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By M. MErz AND M. V. WUTHRICH

ABSTRACT

In Buchwalder et al. (2006) we revisited Mack’s (1993) and Murphy’s (1994) estimates for the
mean square error of prediction (MSEP) of the chain ladder claims reserving method. This was
done using a time series model for the chain ladder method. In this paper we extend the time
series model to determine an estimate for the MSEP of a portfolio of N correlated run-off
triangles. This estimate differs in the special case N = 2 from the estimate given by Braun (2004).
We discuss the differences between the estimates.
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1. MOTIVATION

There are several different stochastic models which justify the chain
ladder algorithm for claims reserving. The most popular ones are Mack’s
(1993) chain ladder model, the overdispersed Poisson model (see Renshaw &
Verrall, 1998; Verrall, 2000) and Bayesian models (see, ¢.g., Gisler, 2006).
All these different models give the chain ladder estimate for the claims
reserves, however (due to their differences) they lead to different estimators
(and values) for prediction errors.

In this paper we consider the claims reserving problem for several
correlated claims reserving triangles. We study this multivariate claims
reserving problem within the framework of a multivariate time series
model for the chain ladder method. This generalises the univariate time
series model for the chain ladder model studied in Buchwalder et al
(BBMW) (2006). We have seen in Buchwalder et al. (2006) that there are
different approaches for estimating the mean square error of prediction
(MSEP) in Mack’s (1993) univariate chain ladder model (unconditional
and conditional approaches). Depending on the approach chosen, one
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26 Prediction Error of the Chain Ladder Reserving Method

obtains different estimators for the MSEP. In BBMW (2006) we applied
the conditional approach, which has led to estimators for the MSEP which
differ from Mack’s (1993) results. Moreover, we saw that Mack’s (1993)
formula is a linear approximation from below to BBMW’s formula (2006). In
most practical examples the resulting estimates (Mack (1993) and BBMW
(2006)) are very close to each other, which means that it is sufficient to
consider the first terms in the Taylor expansions to get the range of possible
estimation errors (see, also, Wiithrich et al., 2006).

The aim of the present article is to extend the MSEP estimate from the
univariate chain ladder model to the situation of several correlated run-off
triangles. As a result of our extension, we obtain an estimate for the MSEP
for aggregated claims reserves of several correlated run-off triangles. Our
MSEP formula is compared to Braun’s (2004) MSEP result, which is the
bivariate extension of Mack’s formula (see Section 5).

Our studies are motivated by the fact that, in practice, it is quite
natural to subdivide a non-life run-off portfolio into several subportfolios,
such that each subportfolio satisfies certain homogeneity properties (in our
case the chain ladder assumptions). The total reserves are then obtained
by the aggregation of the reserves from the single subportfolios. The
calculation of the resulting MSEP of the total portfolio is then quite
sophisticated if the subportfolios are correlated. In this work we treat such
questions precisely. Hence, our work is one step towards the aggregation of
different subportfolios. However, we should also remark that, in practice,
one often uses different reserving methods for different subportfolios. It
remains a challenging open problem to estimate an overall MSEP for
aggregated subportfolios (if we use different claims reserving methods in
the subportfolios).

An alternative idea for calculating aggregated reserves and their
uncertainties is that one only calculates the reserves and their uncertainties
on the aggregrated run-off triangle; but one should pay attention to the fact
that, if the subportfolios satisfy the chain ladder assumptions, then the
aggregated run-off triangle does not necessarily satisfy the chain ladder
assumptions (c.f. Anje, 1994). Henceforth, this is not a promising solution to
the claims reserving problem on aggregated subportfolios.

2. CLAIMS DEVELOPMENT TRIANGLES

Assume that we have N > 1 run-off triangles. Figure 1 shows the
structure of the run-off triangles (claims development data).

For simplicity, we assume that the number of accident years is equal to
the number of observed development periods, i.e. I = J. In these triangles the
variables:
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Accident Development years j
year % 1 2 3 4 5 ... 3 . J
1
2 realisations of r.v. Xi(;’-)
: (observations)

-

I-2 )?Z(’;) = predicted quantities for Xi(z)
I-1

Figure 1. The structure of the run-off triangles

n, 1<n<N, refertosubportfolios (triangles)
i, l1<i<lI, refertoaccident years (rows)
j, 1<j=<J, refertodevelopment years (columns).

Usually, at time I, we have observations:

() (n)
DI = {X[_j

l<i<I and 15]‘51—1'—1—1} 2.1

for all N subportfolios. This means that at time I (calendar year) we have
observations D" (n=1,...,N), and we need to predict the random variables
in its complement:

D = CJ {Xﬁj?

n=1

l<i<I and I—i+1<j}. 2.2)

Here the entries Xﬁ,"j) denote incremental quantities, and may be interpreted
as: (a) on a paid claims basis; (b) on an occurred claims basis; or (¢c) number
of newly reported claims. Cumulative quantities are denoted by:
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c) = Z x®. (2.3)

=1

In the following, to simplify our language, X('}) and CV i, always refer to
payments.

3. CHAIN LADDER ESTIMATE AND MSEP

The cham ladder method is based on cumulatlve quantities C".
Increments X|} can easily be derived from X\ = C{} — C{".,.
3.1 Chain Ladder Algorithm

Often the chain ladder method is understood as a purely mechanical
algorithm to estimate claims reserves. For triangle n e {l,. N} the
algorithmic def1n1t1on of the chain ladder method at time I (1 e. given the
observations D" ) reads as follows:

(1) There are constants f" (I=1, —1) so that for all i and
j>I—i+1:
Cl =l Sl Sl S (3.1)
is an appropriate predlctor for C
(2) The chain ladder factors /" (age- to age factors) are estimated by:

I=1 ~(n) I-l ) )
ji(n) _ Z: 1 Cz I+1 Z C . G, I+1 (3 2)
I (n) - ) (n) :

S = S Ci

where:

Sy Z ot (3.3)

It is to Mack’s (1993) credit that he first gave a stochastic model which
satisfies the chain ladder algorithm, and for which he estimated the MSEP.

3.2 The Chain Ladder Consistent Time Series Model for Several Correlated
Run-Off Triangles

Braun (2004) extended Mack’s (1993) method to the multivariate case, in
order to estimate the MSEP of the chain ladder method for several
subportfolios simultancously. In this paper we choose a different route, and
enlarge our time series framework to N correlated development triangles.
Within this framework, we derive an estimate for the MSEP according to the
conditional approach described in Buchwalder er al. (2006). The resulting
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formula differs from Braun’s formula (2004). The discussion in Section 5
highlights the differences.

Model assumptions 3.1 (Multlvarlate chain ladder time series model)

There exist constants f,”, 6\” > 0 such that, for all 1 <n<N, 1<i<I
and 2 <j < J, we have:

ORI O] (n) .
(T1) Ci,j =Jj-1-° Czlj—l ’ Cz, 1785
with:
(T2) different accident years i are independent, and eg;;
independent if i # k or j # [;

(T3) E[¢f}] = 0 and Var(e <”>) E[(¢)] = 1; and
(T4) Cor(el}, &) = E[el] - &7'] = pi"” € [1, 1],

1]»

(m) ()

and ¢, are

For more technical details we refer to Wiithrich ez al. (2006).

(n)
i

Corollary 3.2.  Under model assumptions 3.1, {C;;
with:
(P1) different accident years of one or of distinct triangles are independent;

(PZ) E[c(”) Cg’;) l] f(”) (”) .

1] 1
(P3) Var[C{)|C"\] = (o (n)) " - and
(P4) Cov[C}}

ij— 15
ijo

(m) (1) (m) (n) (n) (m) (n m)
C |C1/ 1y k/ 1] O- O-/ Cl] 1 Cl] 1 l(i:k]'

., are Markov chains,

Observe that (P1) — (P3) are the classical Mack (1993) properties extended
to several run-off triangles.

Lemma 3.3. Under model assumptlons 3.1, we have that 7(") (given in (3.2))
is (conditionally) unbiased for f ,” Moreover T( and?} are uncorrelated for
I # k, and

(n) (”) 7(n) “2(n) “A(n)
Ci,.l - —i+1 " JI—i+1 " JI1-i42 © - - - " JU-1 (34)

is an (conditionally) unbiased estimator for E[C(") - 1]

Proof. The proof is similar to the one for Theorems 1 and 2 in Mack
(1993).

3.3 Conditional Mean Square Error of Prediction
We define the set of total information up to time I by:

N

D, =D (3.5)

n=1
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Lemma 3.3 gives unbiased predictors for the ultimate claims. Our goal is to
study the conditional mean square error of these predictors. The conditional
MSEP is defined as follows (see, e.g., Mack (1993), Section 3):

Definition 3.4 ( Conditional mean square error of prediction)

MSEP( > Zc('”) (Z Zc(” Z Zc('”) D, |. (3.6)
i=[+2—J n=1 i=14+2—J n=1 i=142—J n=I

Observe that the predictors C") are D,-measurable, hence a constant in the
conditional expectation considered in (3.6). Therefore the conditional MSEP
decouples into the conditional process error and the conditional estimation
error (see also Mack (1993), p217). Notice that this is different from
unconditional MSEP considerations (see, e.g., England & Verrall, 2002). Here
we have the following (strict) equality for the conditional MSEP:

MSEP( XI: i@ﬁf}) Var( > Zc(”) )
i=I+2—J n=1 i=I+2—J n=1
(X xe-g 3 v

i=[+2—J n=1 i=I+2—J n=1

D 6

The first term on the right-hand side of (3.7) is the conditional process
variance and the second term on the right-hand side of (3.7) is the
conditional estimation error. In Section 4 we derive estimators for these two
terms, which give Result 3.5.

Result 3.5. For N correlated run-off triangles we have the following
estimator for the conditional MSEP for the ultimate loss of aggregated
subportfolios and accident years:

M’STEP( > Zc"”) Z MSEP(Z c“”)

i=I+2—J n=1 i=I4+2-J

20 > Y Gl Gl ALY (G3)

14+2—J<i<k<I 1<n,m<N

where the conditional MSEP for the ultimate loss of aggregated subportfolios
for a single accident yeari e {I +2 —J,..., I} is given by:
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MSEP (Z C“”) Z MSEP(C!")

n=1
+2. ) (r““") ClY s~ Cllit - A")  (3.9)

l<n<m<N

and where the conditional MSEP for the ultimate loss for a single accident
year ie {I+2—J,...,I} and a single subportfolio n € {1,..., N} is given

by:
MSEP(C{)) = TV} + (C1) 1) - AL (3.10)
with:
J-1 ) ) 1)
e =cn.on. Yy 2 h (3.11)
I=—i+1 /C(n) C(m) ’f\(n) ’f‘-(m)
) _ T (Form 4P Gt . ) ol T S
wy =TT (77«50 Gam oyenet) - 177 o2
I=I—i+1 I=I—i+1

The estimators 6" and p"" for the variance parameters ¢\" and the
correlation parameters p|"" are provided in the next subsection. Formulae
(3.9) and (3.10) are derived in Result 4.2 and formula (3.8) is derived in

Result 4.3.

Remarks 3.6
— From (P4) we obtain:

c " (n) (m)
Cov 'Xn) s l(’m, G J—1» Ci,j—l
(n,m) vV Li./’—l C: j—1 3 13
=1 m_(m (3.13)
Oj-1 " 0j-1

This means that the correlations between the individual development
factors are:

W
C G Gl
Of o o

ij—1

cly, Cy 1] = pi" ", (3.14)

ij—1

This dlffers shghtly from Braun’s (2004) covariance notations. Indeed,
the p!""" used in Braun (2004) is not a correlation, but:
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(n,m),B (n,m) (n) (m)
Pi-1 = Pj-1 01+ iy (3.15)

Otherwise, the model assumptions in Braun (2004) are (P1) — (P4).
— Our estimate in Result 3.5 differs from the one given in Braun (2004).
The differences are analysed in Section 5.

3.4 Estimation of Model Parameters
Our extended time series model specified by model assumptions 3.1 has
the parameters:

o and 66, and pM L0 (3.16)

for 1 <n < m < N, which we have to estimate. To estimate the chain ladder
factors f, @ we use the standard formulaze (3.2) - (3.3). The appropriate
(unbiased) estimator for the variance ( ™ ) 2 <j<J,is given by (see Mack
(1993), p217):

. 2
g C(n')
~(n) (n) ij n)
( 171) - I —j i Ci,j—l : (C(,,) _ﬁ1> . (317)

In fact, the proof of the unbiasedness is a straightforward calculation using
the model assumptlons There remains to give an estimator for the correlation

coefficient p"}". If ¢\"” and ¢\") are known, then the following estimator is an
unbiased estimator for pi

I—j+1 (n) (m) (n) (m)
~mnm) - CU 1 C'/ 1 C;ﬁ “(n) CZT “(m) 3.18
Pji-1 =6+ E : o _m -~ f/ “\ = —Ji (3.18)

=l 0j-1°0j C

ij—1 ij—1

where:

m 172 :
1 (e cn))
2 . (3.19)

Ty 1.2 and wi = (n) (m)
T—j— 14w / S .S

C/-=

For the proof of the unbiasedness we refer to the Appendix.
Hence, a sound estimator for the correlation coefficient p;”
by (2 <j<J):

" s provided
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—~(nm) VG G () ) C s

n,m _ e e L] n LJ m

Pi-1 =6+ Z —n =~ \ A —fi |- ) —fi (3.20)
i=1 Oj—1°0j_1 Ci,j—l ij—1

for n # mand p\"’ = 1 for n = m.

Remark 3.7. Note that, in general, we are not able to estimate ¢, and

pY"" from the data and from (3.17) and (3.20). This is due to the lack of data
in the tails. This means that the tail parameters (and tail chain ladder
factors) cannot be estimated appropriately from data. There is a whole
philosophy about estimating tail parameters. We do not want to enter this
discussion here, but we simply extrapolate the last parameters by exponentially
decreasing series (see Mack (1993) p217 and formulae (6.1) - (6.2)).

4. DERIVATION OF THE MSEP ESTIMATE

In this section we derive the estimators for the conditional MSEP which
are given in Result 3.5.

4.1 MSEP for Single Accident Years R R
As usual, the conditional MSEP of the sum C) + C{} can be split
into two parts: (a) the stochastic error (conditional process variance);

and (b) the conditional estimation error (c.f. Mack, 1993, Section 3). We
assume, in this section, that j +i > I + 1, hence we consider:

MSER(C) + ) = B[ (€7 + 8 - (¢ + )| 2
2
]) ||

oy —~ 2
+(c§.?}> + O E[C,ﬁ’}) +C| D,D . (4.1)

= E[(Cff) + C,(-Z?) — E[Cf’}) + CE.T)

= Var(C{} +CJ | D))

Note that, because of the D;-measurability of /C\f”;) + 65'7)’ we have an exact
equality for the conditional MSEP in (4.1).

The conditional process variance Var(C{} + C{}' | D,) originates from the
stochastic movement of the processes, whereas the conditional estimation
error reflects the uncertainty in the estimation of the expectations (mean
values). We derive estimates for both the process variance and the estimation
error for N correlated run-off triangles. For a quick reference to the
relevant formulae for the different error terms, see Table 1.
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Table 1. Estimators of conditional process variance, conditional
estimation error and conditional MSEP for N correlated run off triangles

N correlated triangles

Single Conditional process variance 4.7)

accident Conditional estimation error (4.22)
years Conditional MSEP (4.23)
Aggregated a.y. Conditional MSEP (4.32)

4.1.1 Conditional process variance for a single accident year

The derivation of an estimator for the conditional process variance is
straightforward, because all terms can be calculated explicitly. For the
univariate case we refer to Mack (1993, Theorem 3) or England & Verrall
(2002, Appendix 1).

For the conditional process variance in formula (4.1), we obtain:

Var[Cl) + €' | D] = Var| € | D, ] + Var[ €' | D, | + 2 Cov[ €17, 17| D,
4.2)

forl<i<lLI—i+l<j<Jandl <nm=<N.
Using (P2) and (P4) we obtain the recursion:

Cov[Cl}, CIJ'ID;] = Cov(E[CY} | G ] E[C | €L | D))
+E[Cov(C, €' | €L, €L | D]

f(n) f(m) COV[CE);) . C('n)1 }D ]

(n) (m) (n) (m)
+ 01 1° O-j_ * E[ Cij—l M Ci,j—l

DI] p(4.3)

j—1

for the conditional covariance term in formula (4.2). From this we deduce
recursively the estimator:

Cov[C, €| D] =7 -1 - Cov[CilLy, €1 | D]

~(n) A(m) (n) A(m)  ~(n,m)
+Gj1 g1 ij—1" Cljl /1 (44)

for the conditional covariance term COV[C(") cy |D;] (see also Remarks 4.1).

ijo
With the definition:

re” = Cov[c)

ij s

| D) (4.5)
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this can be rewritten in a recursive form:

(n,m) n)  plm) (n,m) ~(n) ~(m) (n) “(m) ~(n,m)
O =f5 o Tt + 00 0,5 - il - Gz - i (4.6)
with TV%" l)ﬂ =0, or, in an explicit form, this gives (3.11).

Henceforth, putting all estimates together, we obtain from (4.2) and (4.6)
the following recursion for the estimator of the process variance of N

correlated triangles:

N N
vAar[Zcf.y D,}:Z@[CEND,]-{-Z. Y Govc. | D

n=1 n=1 l<n<m=<N

_Zr<”")+2 > 4.7)

I<n<m<N

Remarks 4.1

— Notice that, for one single run-off triangle (univariate case N = 1), we
have exactly the well-known estimator for the process variance (see, e.g.,
England & Verrall, 2002, Section 7.5.4).

— The estimator for E[ Cf",)l f",” .
Indeed:
D,}

:Cov[,/cﬁf})1,,/c§,’;”1 D,}+E[,/C§f})1 D,] [ ),

We could replace the estimate in (4.4) by an upper bound for the term
in (4.8) (using Jensen’s inequality):

) 1/2
p] < E[ci | 2]

= (Cov[Cl),, C\ | D]+ E[CVL, | D] - B[ | D). 4.9)

D,} given in (4.4) is not unbiased.

(1) (m)
E|: Cl J—1 Cl J—1

,] (4.8)

(n) (m)
E[ Cij1 - Cijma

Hence, in that case the recursion (4.6) is replaced by:

l—‘(n ) ﬁn) }‘(m) 1—‘13 ml) +A(n) 'A(m) . \/F(nm + C(n) . C(m) /p\j(n ) (410)

ij—1 ij—1"

with T ﬁ",'",) +1 = 0, and we obtain an estimation for an upper bound on the
conditional process variance. Observe that this difficulty is not further
commented on in Braun (2004).
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4.1.2 Conditional estimation error for a single accident year

The conditional estimation error for two aggregated run-off triangles n
and m is given by the last term on the right-hand side of formula (4.1). Before
we derive an estimator for this term, we discuss the difficulties in the
derivation of an estimator for the conditional estimation error (this is similar
to Buchwalder et al., 2006). If we have one single run-off triangle, the
conditional estimation error for j > I — i+ 1 is given by (see formula (4.11) in
Buchwalder et al., 2006):

(C —E[CY D)) = (Ci) (s T =S f5) (@11)

Observe that the realisations ﬁ(") are known at time t = I, but (of course)
the true chain ladder factors f’ 5”) are unknown (otherwise we would not need
to estimate them). Hence, the right-hand side of (4.11) cannot be calculated
explicitly, and needs to be estimated using an appropriate technique. The
chain ladder model allows for different approaches to estimate the right-hand
side of (4.11), and most of them try to estimate the possible fluctuations
of the estimators ?( around the true values fI”. Such methods involve
resampling techniques (e.g. non-parametric bootstrap methods (see England
& Verrall, 2002), closed analytical techniques (see, e.g., Mack, 1993), upper
and lower bounds (see, e.g., Wiithrich ef al., 2006), etc.). In the present work,
we derive a closed analytical estimate which is based on the conditional
approach described in Buchwalder et al (2006). This closed analytical
estimate can also be interpreted as a parametric bootstrap method, for which
we can calculate the resulting estimators exactly. Henceforth, we use the
terminology ‘resampling’, though we are able to calculate all terms in a
closed form.

For the estimation error in formula (4.1) we obtain the following
decomposition (i+j > I + 1):

(€ + T B[ + ¢ D))
n n m m 2
= (€ —E[C} | D)) + (T - E[C | /]
+2.(CY—E[C? D)) - (CP —E[C?|D)]). (412

Using (P2) from Corollary 3.2 we have the representation:

(€ B[} | D)) - (€ ~ E[C| D))
CSHI) e @(ﬁ)iﬂ T Z(f; - I(E)Hl .t j(n;)

(m) ) “2(m) (m) (m)
SO (T = ). (4.13)
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As described above, we are not able to calculate the rlght hand side of
(4.13) explicitly, because the true chain ladder factors f are not known.
Therefore, we study the volatility of the estimators f around the true values
11 to get a reasonable range for the sizes on the right-hand side of (4.13).
We therefore apply the conditional approach technique presented in
Buchwalder et al. g 006). This technique Proposes sample new
observations f for f, , given the observations S, (cond1t1ona1 resampling).
This means that the development perlod lin the time series is resampled at a

time, based on the known volume S\”, for [ = A
Note that the observed chain ladder factor estimators satisfy (see (T1)
and (3.2)):
(n)l I—j+1
=+ S’@ pBRVACTARE S (4.14)
Now we generate a set of ‘new’ observations for "}, as follows. Set:
(n) I—j+1
=+ S(,,) Y VO E] (=nsN2<j<J) (4.15)
j—1 i=1
with:
(’ayfl)) =1,...,.N,i=1,..., 2.0y Jindependent Copy Of (Pf';))n 1,...N,i=1,...,1j=2,....J (416)

Observe that we have the following distributional equalities for the
conditional distributions (j =1,...,J —landn=1,..., N):

T, LTOUC A <m<N,1<i<I1<I<j)
C7fc 1 =m<N1<i<1=<l<j}. (4.17)

This means that, given D,, the random variable f, has the same dlstrlbution
as the observed estimator 7’7 , cond1t10ned on all observations C!; before
time j+ 1. Therefore, we use f for deriving an estimate for the right-
hand side of (4.13).

Given D,, the random varlable 5 7 satisfies:
(1) the random variables f R 7" are conditionally independent given D,;
(2) 7 and ?('") (n # m) are conditionally independent given D, if j # I;

3) E[[" | D))=/  forl<j<J;

) ()2 (U;z)l) :
) E[ ) |D1] = ,;1) + S(n) forl <j<J;
-1
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) E[f" - D) =111 forl<j<Jifj+#1land

(m) —j+l1

)
10
(6) B[ 15 [ D] =5 S5 + it DY ClL g
i=1

Sn) 5™
j=17j-1

forl <j<J.

In fact (1) and (2) are the crucial steps, which differ from the MSEP
derivation of Braun (2004) (Braun uses only the conditional uncorrelatedness
of the f; ")) Using this conditional resampling technique we obtain conditional
independence (see (1) and (2)), which leads to a product structure of the
conditional estimation error. This product structure is the same as the one
derived by Murphy (1994), however it is based on different arguments. (For a
discussion we refer to Buchwalder et al. (2006); Mack et al. (2006); Gisler
(2006); and Venter (2006).)

Properties (1) and (2) imply that:

Tm) L Fm ( ) (n) 7™
] R i B A ]_[ E[” 7" | D]. (4.18)
I=I—i+1
Using (1) - (3) we have:
(n) Zn) (n) (n) (m) Tm) (m) (m)
B[ T =i - (i T = %) D]
j—1 j—1
[T EF” 7" | 2]- [] A5 (4.19)
I=I—i+1 I=I—i+1

Notice that (4.19) can be calculated for the random variables £
explicitly, i.e. there is no approximation involved here. Using (6) we can
calculate the covariance term in (4.19). This leads to the following estlmator
for the r1ght hand side of (4.13). We replace the unknown parameters a\", /"’
and p!"" by their estimators, and we obtain the following estimators for the
estimation error terms in (4.12):

E[(C) —E[c? | D)) - ) —E[CS | D)) [ D] = Chivr - CLFiyr - AL

(4.20)
with A{*" given by (3.12). A{*" can be rewritten in a recursive form:
~(n)  ~(m) I-j+1
A(n .m) ) p(m) A(n 1) ai 1 67 1 (n) (m) ~(n,m)
f— 1°Jj-1" 1/1 (n) (m) Z 1]1 i.j—l'p'—l
j—1 S I
Jj-2 A( /\( /\(n) /\(m) I-1
n) m) (n) (m) /\(n m)
( I s<“) S<'”> yoyan-c > @.21)
I=I—i+1 i=1

with A", = 0.
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Note, that for n = m this is exactly the term given in Buchwalder et al.
(2006, formula (4.22)), which corresponds to the estimation error term in
Murphy (1994), but is different from the estimation error term in Mack
(1993).

Hence, from (4.12) and (4.21) we obtain the following recursion for the
estimator of the conditional estimation error of N correlated triangles:

JI

—Z(Cf“) ) AL 2l Gl AL @422)

1<n<m<N

N N
B (- e

n=1

From (4.7) and (4.22) we obtain a recursive estimator for the MSEP for a
single accident year of N correlated run-off triangles.

Result 4.2. For N correlated run off triangles, we have the following
estimator for the conditional MSEP for a single accident year:

N

VSR (3 71) -3 VSER(ES)
n=1 n=1

+2. Z (FE’; ) + C(n) e Cinlz) e Atr;m)) (423)

1<n<m<N

where:
MSEP(C)) = TV:" 4 (CVy))” - AL, (4.24)

4.2  Conditional MSEP for Aggregated Accident Years

Consider two different accident years i<k From our assumptions, we
know that the ultimate losses C\) and C,( ; are independent for all
n,m € {1,..., N}. Nevertheless, we have to be careful if we aggregate C, 7 and

(”’) . If n = m, the estimators are no longer independent, smce they use the
same observat1ons for estimating the age-to- -age factors f If n# m, the
estimators are also no longer independent, since they use the dependent
estimators £ and £ for estimating the age-to-age factors £ and f",
respectively.

Firstly, we consider the following conditional MSEP:
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MSEP(Z ) +ZC(")) Vaf[z (civ+ci) }

n=1 n=1 n=1
2
DD . (4.25)

N N

+ (z (e +e0) - E[z (ct+ct)
n=1 n=1

Using the independence of the different accident years, the first term on the

right-hand side of (4.25) can easily be decoupled:

N
} +Var|:z cy) D,}. (4.26)
n=1

} Var|:z | D

n=1

Var[ﬁ: (C(" + C("))

n=1

However, for the second term (the conditional estimation error in (4.25) we
have to be more careful. We have the following decomposition:

<XN1: (co+aw) - E[XN; (c+cs) |,
) &@3 [Z cis|P ]) (ia; [Z e |
) (S penfo

n=1 n=1
C(n) C(n)
o (Feery
For the cross-product in formula (4.27) we obtain:

" P

Cn Cn

o) (e e o))
= > (ey-g[cy|p])- (e -E[cy|D]).  @28)

1<n,m<N
Hence, we have the following decomposition for the conditional MSEP of
the aggregated ultimate loss of two run-off triangles:

)

]) @)

(S-Sl

n=1 n=1
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MSEP (Z C) + Z c(”))

n=1

N
= MSEP(Z 6“’)) + MSEP (Z c;”),)

n=1

2% (@-slerio])-(@-efciiol)

n=1

+4. > (cy-e[cy|p])- (Co-E[cy|D]). @29

l<n<m<N

This means that, in addition to the conditional MSEP of single accident
years, we need to find estimates for the last two terms in (4.29). For this we
proceed as in Section 4.1.2. We obtain:

(-e{esin])-(Ei-elesin)
= Cllir (W0 T = S0 )
O (B T = A0 S0). (430)
Completely analogously, as in Section 4.1.2, the right- hand side of (4.30) is

now estlmated by the P(-|D,) average when replacing f by the resampled
Valuesf( Hence, (4.30) is estimated by (i < k):

[(C(”) [ (”)|D D (C('”) [C(”)

D)) |P/]
(n) (m) (m) (m)
- C —itl " Ck I=k+1 "JI=k+1 " =« " JI=i

(]_[ el -7 | o] - ]‘[ £ f"’“) 4.31)

i+1 [=I—i+1

If we plug in the estimators similarly to (4.20), we obtain Result 4.3.

Result 4.3. For N correlated run-off triangles, we have the following
estimator for the conditional MSEP of the ultimate loss of aggregated
accident years:
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MSEP( Z Zc“”) Xl: MSEP(Z c“”)
i=I+2—J n=1 i=I+2—J n=1
+2- ) Y Gl Gl - Al (432)

I+2—J<i<k<I 1<n,m<N

5. COMPARISON WITH THE BRAUN FORMULA

If we compare Braun’s (2004) bivariate formulae for the MSEP with our
results (4.23) and (4.32) for the MSEP in the special case N = 2, we see the
following differences:

(1) There is a small distinction between our result (4.4) of the process
variance and Braun’s (2004) formula. It comes from the fact that plE,
considered in Braun (2004), is not a correlation (see (3.15)).

(2) There is a second difference between our formulae and Braun’s result;
namely, we observe a difference in the estimation of the estimation error.
The difference is of the same nature as the one in the univariate case

N =1 (compare Buchwalder et al., 2006; and Mack, 1993).

The main difference comes from the fact that in Braun (2004), the
recursive formulae for A J " uses a linear approximation which involves the
following terms:

“(n,m) Pn) Pm) R(n,m)
A f; 1 ]3 1 'Ai.j—l

/G\( 6_\(111) I—j+1

j=2
(n) (m) ~(n,m) “An)  7(m)
O ij—1 " Ci,j—l *Pj-1 - l_[ fl fl . (5-1)
S 1 S; i=1 I=I—i+1

Our conditional resampling approach leads to the terms (4.21):

A(n) ~(m)  I—-j+1

(n,m) “An)  p(m) (n,m) O-j—l (n) (m) ~(n,m)
Ay =SS Ao+ (,1) Hpvrns Cij1 - Cijo - i
Sioi Sim S
j=2 ) ”) ’\(m) 1 !
n) m) (n) (m) /\(n m)
[T {74 +2 S(n) S(m) Yo yar-cl (5.2)
I=I—i+1 i=1

Hence, our approach gives a slightly larger estimate compared to Braun’s
estimate. In fact, Braun’s result is a linear approximation from below to our
result (see also Buchwalder et al., 2006, for a similar fact in the univariate
case).

Recall that we have used the conditional independence assumptions (1) and
(2) in Section 4.1.2. These conditional independence assumptions have allowed
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for an explicit calculation of the estimator for the conditional estimation
error. Braun (2004) does not have this independence assumption, and,
therefore, cannot calculate an estimator for the estimation error explicitly.
Indeed, at some point in Braun (2004) one replaces:

B ) @) ] gy (53)

whereas, in our model we calculate this term explicitly:

7)) ] = (0 5F) (6 (S(f,ﬁ?) 64

see (4.18) ff. This is exactly the difference between our estimator and the
estimator in Braun (2004). In the practical examples at which we have
looked, the numerical differences between the two formulae are rather small
(or even negligible).

6. EXAMPLE

We apply our methods to the data considered by Braun (2004) for C{}
(c.f. Tables 1 and 2 in Braun, 2004). The index n =1 denotes motor third
party liability (MTPL) insurance data and n =2 is general liability (GL)
insurance data. The data for MTPL are given in Table 2 and the data for GL
are given in Table 3.

Now we calculate the estimated claims reserves Cf”}, the MSEP formulae
of Result 3.5 and the corresponding parameter estimators. Note that all these
calculations can be done easily and explicitly without any simulation behind
them. We have done our calculations in a spreadsheet.

The estimators £ for the chain ladder factors £, j < 13, are calculated
with formula (3.2). The estimators 3(”) and Aj” ™ for j < 12, are calculated
with the help of formulae (3. 17) and (3.20), respectlvely Note that the
estimation of the parameters 6" (n=1,2) and pllg * cannot be done with the
help of (3.17) and (3.20), respectively. Th1s is due to the lack of data in the
tails. We therefore simply apply the formula proposed by Mack (1993):

/\(n) def. ~(n) ~(n) ~(n)
013 = min {(0'12) /0'1170'11,0'12} (6.1)

and
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~1,2) ~(1) ~(2)\2
min —(,012 it .012) \P -0, -0
1.2 1 2 12
|I/5( ) 6:( ) ~2)

~(1,2) A(l) ~(2)
* 01

11011

Pz = S0 =0
]? : l';

(6.2)

For our purposes, i.e. to demonstrate the methods, these estimators are
sufficient. However, in practice it is a serious issue choosing appropriate tail
parameters, which needs a deep discussion which we do not want to enter
here. Using our parameter estimators, we obtain the numerical values shown
in Table 4.

Using the estimators £, 3" and p!"? (n=1,2), we find the predictors
for the ultimate claims f 7 (see Lemma 3.3) and the corresponding claims
reserves defined by:

14 14
ﬁ = ZZ:R Z;[(Cflﬁ C511)4 H—l) (C114 C§21)4 H—l)] (6-3)

as well as the estimators for the conditional MSEP given in Result 3.5 (see
Table 95).

Table 5 shows the estimated conditional process standard deviation
(conditional estimation error)'/?, the estimator for the conditional MSEP and
the conditional standard error of prediction for the aggregated ultimate loss
over all the different accident years.

We see that the results from Braun’s (2004) formula and our formula
presented in Result 3.5 are nearly the same. However, the fact that Braun’s
formula uses a linear approximation for the estimation error (see (5.3)), and
that our method considers higher order terms according to (5.4), leads to
slightly lower results in Braun’s method. This is also confirmed by the
findings in Buchwalder ez al. (2006).

In the two last columns of Table 5, the results are given for: (1) the
independent aggregation of the estimates for the two subportfolios; and
(2) their aggregation, assuming perfect correlation between the two
subportfolios. We see that these (rough) calculations lead to a prediction
standard error which is about 52,000 lower and 81,000 higher, respectively,
than the one taking the estimated correlation between the two subportfolios
into account. Furthermore, note that using (4.10) leads to an estimate of
397,065 for the upper bound on the process standard deviation (c.f. Remarks
4.1, second remark). This result is only slightly higher than the estimate of
397,054 in Table 5.
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APPENDIX

~(n,m

In this appendix we prove the unbiasedness of p;” ™ defined in formula
(3.18).

Proof of the unbiasedness of p p Z
We define B"” = |V, ... C,”),Hj}. Note that, fori <I—j+1:

n an) n n n
fM=E =0 B | = E[f"1 | 8] (A1)
ij—1

This implies that:

[~(n \m) | B(n)l B(m)]

Cl o CF | g
L] n m n m
ovl—5 ot ) —fioi | B2 Bt ). (A2)
ij—1 Cz/ 1
For the covariance we have:
C(") —) Cg”f)
j “(m) (1) (m)
Cov —Jfits g — St | B B
Cl] 1 CI] 1
Cfn) C(m) C(’”)
_ \J ij (17) (1m) “A(n) ij (1) ()
= Cov (n) ’ m) Bf—l’ Bj—l — Cov J=1s " ~(m) BI B
1] 1 lj 1 ij—1
(n)’\() (1) (m) ) 7m) (n) (m)
ij m n m n m n m
— Cov(—2-. 71 | B2, B ) + Cov(fA. 72 | B B™)
Ci,j—l
(n) (m)
(n,m) (n) (m) C(n) C(m) 1/2 1 Clj 1 CI] 1
-1 0j-10j- l( ij—=1" “ij— 1) S(n) - S(m)
i1
I—j+1 () 1/2
(n,m) _(n) _(m) Z (C 1( )1/ l) A 3
+p71]1/l S S(m) . ()
Henceforth:
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[~(n ) | B(n) (m)]

I—j+1 (n) (m) I—j+1 ( () (m) \1/22
—c . Xj: p(.n,lm) 1 _ Cl.]—l Cr} 1 + C - p(.n,;'n) (Z I (Cu 1° CU 1) )
J = n m 7 = n m
—~ SO s S-S
=c¢-p ) (I—j+1=2+w)=p"". (A.4)

This completes the proof.

https://doi.org/10.1017/51748499500000245 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499500000245

