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Analytical solutions are derived to describe two-dimensional wave evolution in
converging bays. Three bay types of different cross-sections are studied: U-shaped,
V-shaped and cusped bays. For these bays, the two-dimensional linear shallow
water equations can be reduced to one-dimensional linear dispersive wave equations
if the transverse flow acceleration inside them is assumed to be small. The
derived solutions are characterized as the leading-order plane-wave solutions with
higher-order corrections for two-dimensionality due to wave refraction. Wave
amplitude longitudinally increases with different rates for the three bay types, whereas
it exhibits weak parabolic variations in the transverse direction. Wave refraction
significantly affects relatively short waves, contributing to wave energy transfer to
the inner bay in a different manner depending on the bay type. The perturbation
analysis of very high-order wave celerity suggests that the solutions are valid only
when the ratio of the bay width to the wavelength is smaller than a certain limit
that differs with bay type. Beyond the limit, the higher-order effect is no longer a
minor correction, implying that wave behaviours become highly two-dimensional and
possibly cause total reflection. The higher-order effect on the run-up height at the bay
head is found to be small within the applicable range of the solution, and thus, the
run-up formula neglecting the transverse flows has a wide validity. We also discuss
the limitation of run-up height by wave breaking on the basis of a breaking criterion
from previous studies.

Key words: coastal engineering, surface gravity waves, topographic effects

1. Introduction
Long waves can be funnelled in converging basins whose cross-sections decrease in

the direction of wave propagation. The funnelling effect is known to be responsible
for extreme wave events of different scales, such as high tsunami run-up in narrow
bays and local amplification of storm surges or tides over V-shaped gulfs. The earliest
theory relevant to the phenomena is Green’s law, which is derived from the energy
flux conservation of a progressive harmonic wave. It states that the wave amplitude
in a converging channel increases with negative powers of the channel depth and
width. While it is valid for waves sufficiently shorter than the transitional scale of the
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cross-section, Green’s law cannot be directly applied to wave amplification in strongly
converging channels due to significant reflection (Rayleigh 1879; Lamb 1932). In case
of embayment, which is closed at the end, incoming waves are fully reflected from the
bay, regardless of the wavelength, to form standing waves with nodes and anti-nodes.
Moreover, when the wavelength is smaller than the bay width, wave refraction occurs
over laterally varying topography, affecting the energy transfer process inside the bay.
In actual nonlinear problems, wave amplification is limited by the occurrence of wave
breaking to further complicate the process.

Recent tsunami events have highlighted the complexity of the phenomena (e.g.
Shimozono et al. 2012; Didenkulova 2013). In particular, in the 2011 Tohoku tsunami,
a large tsunami attacked a ria coast of Japan (the Sanriku Coast) that consists of
numerous bays of several kilometres, marking extreme run-up heights in their inner
coasts. The well-organized survey after the event provided us with a densely measured
distribution of tsunami run-up heights throughout the coast (Mori & Takahashi 2012).
The dataset exhibits strong variations in run-up heights around the bays, and in some
cases, contrary to Green’s law, large tsunami heights are found near the bay entrance
rather than at the bay head (Liu et al. 2013). The incident tsunami waveforms, which
were captured by several wavemeter buoys off the coast, are characterized as a
superposition of a long wave train and a short impulsive wave localized in its leading
part. The distribution of run-up heights is largely attributed to complex behaviours of
the shorter component since the longer component, whose wavelength is much larger
than the bay scale, cannot produce the strong variation. Although the distribution of
run-up heights could be reproduced to some extent by numerical models based on
the two-dimensional nonlinear shallow water equations, the underlying physics is not
well understood. It is desirable to clarify the mathematical structure of the problem
to provide insights into the phenomena.

Various analytical solutions have been obtained for one-dimensional run-up
problems. Pioneer work was done by Carrier & Greenspan (1958), who presented
a periodic long wave solution over an infinitely long slope. The nonlinear shallow
water equations were transformed into a linear equation by the hodograph transform
for the exact solution. Keller & Keller (1964) obtained a periodic wave solution on
a finite slope connected to a flat bottom. The same solution was derived by Shuto
(1972) from the nonlinear shallow water equation in the Lagrangian description. The
approaches for the periodic wave solutions were later extended by integral transforms
for localized waves such as a solitary wave, N-wave and Lorentz wave (Synolakis
1987; Pelinovsky & Mazova 1992; Tadepalli & Synolakis 1994). Simple formulas for
the maximum run-up height resulted from these solutions, providing an understanding
of how incoming waves of different wavelengths are amplified over sloping beds.
The applicable range of the formula is limited by wave breaking, and the breaking
criterion can be given as the condition at which the hodograph transform breaks down.
Didenkulova, Pelinovsky & Soomere (2008) and Madsen & Schaeffer (2010) provided
comprehensive overviews of the analytical solutions and breaking criteria for different
types of incident waves. The analytical solutions for uniformly sloping beaches can
also be viewed as those for rectangular bays of uniform width that linearly decrease
water depth towards the bay head. For converging bays of decreasing cross-section,
wave funnelling and refraction should modify these solutions, especially for relatively
short incident waves.

Theoretical studies have also been conducted for long wave evolution in two-
dimensional basins with decreasing cross-section. A common approach is to
reduce the two-dimensional problems into quasi-one-dimensional problems using
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the section-integrated shallow water equations under the assumption that the basin
width is sufficiently smaller than the wavelength (Stoker 1957). Several analytical
solutions have been obtained, especially for tide propagation through converging
channels. Inviscid solutions for channels with linearly decreasing depth and/or
width are presented in Lamb (1932). Many researchers later derived solutions for
converging channels with friction, based on different assumptions, to discuss the
balance of the frictional damping and topographic amplification (Jay 1991; Friedrichs
& Aubrey 1994; Prandle 2003; Savenije et al. 2008). On the other hand, only a
few analytical studies have been conducted on the propagation and run-up of long
waves in converging bays for which significant reflection is involved. Didenkulova
& Pelinovsky (2011) investigated periodic wave amplification in narrow bays whose
depths linearly decreased in the longitudinal direction, whereas the cross-section was
represented by an arbitrary power function. For the same types of bay topography,
Zahibo et al. (2006) applied the Carrier–Greenspan approach to the section-integrated
shallow water equations to obtain a run-up solution as well as a breaking criterion for
monochromatic waves. More recently, Rybkin, Pelinovsky & Didenkulova (2014) has
further generalized the approach for an arbitrary bay shape and incident waveform.
Didenkulova, Didenkulov & Pelinovsky (2015) also discussed the influences of
incoming wave shapes on run-up characteristics in converging bays. However, all of
these solutions are independent of the bay width as they are based on the narrow
bay assumption. Therefore, the two-dimensional effect through wave refraction is
disregarded, which may become significant, especially where relatively short wave
evolution is concerned.

In this study, analytical solutions for long periodic wave evolution in converging
bays are derived from the section-integrated shallow water equations. Different types
of converging bays are studied, in which water depth varies in both longitudinal
and transverse directions at different rates. Unlike previous studies, we assume here
that the transverse flow acceleration, which produces two-dimensionality in wave
properties, is small but non-negligible. The two-dimensional shallow water equations
can then be approximated by one-dimensional dispersive wave equations. Based on
the analytical solutions of the higher-order equations, we investigate wave propagation
and run-up characteristics considering the two-dimensional effect. Furthermore, we
clarify the applicable range of the derived solutions through perturbation analysis and
discuss wave behaviours beyond the limit, providing a comprehensive understanding
of the problem.

2. Boundary value problem
2.1. Governing equations

We start the analytical investigation with the nonlinear shallow water equations
neglecting the dispersion effect due to the vertical acceleration of bay water. This
assumption is valid for a long wave propagating in a relatively shallow bay. For
simplicity, we also disregard the bed friction effect since the ratio of the friction term
to the acceleration term is small for relatively short waves that tend to be funnelled
in bays of a typical scale. Hence, the two-dimensional continuity and momentum
equations can be written in conservative form as

∂H
∂t
+ ∂(Hu)

∂x
+ ∂(Hv)

∂y
= 0, (2.1)

∂(Hu)
∂t
+ ∂(Hu2)

∂x
+ ∂(Huv)

∂y
+ gH

∂η

∂x
= 0, (2.2)
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460 T. Shimozono

∂(Hv)
∂t
+ ∂(Huv)

∂x
+ ∂(Hv

2)

∂y
+ gH

∂η

∂y
= 0, (2.3)

where t is time, x and y are spatial coordinates, H(x, y, t) is the total water depth,
η(x, y, t) is the water surface elevation above the undisturbed water surface, u(x, y, t)
and v(x, y, t) are the depth-averaged velocities in the x and y directions, respectively
and g is the gravity acceleration. The total water depth is expressed as H = h + η
with the undisturbed water depth h(x, y). The x coordinate is taken along the bay axis
towards the bay head, whereas the y coordinate is set in the transverse direction, with
the origin of the coordinates at the centre of the bay entrance. The bay geometry is
assumed to be symmetric about the bay axis (x axis) with monotonically decreasing
width and depth towards the bay head. The geometric symmetry allows us to consider
only a half-domain (y > 0) and assume v= 0 along the bay axis (y= 0) for normally
incident waves. The bay scale is represented by three parameters: bay length lx, bay
entrance width ly and bay entrance depth h0 (see figure 1).

The wave motion scale in the x direction is represented by the incident wavelength
L0, whereas that in the y direction is restricted by the bay width ly. The two-
dimensional problem can be reduced to a quasi-one-dimensional problem when ly/L0
is small. In the following, we integrate (2.1) and (2.2) over the transverse extent of
bay water to derive the section-integrated shallow water equations. In doing so, the
kinematic lateral boundary condition is required:

v(x, B, t)= ∂B
∂t
+ u(x, B, t)

∂B
∂x
, (2.4)

where B(x, t) is the transverse extent of water surface defined such that H(x,B(x, t), t)=
0. The transverse extent is changing with time due to water surface evolution, and is
separated into two components as B= b+ ξ , where b(x) is the transverse extent of the
undisturbed water surface that satisfies h(x, b(x))= 0 and ξ(x, t) is the time-varying
component.

First, we divide water surface elevation η into its mean and varying components in
the transverse direction. Rewriting (2.3) in the non-conservative form using (2.1) and
integrating it from the bay centre (y= 0) to an arbitrary y yields

η(x, y, t)= η(x, 0, t)− 1
g

∫ y

0

Dv
Dt

dy, (2.5)

where D/Dt represents the substantial derivative. The second term on the right-hand
side of (2.5) represents the transverse variation in water surface elevation. The mean
water surface elevation η can be obtained by averaging (2.5) over the transverse extent
as

η̄(x, t)= η(x, 0, t)− 1
gB

∫ B

0

∫ y

0

Dv
Dt

dy dy. (2.6)

From (2.5) and (2.6), η may be expressed as the sum of the mean and varying
components: η= η̄+ η′ with

η′(x, y, t)= 1
gB

∫ B

0

∫ y

0

Dv
Dt

dy dy− 1
g

∫ y

0

Dv
Dt

dy. (2.7)
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FIGURE 1. Schematic illustration of the symmetric converging bay.

Integrating (2.1) and (2.2) over the transverse extent using v(x, 0, t) = 0 and the
boundary condition (2.4), we obtain the section-integrated shallow water equations

∂

∂t

∫ B

0
H dy+ ∂

∂x

∫ B

0
Hu dy= 0, (2.8)

∂

∂t

∫ B

0
Hu dy+ ∂

∂x

∫ B

0
Hu2 dy+ g

(∫ B

0
H dy

)
∂η̄

∂x
+ g

∫ B

0
H
∂η′

∂x
dy= 0. (2.9)

To simplify the expressions of (2.8) and (2.9), we also divide the longitudinal velocity
u into the section-averaged component ū(x, t) and varying component u′(x, y, t) as
follows:

ū= 1
S

∫ B

0
Hu dy, u′ = u− ū with S=

∫ B

0
H dy, (2.10a,b)

where S(x, t) is the cross-sectional area of bay water varying with time. Substituting
(2.10) into (2.8) and (2.9) yields

∂S
∂t
+ ∂

∂x
(Sū)= 0, (2.11)

∂

∂t
(S̄u)+ ∂

∂x
(Sū2)+ ∂

∂x
(Su′2)+ gS

∂η̄

∂x
+ g

∫ B

0
H
∂η′

∂x
dy= 0. (2.12)

To scale each term in the two equations, we cast them into dimensionless variables
as follows:

x= L0x∗, y= lyy∗, t= L0

c0
t∗, u= εc0u∗, ū= εc0ū∗, v = εσc0v

∗, S= lyh0S∗,

H = h0H∗, h= h0h∗, η= a0η
∗, η̄= a0η̄

∗, B= lyB∗, b= lyb∗, ξ = εlyξ
∗,


(2.13)
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462 T. Shimozono

where the superscript * denotes the dimensionless variables, a0 is the incident wave
amplitude, c0 = √gh0 is the wave celerity at the bay entrance, ε = a0/h0 is the
nonlinearity parameter and σ = ly/L0 is the relative bay width. The irrotationality
of horizontal flows requires the scale of the varying component of the longitudinal
velocity to be u′= εσ 2c0u′∗. Also, (2.7) suggests that the varying component of water
surface elevation is scaled as η′ = a0σ

2η′∗. Inserting all the dimensionless variables
into the equations above, we obtain

∂S∗

∂t∗
+ ε ∂

∂x∗
(S∗ū∗)= 0, (2.14)

∂(S∗ū∗)
∂t∗

+ ε ∂(S
∗ū∗2)
∂x∗

+ εσ 4 ∂(S
∗u′∗2)
∂x∗

+ S∗
∂η̄∗

∂x∗
+ σ 2

∫ B∗

0
H∗
∂η′∗

∂x∗
dy∗ = 0, (2.15)

with

η′∗ = 1
B∗

∫ B∗

0

∫ y∗

0

Dv∗

Dt∗
dy∗ dy∗ −

∫ y∗

0

Dv∗

Dt∗
dy∗, (2.16)

Dv∗

Dt∗
= ∂v

∗

∂t∗
+ εu∗ ∂v

∗

∂x∗
+ εv∗ ∂v

∗

∂y∗
, (2.17)

S∗ =
∫ B∗

0
h∗ dy∗ + ε

∫ B∗

0
η∗ dy∗, (2.18)

H∗ = h∗ + εη∗, (2.19)
B∗ = b∗ + εξ ∗. (2.20)

The third and last term on the left-hand side of (2.15) are of higher order in σ . The
former represents the advection by the varying component of longitudinal flows, while
the latter represents the transverse flow effect. For narrow bays with small σ , (2.15)
can be simplified by neglecting these terms:

∂ ū∗

∂t∗
+ εū∗ ∂ ū∗

∂x∗
+ ∂η̄

∗

∂x∗
= 0. (2.21)

The set of (2.14) and (2.21) has been employed in previous studies to explore
wave propagation and run-up characteristics in narrow bays (Zahibo et al. 2006;
Didenkulova et al. 2008; Didenkulova & Pelinovsky 2011; Rybkin et al. 2014;
Didenkulova et al. 2015). For specific types of bay geometries, Zahibo et al. (2006)
derived an analytical solution for monochromatic wave evolution through applying the
hodograph transform to the equations. They described the nonlinear wave solution in
terms of the linear solution that was obtained by neglecting the terms of O(ε). This
is possible because the linear dynamics determines the main structure of the solution,
and the nonlinearity only plays a role in transforming the time and spatial coordinates.
Therefore, the run-up height from their solution is identical to the one from the linear
solution. This is valid only when the incident wave amplitude is small relative to the
water depth at the bay entrance (ε is small), because they linearized the holograph
transform for assignment of the boundary value. However, this limitation is not severe
because the nonlinearity at the bay entrance is often small in actual cases. Through
comparisons with laboratory data, Synolakis (1991) confirmed that the linear theory
predicts the run-up height over uniform slopes satisfactorily, although it does not
correctly describe the details of wave profiles. Antuono & Brocchini (2007) derived
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an analytical solution without linearizing the data assignment. Their results suggest
that the error arising from the linearized assignment is a few per cent when ε= 0.05.

Unlike in the previous studies, we neglect the nonlinear terms of O(ε), but keep the
terms of O(σ 2) in (2.14)–(2.20). Therefore, we explore the effects of transverse flows
in linear dynamics. As described above, the linearization does not severely restrict the
applicability to actual problems for the energy transfer process in the bays. After some
manipulation, we obtain the linearized continuity and momentum equations as

∂η̄∗

∂t∗
+ 1

b∗
∂

∂x∗
(S∗ū∗)= 0, (2.22)

∂ ū∗

∂t∗
+ ∂η̄

∗

∂x∗
+ σ

2

S∗

∫ b∗

0
h∗
∂η′∗

∂x∗
dy∗ = 0, (2.23)

η′∗ = 1
b∗

∫ b∗

0

∫ y∗

0

∂v∗

∂t∗
dy∗ dy∗ −

∫ y∗

0

∂v∗

∂t∗
dy∗. (2.24)

Note that the mean variables ū∗ and η̄∗, and the cross-sectional area S∗ are now given
by

ū∗ = 1
S∗

∫ b∗

0
h∗u∗ dy∗, η̄∗ = 1

b∗

∫ b∗

0
η∗ dy∗, S∗ =

∫ b∗

0
h∗ dy∗. (2.25a−c)

For the sake of linearization, the transverse extent and cross-sectional area are no
longer functions of time. In order to solve the equations, we need to express the
transverse flow acceleration in (2.24) by ū∗ and η̄∗. Linearizing the continuity equation
(2.1) and differentiating it with respect to time, we have the following relation in the
dimensionless form:

∂2η∗

∂t∗2
+ ∂

2(h∗u∗)
∂x∗∂t∗

+ ∂
2(h∗v∗)
∂y∗∂t∗

= 0. (2.26)

The transverse flow acceleration is given by integrating (2.26) from the bay centre
(y∗ = 0) to an arbitrary y∗ as

∂v∗

∂t∗
=− 1

h∗

∫ y∗

0

∂2η∗

∂t∗2
dy∗ − 1

h∗
∂

∂x∗

∫ y∗

0
h∗
∂u∗

∂t∗
dy∗. (2.27)

Recalling that the laterally varying components of u∗ and η∗ are of O(σ 2), we rewrite
(2.27) in terms of the mean variables as

∂v∗

∂t∗
=− y∗

h∗
∂2η̄∗

∂t∗2
− 1

h∗

∫ y∗

0
h∗ dy∗

∂2ū∗

∂x∗∂t∗
− 1

h∗
∂

∂x∗

(∫ y∗

0
h∗ dy∗

)
∂ ū∗

∂t∗
+O(σ 2). (2.28)

Subsequently, equation (2.24) can be rewritten using (2.28) as

η′∗ =−I∗1
∂2η̄∗

∂t∗2
− I∗2

∂2ū∗

∂x∗∂t∗
− I∗3

∂ ū∗

∂t∗
+O(σ 2), (2.29)

where I∗1 , I∗2 and I∗3 are functions of x∗ and y∗, which depend on the bay geometry:

I∗1 =
1
b∗

∫ b∗

0
γ ∗1 dy∗ − γ ∗1 (2.30)
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I∗2 =
1
b∗

∫ b∗

0

∫ y∗

0

γ ∗2
h∗

dy∗ dy∗ −
∫ y∗

0

γ ∗2
h∗

dy∗, (2.31)

I∗3 =
1
b∗

∫ b∗

0

∫ y∗

0

1
h∗
∂γ ∗2
∂x∗

dy∗ dy∗ −
∫ y∗

0

1
h∗
∂γ ∗2
∂x∗

dy∗, (2.32)

with

γ ∗1 =
∫ y∗

0

y∗

h∗
dy∗, γ ∗2 =

∫ y∗

0
h∗ dy∗. (2.33a,b)

We substitute (2.29) into (2.23) to obtain the momentum equation which is valid up
to O(σ 2):

(1− σ 2A∗1)
∂ ū∗

∂t∗
+ ∂η̄

∗

∂x∗
− σ 2

[
A∗2
∂2η̄∗

∂t∗2
+ A∗3

∂3η̄∗

∂x∗∂t∗2
+ A∗4

∂2ū∗

∂x∗∂t∗
+ A∗5

∂3ū∗

∂x∗2∂t∗

]
=O(σ 4),

(2.34)

where the coefficients A∗1–A∗5 are functions of only x∗ and are given by

A∗1 =
1
S∗

∫ b∗

0
h∗
∂I∗3
∂x∗

dy∗, A∗2 =
1
S∗

∫ b

0
h∗
∂I∗1
∂x∗

dy∗, A∗3 =
1
S∗

∫ b∗

0
h∗I∗1 dy∗,

A∗4 =
1
S∗

∫ b∗

0
h∗
(
∂I∗2
∂x∗
+ I∗3

)
dy∗ and A∗5 =

1
S∗

∫ b∗

0
h∗I∗2 dy∗.

 (2.35)

The momentum equation (2.34) has a form similar to those of Boussinesq-type
equations for dispersive waves, which generally involve third-order derivatives of
the flow velocity and water surface elevation. The third-order derivative terms of
the Boussineq-type equations arise from vertical flows, while those of (2.34) are
attributed to transverse flows generated by the bay geometry. The dispersion effect
by vertical flows has been studied for waves travelling over variable channels in the
framework of the Korteweg–de Vries equations (Peregrine 1968, 1969; Teng & Wu
1992, 1994). The magnitude of this type of dispersion is represented by the relative
depth h0/L0. Therefore, the relative importance of the present type of dispersion can
be measured by ly/h0. This suggests that the present dispersion effect is dominant
when the bay width is greater than the bay water depth. This condition is fulfilled
by many bays that are widely open to the ocean. In some special cases of bay
geometry, the coefficients of the higher-order terms in (2.34) can be expressed as
power functions of x∗, which will be described in § 2.2. Given the bay geometry and
incident wave condition, we can derive analytical solutions for η̄ and ū from the set
of (2.22) and (2.34). Once the mean variables are determined, (2.29) enables us to
obtain the two-dimensional wave profile inside the bay.

For later convenience, we introduce a new coordinate defined by

x̂∗ = 1− x
lx
. (2.36)

The x̂∗ coordinate is directed towards the bay entrance with the origin at the bay head.
Subsequently, equations (2.22) and (2.34) are rewritten in terms of the new coordinate
as

ν
∂η̄∗

∂t∗
− ū∗

b∗
∂S∗

∂ x̂∗
− S∗

b∗
∂ ū∗

∂ x̂∗
= 0, (2.37)
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ν − σ

2

ν
Â∗1

)
∂ ū∗

∂t∗
− ∂η̄

∗

∂ x̂∗
+ σ 2Â∗2

∂2η̄∗

∂t∗2
+ σ 2A∗3

∂3η̄∗

∂ x̂∗∂t∗2

− σ
2

ν
Â∗4

∂2ū∗

∂ x̂∗∂t∗
− σ

2

ν
A∗5

∂3ū∗

∂ x̂∗2∂t∗
= 0, (2.38)

where ν= lx/L0 represents the relative bay length to the representative wavelength. The
higher-order terms of O(σ 4) are truncated in (2.38). The newly introduced coefficients
Â∗1, Â∗2 and Â∗4 are defined as follows:

Â∗1 =
1
S∗

∫ b∗

0
h∗
∂ Î∗3
∂ x̂∗

dy∗, Â∗2 =
1
S∗

∫ b

0
h∗
∂I∗1
∂ x̂∗

dy∗, Â∗4 =
1
S∗

∫ b∗

0
h∗
(
∂I∗2
∂ x̂∗
+ Î∗3

)
dy∗,

(2.39a−c)

with

Î∗3 =
1
b∗

∫ b∗

0

∫ y∗

0

1
h∗
∂γ ∗2
∂ x̂∗

dy∗ dy∗ −
∫ y∗

0

1
h∗
∂γ ∗2
∂ x̂∗

dy∗. (2.40)

The set of (2.37) and (2.38) is employed as the governing equations in the present
study. Using (2.37), the supplementary equation (2.29) for the varying component of
water surface elevation can be rewritten in terms of the new coordinate as

η′∗ =D∗1
∂2η̄∗

∂t∗2
− D∗2
ν

∂ ū∗

∂t∗
, (2.41)

with

D∗1 = I∗2
b∗

S∗
− I∗1 , D∗2 =

I∗2
S∗
∂S∗

∂ x̂∗
− Î∗3 , (2.42a,b)

where D∗1 and D∗2 are functions of x̂∗ and y∗.

2.2. Topographic condition
To determine the coefficients of the governing equations, we need to specify the bay
water depth h∗. The coefficients, which include triple or quadruple integrals of the
h∗ functions, can be analytically evaluated only for simple cases. Following the bay
geometry used in Zahibo et al. (2006), we limit our discussion to cases in which the
bay water depth is represented by the sum of a linear function of x̂∗ and a power
function of y∗:

h∗ = x̂∗ − y∗q, (2.43)

where q is a real positive number. The water depth decreases linearly along the bay
axis, and as a power law with an exponent q(> 0) in the transverse direction. The
longitudinal variation of the bay water depth in some bays may be better represented
by the power function of x̂∗. However, in the general case, analytical solutions are
not available for (2.37) and (2.38) unless the terms of O(σ 2) are neglected. The bay
width and the cross-sectional area are therefore given by

b∗ = x̂∗1/q, S∗ = q
q+ 1

x̂∗(1/q)+1. (2.44a,b)
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FIGURE 2. Planar shapes and vertical cross-sections of the converging bays with q= 2, 1
and 2/3. (a) Planar shapes, (b) vertical cross-sections at x̂∗ = 0.5 and x̂∗ = 1.

q b∗ S∗ Â∗1 Â∗2 A∗3 Â∗4 A∗5 B1 B2 D∗1(=D∗2) Shape

2 x̂∗1/2
2
3

x̂∗3/2
1

4x̂∗
1

4x̂∗
1
6

1
2

2
15

x̂∗
1
6

2
15

1
12

x̂∗ − 3y∗2

x̂∗
U-shaped

1 x̂∗
1
2

x̂∗2 1 1
1
3

x̂∗
7
6

x̂∗
5

24
x̂∗2

1
3

5
24

1
6

x̂∗2 − 3y∗2

x̂∗
V-shaped

2/3 x̂∗3/2
2
5

x̂∗5/2
9
4

x̂∗
9
4

x̂∗
1
2

x̂∗2
19
10

x̂∗2
14
55

x̂∗3
1
2

14
55

1
4

x̂∗3 − 3y∗2

x̂∗
Cusped

TABLE 1. Coefficients of (2.38), (2.41) and (2.46) for q= 2, 1 and 2/3.

At a smaller q value, the bay cross-section more strongly converges towards the bay
head. Both horizontal and vertical sections are V-shaped when q = 1 and U-shaped
when q=2. As q→∞, the bay shape approaches a rectangle, and wave characteristics
become identical to those over a uniform slope. In this case, the coefficients of the
higher-order terms in (2.38) are equal to zero. For q < 1, the bay section strongly
converges to form a cusp at the bay head. Figure 2 shows horizontal and vertical bay
sections for three representative cases with q= 2, 1 and 2/3. We focus on the three
bay types that cover a typical range of converging bay shapes. Table 1 summarizes
b∗, S∗ and the variable coefficients of (2.38) and (2.41) for the three cases. The five
coefficients of (2.38) are commonly expressed as power functions of x̂∗ with integer
exponents. D∗1 and D∗2 in (2.41) are identical to each other for the present geometric
setting.

2.3. Incident wave condition
The incident wave condition should be specified to close the boundary value problem.
For simplicity, we consider the situation in which monochromatic waves are normally
incident on the bays. Since incoming waves are reflected by the bay topography, the
reflective waves must also be included in the boundary condition at the bay entrance
(x̂∗ = 1). Analogous to the classical run-up solution over plane beaches by Keller &
Keller (1964), we assume a longitudinally uniform region with a constant cross-section
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that extends out of the bay entrance where incident and reflective monochromatic
waves superpose one another. In actual situations, the cross-section at the bay entrance
rapidly transits towards the outer sea with parallel depth contours. The present model
does not account for lateral wave spreading over the transitional bathymetry out of the
bay entrance. Therefore, the incident wave should be interpreted as the one coming
into the bay after propagating over the transitional region. Consequently, the governing
equations in the uniform region are obtained from (2.37) and (2.38) by neglecting x̂∗
derivatives of the geometric variables as

ν
∂η̄∗

∂t∗
− q

q+ 1
∂ ū∗

∂ x̂∗
= 0, (2.45)

ν
∂ ū∗

∂t∗
− ∂η̄

∗

∂ x̂∗
+ σ 2B1

∂3η̄∗

∂ x̂∗∂t∗2
− σ

2

ν
B2

∂3ū∗

∂ x̂∗2∂t∗
= 0, (2.46)

where B1 and B2 are constants given in table 1. The two equations can be combined
into a single equation in terms of ū∗:

ν2 ∂
2ū∗

∂t∗2
− q

q+ 1
∂2ū∗

∂ x̂∗2
+ σ 2

(
q

q+ 1
B1 − B2

)
∂3ū∗

∂ x̂∗2∂t∗2
= 0. (2.47)

We assume that the monochromatic wave solution is expressed by

ū∗ = φ(x̂∗)e−2iπt∗ . (2.48)

Here, the representative wavelength is defined as L0 = 2π
√

gh0/ω with angular
frequency ω of the incident wave. Substituting (2.48) into (2.47) yields a second-order
linear differential equation

φ′′ + κ2φ = 0, (2.49)

with

κ2 = (1+ q)λ2

q
[

1+µ2

{
B1 −

(
1+ 1

q

)
B2

}] , (2.50)

where λ = 2πν = ωlx/
√

gh0 and µ = 2πσ = ωly/
√

gh0; λ and µ are key parameters
to characterize the wave solution. Since the parameter κ is interpreted as a product
of the wavenumber k and the bay length lx, equation (2.50) represents the dispersion
relation that relates the wavenumber k of the section-averaged wave to its frequency
ω. It can be rewritten for the wave celerity as

c∗ =
√

q
1+ q

[
1+µ2

{
B1 −

(
1+ 1

q

)
B2

}]
, (2.51)

where c∗ =ω/k√gh0 is the dimensionless wave celerity. In the case of a narrow bay
(µ→ 0), there is no frequency dispersion, and the wave celerity depends only on
the bay geometry. Since B1 − (1 + 1/q)B2 < 0 holds for the three bay types, the
wave celerity decreases with increasing µ. The frequency dispersion is interpreted as a
consequence of wave refraction over the laterally varying topography. Wave refraction
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significantly elongates the effective path length of a relatively short wave. At a certain
µ value, the wave celerity becomes zero, and a progressive wave solution does not
exist in (2.49). This suggests the occurrence of total reflection due to strong wave
refraction. The limiting values are calculated as µ≈ 5.5, 3.5 and 2.7 (σ ≈ 0.87, 0.55
and 0.43) for q= 2, 1 and 2/3, respectively. However, the present solution is not valid
for such high σ values as the terms of O(σ 4) are truncated. Hence, the values do
not represent the actual ones for the occurrence of the peculiar phenomenon. We will
further discuss this issue using the perturbation method in § 4.1.

Substituting the solution of (2.49) into (2.48) and (2.45), we obtain the general
solutions for ū∗ and η̄∗ as

ū∗(x̂∗, t∗)= (C1e−iκ x̂∗ +C2eiκ x̂∗)e−2iπt∗, (2.52)

η̄(x̂∗, t∗)= q
q+ 1

κ

λ
(C1e−iκ x̂∗ −C2eiκ x̂∗)e−2iπt∗, (2.53)

where C1 and C2 are constants. Letting Kr be the ratio of the reflected to the incident
wave amplitude, η̄∗ and ū∗ at the bay entrance (x̂∗ = 1) are determined as

η̄∗(1, t∗)= (e−iκ +Kreiκ)e−2iπt∗, (2.54)

ū∗(1, t∗)=
(

1+ 1
q

)
c∗(e−iκ −Kreiκ)e−2iπt∗ . (2.55)

The continuity of η̄∗ and ū∗ at the bay entrance can be used as the boundary condition
for deriving the wave solutions inside the bay.

3. Analytical solutions
We now derive the analytical solutions for monochromatic wave evolution in the

converging bays of q= 2, 1 and 2/3. The governing equations (2.37) and (2.38) are
combined to a single-variable differential equation in terms of ū∗, from which the
monochromatic wave solution is derived under the boundary conditions given by (2.54)
and (2.55). The resulting equation becomes the Bessel equation if the terms of O(σ 2)
are neglected from the governing equations. In this case, unified analytical expressions
for η̄∗ and ū∗ are available for an arbitrary q value. In contrast, the higher-order
equations have solutions in different forms for the three q values. Here, we first derive
the leading-order solution neglecting the terms of O(σ 2) in § 3.1 and then separately
deal with the three bay types for the higher-order solutions in §§ 3.2–3.4.

3.1. Leading-order solution
We first derive analytical solutions from the leading parts of the governing equations.
Neglecting the terms of O(σ 2), we obtain the leading-order momentum equation from
(2.38) as

ν
∂ ū∗

∂t∗
− ∂η̄

∗

∂ x̂∗
= 0. (3.1)

We substitute (2.44) into (2.37) to obtain the continuity equation

ν
∂η̄∗

∂t∗
− ū∗ − q

q+ 1
x̂∗
∂ ū∗

∂ x̂∗
= 0. (3.2)
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Combining (3.1) and (3.2), we have a single-variable equation with respect to ū∗

ν2 ∂
2ū∗

∂t∗2
− 2q+ 1

q+ 1
∂ ū∗

∂ x̂∗
− q

q+ 1
x̂∗
∂2ū∗

∂ x̂∗2
= 0. (3.3)

Assuming the form of the solution given by (2.48), (3.3) is transformed into an
ordinary differential equation in terms of φ

φ′′(x̂∗)+ 2q+ 1
q

1
x̂∗
φ′(x̂∗)+ q+ 1

q
λ2φ(x̂∗)= 0, (3.4)

which is the Bessel equation. The bounded solution of (3.4) is written

φ(x̂∗)=C3x̂∗−p2/2J1/q+1(2pλx̂∗1/2), (3.5)

where p=√1+ 1/q, C3 is an integration constant and the function J1/q+1 represents
the Bessel function of the first kind of order 1/q+ 1. Equation (3.5) is the same as
the one obtained in Zahibo et al. (2006) through the transformation of the nonlinear
coordinates into linear ones. From (2.48) and (3.2), we have

ū∗ =C3x̂∗−p2/2J1/q+1(2pλx̂∗1/2)e−2iπt∗, (3.6)

η̄∗ = iC3

p
x̂∗−1/2qJ1/q(2pλx̂∗1/2)e−2iπt∗ . (3.7)

In order to determine C3, we use the boundary conditions for η̄ and ū at the bay
entrance. Letting B1 = B2 = 0 in (2.50), the dispersion relation reads

κ =
√

1+ q
q
λ. (3.8)

Subsequently, the wave celerity of the leading-order wave is given from (2.51) as

c∗ =
√

q
1+ q

. (3.9)

Hence, the wave celerity does not depend on the wave frequency. Using the boundary
conditions (2.54) and (2.55) with (3.9), we obtain the analytical solutions for η̄∗
and ū∗

η̄∗ = 2J1/q(2pλx̂∗1/2)
x̂∗1/2q{J1/q(2pλ)− iJ1/q+1(2pλ)}e

−i(κ+2πt∗), (3.10)

ū∗ =− 2ipJ1/q+1(2pλx̂∗1/2)
x̂∗p2/2{J1/q(2pλ)− iJ1/q+1(2pλ)}e

−i(κ+2πt∗). (3.11)

These become identical to the analytical solutions of Keller & Keller (1964) for
plane beaches in the limit of q→∞. The funnelling effect is mainly represented
by a negative power function of x̂∗ with a different exponent by the bay type. Since
the transverse variation in the water surface is ignored in the leading order, (3.10)
represents the two-dimensional distribution of the water surface elevation, namely
η∗ = η̄∗. Therefore, the incoming wave propagates as a plane wave in the bays.
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3.2. Higher-order solution for U-shaped bays (q= 2)
When q= 2, the higher-order governing equations (2.37) and (2.38) are written as

ν
∂η̄∗

∂t∗
− ū∗ − 2

3
x̂∗
∂ ū∗

∂ x̂∗
= 0, (3.12)(

ν − σ 2

4νx̂∗

)
∂ ū∗

∂t∗
− ∂η̄

∗

∂ x̂∗
+ σ 2

4x̂∗
∂2η̄∗

∂t∗2
+ σ

2

6
∂3η̄∗

∂ x̂∗∂t∗2

− σ
2

2ν
∂2ū∗

∂ x̂∗∂t∗
− 2σ 2

15ν
x̂∗

∂3ū∗

∂ x̂∗2∂t∗
= 0. (3.13)

The two equations can be combined into a single-variable equation in terms of ū∗

ν2 ∂
2ū∗

∂t∗2
− 5

3
∂ ū∗

∂ x̂∗
− 2

3
x̂∗
∂2ū∗

∂ x̂∗2
− σ

2

18
∂3ū∗

∂t∗2∂ x̂∗
− σ

2

45
x̂∗

∂4ū∗

∂ x̂∗2∂t∗2
= 0. (3.14)

Substituting (2.48) into (3.14) yields an ordinary differential equation in terms of φ

φ′′(x̂∗)+ 5
2x̂∗

φ′(x̂∗)+ 3ζ 2λ2

2x̂∗
φ(x̂∗)= 0, (3.15)

where ζ = 1/
√

1−µ2/30. The higher-order effect slightly modifies the last term of
the leading-order equation (3.5). Since (3.15) is also the Bessel equation, the solution
bounded at the bay head (x̂∗ = 0) has the following form:

φ =C4x̂∗−3/4J3/2(
√

6ζλx̂∗1/2), (3.16)

where C4 is an integration constant. Using (2.48) and (3.12), we obtain

ū∗ =C4x̂∗−3/4J3/2(
√

6ζλx̂∗1/2)e−2iπt∗, (3.17)

η̄∗ =
√

6iC4ζ

3
x̂∗−1/4J1/2(

√
6ζλx̂∗1/2)e−2iπt∗ . (3.18)

In order to determine C4, we use the boundary conditions (2.54) and (2.55). For q= 2,
the dispersion relation (2.50) becomes

κ =
√

3
2ζλ. (3.19)

Therefore, the wave celerity of the mean wave is expressed as

c∗ =
√

2
3
ζ−1 ≈

√
2
3

(
1− µ

2

60

)
. (3.20)

Equation (3.20) suggests that the higher-order effect contributes by slightly reducing
the wave celerity. Using (2.54) and (2.55) together with (3.20), we determine C4 to
obtain the mean wave solutions for η̄∗ and ū∗

η̄∗ = 2J1/2(
√

6ζλx̂∗1/2)

x̂∗1/4{J1/2(
√

6ζλ)− iJ3/2(
√

6ζλ)}e
−i(κ+2πt∗), (3.21)
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FIGURE 3. Wave amplification inside the U-shaped bay (q=2) for different parameter sets
of µ and λ. (a) Wave amplification factor a/a0, (b) higher-order contribution (a− aL)/a0.

ū∗ =−
√

6iJ3/2(
√

6ζλx̂∗1/2)

ζ x̂∗3/4{J1/2(
√

6ζλ)− iJ3/2(
√

6ζλ)}e
−i(κ+2πt∗). (3.22)

The longitudinal variation in the wave amplitude is expressed by a product of the
Bessel and the negative power function in common with the leading-order solution
(ζ = 1). Substituting (3.21) and (3.22) into (2.41) provides the two-dimensional profile
of water surface elevation to the same order of σ as

η∗ = η̄∗ + µ
2

6
(x̂∗ − 3y∗2)J5/2(

√
6ζλx̂∗1/2)

x̂∗5/4{J1/2(
√

6ζλ)− iJ3/2(
√

6ζλ)}e
−i(κ+2πt∗). (3.23)

The second term on the right-hand side is responsible for the transverse variation. The
water surface elevation quadratically varies in the transverse direction.

Figure 3 shows the distributions of wave amplitude inside U-shaped bays for
different parameter sets of µ and λ. The upper panels display the ratio of the wave
amplitude to the incident wave amplitude a/a0, whereas the lower panels represent
the higher-order contributions given by (a − aL)/a0 with the leading-order wave
amplitude aL from (3.10). In cases of small µ, contour lines are parallel to the
y∗-axis, suggesting that the transverse variation in the water surface is small. The
effect of wave refraction intensifies as µ increases, and the contour lines become
parabolic towards the bay head near the bay entrance. The wave amplitude around the
bay head increases with λ, as wave energy is transferred to the bay head with less
reflection for shorter waves. Especially when λ> 1, drastic wave amplification occurs
due to the strong funnelling effect. The wave refraction does not make a significant
change in the energy transfer process within the present range of µ< 1.
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3.3. Higher-order solution for V-shaped bays (q= 1)
For q= 1, the governing equations (2.37) and (2.38) are expressed as

ν
∂η̄∗

∂t∗
− ū∗ − 1

2
x̂∗
∂ ū∗

∂ x̂∗
= 0, (3.24)(

ν − σ
2

ν

)
∂ ū∗

∂t∗
− ∂η̄

∗

∂ x̂∗
+ σ 2 ∂

2η̄∗

∂t∗2
+ σ

2

3
x̂∗

∂3η̄∗

∂ x̂∗∂t∗2

− 7σ 2

6ν
x̂∗
∂2ū∗

∂ x̂∗∂t∗
− 5σ 2

24ν
x̂∗2

∂3ū∗

∂ x̂∗2∂t∗
= 0. (3.25)

The two equations are combined into a single-variable equation in terms of ū∗

ν2 ∂
2ū∗

∂t∗2
− 3

2
∂ ū∗

∂ x̂∗
− 1

2
x̂∗
∂2ū∗

∂ x̂∗2
− σ

2

6
x̂∗

∂3ū∗

∂ x̂∗∂t∗2
− σ

2

24
x̂∗2

∂4ū∗

∂ x̂∗2∂t∗2
= 0. (3.26)

Substituting (2.48) into (3.26) yields

x̂∗
(

1− µ
2

12
x̂∗
)
φ′′(x̂∗)+

(
3− µ

2

3
x̂∗
)
φ′(x̂∗)+ 2λ2φ(x̂∗)= 0. (3.27)

Unlike the case of q = 2, φ obeys the hypergeometric differential equation. The
solution of (3.27) bounded at x̂∗ = 0 is given by

φ(x̂∗)=C5F
(
α, β, 3; µ

2x̂∗

12

)
, (3.28)

with

α = 3
2

(
1+

√
1+ 32

3r2

)
, β = 3

2

(
1−

√
1+ 32

3r2

)
, (3.29a,b)

where C5 is an integration constant, r is the aspect ratio of the bay (=ly/lx) and F is
the Gaussian hypergeometric function. From (3.28), (2.48) and (3.24), we obtain

ū∗ =C5F
(
α, β, 3; µ

2x̂∗

12

)
e−2iπt∗, (3.30)

η̄∗ = iC5

λ
F
(
α, β, 2; µ

2x̂∗

12

)
e−2iπt∗ . (3.31)

The dispersion relation (2.50) for q= 1 becomes

κ = λ√
1
2

(
1− µ

2

12

) . (3.32)

Therefore, the celerity of the mean wave is given by

c∗ =
√

1
2

(
1− µ

2

12

)
≈
√

1
2

(
1− µ

2

24

)
. (3.33)
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The higher-order effect on the wave celerity is larger than in the case of q= 2. Using
(2.54) and (2.55) with (3.33), we determine C5 to obtain the mean wave solution
inside of the V-shaped bay

η̄∗ =
2F
(
α, β, 2; µ

2x̂∗

12

)
F
(
α, β, 2; µ

2

12

)
− i
κ

2
F
(
α, β, 3; µ

2

12

)e−i(κ+2πt∗), (3.34)

ū∗ =−
2iλF

(
α, β, 3; µ

2x̂∗

12

)
F
(
α, β, 2; µ

2

12

)
− i
κ

2
F
(
α, β, 3; µ

2

12

)e−i(κ+2πt∗). (3.35)

The longitudinal variation in wave and velocity amplitudes inside V-shaped bays
is described with the Gaussian hypergeometric function. Accordingly, the two-
dimensional wave profile is obtained from (2.41) as

η∗ = η̄∗ + µ
2λ2

9

(x̂∗2 − 3y∗2)F
(
α + 1, β + 1, 4; µ

2x̂∗

12

)
F
(
α, β, 2; µ

2

12

)
− i
κ

2
F
(
α, β, 3; µ

2

12

)e−i(κ+2πt∗). (3.36)

The second term on the right-hand side of (3.36) describes the transverse variation in
the water surface elevation, which is quadratic as in the case of q= 2.

Figure 4 shows the distributions of wave amplitude inside the V-shaped bays for
different parameter sets of µ and λ corresponding to those in figure 3. The wave
amplitude distributions exhibit a similar tendency to that in figure 3 for U-shaped bays,
but the transverse variation is stronger near the bay entrance where the bay cross-
sectional area decreases more rapidly. In addition, the V-shaped bay more strongly
funnels the incoming wave for large λ, resulting in extreme wave amplification near
the bay head. When µ is large, the higher-order effect contributes by increasing the
wave amplitude around the bay entrance, while reducing it near the bay head. This
is because stronger refraction forms standing waves in the transverse direction around
the bay entrance, and prevents wave energy transfer into the bay.

3.4. Higher-order solution for cusped bays (q= 2/3)
For the case of q= 2/3, the governing equations (2.37) and (2.38) are rewritten as

∂η̄∗

∂t∗
− ū∗ − 2

5
x̂∗
∂ ū∗

∂ x̂∗
= 0, (3.37)(

ν − 9σ 2

4ν
x̂∗
)
∂ ū∗

∂t∗
− ∂η̄

∗

∂ x̂∗
+ 9σ 2

4
x̂∗
∂2η̄∗

∂t∗2
+ σ

2

2
x̂∗2

∂3η̄∗

∂ x̂∗∂t∗2

− 19σ 2

10ν
x̂2∗ ∂

2ū∗

∂ x̂∗∂t∗
− 14σ 2

55ν
x̂∗3

∂3ū∗

∂ x̂∗2∂t∗
= 0. (3.38)

The two equations are combined into a single-variable equation in terms of ū∗

ν2 ∂
2ū∗

∂t∗2
− 7

5
∂ ū∗

∂ x̂∗
− 2

5
x̂∗
∂2ū∗

∂ x̂∗2
− 3σ 2

10
x̂∗2

∂3ū∗

∂ x̂∗∂t∗2
− 3σ 2

55
x̂∗3

∂4ū∗

∂ x̂∗2∂t∗2
= 0. (3.39)
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FIGURE 4. Wave amplification inside the V-shaped bay (q=1) for different parameter sets
of µ and λ. (a) Wave amplification factor a/a0, (b) higher-order contribution (a− aL)/a0.

We then substitute (2.48) into (3.39) to have

2x̂∗

5

(
1− 3µ2x̂∗2

22

)
φ′′(x̂∗)+ 7

5

(
1− 3µ2x̂∗2

14

)
φ′(x̂∗)+ λ2φ(x̂∗)= 0. (3.40)

The resulting equation is neither the Bessel equation nor the hypergeometric equation,
as in the case of q= 1 or 2. To change the form of the equation, we introduce a new
variable defined by

χ∗ =
√

3
22
µx̂∗. (3.41)

The new variable leads (3.40) to

χ∗(1− χ∗)(1+ χ∗)φ′′(χ∗)−
(

11
2
χ∗2 − 7

2

)
φ′(χ∗)+ 5

√
66λ

6r
φ(χ∗)= 0, (3.42)

which is Heun’s equation. The bounded solution for (3.42) is

φ =C6E(λ; r; χ∗), (3.43)

where C6 is an integration constant and the function E is introduced as an abbreviation
of the local Heun function:

E(λ; r; χ∗)≡H`

(
−1,

5
√

66λ
6r
; 9

2
, 0,

7
2
, 1; χ∗

)
. (3.44)
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From (2.48), (3.37) and (3.43), we express the general solutions for ū and η̄ as

ū∗ =C6E(λ; r; χ∗)e−2iπt∗, (3.45)

η̄∗ = iC6

λ
G(λ; r; χ∗)e−2iπt∗, (3.46)

where the function G is defined by

G(λ; r; χ∗)≡ E(λ; r; χ∗)+ 2
5χ
∗E′(λ; r; χ∗). (3.47)

Here, E′(λ; r; χ∗) represents the differential of E(λ; r; χ∗). Since the Heun function
is represented by an infinite power series, the functional value of the differential can
also be evaluated by a series through term-wise differentiation.

For q= 2/3, the dispersion relation (2.50) becomes

κ = λ√
2
5

(
1− 3µ2

22

) . (3.48)

Therefore, the wave celerity is given by

c∗ =
√

2
5

(
1− 3µ2

22

)
≈
√

2
5

(
1− 3µ2

44

)
. (3.49)

The higher-order reduction of the wave celerity is larger than the other bay types,
since wave refraction more significantly elongates the effective wave path over the
cusped cross-section. Using (2.54) and (2.55) together with (3.49) as the boundary
conditions at x̂∗ = 1, we obtain analytical solutions for η̄∗ and ū∗ as

η̄∗ =
2G
(
λ; r;

√
3
22µx̂∗

)
G
(
λ; r;

√
3
22µ
)
− 2

5 iκE
(
λ; r;

√
3

22µ
)e−i(κ+2πt∗), (3.50)

ū∗ =−
2iλE

(
λ; r;

√
3

22µx̂∗
)

G
(
λ; r;

√
3
22µ
)
− 2

5 iκE
(
λ; r;

√
3

22µ
)e−i(κ+2πt∗). (3.51)

Furthermore, the two-dimensional wave profile is given from (2.41) as

η∗ = η̄∗ + µ
2

2

(x̂∗3 − 3y∗2)
{

E
(
λ; r;

√
3
22µx̂∗

)
−G

(
λ; r;

√
3
22µx̂∗

)}
x̂∗
{

G
(
λ; r;

√
3
22µ
)
− 2

5 iκE
(
λ; r;

√
3

22µ
)} e−i(κ+2πt∗).

(3.52)

The transverse variation in wave amplitude remains quadratic as in the cases of the
U-shaped and V-shaped bays.

Figure 5 shows distributions of wave amplitude inside the cusped bays for different
parameter sets of µ and λ corresponding to those in figures 3 and 4. The general
tendency of wave amplitude distribution is unchanged from those of the other bay
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FIGURE 5. Wave amplification inside the cusped-shaped bay (q = 2/3) for different
parameter sets of µ and λ. (a) Wave amplification factor a/a0, (b) higher-order
contribution (a− aL)/a0.

types. The stronger wave refraction increases the curvature of the parabolic contour
lines and more significantly reduces the wave amplitude in the bay head region
for large µ. The funnelling effect is largest among the three bay types as the bay
topography permits wave energy transfer with smaller reflection. However, the drastic
wave amplification may be limited by the occurrence of wave breaking in actual
nonlinear cases, which will be discussed later in § 4.2.

4. Discussion
The analytical solutions in the previous section were derived on the assumption

of small σ , namely that the bay width is sufficiently smaller than the representative
wavelength. Therefore, they cannot correctly describe the actual phenomena beyond
a certain value of µ. When the incident wavelength is small, wave funnelling is
remarkable, but wave refraction also significantly affects the wave evolution process.
In this section, we first clarify the applicable limit of the present approach and discuss
wave propagation characteristics for large µ. Finally, we present the maximum run-up
height in converging bays and how it is affected by the different processes such as
wave funnelling, refraction and breaking.

4.1. Applicable range of the solutions
The present solutions suggest that a monochromatic wave propagating in the
converging bays can be seen as a mean plane wave with weak two-dimensionality
due to wave refraction. However, when µ exceeds a certain limit, we cannot
assume the presence of the mean progressive wave since wave refraction produces
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a highly two-dimensional wave field. To estimate the limiting value of µ, one
possible approach is to derive further higher-order solutions. However, it is difficult
to analytically obtain them for the longitudinally varying topography given the
complexity of the problem. Instead, we analyse asymptotic wave behaviours over the
uniform cross-sections of the three types through the perturbation method.

The section-averaged momentum and continuity equations over the uniform region
are obtained from (2.22) and (2.23) by introducing the geometrical set-up h∗= 1− y∗q
and S∗ = q/(q+ 1) as

∂η̄∗

∂t∗
+ q

q+ 1
∂ ū∗

∂x∗
= 0, (4.1)

∂ ū∗

∂t∗
+ q+ 1

q

∫ 1

0
(1− y∗q)

∂η∗

∂x∗
dy∗ = 0. (4.2)

To close the problem, we need to express η∗ in (4.2) by the mean variables, ū∗ and
η̄∗. Two supplementary equations to determine η∗ are given, respectively, from (2.24)
and (2.27) as

η∗ = η̄∗ + σ 2

[∫ 1

0

∫ y∗

0

∂v∗

∂t∗
dy∗ dy∗ −

∫ y∗

0

∂v∗

∂t∗
dy∗
]
, (4.3)

∂v∗

∂t∗
=− 1

1− y∗q

[∫ y∗

0

∂2η∗

∂t∗2
dy+

∫ y∗

0
(1− y∗q)

∂2u∗

∂x∗∂t∗
dy∗
]
. (4.4)

An additional relation is required to evaluate the second term on the right-hand side of
(4.4). Linearizing (2.2) and (2.3) and combining them leads to the following relation
in dimensionless form:

∂2u∗

∂y∗∂t∗
= σ 2 ∂

2v∗

∂x∗∂t∗
, (4.5)

which means that the horizontal vorticity does not change over time. Laterally
integrating (4.5) in the similar manner as we obtained (2.7), we have

∂u∗

∂t∗
= ∂ ū∗

∂t∗
− σ 2

[
q+ 1

q

∫ 1

0
(1− y∗q)

∫ y∗

0

∂2v∗

∂t∗∂x∗
dy∗ dy∗ −

∫ y∗

0

∂2v∗

∂t∗∂x∗
dy∗
]
. (4.6)

In order to apply the perturbation method, we approximate η∗, u∗ and v∗ in series of
σ as

η∗ = η̄∗ + σ 2η∗1 + σ 4η∗2 + · · · ,
u∗ = ū∗ + σ 2u∗1 + σ 4u∗2 + · · · ,

v∗ = v∗1 + σ 2v∗2 + · · · .

 (4.7)

Substituting (4.7) into (4.3), (4.4) and (4.6) yields the following recurrence equations
for the nth-order components (n > 1):

η∗n =
∫ 1

0

∫ y∗

0

∂v∗n
∂t∗

dy∗ dy∗ −
∫ y∗

0

∂v∗n
∂t∗

dy∗, (4.8)

∂v∗n
∂t∗
=− 1

1− y∗q

[∫ y∗

0

∂2η∗n−1

∂t∗2
dy+

∫ y∗

0
(1− y∗q)

∂2u∗n−1

∂x∗∂t∗
dy∗
]
, (4.9)
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FIGURE 6. Dimensionless wave celerity of different order in terms of µ.

∂u∗n
∂t∗
=−q+ 1

q

∫ 1

0
(1− y∗q)

∫ y∗

0

∂2v∗n
∂t∗∂x∗

dy∗ dy∗ +
∫ y∗

0

∂2v∗n
∂t∗∂x∗

dy∗, (4.10)

with η∗0 = η̄∗ and u∗0= ū∗. Therefore, η∗n can be successively obtained by the recurrence
equations, and substituting it into (4.7) and (4.2) gives the nth-order momentum
equation. Subsequently, the momentum and continuity equations are combined to
produce a single-variable wave equation with respect to ū∗. The nth-order wave
equation becomes the 2nth-order partial differential equation. For derivation of the
higher-order dispersion relation, we assume the solution to be of a travelling wave
with a constant wavenumber and angular frequency. Substituting the assumed form
into the wave equation yields the expression for the nth-order wave celerity c∗n as

c∗n =
√

q
q+ 1

(1+µ2s1 +µ4s2 + · · · +µ2nsn), (4.11)

where sn is a coefficient for the nth-order correction to the wave celerity. The
coefficient of the first-order term s1 was previously obtained using the Taylor
expansion in (3.20), (3.33) or (3.49) for each bay type. Note that the wave celerity
from the present analytical solution is slightly different from the first-order wave
celerity in the asymptotic series. Table 2 summarizes the coefficients to the sixth
order for the three bay types.

The wave celerity is plotted against µ for different-order solutions (n = 0, 1, 3,
6 and 9) in figure 6. The corresponding relationship from the present solution is
also plotted in each figure (labelled c∗anal), which agrees with that of the first-order
wave celerity in the lower range of µ. The leading-order (0th-order) wave celerity is
constant with µ, whereas the higher-order wave celerity deviates downward from it
as µ increases. Hence, the wave refraction effect, which reduces the wave celerity,
is underestimated by the lower-order solution for large µ. The µ value for c∗ = 0,
which indicates the occurrence of total reflection, decreases as the higher-order terms
are included up to a certain order. However, the very-high-order solutions (the sixth-
and ninth-order solutions) conversely deviate upward from the lower-order solutions
beyond a certain limit of µ that differs with the bay type. This oscillatory behaviour
implies µ is out of the convergence radius of the asymptotic series. Although a
rigorous proof is lacking, this convergence limit µc can be estimated from the
asymptotic behaviours of the three cases as

µc ≈
√

2q. (4.12)
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q 2 1 2/3

s1 − 1
60

− 1
24

− 3
44

(−1.6667× 10−2) (−4.1667× 10−2) (−6.8182× 10−2)

s2 − 1
672

− 41
5760

− 5673
329120

(−1.4881× 10−3) (−7.1181× 10−3) (−1.7237× 10−2)

s3 − 323
3024000

− 1027
967680

− 325043331
82268151680

(1.0681× 10−4) (−1.0613× 10−3) (−3.9510× 10−3)

s4
195983

55883520000
− 2909

30965760
− 738841381220067

1249192522369792000
(3.5070× 10−6) (−9.3942× 10−5) (−5.9146× 10−4)

s5
11024087

20341601280000
3180181

262766592000
117849899439735068691

1882807953566197898240000
(5.4195× 10−7) (1.2103× 10−5) (6.2593× 10−5)

s6
1620504421

12204960768000000
69990646279

8034351316992000
288331818110818131456231507

2968615769156009961363415040000
(1.3277× 10−7) (8.7114× 10−6) (9.7127× 10−5)

TABLE 2. Values of sn to the sixth order.

The convergence limit provides the applicable limit of the perturbation approach. The
µc values are approximately 2.0, 1.4 and 1.2, respectively, for q= 2, 1 and 2/3 (the
corresponding σ values are 0.32, 0.23 and 0.18). When µ > µc, the higher-order
term is no longer a minor correction, and thus, the quasi-one-dimensional assumption
breaks down. Beyond the limit, the two-dimensional wave field cannot be represented
by the section-averaged travelling wave, and total reflection possibly occurs forming
an evanescent wave towards the bay head. The results also suggest that the present
solution provides a good approximation close to the limit with less than five percent
error in the wave celerity. Since the applicable limit µc was not determined in a
rigorous manner, we validate it by comparing the present solutions with numerical
solutions of the two-dimensional shallow water equations, (2.1), (2.2) and (2.3). The
supporting material provides the comparisons of the wave amplitude distribution at
µ/µc = 0.5, 1.0 and 1.5 for the three bay types. The analytical solutions agree with
the numerical results up to µ/µc = 1, whereas the two results rapidly deviate from
each other as µ goes beyond µc. The results support the validity of the estimation.

4.2. Maximum run-up height

We finally discuss run-up characteristics of monochromatic waves in the different
bay types on the basis of the analytical solutions. Analogous to the classical run-up
solutions, the maximum run-up height Rmax can be represented by the wave amplitude
at the bay head (x̂∗ = 0). For the leading-order solution, the maximum run-up height
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for arbitrary q can be expressed as

R∗max =
2(pλ)1/q

Γ (p2)

√
J2

1/q(2pλ)+ J2
1/q+1(2pλ)

, (4.13)

where R∗max = Rmax/a0 is the dimensionless run-up height. This leads to the classical
run-up solution over uniform slopes of Keller & Keller (1964) by letting q→ ∞
(p→ 1):

R∗max =
2√

J2
0(2λ)+ J2

1(2λ)
. (4.14)

Also, for large λ, (4.13) can be simplified using the asymptotic forms of the Bessel
functions as

R∗max =
2
√

π(pλ)1/q+1/2

Γ (p2)
. (4.15)

The run-up height is, therefore, expressed as the algebraic function of λ.
Equation (4.15) is identical to the one presented in Zahibo et al. (2006).

For the higher-order solutions, a unified expression is not available for different bay
types, and thus, it is given on a case-by-case basis as follows:

(i) U-shaped bay (q= 2)

R∗max =
4κ1/2

√
π

√
J2

1/2(
√

6ζλ)+ J2
3/2(
√

6ζλ)
; (4.16)

(ii) V-shaped bay (q= 1)

R∗max =
2√

F
(
α, β, 2; µ

2

12

)2

+ κ
2

4
F
(
α, β, 3; µ

2

12

)2
; (4.17)

(iii) cusped bay (q= 2/3)

R∗max =
2√

G
(
λ; r;

√
3
22µ
)2
+ 4

25κ
2E
(
λ; r;

√
3

22µ
)2
. (4.18)

Note that the definition of κ differs by the bay type and is given, respectively, in
(3.19), (3.32) or (3.48). It was numerically confirmed that the higher-order solutions
reduce to (4.13) in the limit of µ→ 0.

Figure 7 shows the relationships between R∗max and λ for the three bay types
with different aspect ratios (r = 0.25, 0.5 and 1) and plane beaches (q = ∞). The
leading-order solutions for the three bay types are plotted with dashed lines (labelled
R∗max0), whereas the higher-order solutions are plotted with solid lines up to their
applicable limits given by µc =√2q. When λ< 0.5, the dimensionless run-up height
changes with neither q nor r, taking a nearly constant value of two. Incoming waves
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FIGURE 7. Relationships between R∗max and λ for different sets of the bay parameters q
and r, and curves of wave breaking criteria for different ε values.

are not funnelled in the range due to reflection by the relatively strong convergence
of the bay cross-section. As λ increases, the funnelling effect intensifies to produce
differences over the three bay types, causing larger amplification in bays with smaller
q. Comparison of the leading- and higher-order solutions suggests that the wave
refraction effect on the maximum run-up height also increases with increasing λ.
For large µ, the maximum run-up height is reduced from the leading-order solution
for the cases of q = 1 and 2/3, whereas it is slightly enhanced for the case of
q = 2, although the first-order solution contains a truncation error very close to the
applicable limit. This is because the refracted waves are reflected out of the bay
due to the strongly converging topography near the bay entrance for the former
cases. Beyond the limit, the maximum run-up height should more significantly
decrease compared to the leading-order solution due to the wave trapping at the
bay entrance.

As previously discussed in § 2.1, the linear solutions predict actual run-up heights
well as long as ε is small. This means that the energy transfer process in the bay
is not significantly affected by the nonlinearity under the condition. However, the
nonlinear advection causes wave breaking in the bay at a certain limit of λ and
suppresses the run-up height significantly. The breaking criterion can be specified
as the breakdown point of the hodograph transform whose Jacobian goes to zero
(Madsen & Schaeffer 2010). Zahibo et al. (2006) expressed the same criterion for
monochromatic waves propagating in the converging bays with respect to the linear
solution. It may be written in terms of the run-up height as

R∗max =
1
ελ2

. (4.19)

It was determined as a condition for the appearance of discontinuity in the shoreline
velocity that occurs at the ebb peak regardless of the λ and ε values. The breaking
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criteria for different ε values are indicated by dash-dot-line curves in figure 7.
Although they are based on the leading-order solution neglecting the terms of O(σ 2),
the criteria provide breaking limits within the applicable range of the present solution
well, because the higher-order effect is not large. Therefore, given a value of ε, the
run-up amplification beyond the intersection of the run-up curve and the corresponding
breaking curve will not be realized due to energy dissipation through wave breaking.

It may be worth discussing the case of the 2011 Tohoku tsunami based on figure 7.
Numerous bays along the severely affected coast (the Sanriku Coast) typically have
dimensions of h0 = 80–100 m, lx = 4–6 km and ly = 1–2 km with different shapes
(Shimozono et al. 2012). The tsunami approaching the coast contained a predominant
wave component with a period of approximately 40–50 min and a short impulsive
wave of smaller than 10 min period localized in the leading predominant wave (Kawai
et al. 2013). The λ value for the predominant component was in the range of λ< 0.5
for many bays, in which significant amplification could not occur. The observed
variation in the run-up height was produced by the short wavelength component,
which was in the range of strong funnelling (λ > 1.5). However, it was also in the
critical range of the occurrence of wave breaking since its amplitude was up to several
metres out of the bays, namely ε = O(10−2). Wave breaking dissipation limited the
energy transfer to the bay head region in many bays. In strongly converging bays,
wave refraction might further prevent the short wave intrusion, generating high run-up
around its entrance through wave trapping. These probably explain why the tendency
of wave funnelling was not clearly observed in the run-up height distribution along the
coast. Indeed, large run-up heights were observed in converging bays of a relatively
small scale where the short wave energy was brought to the bay head without being
limited by both wave breaking and refraction. The highest run-up trace throughout
the event, which was nearly 40 m above the mean sea level, was found at a small
V-shaped bay of approximately 1 km length (Shimozono et al. 2014).

5. Conclusions

This paper investigated propagation and run-up characteristics of long periodic
waves in converging bays. We considered three types of symmetric bays that
monotonically decrease their cross-sectional areas: U-shaped, V-shaped and cusped
bays. The two-dimensional linear long wave equations reduce to one-dimensional
dispersive wave equations under the assumption that the transverse flow acceleration
is small. The analytical solutions are characterized by two parameters, λ and µ.
The longitudinal variation in wave amplitude inside the bay is represented with the
different functions of λ for the respective bay type. When λ<0.5, incoming waves are
not funnelled in the bays, and the run-up amplification factor remains nearly constant
at two due to significant reflection through relatively rapid transition of the bay
cross-section. The funnelling effect intensifies with increasing λ and causes drastic
wave amplification in the strongly converging bays. The higher-order effect with
respect to µ is responsible for wave refraction over the laterally uneven topography.
The refraction effect differently contributes to the wave amplitude in the bay head
region depending on the bay type.

To clarify the applicable range of the derived solutions, we carried out the
perturbation analysis to investigate asymptotic behaviours of the wave celerity over
uniform cross-sections of the three types. The results suggest that the higher-order
effect is no longer a minor correction to the leading-order plane-wave solution when
µ exceeds

√
2q. Therefore, the incoming waves evolve into highly two-dimensional
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waves through strong wave refraction and total reflection probably occurs beyond the
limit. Clarification of wave characteristics beyond the limit requires two-dimensional
analysis since the quasi-one-dimensional assumption breaks down. Within the
applicable range µ<

√
2q, the wave refraction effect on the maximum run-up height

is small, and thus, run-up amplification is well predicted even if the higher-order
effect is disregarded. However, the leading-order solution significantly underestimates
the wave height around the bay entrance for large µ.
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