (b)

(c) (d )

FIGURE 13. Flow evolution for symmetric finite core hetons with % = 3.5, dy = 0.1 and
`z = 1.5. The times displayed are t = 0, 17.5, 50 and 87.5. The hetons break into four
hetons which reverse trajectory (label × in table 1).

to as partial merger and weak interaction. The breaking up of the vortices formed
during the merger process is also forced here by the strain field induced by the
opposite-signed vortices at different depths. This is generic to all cases indicated by
the symbolD in figure 10.

By decreasing dy from the previous case and increasing %, we now enter the domain
where each heton can destabilise baroclinically. Moreover, small dy means that the
translation velocity is small. The baroclinic instability can develop before the two
hetons are close to one another. Arguably, one could also start the simulation from
hetons at larger separation distances to reach a similar effect. Figure 13 shows the
symmetric pair of hetons for %= 3.5, dy= 0.1 and `z= 1.5, such that α= 0.14< 1. For
such a large aspect ratio and small horizontal offset, each heton is strongly unstable.
The hetons break baroclinically well before getting close enough to strongly interact
with the other heton. During the breaking up of the hetons, the poles reorganise
into four hetons. The poles of the hetons are placed in such a way that they reverse
(at least temporarily) their trajectories and start to move away from one another. It
should be noted that each heton breaks into two main secondary hetons (and some
debris). This is consistent with a dominant azimuthal mode of instability l = 2. It
is also arguable that the shear flow interaction between the two hetons is likely
to force a deformation exciting mode 2. The fact that the new hetons move away
is probably more related to the nature of their formation rather than the fact that
α < 1 for the original hetons, as the four hetons produced are fundamentally different
from the original ones. This example illustrates all cases marked by the symbol × in
table 1.

We next increase the parameter α with %= 4.5, dy= 0.25 and `z= 1. This example
illustrates all cases indicated by the symbol A in table 1. Results are presented in
figure 14. Obviously, α is not sufficient to qualify the behaviour as α alone is not
sufficient to determine the stability of the hetons. In this case α = 0.56 and is still
less than 1, but the hetons are strongly unstable. The hetons break asymmetrically.
The mode of instability is likely to be a mixture of azimuthal modes l= 2 and l= 3.
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(a) (b)

(c) (d )

FIGURE 14. Flow evolution for symmetric finite core hetons with %= 4.5, dy = 0.25 and
`z= 1 at t= 0, 15, 50 and 162.5. The hetons break into more than four hetons. The main
two hetons escape (labelA in table 1).

The nature of the instability modes is important for the evolution of the flow. We
saw in the previous example that the azimuthal mode l = 2 was mainly generating
four hetons out of the original two. These hetons were at least initially moving away
from one another. Here, more secondary hetons are generated. Six principal hetons
can be identified, the larger two near the centre. The new main hetons generated by
the destabilisation of the original pair are separated further away in the direction y.
Shortly after the breakup the four larger vortices are located at y± 0.8 and z∼±0.3,
giving α ∼ 2.6 > 1. It should be pointed out that at this stage these vortices are
still surrounded by close secondary vortices having a non-negligible influence on the
overall dynamics. Nonetheless, the two main hetons eventually escape perpendicularly
to their original trajectory.

We now consider a situation where the parameter α is larger while keeping % as
small as reasonably possible and both dy and `z reasonably large. We consider %= 2.5,
dy=1 and `z=1. This example illustrates all cases denoted by the symbol@ in table 1.
This set-up has α= 1.25> 1 and keeps the hetons in a region of only weak instability
in the parameter space. Results are shown in figure 15. Here, as expected, the hetons
only shed a small amount of debris before escaping as hetons in a way rather similar
to what equivalent point vortices would do.

The four previous examples have illustrated what could be considered as a generic
behaviour in the range of parameters investigated. However, due to the richness and
complexity of the various effects in competition, the dynamics of a pair of symmetric
hetons may prove to be far more complex. This is in particular the case when the
original hetons are so strongly unstable that their mutual interaction is no longer one
that can be associated with a pair of hetons.

For example, we present the case for % = 5.5, dy = 0.1 and dz = 0.5 in figure 16.
This corresponds to the largest aspect ratio investigated with smaller vertical and
horizontal offset considered, and corresponds to the most baroclinically unstable
set-up investigated here. In this case the hetons break violently into many secondary
structures. It should be noted that in this context not only are the hetons very strongly
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(a) (b)

(c) (d )

FIGURE 15. Flow evolution for symmetric finite core hetons with % = 2.5, dy = 1 and
`z = 1 at t = 0, 17.5, 40 and 62.5. The hetons shed some debris and escape (label@ in
table 1).

(a) (b)

(c) (d)

FIGURE 16. Flow evolution for symmetric finite core hetons with % = 5.5, dy = 0.1 and
`z = 0.5 at t= 0, 50, 125, 200 (label ♦ in table 1).

unstable but they are only very slowly translating towards each other. By the time
some of the PV reaches the centre of the domain nothing really resembles hetonic
structures, and the flow is mostly turbulent.

We next propose a general comment on the flow evolution, considering the
parameter α = %dy/(1+ `z). Large values of `z with small values of %dy may favour
reversal of the heton trajectories. However, small values of the product of % and dy
may be obtained by two limits. Taking dy fixed and making % smaller increases the
stability of the hetons. In this case, the hetons may remain compact and behave in
a way that is consistent with the point vortex calculation. On the other hand, setting
% and decreasing dy tends to increase the baroclinic instability (as the growth rate of
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FIGURE 17. Ratio of the volumes of the four largest vortices at t = 400 to the initial
volume for dy = 0.1, 1.5 6 % 6 5.5 and `z = 0.5 (+), 1 (?), 1.5 (u), 2 (p), 2.5 (f). The
figure is organised as follows: (a) largest vortex; (b) second largest vortex; (c) third largest
vortex; (d) fourth largest vortex.

the instabilities is maximum for dy= 0). The subsequent development of the flow may
depend on the dominant mode of instability, in particular the number of secondary
hetons generated and their locations. The azimuthal mode l = 2 may favour the
formation of four hetons which initially escape. A combination of azimuthal modes
l= 2 and l= 3 may favour the formation of six strongly asymmetric hetons. Two of
them may remain central in x and escape along y.

On the other hand, large values of α mean large values for the product %dy and
small values for `z. The smaller `z is, the more unstable the hetons are. To reach large
values of the product of % dy we can increase each of them with different effects as
discussed above, large % favouring instability while large dy favours stability.

We finally compute the volumes (V1 > V2 > V3 > V4) of the four largest vortices
present in the flow at the end of the simulation (t = 400), and compare them with
the initial volume of the poles (all identical initially). The results are presented for
dy = 0.1 in figure 17.

Qualitatively, the behaviour is similar for all four vortices, and we can clearly see
the influence of the baroclinic instability of the poles. In figure 17, dy = 0.1 is fixed,
and the varying parameters are r/h and `z. The regions where the vortices lose the
most of their volume correspond to the regions in the parameter space where they
are expected to experience strong baroclinic instability: large values of % and small
vertical offset `z. On the other hand, for small aspect ratio and large vertical offset,
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Symbol Meaning

@ Hetons escape as dipoles.
× Hetons throw out some debris then escape.
B Hetons throw out some debris then escape as dipoles which undergo destructive

interaction.
∗ Hetons break baroclinically into four hetons then move away (almost reverse)

initially.
A Hetons break baroclinically into six hetons, two of them escape.
♦ Hetons break into several vortices (turbulent-like behaviour),

TABLE 2. Meaning of the symbols used to describe the outcome of the interactions
between two antisymmetric hetons.

the vortices are expected to be only marginally if even affected by the baroclinic
instability and the vortices retain most of their PV.

3.4.2. Antisymmetric hetons
We next turn our attention to antisymmetric pairs of hetons. In this case

opposite-signed vortices are at the same depth. The first main difference from the
symmetric pair is that we have seen that the point vortices always have qualitatively
the same behaviour. The poles of the hetons recombine as dipolar structures. Each
dipole consists of the two vortices located at the same depth from the original hetons.
Now, the parameter α no longer segregates two different regimes, one for α < 1 and
one for α > 1. The second main difference is that vortex merger is no longer possible.
Indeed the like-signed vortices are located at different depths and do not share any
common horizontal cross-section on which they could touch to merge. However,
Reinaud & Dritschel (2009) showed that the interaction between counter-rotating
vortices could lead to destructive interactions where the vortices break into secondary
vortices. Finally, as before, the hetons themselves can be subject to the baroclinic
instability provided that the poles are wide enough and their horizontal and/or vertical
separation is small enough.

Table 2 summarises the types of interactions observed. As in the previous section,
a summary of the evolution is provided in the graphs presented in figure 18.

For small aspect ratios % and large vertical offsets `z and/or large horizontal offsets
dy the hetons are again expected to be stable to baroclinic modes. They are therefore
expected to remain compact and, at least at the beginning, act in a way similar to
point vortices. For larger values of the aspect ratio % and/or smaller values of the
separation distances `z and dy the hetons may be unstable. If the instability is weak,
the hetons are likely to only shed some debris instead of breaking into two main
secondary hetons. The poles of the hetons may recombine as dipoles which may break
into further secondary structures. In the case of strongly unstable hetons, the evolution
of the flow is likely to be linked to the spatial structure of the dominant azimuthal
mode (mode l= 2 or l= 3 in the present study). The azimuthal mode l= 2 may break
each heton into two main secondary hetons, which may translate away (as seen in
the previous case). Mode 3 may break each heton into three structures which would
lead to an overall different distribution of PV. Two of the hetons may remain close to
the centre of the domain and later escape as dipoles. These dipoles may be unstable
and further break as they move away. Finally, in the most unstable configuration, the
heton may break baroclinically in such a complex way that the subsequent evolution
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(e)

FIGURE 18. Finite core antisymmetric hetons: regimes in the plane %–`z for (a) dy =
1y/r= 0.1, (b) 0.25, (c) 0.5, (d) 0.75 and (e) 1. The meaning of all symbols is defined
in table 2. An underlined symbol indicates that the vortices produced by the first main
interaction experience further strong interaction as they escape. A barred symbol indicates
that the original baroclinic instability only produces a small amount of debris.

is turbulent-like, as was observed for the symmetric pair of hetons. We now illustrate
all of these cases in our parameter space.

We start with a case where we expect the hetons to be stable. For this we consider
a small value for the aspect ratio with % = 1.5 and a large value of the vertical
separation `z= 1. Here, we take dy= 0.1 which is the smallest value considered. The
results show that, of course, increasing dy goes in favour of the stability of hetons,
hence the same behaviour is observed. The flow evolution is presented in figure 19.
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(a) (b)

(c) (d )

FIGURE 19. Flow evolution for antisymmetric finite core hetons with % = 1.5, dy = 0.1
and `z = 1 at t = 0, t = 95, 110 and 120. The hetons interact and the poles escape as
dipoles (label@ in table 2).

The hetons get close enough and the interaction between the vortices at the same
depth becomes stronger. The poles of the hetons recombine as same-depth dipoles.
The dipoles formed move away perpendicularly from the original trajectory. At t =
50, the poles of the dipoles are offset by a distance 1x/r ' 1.58. Similar cases are
indicated by the symbol@ in figure 18. This behaviour appears to be generic to small
values of % and large values of `z, i.e. the left top corners of each graph in figure 18.

Increasing the aspect ratio to % = 5 makes the heton more unstable. However,
compensating this by an increase of the horizontal offset to dy = 1 we find a case
where the hetons are only weakly unstable. The flow evolution is presented in
figure 20 (here `z = 1 as previously). The poles of the hetons shed a small amount
of debris but the two hetons start to interact and recombine as same-depth dipoles
before the hetons have the time to fully destabilise. In other words, the time scale
associated with the baroclinic instability is very large compared with the time scale
associated with the motion of the poles. At t = 125, the poles of the dipoles are
at a distance of 1x/r ' 1.06 and the dipoles do not strongly destabilise. Such an
interaction is referred to by the symbol × in figure 18 and is found for large values
of dy only.

For smaller values of dy but retaining % small enough and `z large enough, we
remain in a region of the parameter space where the hetons are either stable or only
weakly unstable. However, the dipolar structures generated by the recombination of
the poles of the hetons are now unstable. From the point vortex calculation, and in
particular figure 8, we see that a decrease in the original horizontal separation distance
between the poles of the hetons denoted there 1y induces a decrease of the distance
1x separating the two poles of the dipolar structures in the late evolution of the flow.
The smaller this distance is the more likely the dipoles are to be unstable. Indeed,
the destructive interaction between two counter-rotating vortices is associated with a
critical separation distance between the poles, as discussed in Reinaud & Dritschel
(2009). Such a type of flow behaviour is indicated by the symbolB in figure 18. This
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(a) (b)

(c) (d)

FIGURE 20. Flow evolution for antisymmetric finite core hetons with %= 2.5, dy= 1 and
`z = 1 at t = 0, 20, 30 and 45. The hetons shed some debris and recombine as dipoles
which escape (label × in table 2).

(a) (b)

(c) (d)

FIGURE 21. Flow evolution for antisymmetric finite core hetons with %= 3.5, dy = 0.75
and `z= 2 at t= 0, 50, 100 and 125. The hetons interact and the poles escape as dipoles
which undergo a destructive interaction (label C̄ in table 2).

regime is typically found along the diagonal region (or upper band for small dy) in
the graphs of figure 18. A typical example is for %= 3.5, dy= 0.75 and `z= 2, and is
presented in figure 21. The beginning of the flow evolution is similar to the case@;
however, the two dipoles consist of two close highly deformed vortices which break
asymmetrically, producing further tertiary dipolar structures. Just before breaking, the
dipoles are closer than in the previous case shown with 1x/r' 0.99 at t= 60.

By increasing the value of % we reach regions of the parameter space where the
hetons are more unstable. For intermediate values of % and `z the dominant mode
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(a) (b)

(c) (d )

FIGURE 22. Flow evolution for antisymmetric finite core hetons with % = 5.5, dy = 0.1
and `z= 2.5 at t= 0, 50, 100, 150. The hetons break baroclinically into four hetons then
move away (label ∗ in table 2).

of the baroclinic instability has an azimuthal wavenumber l= 2, as expected. In this
case the original hetons break into two secondary hetons, in a similar way to how
the symmetric pair of hetons does. The newly generated secondary hetons move away
(at least initially) from the centre of the domain. An example of such behaviour is
presented in figure 22 for %= 5.5, `z = 2.5 and dy = 0.1. Such cases are observed in
the diagonal region in the graphs of figure 18 for small dy only and are indicated by
the symbol ∗. For larger values of dy the configuration is either not unstable enough
or the azimuthal mode l= 3 becomes dominant (cases discussed below). It should be
noted that the subsequent evolution (not shown) can be more complex, with the hetons
eventually changing trajectory and strongly interacting with one another. Similar late
behaviours are observed in the case of the symmetric pair of hetons.

By taking `z smaller than in the last case, the mode with azimuthal wavenumber
l = 3 becomes stronger and each heton initially breaks into three secondary hetons,
that is six hetons overall. Two of them (the largest ones) remain at the centre of the
domain and recombine as dipoles which move away as point vortices would do. An
example is provided in figure 23 with %=5.5, `z=0.5 and dy=0.25. The original pair
of hetons has broken into six hetons by t=50. The two central ones exhibit poles well
separated in the horizontal. They first converge towards one another until the poles
at the same depth recombine as dipolar structures which move away mostly in the
y direction. The secondary hetons originally move away from the centre but exhibit
a more complex later evolution. These interactions are indicated by the symbolA in
figure 18 and are generic to small `z and large %, i.e. the bottom right corner of the
graphs of figure 18. The loss of symmetry in x and y comes from the low-amplitude
numerical noise and the development of turbulence.

Finally, as was the case for the symmetric pair of hetons, the case with % = 5.5,
dy = 0.1 and `z = 0.5 (not presented), corresponding to the most baroclinic unstable
configuration, exhibits a turbulent-like behaviour and is indicated by a ♦ in figure 18.

It should be noted that, in several simulations, the poles of the hetons become tilted
vertically, or elongated asymmetrically at the upper and lower surfaces, and that finally,
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

FIGURE 23. Flow evolution for antisymmetric finite core hetons with %= 5, dy= 0.25 and
`z = 0.5 at t = 0, 12.5, 25, 50, 75, 100, 135.5 and 190. The hetons break baroclinically
into two dipoles and four hetons. The dipoles eventually escape (label 4̄ in table 2).

via filamentation, many fragments are shed from these poles. These fragments not only
have smaller horizontal size than the original hetons, but also shorter vertical scales.

3.5. Comparison between models
We offer here a brief comparison between the results obtained with the point vortex
model and the finite core model. As stated before, the point vortex model is a simple
and computationally efficient model to describe at leading order the trajectory of the
poles of the hetons. The relevance of the point vortex model is all the better as the
poles can be accurately represented by singularities, and therefore are not prone to
deformation modes (Rossby waves travelling on PV contours). Therefore, we cannot
expect the point vortex model to represent any behaviour observed for the finite
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core model when baroclinic modes or horizontal-shear-induced deformations have a
dominant influence. We will not therefore perform a quantitative comparison for such
cases.

On the other hand, when the poles are robust and retain their shape, the point
vortex model may provide a good prediction of the behaviour of the poles. We
have indeed observed behaviour for finite core hetons such as pole escape or reverse,
predicted by the calculation based on the singularities. We know then that qualitatively
the point vortex model is an efficient way to understand the flow behaviour even
in the complex case of finite core vortices. The limits of the point vortex model
reside then essentially in its capacity to model quantitatively the flow induced by
the poles. In the same way that the external flow induced by a Rankine vortex
(cylinder of uniform vorticity) matches exactly the flow induced by a singularity of
the same circulation in two dimensions, one can show that the external flow induced
by a uniform sphere of PV is the same as the one induced by a singularity of the
same strength located at its centre (by means of Gauss’ theorem). If the poles were
non-deforming spheres, their trajectory obtained by the point vortex calculation would
match exactly the trajectory of the finite cores. In this paper we are interested in the
behaviour of hetons in regions of the parameter space where such global behaviour
enters in competition with instabilities. This means in practice that we focus on wide
vortices, with width-to-height aspect ratios typically larger than one (or ρ > 0.5). Such
vortices are not well represented by a single singularity. The influence of the shape
of a vortex on the flow it induces is a non-trivial problem. At leading order, the first
effects of the deformation of a vortex from a spherical shape can be captured by
modelling the vortex by a best fitted ellipsoid. The velocity field associated with the
ellipsoidal volume of the PV is known and is complex. This topic is addressed in
detail in Dritschel, Reinaud & McKiver (2004) and further consideration is included in
Reinaud & Dritschel (2005) and references therein. Reinaud (2015) indeed compared
the translation velocity of hetons at equilibrium with the velocity obtained from
equivalent singular hetons (point vortices of the same strength located at the centre
of the poles). It was shown that the two calculations agree quantitatively, as expected,
when the poles have an aspect ratio close to ρ = 0.5. In this case indeed the poles
are well represented by the singularities. However, the point vortex approximation
overestimates the translation velocity for flatter poles.

We present in figure 24 four results in which we compare the trajectories of finite
core hetons and their equivalent point vortex representation. We only focus on the
situation where the hetons are not subjected to any strong instability. For poles that
are as high as they are wide, which corresponds to ρ= 0.5, the poles are compact and
are well represented by singularities. Trajectories are presented for both a symmetric
case and an antisymmetric case (figure 24a,c). Not only are the trajectories almost
exactly superimposed but the time-dependent locations of the poles are the same.
For wider vortices (two cases with ρ = 1.5), the quantitative comparison between
the trajectories shows that the point vortices have higher velocities then the wider
finite core hetons. Moreover, although the trajectories of the vortices are qualitatively
similar (the vortices indeed escape for the antisymmetric case or reverse for the
symmetric case), we observe a deviation of the trajectories. This difference is due
to the influence of the initial shape of the vortices, as well as the time-dependent
deformation of the finite core poles. In conclusion, the point vortex approximation
is an efficient and accurate tool to predict the qualitative behaviour of the hetons
when the hetons are not subjected to strong deformation associated with vortex
instabilities. It can also predict qualitatively accurately the trajectories of hetons with
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FIGURE 24. Top view of the trajectory of the pole centres for finite core hetons (u)
and point vortices (solid line): (a) symmetric case with ρ = 0.5, `z = 1.5 and dy = 1;
(b) symmetric case with ρ= 1.5, `z= 1 and dy= 0.5; (c) antisymmetric case with ρ= 0.5,
`z = 1.5 and dy = 1; (d) antisymmetric case with ρ = 1.5, `z = 1 and dy = 0.1.

stable compact (vortices as wide as tall) cores. However, as expected from previous
studies of vortices with different aspect ratios, the point vortex model fails to capture
accurately the translation velocities, and, as a consequence, the exact trajectories of
finite core hetons for deformed vortices. Nonetheless, the point vortex approximation
remains an extremely powerful (and fast) tool to investigate the trends for the heton
behaviour, at virtually no numerical cost compared with the finite core analysis.

4. Tall hetons

Reinaud & Carton (2009) showed that in the continuous stratification case where
many vertical modes are allowed, the azimuthal mode l = 1 could be unstable for
an isolated vertically aligned heton. This instability only exists in a small area of
the parameter space, for very small aspect ratio % and small vertical offsets. The
instability is related to the tall-column instability discussed by Dritschel & de la
Torre Juárez (1996). The mode l = 1 makes the columnar vortex bend and oscillate,
by horizontally shifting sections of the vortices. This is especially true in the region
where the two poles are close together. The amplitude of the horizontal shifting
motion is depth-dependent, deforming the vortex in the vertical. In this section we
illustrate the influence of this instability on the fate of the hetons.

We first consider symmetric pairs of hetons. To be unstable to the mode with an
azimuthal wavenumber l= 1 the poles of the hetons must be reasonably close together,
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(a) (b)

(c) (d )

FIGURE 25. Flow evolution for symmetric finite core hetons with % = 0.1, dy = 0.1 and
`z = 0.1 at t= 0, 10, 15 and 25.

and hence have small dy and small `z. Because the hetons are very tall, %� 1, and
typical values of α ∝ % are small. Hence, the expected behaviour is that the hetons
reverse trajectories. The instability makes the horizontal cross-sections of the poles
shift in a non-uniform way along the vertical. The vortices strongly undulate. An
example of such behaviour is presented in figure 25 with %=0.1, dy=0.1 and `z=0.1.
During the interaction the poles only shed a small amount of debris. In that sense,
the interaction is not destructive. However, the oscillations of the poles are extremely
large.

All antisymmetric pairs of hetons recombine as expected and the same-depth
dipoles formed escape perpendicularly. This remains the case for very tall vortices.
However, again these can be unstable to the azimuthal mode l= 1. The case %= 0.1,
dy = 0.1 and `z = 0.1 is illustrated in figure 26. The poles of the hetons move as
the dipoles oscillate from their vertical axis. After separation, the two poles undulate
quasi-periodically. Again, the interaction is not destructive but induces an oscillating
deformation on the vortices. These two cases appear to be generic in this region of
the parameter space.

5. Conclusion
The paper has addressed the head-on collision between two continuously stratified

quasi-geostrophic hetons. The hetons are baroclinic structures consisting of two
opposite strength vortices lying at different depths. The hetons are initialised such
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(a) (b)

(c) (d)

FIGURE 26. Flow evolution for antisymmetric finite core hetons with % = 0.1, dy = 0.1
and `z = 0.1, at t= 0, 10, 15 and 40.

that they initially translate towards each other. Two cases are possible depending on
the vertical locations of the different poles: the poles of the different hetons lying
at the same depth being of the same sign or of opposite sign. We referred to the
first case as symmetric hetons and the latter case as antisymmetric hetons. We first
investigated the flow using the simplified point vortex approach. In the symmetric
case the behaviour depends of the ratio of the vertical separation distance 1y to the
vertical one 1z through the influence of the two poles of one heton on the poles
of the other. If 1y < 1z, the hetons reverse trajectory by reversing their poles. In
the other case, the poles of the hetons recombine and two new hetons are formed
escaping almost perpendicularly. In the case of an antisymmetric pair of point vortex
hetons, the global behaviour no longer depends on the distance ratio. In all cases,
the poles of the original hetons recombine as horizontal dipoles consisting of the
opposite vortices of the hetons lying at the same depth. We confronted this simplified
dynamics to the one of more realistic finite core hetons, in particular in terms of
vortex trajectories. When the hetons have a finite volume, they may be sensitive
to instabilities. First, an isolated heton may be baroclinically unstable in isolation.
This instability affects wide hetons whose poles are not much separated in either
the vertical or the horizontal. The azimuthal wavenumber of the most unstable mode
depends on the pole aspect ratio and separation, wider vortices favouring higher
modes. This is not the only instability that can affect the flow. The poles of the
different hetons can strongly interact with one another. In the case of symmetric
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hetons, because the poles of the hetons lying at the same depth have the same PV
they may merge (at least temporarily). On the other hand, in the antisymmetric case,
the poles of the hetons lying at the same depth have opposite sign. While they
cannot merge, the dipoles can undergo a destructive interaction. All of these effects
compete in the actual time evolution of the flow. We were able to characterise the
evolution in each case and to explain the various behaviours in the different regions
of the parameter space investigated. The finite core hetons only act in a way similar
to point vortices if they are not affected by instabilities. For baroclinically unstable
hetons, the outcome of any further interaction depends on the mode of instability
breaking the hetons (mode with azimuthal wavenumber l= 2 or l= 3 in the present
study). Occurrences of vortex merger (for the symmetric case) and opposite-signed
destructive interaction (for the antisymmetric case) have been observed. These are
made possible if the vortices lying at the same depth can get close enough and for
long enough. That is, if the underlying dynamics associated with the global motion
of the poles does not make the poles move apart too rapidly or if the poles are
not still part of a baroclinically unstable heton. Finally, we recover that tall hetons
are sensitive to the baroclinic mode corresponding to the azimuthal wavenumber
l = 1. This instability would not be observed in a three-layer model as it requires
deformation in the vertical of the poles of the hetons. Although the instability does
not lead to destruction of the poles, it induces on them a large-amplitude undulation
motion with respect to the vertical axis.

Now, drawing general conclusions from this study, we see that first, the point
vortex approach, which is computationally cheap, is accurate for distant and small
hetons. This method can predict the trajectory of such hetons. Second, we note
that interacting hetons can break horizontally or vertically; these processes are well
simulated here due to the high 3D resolution. Thus, heton interaction can transfer
not only enstrophy (via filaments) but also energy (via vortices) towards smaller
scales. Furthermore, when smaller hetons are formed, they appear robust (contrary
to filaments which usually dissipate). Therefore, energy can remain at these smaller
scales. Further studies would be necessary to see whether these small hetons can
further interact, and how. Moreover, the number of small hetons formed is often
dictated by the most unstable contour mode on the original hetons. Vertically, tall
hetons can break, and therefore transfer energy towards more isotropic structures
(contrary to the usual barotropisation of vortices, which dominates the final stages of
free decay, geostrophic turbulence on the f plane and over a flat bottom). Clearly,
the problem investigated has a large number of symmetries. Not only do the hetons
consist of equal volume opposite PV vortices but they initially translate along the
same axis. Bringing asymmetries to the problem, adding more parameters, will permit
us to exhibit richer and more complex global behaviour. For example, a simple offset
between the two hetons, while even retaining their translation axis parallel, brings a
large number of different possible trajectories for the individual poles. The addition
of a beta effect is also important for geophysical applications. It should be noted
that simple simulations of heton collision on the beta plane have been performed to
analyse observations at sea (L’Hegaret et al. 2014).

Obviously, a comprehensive study of heton interaction is out of reach; however,
some specific regions of the parameter space may be of particular interest. This will
be the subject of a forthcoming study.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

42
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.422


176 J. N. Reinaud and X. Carton

Appendix A. Stability of the four-point vortex equilibrium
Consider the equilibrium for the symmetric case where −κ1 =−κ4 = κ2 = κ3 = 4π

and 1x = 1y = 1z. We can set 1z = 1 without loss of generality. We analyse
the behaviour of infinitesimal perturbations on the location of each of the point
vortices i in the horizontal direction. The perturbations are taken in the form
(x′i, y′i)= Re((x̂i, ŷi)elt), where Re stands for the real part and l is a complex number.
The real part corresponds to a growth rate and the imaginary part to a frequency. We
linearise the equation of motion of each singularity,

dxi

dt
= ui =

∑
j6=i

κj

4π|xi − xj|3
(−(yi − yj)

xi − xj

)
, (A 1)

about the equilibrium, giving

l



x̂1
x̂2
x̂3
x̂4
ŷ1
ŷ1
ŷ2
ŷ3
ŷ4


= 1

2
√

2



− 3
2 0 0 3

2 −1 − 1
2 1 1

2

0 − 3
2

3
2 0 1

2 1 − 1
2 −1

0 3
2 − 3

2 0 −1 1
2 1 1

2
3
2 0 0 − 3

2
1
2 1 − 3

2 −1
1 −1 1

2 − 1
2

3
2 0 0 − 3

2

1 −1 1
2 − 1

2 0 3
2 − 3

2 0
− 1

2
1
2 −1 1 0 − 3

2
3
2 0

− 1
2

1
2 −1 1 − 3

2 0 0 3
2





x̂1
x̂2
x̂3
x̂4
ŷ1
ŷ1
ŷ2
ŷ3
ŷ4


. (A 2)

The modes l are solutions of the characteristic equation for the eigenvalues,

l6(l2 − 9)= 0. (A 3)

There is therefore one real positive eigenvalue (l= 3) corresponding to an unstable
mode.

Appendix B. Vertical shear
In this appendix, we analyse the vertical shear induced by the vortices j = 2, 3, 4

at the location of the pole i= 1 within the point vortex approximation. For the shear
induced by a vortex j on i and denoting dxij= (dxij, dyij, dzij)= (xi− xj, yi, yj, zi− zj)
and rij = |dxij| we have

∂uij

∂zi
=−3

κj

4π

dyij dzij

r5
ij

, (B 1)

∂vij

∂zi
= 3

κj

4π

dxij dzij

r5
ij

. (B 2)

B.1. Symmetric case
By summing and keeping only non-zero terms, and with κ =±4π we obtain

∂u
∂1z

(x1)=−3
1y1z

(1y2 +1z2)5/2
, (B 3)
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where the vertical shear along x induced on pole 1 is solely generated by pole 2, and

∂v

∂1z
(x1)= 3

1x1z
(1x2 +1z2)5/2

, (B 4)

where the vertical shear along y is generated by pole 4 alone. Here, 1x, 1y and 1z
are as defined in figure 1.

Because of the singularity at the origin, the only extremum is at the origin, which
is meaningless. There are no other local extrema. However, one may look at extrema
with a given constraint. For example, for 1z fixed, the function becomes one of one
variable with local extrema at 1x, 1y=±1z/2. Indeed,

∂

∂1x

(
1x1z

(1x2 +1z2)5/2

)
= 1z

(
1

(1x2 +1z2)5/2
− 5

2
21x2

(1x2 +1z2)7/2

)
= 0

⇒ 1z2 − 41x2 = 0. (B 5)

Since 1z is fixed during the time evolution of hetons, this provides an upper bound
for the maximum shear accessible in the flow. It does not imply that such a shear is
reached in practice.

On the other hand, letting θ = tan−1(1z/1x) and ρ = √1x2 +1z2, so that x =
ρ cos θ , z= ρ sin θ , we obtain

∂u
∂1z

(x1)=−3
1x1z

(1x2 +1z2)5/2
=−3

2
sin 2θ
ρ3

. (B 6)

For ρ fixed, the maximum is for θ =π/4, hence 1z=1x, and similarly for ∂v/∂z.
Dynamically, the maximum vertical shear would be experienced with the constraint

that the Hamiltonian of the system H = const., which simplifies as

1√
1x2 +1y2

− 1√
1x2 +1z2

− 1√
1y2 +1x2

= const. (B 7)

The extremum could be determined using Lagrange multipliers, or alternatively the
value can be monitored during the time-dependent evolution of the point vortices. In
that case the initial conditions set the constant value of the Hamiltonian. An example
of shear values versus time is presented in figure 27. The figure shows the time-
dependent shear around vortex 1. We ignore the sign of the shear and only focus on
the magnitude in all cases but one. Indeed, the sign of the shear is constant except
for ∂u/∂z in the trajectory reversal scenario. In that case 1y changes sign during
the reversal. The thin solid line represents ∂u/∂z while the thick solid line represents
∂v/∂z. We illustrate the evolution for two cases. One corresponds to a reversal of
trajectory, the other one to an escape of the hetons. For the reversal we take at t= 0,
1x= 5, 1y= 0.75 and 1z= 1 (α= 0.75< 1). This case is illustrated in figure 27(a).
Here, ∂u/∂z becomes zero then the two poles overlap during their reversal (1y= 0).
This also corresponds to the smallest value of 1x reached. This value is 1x ' 1.2.
In this case we are in the part of the curve ∂v/∂1z for 1z fixed where the function
increases as 1x decreases. The critical point for ∂v/∂1z, a maximum, corresponds
to a critical value of 1x, 1xc = 0.51z, far smaller than what can be reached in this
situation. Hence, the extremum observed corresponds to the minimum value of 1x
rather than a critical point for the function ∂v/∂1z. On the other hand, we see that
the shear ∂u/∂x reaches local extrema at the critical points 1yc=±1z/2, as expected
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FIGURE 27. The shear experienced by pole 1 versus time for a symmetric pair of point
vortex hetons with, at t= 0, (a) 1x= 5, 1y= 0.75, 1z= 1 and (b) 1x= 5, 1y= 1, 1z=
0.5. The thin solid line represents ∂u/∂z while the thick solid line represents ∂v/∂z.

for 1z fixed. Indeed, here we start the simulation from 1y(t= 0) >1yc = 0.51z and
1y decreases monotonically during the flow evolution. This means that we do reach
the critical point for the shear as 1y decreases. First we reach it at 1y= 0.5=1z/2,
then we reach the second extremum at 1y=−0.5=−1z/2.

Figure 27(b) illustrates the case starting from 1x= 5, 1y= 1 and 1z= 0.5 (α =
2> 1), where the hetons recombine and escape. In this case, 1y(t= 0) >1yc=1z/2,
and the dynamics of the hetons makes them separate further apart in the y direction.
Therefore, the critical point for ∂u/∂z is never reached. Moreover, in this case, 1x,
1y and 1z are never zero, hence the shear never exactly equals zero. However, the
limit of the shear ∂u/∂z when 1y→ 0 is 0. The same is true for ∂v/∂z and 1x. The
two other finite non-zero limits correspond to finite non-zero limits for 1x and 1y
and are not associated with critical points. In this case, the maximum vertical shear
is obtained within each heton, the hetons being well separated from one another.

B.2. Antisymmetric case
We next turn our attention to the shear about pole 1 for the asymmetric case. We
obtain

∂u
∂z
(x1)= 31y1z

(
− 1
(1y2 +1z2)5/2

+ 1
(1x2 +1y2 +1z2)5/2

)
, (B 8)

which stems from the mutual influence of vortices 2 and 4, and

∂v

∂z
(x1)=−3

1x1z
(1x2 +1y2 +1z2)5/2

, (B 9)

which comes from vortex 4 solely.
Now, both functions are functions of three variables. Again, dynamically the

maximum shear experienced by the vortex would be with the constraint H = const.,
which simplifies to

1√
1x2 +1y2 +1z2

− 1
|x| −

1√
1y2 +1z2

= const. (B 10)
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FIGURE 28. The shear experienced by pole 1 versus time for an antisymmetric pair of
point vortex hetons with, at t= 0, (a) 1x= 5, 1y= 0.5, 1z= 1 and (b) 1x= 5, 1y= 1,
1z= 0.5. The thin solid line represents ∂u/∂z while the thick solid line represents ∂v/∂z.

The time evolution of the shear in the case 1x= 5, 1y= 1 and 1z= 0.5 is shown
in figure 28(a) and for 1x=5, 1y=0.5 and 1z=0.5 in figure 28(b). The initial value
of the shear is set by the initial separations between the poles. For very large values
of 1x, ∂v/∂1z is very small (as it is divided by a term of order 1x4). In the late
evolution of the flow, the hetons have recombined into two dipoles at the same depth.
The dipole itself does not induce a vertical shear on itself as the poles are aligned
horizontally. The shear still comes from the poles of the other dipole at a different
depth but these poles are moving away. Moreover, the global strength of the dipole
is zero, hence the influence decreases rapidly. As a consequence, both shears tend to
zero as 1y→∞. We see that the shear ∂v/∂1z reaches a local maximum in both
cases. We recall that this maximum is subject to the constraint that the Hamiltonian
is conserved and is not necessarily a critical point for the shear. In particular, we note
that ∂v/∂z is monotonically decreasing with 1y. The maximum in the first case (a)
is obtained at t= 5.09 with 1x' 1.51, 1y' 0.94 and 1z= 1, while for the second
case (b) it is for t= 2.81, 1x' 1.51, 1y' 1.28 and 1z= 0.5. For ∂2u/∂1x∂1z= 0,
we have 1y2− 41x2+1z2= 0. This is not true for both cases. Hence, the maximum
reached does not coincide with a critical point in these cases, but is only the maximum
value reached along this particular trajectory (set by the value of H ). Again, the
maximum shear is obtained for well separated hetons.
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