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Unlike industrial-grade Inertial Navigation Sensors (INSs) that can provide credible tracking
performance, more affordable consumer-grade low-cost INSs produce drifts in heading angles
and positions that result in a poor tracking accuracy. Researchers have proposed drift correction
methods that attempt to attenuate the drifts when walking straight along the dominant directions
is detected. While determining the type of a pedestrian’s walk is essential before the heading
corrections are made, the current detection techniques heavily rely on thresholding. This paper
proposes a novel threshold-less method to detect turns in walking by using pelvic rotation and
correct the heading angle based on consumer-grade INSs. The experiments indicate the proposed
turn detector and heading correction methods produce very good results which can be applied
for future pedestrian tracking, activity recognition or rehabilitation.
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1. INTRODUCTION. The fast adoption of Inertial Navigation Sensors (INSs) into
many products comes with a wide range of performance grades of INS. Consumer grade
INSs are at the low-end of both performance and cost, and as such are suitable for appli-
cations such as video game controllers and smartphones. Applications such as navigation
systems demand industrial-grade performance and they are much more expensive. The key
factor to superior performance is their better gyro bias stability, which indicates how stable
the bias of a gyro is over a certain specified period. The lower the bias stability the lower
the errors will be when integrating the gyro output to estimate the heading angles.

On the other side, consumer-grade INSs have greater bias stability and generally are not
suitable for navigation purposes. The poor orientation estimated from these gyros contains
drift that results in errors in the navigation in two ways (Vincent, 2013). First, orientations
(pitch, roll and yaw) are used to separate accelerations from gravitational acceleration.
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The poor estimates of orientation cause the acceleration estimations to be erroneous and
upon double integration result in errors in the magnitude of the actual movement. Second,
the tracking will go in the wrong direction due to inaccurate orientation estimation. High
bias stability could be related to several causes such as manufacturing defects and angular
random walk.

Consumer-grade INSs offer low-cost and small platform navigation solutions, such as
the foot-mounted INS (Gu et al., 2014). It has been demonstrated that position drift can be
minimised in foot-mounted INS by applying Zero-velocity Update (ZUPT). The detected
stance phase instinctively produces zero velocity that can be used as a reference to reset
the position drift. In contrast, the heading drift has not been well solved as the heading
error is unobservable in the Kalman-based navigation framework (Abdulrahim et al., 2011).
Some have resorted to use geomagnetic information from a magnetometer (Kim and Kong,
2016) but the information is susceptible to magnetic disturbance under certain operational
conditions.

To minimise the negative effects of heading drift in indoor navigation, researchers have
proposed to use a corridor’s direction as constraints. For instance, the authors in Borenstein
and Ojeda (2010) stressed that most indoor corridors are in four major directions (named
dominant directions), either parallel or orthogonal to each other and to the peripheral walls
of the building. They have developed a Heuristic Drift Elimination (HDE) algorithm that
corrects the computed heading to match with the closest dominant direction. The algorithm
is based on a feedback control system and works well for short stretches of walking in
non-dominant directions. However, a longer walk (30 to 60 s) in non-dominant directions
will cause the algorithm to overcorrect the headings, and leads to wrong positions. To
resolve the problem, an adaptive gain function is introduced where one or more attenuators
are multiplied with the gain in every iteration. The attenuators would suspend the HDE
algorithm from correcting the heading if walks along non-dominant directions are detected.

Still, the heading drift is present in a prolonged walk in the non-dominant directions,
as reported by Jiménez et al. (2011). These authors showed the position error from HDE
by using a circular path as an example. In addition, HDE fails to determine the correct
position when the pedestrian walks in a straight line which is not aligned with the domi-
nant directions. To solve these problems, the authors proposed an improved HDE method
(iHDE). iHDE still uses dominant directions to correct the heading but also incorporates
movement analysis and a confidence estimator to estimate the heading error as well as the
confidence level of that estimation. Their tracking results, particularly for circular paths,
indicate better performance than the HDE. Nonetheless, our in-house experiments used to
replicate the method indicate that the given thresholds (i.e. step size attenuator’s threshold)
are not robust. In many occasions, walking along circular paths is detected as a straight
walk.

Moreover, researchers in Ju et al. (2014) claimed that iHDE performance suffers when
the pedestrian is not walking along the dominant directions for a long time. They proposed
an Advanced HDE (AHDE) that will classify the motion of a pedestrian into three types;
non-straight motion, straight motion and straight motion along the dominant directions.
The AHDE algorithm is based on linear regression that fits a straight line to a six-position
data set. A residual function D, the sum of the squares of the perpendicular offsets, is
computed and used to determine the first two types of motions. If the value of D is higher
than the pre-determined threshold, ThD, the motion is considered as non-straight if not, it
is considered as straight. If the motion is straight, and the difference with respect to the
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dominant direction is smaller than another pre-determined threshold, Thθ, then the motion
is a straight motion along the dominant directions. However, since six pedestrian’s steps
are required to start the process, the algorithm lags in classifying the motion. The lag that
causes the short stretches of non-dominant directions will not be detected.

The choice of inertial sensors greatly influences the performance of pedestrian track-
ing. High-end consumer-grade INS have better specifications and cost hundreds of dollars.
Some of them such as the one from XSens Inc. used by Jiménez et al. (2011), are equipped
with an Attitude Heading Reference System (AHRS) which has a performance almost on
a par with high-grade INSs. The low-cost inertial sensors, on the other hand, experience
more drifts and noise that affect the tracking performance.

To mitigate these issues, we propose a novel threshold-less turn detection method that
is robust for different groups of people and operational conditions, and uses low-cost INS.
The new method is based on the relationship between pelvic rotation and ZUPT, and we
call this Pelvic Rotation-ZUPT Turn Detection (PZTD). In addition, the proposed method
is also able to determine the direction of the turn, made by the pedestrian, with fewer
pedestrian steps.

The second contribution is the application of PZTD to correct the heading angles derived
from a waist-worn INS. The proposed filtering method can differentiate a straight walk
that is along the dominant or non-dominant directions. The new filtering produces more
accurate heading angles compared to the un-filtered version.

The rest of this paper is organised as follows: Section 2 introduces the pelvic rotation
and establishes the relationship between pelvic rotation and ZUPT. Section 3 analyses the
relationship statistically. Section 4 presents the methodologies to detect turns and to cor-
rect the heading. Section 5 reports the experimental results from experiments performed.
Finally, Section 6 presents the conclusions.

2. PELVIC ROTATION AND ZUPT. Saunders et al. (1953) proposed that pelvic rota-
tion reduces the vertical movements of the body’s Centre Of Mass (COM), thus saving
energy. This is based on the premise that the COM displacements are costly in terms of used
energy. However, other studies suggested the contribution of pelvis rotations in reducing
vertical displacement is either negligible or at least far less than previously thought (Kuo,
2007; Lin et al., 2014).

A study in Borhani et al. (2013) on pelvic kinematics in gait discovered that the mean of
maximum pelvic rotation from thirty participants is up to 6◦. Other studies, (Bruijn et al.,
2008; Liang et al., 2014) indicated that the maximum pelvic rotations in normal walks with
speed between 3–4 km/h are around 6◦ and 10◦, respectively.

Usually, the pelvic rotation is measured using vision systems that locate markers
attached to the waist (Zhang et al., 2013; Borhani et al., 2013). In recent approaches, iner-
tial sensors have been used to estimate the pelvis kinematics as an alternative to vision
systems (Floor-Westerdijk et al., 2012; Bugane et al., 2014). An inertial sensor has been
placed at the sacrum as opposed to the markers and the results show that the devices are a
reliable alternative.

In Zhang et al. (2013), it is noted that the rotation angle is periodic when a person
is walking quickly in a straight line. Another conclusion drawn is that the trajectory of
the waist joint is like a sinusoidal signal. In Pavčič et al. (2014), it is reported that during
turning, the pelvis and torso orientations should follow the direction of the turn. From these,

https://doi.org/10.1017/S0373463317000443 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000443


192 MOHD NAZRIN MUHAMMAD AND OTHERS VOL. 71

Figure 1. The pelvic rotation angle vs ZUPT during a straight walk.

we can conclude that the pelvic rotation angle is sinusoidal when walking in a straight line,
but the angle follows the direction of turn when turning.

Unlike self-resetting techniques used to reduce error accumulation in distance estimation
such as in Akeila et al. (2014), most foot-mounted inertial navigation systems rely on zero-
velocity update, or ZUPT, to reduce third-order polynomial error to a linear error. Since
pelvic rotation angle and the ZUPT state can be determined through the gait cycle, this
work has found an interesting relationship between the two parameters.

Trials were done with an INS node attached to the right side of the waist of a healthy
pedestrian to measure the yaw angle (pelvic rotation). Another INS node was attached to
the right foot to compute the ZUPT. The setup and technique to compute the ZUPT are
described in Muhammad et al. (2015). The pedestrian was asked to walk along a corridor
that consisted of a straight path and sharp corners. The computed pelvic rotation and ZUPT
are plotted together as shown in Figure 1. The plot indicates a complete gait cycle from
the right foot during a straight walk. The dashed curve represents the pelvic rotation as
measured by the INS and the solid curve represents the ZUPT. As observed, the polarity
of the pelvic rotation angle changes from positive to negative in the stance phase and vice-
versa in the swing phase.

The angular velocity recorded for the straight walk is plotted together with the ZUPT
signal as shown in Figure 2 (right column). In the straight walk, the angular velocities
spread oppositely in the stance and swing phases. The results of the integral of the angular
velocity that produce the angles of pelvic rotation are shown in the left column.

When the pedestrian turned to the left, the angular velocities spread consistently to the
positive side (Figure 2(c), t = 29 s to 31 s). On the other hand, when the pedestrian turns to
the right, the angular velocities stay to the negative side (Figure 2(f), t = 34·2 s and 36·1 s).

Another important component to establish the relationship is the ZUPT. Our developed
technique to detect the ZUPT is based on a subtractive clustering algorithm (Muhammad
et al., 2014). The algorithm clusters all stationary vertical accelerations measured from the
foot-mounted INS as stance periods. This technique has been compared with other ZUPT
algorithms and achieves an outstanding accuracy.
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Figure 2. The pelvic rotation vs ZUPT during straight walk (a), left turn (b) and right turn (c). The angular
velocity vs ZUPT measured during straight walk (d), left turn (e) and right turn (f).

The characteristics of the detected stance and swing phases have been analysed and the
distributions of average time of swing and stance phases are depicted in Figure 3. The
data is collected from nine healthy pedestrians who walked 20 steps in a straight path.
The average time of stance phases and swing phases of all pedestrians are recorded based
on the computed ZUPT. Meanwhile, three steps are recorded at every right or left (90◦

directional change) turn. The study presented in Ilyas et al. (2016) reported that three steps
are sufficient to execute direction change. Herewith, the average time is computed from the
three steps that comprise three swing and three stance phases.

3. PELVIC ROTATION-ZUPT RELATIONSHIP ANALYSIS. To determine whether
there is a significant association between the pelvic rotation and ZUPT, the data gathered
from nine pedestrians was analysed. An association test called Pearson’s chi-square (or
simply the chi-square) is used to test whether the two variables were independent of each
other (Schumacker and Tomek, 2013; McHugh, 2013). The test will determine which of
the following hypotheses holds true:

Null hypothesis: The walking direction and polarity of the sum of angular velocity are
independent.
Alternative hypothesis: The walking direction and polarity of the sum of angular velocity
are dependent.
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Figure 3. (Left) Distribution of average time of stance phase. The medians are 0·35 s, 0·37 s and 0·33 s
for straight, right turn and left turn, respectively. (Right) Distribution of average time of swing phase.
The medians are 0·68 s, 0·68 s and 0·70 s for straight, right turn and left turn, respectively.

If the null hypothesis is accepted from the test result, then there is no concrete relationship
between pelvic rotation and walking direction. On the other hand, if the null hypothesis
is rejected, then the relationship is established. The significant level or cut-off value to test
whether to accept or reject the null hypothesis is set as 0·05, widely used in most chi-square
test literature (Schumacker and Tomek, 2013; Michael, 2001). The significant level is the
probability of failing to accept the null hypothesis when it is indeed true (Type I error).

Table 1 summarises the polarity comparison for a straight path. Two consecutive gait
phases, swing phase to stance phase or vice versa, is called a cycle. Therefore, for 20
steps walking in a straight path, there will be 39 cycles. For every cycle, the polarity of
the summation of the angular velocities for each gait phase was determined. Polarities for
consecutive gait phases were categorised as having same polarities (both positive or both
negative) or different polarities (positive and negative) and the occurrence of each case was
counted. Technically, the occurrence can be formulated using the XNOR logic as follows:

state =
sump1

abs(sump1)
∗ sump2

abs(sump2)
+

sump1

abs(sump1)
∗ sump2

abs(sump2)
(1)

where state produces −1 (different) or 1 (same), sump1 is the sum of angular velocities in
the first gait phase and sump2 is the sum of angular velocities in the second phase. The table
also shows the sums and means of the angular velocities.

The average accuracy of getting different polarities is about 81%. The means of pelvic
rotation angles in stance and swing phases are close to each other for each of the pedestri-
ans, thereby confirming the first findings that the rotation angle is periodic when walking
in a straight path.

Table 2 and Table 3 summarise the counts of polarity comparison for the pedestrians
when they turned to the left and right, respectively. The numbers of cycles are set to three.
In-house analysis indicates that three cycles have the best accuracy. The average accuracies
of getting the same polarity are 96% and 93% for left turn and right turn, respectively.

In Table 2, the mean for the swing phase is larger than the mean for the stance phase,
which is due to the fact that the right foot makes a longer step when the person turns to
the left as compared with the left foot. This causes the pelvis to rotate more in the swing
phase. Similarly, in Table 3, the mean for the stance phase is larger than the mean for the
swing phase because the left foot makes a longer step when the person turns to the right
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Table 1. Analysis of the pelvic rotation’s angular velocities for straight path.

Stance (rad/s) Swing (rad/s) Polarity comparison

# Cycles Sum Mean Sum Mean Same Different Accuracy

P1 39 −13·6 −0·7 34·4 1·7 18 21 0·54
P2 39 −106·5 −5·3 99·2 5·0 0 39 1·00
P3 39 −116·4 −5·8 118·4 5·9 0 39 1·00
P4 39 −81·2 −4·1 487·8 4·4 4 35 0·90
P5 39 −77·2 −3·9 66·2 3·3 8 31 0·79
P6 39 −19·9 −1·0 28·6 1·4 19 20 0·51
P7 39 −151·9 −7·6 159·6 8·0 0 39 1·00
P8 39 −54·5 −2·7 38·1 1·9 10 29 0·74
P9 39 −63·9 −3·2 51·6 2·6 9 30 0·77

351 −76·1 −3·8 76·0 3·8 68 283 0·81

Table 2. Analysis of the pelvic rotation’s angular velocities for left turn.

Stance (rad/s) Swing (rad/s) Polarity comparison

# Cycles Sum Mean Sum Mean Same Different Accuracy

P1 3 16·7 8·4 21·4 10·7 3 0 1·00
P2 3 5·9 2·9 24·3 12·1 3 0 1·00
P3 3 34·0 17·0 32·0 16·0 3 0 1·00
P4 3 21·9 11·0 25·5 12·8 3 0 1·00
P5 3 14·4 7·2 16·5 8·3 3 0 1·00
P6 3 9·2 4·6 17·6 8·8 3 0 1·00
P7 3 −1·6 −0·8 33·5 16·7 2 1 0·67
P8 3 23·4 11·7 20·5 10·2 3 0 1·00
P9 3 9·6 4·8 14·2 7·1 3 0 1·00

27 14·8 7·4 22·8 11·4 26 1 0·96

Table 3. Analysis of the pelvic rotation’s angular velocities for right turn.

Stance (rad/s) Swing (rad/s) Polarity comparison

# Cycles Sum Mean Sum Mean Same Different Accuracy

P1 3 −18·5 −9·3 −14·9 −7·4 3 0 1·00
P2 3 −23·1 −11·5 −10·9 −5·5 3 0 1·00
P3 3 −26·1 −13·0 −16·4 −8·2 3 0 1·00
P4 3 −22·4 −11·2 −12·0 −6·0 3 0 1·00
P5 3 −19·3 −9·6 −9·6 −4·8 3 0 1·00
P6 3 −14·0 −7·0 −11·8 −5·9 3 0 1·00
P7 3 −22·8 −11·4 −15·5 −7·7 3 0 1·00
P8 3 −18·9 −9·5 −13·9 −7·0 3 0 1·00
P9 3 −23·4 −11·7 −13·3 −6·7 1 2 0·33

27 −20·9 −10·5 −13·1 −6·6 25 2 0·93
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Table 4. Joint frequency distribution between
polarity comparison and walking direction.

Polarity comparison

Walking direction Same Different

Straight 68 283
Left turn 26 1
Right turn 25 2

as compared to the right foot. Thus, the right pelvic rotation is smaller during the swing
phase.

By identifying the relationship between the pelvic rotation and walking directions based
on the underlying hypotheses, Table 4 has been prepared. The number of counts for the
same and different polarities were cross-tabulated against the walking directions. The four
assumptions to apply chi-square analysis as described in Michael (2001) are met: 1) the
sample is not biased, 2) independent observations where sampling of one observation does
not affect the choice of the second observation, 3) no categories overlap and include all
observations and 4) large expected frequency.

The first step in computing the chi-square is to compute the expected frequency for each
cell in Table 4 by using the following equation:

Eij =
Ti × Tj

N
(2)

where Eij is the expected frequency for the cell in the ith row and the jth column, Ti is the
total number of counts in the ith row, Tj is the total number of counts in the jth column and
N is the total number of counts in the table.

The next step is to calculate the chi-square using the following equation:

X 2
ij =

Oij − Eij

Eij
(3)

where X 2
ij , Eij and Oij are the chi-square, expected frequency and observed frequency

for the cell in the ith row and the jth column, respectively. The calculated expected fre-
quency and chi-square for each cell are shown in Table 5. In the fourth assumption, the
cell expected requirements of the chi-square could be verified by checking the expected
frequency in each cell. To meet the requirement, 80% (0·8∗6 cells ≈ 5 cells) of the cells
must have an expected value of five or more. This table meets the requirement that all the
cells have an expected frequency of more than five.

The sum of the calculated chi-square is 127·2 and the number of Degrees of Freedom
(DoF) is two. The P-value is obtained from executing the MATLAB function chi2cdf by
inputting the sum of chi-square and degree of freedom. The result shows the P-value is
smaller than 0·00001. As the P-value of the chi-square table is less than 0·05, the null
hypothesis is rejected and the alternate hypothesis is accepted. Lastly, the strength of the
relationship between polarity and walking direction is measured using Cramer’s V formula:

V =

√
X 2

N × min(r − 1, c − 1)
(4)
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Table 5. The calculated expected frequency and chi-square.

Polarity comparison

Walking direction Same Different

Straight E 103.1 247.9
X2 12·0 5·0

Left turn E 7·9 19·1
X2 41·1 17·1

Right turn E 7·9 19·1
X2 36·8 15·3

Table 6. Effect size for Cramer’s V based on Cohen’s
guidelines (Cohen, 1988) of one DoF.

Magnitude of Effect Size Interpretation

0·1 Small
0·3 Medium
0·5 Large

Table 7. The Distribution of Counts in Different Attributes to Represent Varying
Walking Direction.

Polarity comparison Polarity dominant

Walking direction Same Different Positive Negative

Straight 10 53 33 30
Left turn 26 1 27 0
Right turn 25 2 0 27

where r is the total number of rows, c is the total number of columns and N is the total
number of counts. The calculation gives Cramer’s V equal to 0·56 which should be viewed
as a large effect by following the guidelines shown in Table 6.

The large effect implies that the polarity comparison is a significant factor in determining
in which direction a pedestrian walked, i.e. there is a strong relationship between the pelvic
rotation and ZUPT that can be used to classify the walking direction.

4. PROPOSED METHOD.
4.1. Turn Detection Algorithm. The classification of walking directions is based on

the naïve Bayes method using the information of joint frequency distribution as shown in
Table 4. However, the single attribute referred to so far, polarity comparison, is insufficient
to classify a left or right turn. Therefore, another attribute, polarity dominant, is introduced.
Polarity dominant classifies a cycle as positive if the sum of angular velocities in the cycle
is positive and as a negative if the sum is negative.

The total counts for each attribute from all the pedestrians are presented in Table 7. The
values presented are the total counts from all the pedestrians for each of the attributes. Note
that the total count for straight walk has been changed from 351 (39 cycles × 9 pedestrians)
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to 63 (7 cycles × 9 pedestrians). The reason is the previous total counts caused bias to the
detection algorithm, which inclines to misclassify turns as straights.

The turn detector algorithm needs to classify the three cycles into one of the
three classes: cj = {straight, left, right}. The input will be based on two attributes: a1 =
{same, different} and a2 = {positive, negative}. The parameters of the attributes are deter-
mined as follows:

a1 =
{

same count of same > counts of different
different otherwise (5)

a2 =
{

positive counts of positive > counts of negative
negative otherwise (6)

The general notation of the posterior probability of naïve Bayes can be written as:

P
(
cj |a1, a2

)
=

P(a1|cj ) · P(a1|cj ) · P(cj )
P(a1) · P(a2)

(7)

The objective function in the naïve Bayes classifier is to maximize the posterior probability
P(cj|a1, a2) to determine the corresponding class.

predicted class = arg max P
(
cj |a1, a2

)
(8)

In Equation (8), the predicted class will be obtained by calculating all the possible poste-
rior probability and set the one with the highest probability as the class for the three cycles.
The pseudocode of the turn detector algorithm is shown as follows:

Pseudocode of PZTD Algorithm

1. initialize PZTD variables
2. for i from 2 to length of ZUPT
3. if diff (ZUPTi, ZUPTi−1)equals 1
4. sumsw equals sum of gyrsw
5. elseif diff (ZUPTi, ZUPTi−1)equals − 1
6. sumst equals sum of gyrst
7. end if
8. if sumsw AND sumst are non-Zero
9. state = XNOR(sumsw, sumst)
10. if state = 1 then countsame + 1
11. else countdiff + 1
12. end if
13. if (sumst + sumsw) > 0 then countpos + 1
14. else countneg + 1
15. end if
16. vec_state increments with value of state
17. end if
18. if size(vec_state) equals 3
19. a1 equals to same or different (Equation (5))
20. a2 equals to positive or negative (Equation (6))
21. vec_PZTDi = max(p(straight, left, right | a1, a2))
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22. decrement vec_state by removing 1st index
23. end if
24. end for

where vec, countsame, countdiff, countpos and countneg represent vector, counts of same,
different, positive and negative, respectively. The subscripts sw and st represent swing
and stance, respectively. Meanwhile, max(p(straight, left, right) | a1, a2) is a short form for
the operation stated in Equation (8). The predicted class will depend on the maximum
probability between specific classes and attributes.

The probabilities for all classes such as p(straight | same, positive), p(right | same,
positive) and p(left | same, positive) will be computed. The result will be set to either 0
(if straight has the maximum probability), 1 (if left turn has the maximum probability) or
−1 (if right turn has the maximum probability). The result is stored in the PZTD vector.

4.2. Heading Correction. The yaw angle from the waist can be used to update the
heading of the pedestrian. It is the result of the integral of the angular velocity of the
gyroscope attached to the waist. Usually, the obtained yaw angle from the waist is contam-
inated with noise and drift, due to body vibration and the sensor’s casing movement, due
to loosening attachment, in addition to sensor misalignment.

However, by utilising PZTD, the yaw angle can be filtered to the extent sufficient to
provide accurate heading information. The filtering is done in two stages. In the first stage,
the angular velocity of the waist was integrated if the PZTD is discretely non-zero (true).
The yaw angle is also denoted as heading angle at time k and was computed as follows:

headingk =

{
headingk−1+

∫
ωwaistdt, PZTD (k)! = 0

headingk−1, otherwise
(9)

In stage 2, the heading angle was subtracted from the bias which had been computed using
Equation (11). “Round” is a MATLAB function that will round a value towards the nearest
integer. Of note, Equation (11) was used only when the PZTD vector at time k equals zero.
Bias has an initial value of zero.

filteredheadingk = headingk − biask−1 (10)

biask = filteredheadingk − round
(

filteredheadingk − biask−1

π/2

)
· π/2 (11)

By applying Equation (11), the drift in the heading angle as the result of accumulation of
bias over time was removed. Since no turn should be detected when PZTD equals zero
(walking straight), the bias at the time can be measured and compensated. Thus, the bias
will not accumulate and has very small drift due to un-filtered noise.

As depicted in Figure 4, the un-filtered angles (original) stay between −220◦ to −265◦

when t = 58 s to 97 s, a period of walking straight, though the angles are supposed to be
−180◦. The deviation from the actual angle is due to the inherited drift. The figure also
shows the turns detected by the PZTD algorithm.

The quality of the filtering processes is enhanced by suspending the bias correction if
a straight walk along non-dominant directions is detected. The last motion type, walking
along non-dominant directions, can be determined by using the computed heading from
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Figure 4. Waist’s yaw angles in three representations (no filtering or original, stage 1 filtering and stage 2
filtering).

Figure 5. The even numbered sectors represent the dominant directions and the odd numbered sector represent
the non-dominant directions.

Stage 1. At first, let a circle be divided into 16 sectors that comprises both dominant and
non-dominant directions as shown in Figure 5.

If the walk is straight and belongs to the even numbered sectors, then it is a walk along
a Dominant Direction (DD), and a straight walk in the odd numbered sectors will be deter-
mined as a walk along a Non-Dominant Direction (NDD). The classification is formulated
using the general formulae as follows:

w = rem
(

round
(

headingk

22.5

)
, 2

)
(12)

class of straight walk =

{
DD, w = 0
NDD, otherwise

(13)
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Figure 6. The filtering processes reject the bias correction when a pedestrian walked along a non-dominant
direction. The dots denote the detected non-dominant directions.

where “rem” is a MATLAB function that returns the remainder after the division (in this
case it is two). Therefore, Equation (10) is revised as follows:

filteredheadingk =

{
headingk − biask−1, DD
headingk, NDD

(14)

In an experiment, a pedestrian walked in a straight path along a dominant direction
before entering an angled path, 22◦ off the straight path. The headings, before and after
the filtering processes, are shown in Figure 6. The filtering successfully identifies the walk
along the angled path (t = 13 s to 18·5 s) and suspends the bias correction until the pedes-
trian walked in the dominant direction again. Other experiments indicate that identification
of non-dominant directions works for angles bigger than 20◦. However, it partially works
for angles between 10◦ to 20◦ and fails for angles smaller than 10◦. The reason is the pro-
posed turn detection method is not able to differentiate between pelvic rotation of a person,
which can be around 10◦ for a normal walk (Liang et al., 2014), and the actual turn to
change the direction of walk.

5. RESULTS AND DISCUSSION. In the first experiment, the proposed turn detection
algorithm is compared with the state of the art methods. The second experiment compares
the headings, before and after filtering processes are applied.

5.1. Comparison of turn detection methods. The turn detection methods are applied
to three walking tests as shown in Figure 7. The first test required the pedestrian to walk
along a curved path and back to the initial point. The second test is like the first but the
pedestrian had to walk around a circular path three times. This test simulates a situation
where the pedestrian walked for more than 30 s along non-dominant directions. Lastly, the
pedestrian had to walk along an angled path. In all tests, the pedestrian would walk in the
dominant directions from the starting point.

The methods to determine the straight and non-straight paths in iHDE and AHDE are
compared. For non-straight paths, PZTD represents the paths by indicating the direc-
tions the pedestrian turns to. The comparison between INS devices, Preon and XSens
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Figure 7. (a) Line segments and circular path, (b) line segments and circular path that repeated three times and
(c) line segments with angled path. The dot represents the starting and ending (except (c)) points.

(a
)

(b
)

(c
)

(d
)

(e
)

(a
)

(b
)

(c
)

(d
)

(e
)

(a
)

(b
)

(c
)

(d
)

(e
)

Figure 8. The performance of straight and non-straight paths detection by (a) iHDE, (b) AHDE, and
(c) PZTD using Preon. (d) is PZTD method using XSens MTw. Meanwhile, (e) is the ground truth. The
circle markers in right-most figure represent the detected non-dominant directions.

MTw Awinda, has also been established. Preon, manufactured by Virtenio GmbH, uses
ADXL345 accelerometers and ITG-3200 gyroscopes. A node of Preon and a node of XSens
are paired side by side, and two pairs have been used simultaneously in the experiments;
first mounted on the foot and then attached to the right side of the waist. From the datasheet,
the more expensive XSens MTw has a better bias stability than Preon; 10◦/hr for the gyros.
Meanwhile, from the Allan variance plots, Preon’s gyros have an average (Root Mean
Square - RMS) bias stability of 24◦/hr.

From Figure 8, it is obvious that the detection of non-straight walk when using iHDE
and AHDE lags the ground truth. The reason is those methods require five to six pedestrian
steps to determine the type of walk. The detection algorithms are severely affected when
the change of walking direction happened over a short distance. For instance, AHDE is not
able to detect the walk along the angled path as shown in Figure 8 (right).

Meanwhile, the PZTD algorithm requires only three cycles of gait (two stance phases
and one swing phase, or two swing phases and one stance phase) to detect the change of
walking direction immediately. The proposed method also successfully detects the walk
along the non-dominant directions, marked by the circles (Figure 8 (right)). The perfor-
mance of all the methods from the tests is summarised in Table 8. The PZTD performs
better than other methods and scores above 90% correct predictions. The detection perfor-
mance between Preon and XSens is comparable and indicates that the proposed method
works well for low-cost INS.

5.2. Performance of filtering method. In the first test, a healthy male pedestrian
walked normally in an anti-clockwise manner, following a rectangular shape (5·5 m ×
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Table 8. Comparison of accuracy between detection methods as
well as INS devices.

True False True False
Methods Positive Positive Negative Negative

iHDE (Preon) 67% 33% 77% 23%
AHDE (Preon) 50% 50% 100% 0%
PZTD (Preon) 93% 7% 94% 6%
PZTD (XSens) 95% 5% 95% 5%

Table 9. Comparative analysis of heading estimation error.

Mean error Max. error Min. error
(degree) (degree) (degree)

Step Turn
Iteration Elapse (s) number detected? UH FH UH FH UH FH

1 25·2 17 Yes −0·7 −2·7 8·3 8·5 0·0 0·0
2 42 32 Yes 6·7 −1·0 14·8 8·5 2·9 0·0
3 58·1 48 Yes 15·8 −1·6 24·4 10·2 8·6 0·0
4 74·9 63 Yes 24·4 −1·9 32·1 6·7 17·7 0·0
5 90·9 78 Yes 33·7 −0·2 40·3 7·0 26·2 0·0
6 106·8 94 Yes 39·3 −4·4 53·2 18·9 20·4 0·0
7 123 111 Yes 55·1 −3·4 64·7 19·3 20·4 0·0
8 138·9 128 Yes 63·0 −4·5 77·6 15·8 44·8 0·0
9 154·5 143 Yes 80·3 −0·5 90·0 13·0 72·8 0·0
10 170·8 161 Yes 95·7 0·9 104·5 10·6 87·6 0·0
11 186·7 177 Yes 108·9 1·6 117·4 14·0 98·2 0·0
12 202·9 193 Yes 120·1 −2·0 132·7 13·2 109·8 0·0
13 218·8 210 Yes 132·3 −3·7 141·5 11·4 120·0 0·0
14 234·6 227 Yes 143·0 3·1 150·7 14·9 124·0 0·0
15 250·5 242 Yes 150·3 −3·0 163·1 18·9 144·2 0·0
16 267·2 260 Yes 166·8 −1·4 175·9 20·5 144·6 0·0
17 283·2 275 Yes 178·2 0·6 187·8 20·5 150·8 0·0
18 299·3 290 Yes 191·6 −0·7 203·9 13·7 185·7 0·0
19 315·6 305 Yes 203·6 −4·0 218·0 12·8 189·4 0·0
20 331·5 320 Yes 222·0 2·0 228·6 8·3 213·7 0·0

2·8 m) 20 times. The waist’s yaw angle that represents the heading angle was computed
using two methods and compared. First, the trapezoid method was used to calculate head-
ing angle from the angular velocity denoted as UH (Un-filtered Heading). In the second
method, PZTD and heading correction were applied to acquire the Filtered Heading angle
denoted as FH. Both methods were compared with the ground truth where the direction
error is restricted by map matching.

Table 9 lists the estimated heading error of UH and FH over 20 iterations of walking in
a rectangular shape. The PZTD successfully detects all the turns in each of the iterations.
The UH recorded a linear mean error growth, about 11◦ per iteration, which causes an
accumulated mean error of about 222◦ after 20 iterations. As expected, FH performs better
by achieving 2·2◦ in average mean error. The bias compensation in the filtering process
minimises the drift in the heading angles. Thereby, zero minimum errors are attainable in
all the iterations. Still, errors existed because bias compensation is not active when PZTD
equals other than zero. The highest maximum error for FH is 9·0% of UH.
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(a)

(b)

Figure 9. (a) The path for the first track. (b) The path for the second track. The triangles represent the
access door where pedestrians need to swipe an access card to enter and press a button to exit. The paths
are labelled with checkpoints (from a to i).

Another round of tests by the same pedestrian but in a clockwise direction indicates
similar error performance. The mean error grows linearly at 13◦ per iteration for UH. Mean-
while, FH achieves 1·6◦ in average of the mean errors. Again, the highest maximum error
for FH is 9·2% that of UH. Also, PZTD detects all the turns successfully.

In the next tests, another two healthy male pedestrians were asked to walk along two
tracks. In the first track, the first pedestrian would make a 180◦ turn at the end of the corridor
and walk back to the initial position. Meanwhile, for the second track, another pedestrian
had to turn around at the end of the long corridor and had to pass through two access doors
on the way back. The tracks are labelled with checkpoints as shown in Figure 9. The actual
distances are 150·3 m and 111·4 m for Track 1 and Track 2, respectively.

The results are tabulated in Table 10 and Table 11 for Track 1 and Track 2 respectively.
Again, the PZTD detects all the turns without any failure in both tracks. The mean errors
for UH gradually increased on both tracks. Meanwhile, FH achieved 2·0◦ and 1·0◦ average
mean errors for Track 1 and Track 2, respectively.

Besides manufacturing defects and random walk error, the mean error can also have a
contribution from the body movement during the walk such as shakes due to heels striking
the ground. The sliding friction between the sensor’s casing and body could also create
noise in the angular velocity. These are the probable reasons for the differences in mean
errors for UH. Interestingly, despite those problems, the mean errors for FH are very low
compared to UH.

The second track was designed to challenge the algorithm as the pedestrians needed to
turn their body to swipe the access card which could be detected as making a turn. Even
though the turns of the body are detected when swiping the access card, the displacement

https://doi.org/10.1017/S0373463317000443 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000443


NO. 1 DETECTING TURNS AND CORRECTING HEADINGS USING LOW-COST INS 205

Table 10. Heading estimation error for Track 1.

Mean error Max. error Min. error
(degree) (degree) (degree)

Step Turn
Check point Elapse (s) number detected? UH FH UH FH UH FH

a 4.4 2 Yes 7.1 0.0 17.3 0.0 0.0 0.0
b 12.8 7 Yes 9.3 0.1 15.4 12.8 0.1 0.0
c 22.5 16 Yes 6.7 4.6 16.5 15.6 0.5 0.0
d 57.2 46 Yes 18.6 0.8 50.7 15.6 1.5 0.0
e 76.8 59 Yes 24.8 9.6 35.3 19.2 11.6 0.0
f 112.5 92 Yes 38.0 0.5 52.4 11.3 21.2 0.0
g 122.5 102 Yes 33.6 0.4 48.9 7.2 27.5 0.0
h 128.8 107 Yes 29.7 2.4 44.2 17.5 21.6 0.0
i 132.7 109 Yes 36.4 0.0 38.8 0.0 34.4 0.0

Table 11. Heading estimation error for Track 2.

Mean error Max. error Min. error
(degree) (degree) (degree)

Step Turn
Check point Elapse (s) number detected? UH FH UH FH UH FH

a 5.7 3 Yes 0.1 0.0 4.9 0.0 0.0 0.0
b 12.7 7 Yes 1.5 0.3 7.7 6.3 0.0 0.0
c 19.9 13 Yes 0.8 1.3 9.1 10.0 0.0 0.0
d 43.3 35 Yes 7.2 0.0 18.5 0.0 0.0 0.0
e 54.2 43 Yes 12.0 3.9 18.2 9.7 4.4 0.0
f 83.5 67 Yes 16.5 1.1 28.0 10.6 4.8 0.0
g 87.7 70 Yes 17.0 1.1 22.0 6.0 12.1 0.0
h 92.2 74 Yes 16.8 1.2 21.9 7.7 10.3 0.0
i 99.6 76 Yes 17.5 0.0 20.7 0.0 11.8 0.0

of the body is virtually zero as the pedestrian was in the stance phase (checkpoints e and
g). A similar situation is discussed in Tian et al. (2015) where the access reader was used
to reset a position in their handheld tracking system.

6. CONCLUSION. In this paper, we have established the relationship between pelvic
rotation and ZUPT to determine walking direction using a low-cost INS. A novel Pelvic
rotation-ZUPT Turn Detector (PZTD) is proposed. The PZTD does not require any thresh-
old to determine whether a turn is made or not. If a turn is made, PZTD can determine the
direction of the turn and detection is made with fewer pedestrian steps than in other state of
the art methods. The experimental results indicate that the PZTD achieves more than 90%
detection accuracy and performs better than state of the art methods even though a low-
cost INS is used. The information from the PZTD is integrated in the filtering algorithm
for heading correction. The filtering process can determine if a straight walk is following
the dominant directions or otherwise. Afterwards, heading correction is performed on the
heading angle derived from the waist mounted INS. The four sets of experiments indicate
that the filtered angles have lower mean errors compared to the un-filtered angles and have
very small drift.
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The combination of PZTD and the heading angle filtering methods provides an afford-
able heading correction solution that is a strong alternative to those that use expensive
industrial-grade INS, as well as to those using compass-based heading correction. The pro-
posed heading correction solution could enhance pedestrian tracking performance as well
as being used in other applications such as human activity recognition and rehabilitation.
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