
Theory and Practice of Logic Programming 1 (5): 539–590, September 2001.

Printed in the United Kingdom c© 2001 Cambridge University Press

539

On redundancy elimination tolerant
scheduling rulesã

FILOMENA FERRUCCI, MARIA I. SESSA

DMI Universita’ di Salerno - via S. Allende, 84081 Baronissi (SA), Italy

(e-mail: {filfer,mis}@unisa.it)

GIULIANO PACINI

Accademia Navale, Viale Italia 72, 57100 Livorno, Italy

(e-mail: pacini@di.unipi.it)

Abstract

In Ferrucci, Pacini and Sessa (1995) an extended form of resolution, called Reduced SLD

resolution (RSLD), is introduced. In essence, an RSLD derivation is an SLD derivation

such that redundancy elimination from resolvents is performed after each rewriting step.

It is intuitive that redundancy elimination may have positive effects on derivation process.

However, undesiderable effects are also possible. In particular, as shown in this paper, program

termination as well as completeness of loop checking mechanisms via a given selection rule

may be lost. The study of such effects has led us to an analysis of selection rule basic

concepts, so that we have found convenient to move the attention from rules of atom

selection to rules of atom scheduling. A priority mechanism for atom scheduling is built,

where a priority is assigned to each atom in a resolvent, and primary importance is given

to the event of arrival of new atoms from the body of the applied clause at rewriting time.

This new computational model proves able to address the study of redundancy elimination

effects, giving at the same time interesting insights into general properties of selection rules.

As a matter of fact, a class of scheduling rules, namely the specialisation independent ones,

is defined in the paper by using not trivial semantic arguments. As a quite surprising result,

specialisation independent scheduling rules turn out to coincide with a class of rules which

have an immediate structural characterisation (named stack-queue rules). Then we prove

that such scheduling rules are tolerant to redundancy elimination, in the sense that neither

program termination nor completeness of equality loop check is lost passing from SLD to

RSLD.

KEYWORDS: redundancy elimination, selection rule, scheduling rule, termination, loop check,

Stack-Queue scheduling rule

1 Introduction

Several different approaches have been considered so far to enrich the SLD res-

olution in order to improve the performance of top-down interpreters. The usual

ã This work has been partially supported by the Italian National Research Council (CNR) research
project “Tecniche di taglio dei cicli e loro implementazione in ambiente di Programmazione Logica”,
Grant No. 97.02432.CT12.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

540 F. Ferrucci, M. I. Sessa and G. Pacini

objective is to reduce the search space without loss of results of the refutation

process, possibly obtaining a finite search space. Among the proposed methods, the

loop check mechanisms (Apt, Bol and Klop, 1989; Bol, Apt and Klop, 1991; Smith,

Genesereth and Ginsberg, 1986; Van Gelder, 1987) and the tabulation technique

(Bol and Degersted, 1998; Dietrich, 1987; Ramakrishnan et al., 1999; Tamaki and

Sato, 1986; Vieille, 1989) aim to eliminate redundant computations and to enforce

the termination of a query over a logic program.

Loop check mechanisms provide the interpreter with the capability of pruning

certain nodes of the SLD tree. The pruning is based on excluding some kinds of

structural repetitions for the goals in a derivation path. When suitable structure

repetitions are found, further rewritings of the current node are ignored, because

any solution possibly existing in the cut sub-tree is also present in other parts of

the SLD tree. Different forms of loop checks are proposed in the literature. In

particular, Bol et al. have defined several simple loop checks, i.e. loop checks whose

pruning mechanisms do not depend on the considered logic program, and have

analysed them against the basic property of soundness and completeness (Bol, Apt

and Klop, 1991). The completeness property concerns with the capability of pruning

every infinite derivation. In contrast, soundness concerns with the preservation of

the computed answer substitutions.

The main idea of tabulation originates from functional programming and consists

in building a table during the search of answers in an SLD tree. The table contains

entries for atoms with the corresponding answers so far computed. These answers

are to be used later, when instances of such atoms should be recomputed. Such

instantiated occurrences are named non-admissible atoms (or consumer). In essence,

non-admissible atoms are not resolved against clauses but against answers computed

in other parts of the SLD tree. The re-using approach exploited by the tabulation

technique was already mentioned by Kowalski (1979), and has been proposed

several times under different names, such as memo-isation (Dietrich, 1987) and the

AL-technique (Vieille, 1989).

The conceptual differences between loop checks and tabulation are reflected in

several interesting aspects. In particular, tabulation requires a local selection rule

to guarantee the answer preservation, while no missing of solution is possible with

(sound) loop checks independently of the used selection rule. On the other hand,

the tabulation technique ensures termination for any function-free program and for

any program with a finite Herbrand model, while the completeness of loop checks

takes place for specific classes of programs possibly with respect to given selection

rules (Bol, 1992; Bol, Apt and Klop, 1991; Pacini and Sessa, 2000). Finally, loop

checks exploit no auxiliary data structure and the pruning decision usually depends

on the current derivation only, while tabulation needs a table to store the answers

of atoms solved in the previously traversed portion of the tree.

Proposals can be also found in literature for a synergistic use of different techniques

aiming to optimise the query evaluation procedure. In particular, in Vieille (1989),

a loop checking mechanism is combined with the tabulation technique in order to

eliminate some redundant parts of the search space. In Ferrucci, Pacini and Sessa

(1995), the simple loop check mechanisms proposed in Bol, Apt and Klop (1991)

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 541

are combined with another form of redundancy elimination which is named (goal)

reduction. Goal reduction is conceptually analogous to the condensing technique

proposed by Joyner for the proof of the unsatisfiability of first-order formulas

(Joyner, 1976). In both cases, redundant atoms are eliminated from resolvents, in

order to avoid useless computations and to contain the size of the resolvents at

the same time. The main idea of reduction originates from the observation that if

there exists a refutation for an atom, then a refutation exists also for any more

general version of that atom. In this sense, such more general versions can be seen

as potentially redundant and we can imagine to remove them from the resolvent,

though suitable cares are to be taken as discussed in Ferrucci, Pacini and Sessa

(1995). By goal reduction, a generalised form of SLD resolution (named RSLD) can

be obtained, where a reduction of the resolvent is performed after each rewriting

step.

A goal reduction technique has a modus operandi which shows evident affinity

with the one of loop checking mechanisms. Indeed, with reduction redundant atoms

are definitively ignored, as it is done with loop checks for pruned nodes. This

is not the case with tabulation, in the sense that non-admissible atoms, which

are indeed solved against previously tabulated answers, are not redundant. Such

different philosophy between tabulation and RSLD is highlighted also by the fact

that the reduction technique eliminates atoms in their more general version, while

non-admissible atoms are instances of previously solved goals. It is evident that

RSLD does not need any auxiliary data structure because it considers only the

current goal (not even the current derivation path). The soundness of RSLD is

shown in Ferrucci, Pacini and Sessa (1995) independently of the selection rule used.

This means that RSLD does not require particular selection rules in order to ensure

answer preservation.

It is intuitive that redundancy elimination may have positive effects on derivation

process. In Ferrucci, Pacini and Sessa (1995), advantageous combinations are shown

with respect to loop checking mechanisms. In particular, it is proven that a well

known simple loop check mechanism, namely Equality Variant check of Resultant

as Lists (EVRL), becomes complete for several classes of programs, provided that

RSLD is exploited instead of usual SLD. The specific reason is that the length of

resolvents can be maintained within the limit of a finite value through systematic

elimination of redundant atoms. In essence, there is clear evidence that the strength

of equality loop checks can augment if RSLD resolution is used.

However, even though not completely intuitive, redundancy elimination can pro-

duce undesirable effects, too. In fact, as exemplified later, problems can arise with

program termination, as well as with the completeness of loop checking mechanisms.

The rationale behind this is that redundancy elimination can affect the actual se-

quence of atom rewriting with respect to given selection rules. This can (infinitely)

delay the selection of failing atoms, so that termination is missed. On the other hand,

the structure of the obtained resolvents can be altered by redundancy elimination,

so that loop checks may become unable to detect infinite derivations.

As shown in this paper, missing termination and loop detection depends critically

on the used selection rule. We say in the sequel that a selection rule is redundancy

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

542 F. Ferrucci, M. I. Sessa and G. Pacini

elimination tolerant if no loss in termination and/or loop detection comes out,

passing from SLD to RSLD.

In Section 2, we prove that termination and EVRL completeness are preserved if

they hold in SLD with respect to all possible selection rules. Then, a more accurate

analysis of redundancy elimination tolerance is performed. To this aim, a careful

reconsideration of selection rule basic concepts will be required, so that we will be led

to a reformulation of selection rule ideas in terms of their operational counterparts,

namely scheduling mechanisms, so that we will prefer to talk of tolerant scheduling

rules. As a matter of fact, in Section 3 we provide a highly expressive execution

model based on priority mechanism for atom selection. A priority is assigned to

each atom in a resolvent, and primary importance is given to the event of arrival

of new atoms from the body of the applied clause at rewriting time. Indeed, new

atoms can be freely positioned with respect to the old ones in the resolvent, through

the assignment of priority values according to a given scheduling rule. Then, at any

derivation step, the atom with optimum priority is simply selected.

This new computational model proves able to address the study of redundancy

elimination effects, giving at the same time interesting insights into general properties

of selection rules. As a matter of fact, in Section 4 a class of scheduling rules, namely

the specialisation independent ones, is defined by using not trivial semantic arguments.

Several properties of specialisation independent scheduling rules are also proven.

As a quite surprising result, in Section 5 we show that specialisation independent

scheduling rules coincide with stack-queue rules, which have an immediate structural

characterisation. Indeed, the stack-queue scheduling technique is simply defined so

that, in order to obtain the new resolvent at rewriting time, part of new atoms are

stacked at the beginning of the old resolvent while the remaining ones are queued.

Then in Section 6 we prove that such scheduling rules are tolerant to redundancy

elimination, in the sense that neither program termination nor completeness of

equality loop check is lost passing from SLD to RSLD. The proof is largely based

on properties which we have established for specialisation independent (and stack-

queue) scheduling rules.

2 Goal reduction, program termination and EVRL completeness

Throughout the paper we assume familiarity with the basic concepts of Logic

Programming (Apt, 1990; Apt, 1998; Lloyd, 1987).

Here, only some notations are given about SLD derivation procedure, which can

be described as follows. Let G = a1, a2, ...ak be a goal, constituted by a conjunction

of k atoms, and c = (ht ←− B) a clause, where ht is an atom and B is a goal. The

goal G′ is a resolvent of G and c by a renaming ξ and a substitution θ, if an atom

ai exists, with 1 � i � k, such that G′ = (a1, ...ai−1, Bξ, ai+1, ...ak)θ, where θ is an

idempotent and relevant mgu of (ht)ξ and ai. In the sequel, given an expression E,

the notation var(E) will indicate the set of variables in E. Moreover, we will denote

by (G
cξ,θ−→ G′) the fact that G′ is a resolvent of G and c by ξ and θ. Given an initial

goal Go and a logic program P, an SLD derivation of Go in P is a possibly infinite

sequence of the type:

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 543

Go
coξo,θo−→ G1 ... Gj

cjξj ,θj−→ Gj+1...

such that, for any j � 0, each clause cj belongs to P and each cjξj is standardised

apart, i.e.

var(cjξj) ∩ (var(Go) ∪ var(coξo) ∪ ... ∪ var(cj−1ξj−1)) = ?.

A selection rule is a function which chooses the atom to be rewritten in the last

resolvent of any finite SLD derivation. Given a selection rule S, an SLD derivation

is via S if all the selections of atoms are performed in agreement with S. An SLD

refutation is a finite SLD derivation such that the last resolvent is empty.

Now we can introduce the definitions of goal reduction and RSLD derivation. The

reduction technique aims to eliminate redundant atoms from the resolvents in order

to contain their size. Analogous issue was already been faced for the proof of the

unsatisfiability of first-order formulas. Indeed Joyner (1976) noted that the increase

in size of resolvents is a factor which prevents resolution strategies being decision

procedures for solvable classes of first-order formulas (i.e. classes of formulas for

which the question of satisfiability or unsatisfiability can be effectively decided).

To limit the growth of the number of literals, Joyner introduced a technique for

simplifying resolvents, called condensing. The condensation of a clause is defined as

the smallest subset of the clauses which is also an instance of it. In other words,

the condensation of a clause can be obtained by applying a substitution α and

eliminating all the atom repetitions.

With reference to SLD derivations, the most evident form of redundancy corre-

sponds to multiple occurrences of the same atom in a resolvent. It is obvious that

this kind of atom repetition is essentially redundant. However, this is not the only

possible case of redundancy. Indeed, the reduction technique, which is introduced

in Ferrucci, Pacini and Sessa (1995) as a variant of Joyner’s condensing technique,

is able to perform quite general actions of redundancy elimination from resolvents

while preserving the soundness and the completeness of RSLD resolution. By con-

densation, Joyner obtains a complete and sound resolution procedures, which work

as decision procedures for several solvable classes of first order formulas (Joyner,

1976). By reduction, the well known sound EVRL loop check becomes complete for

several classes of logic programs (Ferrucci, Pacini and Sessa, 1995).

Intuitively, the basic idea of goal reduction technique can be explained as follows.

Suppose having to refute a resolvent which contains p(x) and p(a), where x is a

variable and a is a constant. Obviously, any refutation for p(a) implies a refutation

for the atom p(x), as p(x) is more general than p(a). In this sense, the atom p(x)

may appear as a redundant one. Actually, in order to ensure the soundness of

the derivation process, the elimination of redundant atoms (such as p(x) above)

is conditioned in two aspects which can be sketched through the following simple

examples:

(a) Consider a resolvent like p(x), q(x), p(a). In this case, the atom p(x) cannot be

eliminated, because the connection between the atoms p(x) and q(x), by the

variable x, is lost.

(b) Suppose that x is a variable in the initial goal of a derivation, and the actual

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

544 F. Ferrucci, M. I. Sessa and G. Pacini

resolvent is p(x), p(a). In this case p(x) cannot be dropped, because possible

instantiations of x in computed answers could be lost. So we would obtain

computed answers which are too general with respect the correct answers, thus

missing soundness.

Now we present a formal definition of goal reduction which takes into account the

observations (a) and (b) and follows the line of Definition 2.1 presented in Ferrucci,

Pacini and Sessa (1995). We will denote by ⊆L the inclusion relation between goals,

and G − N will indicate the goal obtained from G by eliminating the atoms which

are present in N. In both cases the goals are regarded as lists.

Definition 2.1 (Reduced goal)

Let X be a set of variables, τ a substitution and G a goal. A goal N is a reduced

goal of G by τ up to X, denoted by G >>τ N, if the following conditions hold:

(i) N ⊆L G,
(ii) ∀b ∈ (G−N), bτ ∈ N,

(iii) ∀x ∈ (var(N) ∪X) it is xτ = x.

In agreement with the above definition, a part (G − N) of atoms of G can be

eliminated if a substitution τ exists such that bτ ∈ N, for any atom b ∈ (G − N),

provided that τ does not affect neither the variables in N nor those in X. The

imposition that τ does not affect the variables in N prevents the kind of difficulties

which are exemplified in (a).

Example 2.1

Let:

G = p(z, v), q(w), p(w, v), p(w, x), p(w, y), q(v), q(y),

X = {x, w}.
The following goal N is a reduced goal of G by τ = {z/w, y/v} up to X:

N = q(w), p(w, v), p(w, x), q(v). �

Performing reductions in the resolvents of an SLD derivation corresponds to an

actual extension of the SLD resolution process. Then, a generalised version of SLD

resolution can be introduced, i.e. the Reduced SLD resolution (RSLD in the sequel),

where at any resolution step a reduction of the resolvent is allowed. The following

is the formal definition of RSLD derivations.

Definition 2.2 (Reduced SLD derivation)

Let P be a program and Go a goal. A Reduced SLD derivation of Go in P (RSLD

in the following) is a possibly infinite sequence of the form:

Go >>
αo No

coξo,θo−→ G1 ... Gh >>
αh Nh

chξh,θh−→ Gh+1 >>
αh+1 Nh+1...

where, for any j � 0,

(i) cj is a clause in P ,

(ii) var(cjξj) ∩ (var(Go) ∪ var(coξo) ∪ ... ∪ var(cj−1ξj−1)) = ?,

(iii) Gj >>
αj Nj up to var(Goθo...θj−1).

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 545

It is evident that an SLD derivation is a particular case of RSLD derivation

where Gj = Nj , for any j. Each Nj is called a reduced resolvent. Condition (ii)

above is the usual standardisation apart requirement. Condition (iii) prevents the

kind of difficulties which are exemplified in (b), guaranteeing the soundness of the

mechanism. The soundness and completeness of RSLD resolution are proven in

Theorems 2.1 and 2.2 of Ferrucci, Pacini and Sessa (1995).

2.1 Program termination

The completeness of RSLD resolution ensures that missing computed answers is

impossible when we pass from SLD to RSLD. This is not the case with termination,

as shown by the following Example 2.2. In the example a selection rule S and

a program P are given, such that any SLD derivation of P via S terminates

independently of the initial goal. However, we show that termination is lost, if

reduction of resolvents is performed.

Example 2.2

Let us consider a selection rule S such that, given a goal G, the first atom is chosen

for rewriting if the length of G is odd, and the last atom is chosen otherwise. Let us

consider the logic program P consisting of the following clause:

c = p(x, y)←− q, p(x, z1), p(z1, z2), p(z2, y).

It can be easily seen that all SLD derivations in P via S terminate, independently of

the initial goal. Indeed, suppose that the initial goal has an odd number of atoms.

It is evident that either the derivation via S fails immediately or the initial goal has

the form ‘p(..), Y ’, so that the first step of the derivation produces a resolvent of an

even length as follows:

p(..), Y
c−→ q, p(..), p(..), p(..), Y .

Now, either the derivation fails immediately or Y = Z, p(..), so that a second

derivation step is performed:

q, p(..), p(..), p(..), Z, p(..)
c−→ q, p(..), p(..), p(..), Z, q, p(..), p(..), p(..),

and the process fails anyway, since the last resolvent has an odd length. Then,

suppose on the contrary that the initial goal has an even number of atoms. Either

the derivation fails immediately or the initial goal has the form ‘T , p(..)’. In the

second case, the first derivation step gives place to a resolvent with an odd length, so

that the derivation fails. Now, let us verify that termination can be lost if reduction

of resolvents is performed. Indeed, let us consider the RSLD derivation of the goal

(q, p(x, x)) in P via S given in Figure 1. It is evident that the number of atoms is even

in any reduced resolvent. Thus, the last atom is always selected and the derivation

is infinite. �

As shown by the example in Figure 1, termination with respect to a given selection

rule can be missed, if we pass from SLD to RSLD resolution. On the contrary, we

show in this section (Theorem 2.1) that termination is preserved, when any SLD

derivation of G in P is finite independently of the used selection rule. Theorem 2.1

will be proven as an immediate consequence of the following Lemma 2.1

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

546 F. Ferrucci, M. I. Sessa and G. Pacini

Resolvents Reduced Resolvents

q, p(x, x)

>> q, p(x, x)
c−→

q, q, p(x, z1), p(z1, z2), p(z2, x)

>> q, p(x, z1), p(z1, z2), p(z2, x)
c−→

q, p(x, z1), p(z1, z2), q, p(z2, z3), p(z3, z4), p(z4, x)

>> q, p(x, z1), p(z1, z2), p(z2, z3), p(z3, z4), p(z4, x)
c−→

........................

Fig. 1

Lemma 2.1

Let P be a program and Go a goal. For any possibly infinite RSLD derivation D of

Go in P, an SLD derivation D′ of Go in P exists, such that every reduced resolvent

of D is included in the corresponding resolvent of D′ up to renamings.

Proof

Consider a possibly infinite RSLD derivation D of Go in P

D = (Go >>
αo No

coξo,θo−→ G1...

...Gh >>
αh Nh

chξh,θh−→ Gh+1 >>
αh+1 Nh+1...) (1)

Intuitively, the SLD derivation D′ is obtained by choosing, step by step, the same

clause and the same atom as in D. This way, redundant atoms are not eliminated

from resolvents of D′, but they have no real influence on the derivation process.

More formally, suppose that an SLD derivation of Go in P is already constructed

like

Go
coξ
′
o,θ
′
o−→ G′1... −→ G′i, (2)

such that, for any 0 � j � i, a renaming τj exists with Njτj ⊆L G′j . It is easy to

show that derivation (2) can be extended of one step in agreement with the lemma.

Let a be the atom which is rewritten in the step Ni

ciξi,θi−→ Gi+1 of derivation (1). It is

evident that the clause ci is applicable to the atom aτi ∈ Niτi ⊆L G′i, so that we have

an SLD derivation step of the form:

G′i
ciξ
′
i ,θ
′
i−→ G′i+1. (3)

Now let F denote the sublist of atoms in G′i+1 which derives from Niτi. It is obvious

that the subgoal (G′i−Niτi) has no active role in derivation step (3). So, we have that

F is a variant of Gi+1, i.e. a renaming τi+1 exists with F = Gi+1τi+1, which means

that Gi+1τi+1 ⊆L G′i+1. But, by definition of goal reduction we have Ni+1 ⊆L Gi+1.

As a consequence

Ni+1τi+1 ⊆L Gi+1τi+1 ⊆L G′i+1. �

Theorem 2.1

Let P be a program and G a goal. If every SLD derivation of G in P is finite

independently of the used selection rule, then every RSLD derivation of G in P is

finite too.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 547

Proof

Suppose that an infinite RSLD derivation of G in P exists. By Lemma 2.1, an

infinite SLD derivation of G in P also exists, which contradicts the hypothesis. q

2.2 EVRL loop check completeness

The termination issue of a query to a logic program has attracted much attention

over the past few years, both in the logic programming field, and in the deductive

database field (see De Shreye and Decorte (1994) for a survey).

A well known approach to the termination problem of a query in a logic program

consists in modifying the computation mechanism by adding a capability of pruning,

i.e. at some point the interpreter is forced to stop its search through a certain part of

the SLD tree (Apt, Bol and Klop, 1989; Bol, 1992; Bol, Apt and Klop, 1991; Pacini

and Sessa, 2000; Smith, Genesereth and Ginsberg, 1986; Van Gelder, 1987). These

mechanisms are called loop checks, as they are based on discovering some kinds of

repetitions in derivation paths. The purpose of a loop check is to reduce the search

space for top-down interpreters in order to prune infinite derivations, without loss

of results of the refutation process. Thus, two basic properties are considered for

loop checks. The completeness property of a loop check concerns the capability of

pruning every infinite derivation. In contrast, the soundness property has to do with

the preservation of computed answer substitutions.

Different forms of loop checking are considered in literature. A systematic analysis

of loop checking for SLD resolution is given in Bol, Apt and Klop (1991). Simple

loop checks have deserved special interest, because the decision of pruning does not

depend on the logic program we are confronted with. The more immediate form of

simple and sound loop check is the so called Equality Variant of Resultant check,

which requires the detection of equal (up to renaming) resultants in the derivation.

Such a loop check is formulated with respect to RSLD derivations in the following

Definition 2.3 which recalls the essence of the analogous Definition 3.19 in Ferrucci,

Pacini and Sessa (1995). The notation (F =L G) is used, which means that the goal

F is equal to G, where the goals are regarded as lists.

Definition 2.3 (Equality Variant Check for Resultants)

An RSLD derivation

Go >>
αo No

coξo,θo−→ G1...Gh−1 >>
αh−1 Nh−1

ch−1ξh−1 ,θh−1−→ Gh >>
αh Nh...

is pruned by Equality Variant of Resultant as Lists loop check (EVRL in the follow-

ing), if for some i and j, with 0 � i < j, a renaming τ exists such that:

(i) Goθo...θj−1 = Goθo...θi−1τ,

(ii) Nj =L Niτ.

Given an RSLD tree T, the application of EVRL yields a prefix Tp of T which is

obtained in this way. The descendants of a node are thrown away iff the derivation

associated with the path from the root to the node is pruned.

Any couple Rsh = [Nh, Goθo...θh−1] is a reduced resultant. Given two resultants

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

548 F. Ferrucci, M. I. Sessa and G. Pacini

Rsj = [Nj, Goθo...θj−1] and Rsi = [Ni, Goθo...θi−1], for which requirements (i) and

(ii) of Definition 2.3 hold, we will write Rsi ∼=L Rsj . In other words, Definition 2.3

expresses that EVRL check is based on detecting that a resultant is obtained which

is related by ∼=L to a preceding one in the same derivation. It is worth noting that

the relationship ∼=L is an equivalence relationship. It is evident that, if reduction of

resolvents is always ineffective (i.e. Gj = Nj , for any j), the usual EVRL loop check

for SLD derivations is found again. It is well known that EVRL is a sound loop

check in the case of SLD resolution. The soundness of EVRL is extended to the

more general case of RSLD by Theorem 4.1 of Ferrucci, Pacini and Sessa (1995).

Let us observe that if we do not consider condition (i) in Definition 2.3 we obtain

the EVGL loop check which is based on detecting that a resolvent is obtained which

is a variant of a preceding one in the same derivation. It is worth noting that EVGL
is a weakly sound loop check, in sense that it preserves at least a successful, but it

does not ensure the preservation of the computed answer substitutions (Bol, Apt

and Klop, 1991).

The completeness of a loop check is usually referred to given selection rules and

classes of programs. A loop check is complete for a program P with respect to

a selection rule S if all infinite derivations of P via S are pruned. A loop check

is complete for a class C of programs, if it is complete for every program in C.

Several classes of logic programs are characterised in literature for which complete

loop checks can be found. Actually, most of them are classes of function free

programs, i.e. programs whose clauses contain no function symbol (Bol, 1992; Bol,

Apt and Klop, 1991; Ferrucci, Pacini and Sessa, 1995; Pacini and Sessa, 2000). In

the following part of this section, and later in Section 6, we consider the problem of

preserving the completeness of EVRL check, passing from SLD to RSLD resolution,

in the case of function free programs.

Let us first show how the completeness of equality loop checks, with respect to a

given selection rule, can be lost passing from SLD to RSLD. Indeed, it is sufficient

reconsider Example 2.2. In that case EVRL loop check is obviously complete, since

no infinite SLD derivation exists. On the other hand, it is obvious that EVRL loop

check cannot prune the infinite RSLD derivation developed in the same example,

because the length of resolvents increases at each derivation step. Actually, it is

immediate to verify that the infinite derivation in Example 2.2 cannot even be

pruned by using more complex and powerful checks (like SIRM) which are based

on subsumption relationships between resultants (Bol, Apt and Klop, 1991).

Now we prove that EVRL loop check completeness is preserved for function free

programs, in the case that EVRL is complete with respect to all selection rules.

Precisely, Theorem 2.2 states that, if EVRL prunes every infinite SLD derivation of

a goal G in a function free program P, then EVRL prunes also every infinite RSLD

derivation of G in P. In order to show this result, let us provide a condition which

holds whenever EVRL prunes every infinite derivation of G in P. Lemma 2.2 states

that, if EVRL check prunes all infinite derivations of G in P, then the length of

resolvents in all possible derivations is limited. In the proof of Lemma 2.2 we exploit

the notion of S-tree (Apt and Pedreschi, 1993). Given a program P and a goal G,

an S-tree of G in P is a tree where the descendants of a goal are its resolvents with

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 549

respect to all selection rules and all input clauses. In other words, an S-tree groups

all SLD derivations of G in P. The notation #R represents the number of atoms in

the goal R.

Lemma 2.2

Let P be a program and G a goal. Suppose that all infinite SLD derivations of G in P

are pruned by EVRL. Then, a finite bound l exists such that, for each resolvent R in

any SLD derivation of G in P, it is #R � l.
Proof

Let T be an S-tree of G in P. Given a node n in T, let Dr(n) denote the derivation

associated to the path from the root of T to n, and R(n) the final resolvent of Dr(n).

Then, let Tp be the prefix of T which is obtained by applying the EVRL check to

T, i.e. the prefix where the descendants of any node n of T are thrown away if and

only the derivation Dr(n) is not pruned by EVRL. By hypothesis, all infinite SLD

derivations of G in P are pruned by EVRL, which means that Tp has no infinite

path. As a consequence, since T is a finitely branching tree, by Konig’s lemma (see

Theorem K in Knuth (1997)) the prefix Tp is finite. Now, let d be the depth of Tp,

and l the maximum of the set {#R(n)| n is a node in Tp}. We prove that:

#R(n) � l, for any node n in T.

The proof is by induction on the value of depth(n). For depth(n) � d the thesis is

trivial. Then consider an integer h > d, and suppose that #R(n′) � l, for any node

n′ with depth(n′) < h. Given a node n of T such that depth(n) = h, we show that also

#R(n) � l holds. Since n /∈Tp, the derivation Dr(n) is pruned by EVRL, so that two

nodes n1 and n2 exist in the path from the root of T to n with:

– depth(n1) < depth(n2), (1)

– R(n2) is a variant of R(n1). (2)

Now, consider the sequence of clauses which has determined the path from n2 to n

in T. Since T contains all SLD derivations of G in P, the same derivation steps can

be repeated in T starting from n1. As a consequence, by (1) and (2), a path from n1

to a node n′ exists such that:

– depth(n′) = depth(n)− (depth(n2)− depth(n1)) < depth(n) = h,

– R(n′) is a variant of R(n).

By inductive hypothesis it is #R(n′) � l. But R(n′) is a variant of R(n), so

that #R(n) = #R(n′) � l.
In conclusion, the thesis holds for every node n in T. q

Theorem 2.2

Let P be a function free program and G a goal. If EVRL prunes every infinite SLD

derivation of G in P independently of the used selection rule, then EVRL prunes

every infinite RSLD derivation of G in P.

Proof

Let D be an infinite RSLD derivation of G in P. By Lemma 2.1, an SLD derivation

D′ of G in P also exists such that every reduced resolvent of D is included in a

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

550 F. Ferrucci, M. I. Sessa and G. Pacini

resolvent of D′ (up to renamings). Since EVRL prunes every infinite SLD derivation

of G in P, by Lemma 2.2 the length of resolvents of D′ is limited. Then, the length of

reduced resolvents and resultants of D is also limited. Now, since the language of P is

function free and has finite many predicate symbols and constants, the relationship

denoted by ∼=L has only finitely many equivalence classes on resultants of D. As a

consequence, for some 0 � i < k we have that the kth and the ith resultants of D are

in ∼=L relationship. This implies that D is pruned by EVRL. q

In this section, redundancy elimination tolerance has been proven on the basis of

a rather strong hypothesis, i.e. termination and completeness of loop checking for all

possible selection rules. In Section 3 we will introduce a new computational model

which will allow us to characterise a class of selection rules which are shown to be

redundancy elimination tolerant. As a matter of fact, in Section 6 we will prove that

program termination and EVRL loop check completeness are maintained for that

class of rules, passing from SLD to RSLD.

3 Priority scheduling rules

As shown in Section 2, redundancy elimination can determine missing termination

and loop check detection. This fact depends critically on the used selection rule,

because redundancy elimination can affect the actual sequence of atom rewriting.

As a matter of fact, it is widely acknowledged that the analysis of interdependence

between derivation processes and the used selection rules is a difficult task. In

our study, the necessary insights have been provided by a computation model

which is based on a novel mechanism of atom choice, which works in terms of

scheduling rules rather than in terms of conventional selection rules. Through this

new computational model, a class of scheduling rules is identified in Section 4, which

is redundancy elimination tolerant in the sense that no loss in termination and/or

loop detection comes out, passing from SLD to RSLD.

We start the analysis with an observation about selection rules, as they are

normally conceived in literature and used in practice. In SLD derivations, resolvents

are usually regarded as lists, nevertheless selection rules are given complete free

choice ability of the atom to rewrite. In this sense, two different philosophies are

superimposed, because a scheduling (i.e. an ordering) must coexist with an atom

choice which can actually overcome the scheduling. Now, in the case that resolvents

are viewed as unstructured multisets instead of lists, the obvious solution is that

a free choice ability is provided at rewriting time. However, if scheduling policies

(i.e. an ordering or a priority assignment) are exploited, it may appear natural that

priorities are obeyed at rewriting time, so that the atom with optimum priority is

always selected. Indeed, if a scheduling policy is used, the moment of addition of

new atoms in the resolvent may be recognised as the really important event, when

suitable priority values must be established and assigned.

In the following, we consider execution mechanisms for logic programs which are

based on priority scheduling policies. In particular, we characterise scheduling rules

informally as follows:

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 551

• a priority value is assigned to each atom in the actual resolvent,

• assigned priorities are not modified in the following of the derivation,

• the atom with optimum priority is always taken for rewriting.

In essence a scheduling rule is a rule that defines a priority values for any new

atom which enters the actual resolvent. It is crucial that atoms from the body of the

applied clause can be freely scheduled with respect to the ones already present in

the resolvent, which maintain their own priority values. It is intuitive that this can

be easily done if a set of ‘dense’ priority values is adopted. Indeed, as formalised in

Section 3.1, we will use rational numbers as priority values.

Now, in analogy with Lloyd’s definition of selection rules (Lloyd, 1987), we

consider the subclass of scheduling rules where the schedule of new atoms is

determined only by the last resolvent in the derivation, i.e. by the current state of

the computation. Such rules will be named state scheduling rules. A state scheduling

rule can be seen as a rule which, for any resolvent G and clause c (that is applied to

the optimum priority atom), determines the schedule positions of the new atoms in

the resolvent, through the assignment of appropriate priority values.

In other words, a state scheduling rule determines new resolvents, starting from

the old ones and from applied clauses. The rewritten atom is necessarily the one with

the optimum priority value. It is evident that the transformation from a resolvent

to a new one, which is obtained by the addition of new atoms from the applied

clause, is nothing more than a step of an SLD derivation. In this sense, we can

say that a state scheduling rule characterises a set of derivation steps. Indeed, as

formalised in Section 3.5, a state scheduling rule can be straight conceived as a set

of derivation steps, that is: the set of derivation steps which are allowed according

to the scheduling rule itself. Formal definition of state scheduling rules is provided

in Section 3.5.

3.1 Atoms, goals and priorities

To characterise state scheduling rules in a formal way, we introduce the notions of

priority goal and priority clause. A priority goal is a goal where each atom has an

associated priority value. Thus, a priority goal G can be thought as a set of couples,

where any couple is named priority atom. In the following formal definition, priority

atom will be denoted by a[p], where a is an usual atom and p is a rational number

which establishes the priority of a in G. The symbol =⇒ will be frequently used in

the rest of the paper to denote logical implication.

Definition 3.1

(i) A priority goal G (p-goal in the sequel) is defined by a set of priority atoms

(or simply p-atoms) of the form:

G = {a1[p1], ...ak[pk]}, with ∀i, j : i 6= j =⇒ pi 6= pj ,

where each am is an usual atom and each pm is a rational number, 1 � m � k.
(ii) A priority clause (or simply a p-clause) has the form c = ht←− B, where ht is

an atom (without priority) and B is a priority goal.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

552 F. Ferrucci, M. I. Sessa and G. Pacini

In the sequel, priority clauses will be referred as clauses for the sake of simplicity.

Capital letters will be used in the following to represent p-goals. To denote p-atoms,

we will use notations like a[p], as well as simple small letters (as a, b, etc.) when

explicit reference to priority values is not important. As a slight abuse of notation,

p-goals made of only one p-atom a will be often denoted by a. Given a p-goal G,

the notations #G will indicate the number of p-atoms in G.

In the sequel, we will exploit very frequently a basic operation which corresponds

to the union of two p-goals with no common priority values. This operation is

denoted by ‘+’ and is said p-goal merging. During merging operations, atoms retain

their priority values. We introduce also the idea of concatenation, which is a particular

case of merging. Concatenations will be denoted by the symbol ‘|’ (vertical bar).

The following are the formal definitions of merging and concatenation. It is worth

noting that both these operations are associative.

Definition 3.2

(i) A p-goal M is the merging of F and G (denoted by M = F+G) if F and G have

no common priority values and M = F ∪ G.

(ii) Given two p-goals F and G, we write F a G to denote that all priori-

ties in F are less than any priority in G. A p-goal N is the concatenation

of F and G (denoted by N = F |G), if N = F + G and F a G.

The fact that equal priority values are not admitted in a p-goal has two principal

effects. The first one is that a complete ordering (i.e. a scheduling) is imposed on the

atoms of a p-goal. In particular we assume that atoms with less priorities precede

atoms with greater ones. The second effect is that possible multiple occurrences

of atoms are distinguished by different priority values. On the basis of the above

observations, the following evident properties of concatenation can be stated.

Property 3.1

Given the p-goals A1, A2, A3, B1, B2, and B3, the following propositions hold:

(i) A1|A2 = B1|B2, #A1 = #B1 or #A2 = #B2 =⇒ A1 = B1, A2 = B2.

(ii) A1|A2|A3 = B1|B2|B3, A2 6= ?, A2 = B2 =⇒ A1 = B1, A3 = B3.

3.2 Shifting and positioning

Throughout the paper, we will exploit a basic operator for handling priority values.

It will be called (priority) shifting, and corresponds to a modification of priority

values which does not alter the scheduling of the atoms in a p-goal. The following

is the formal definition of shifting. In the sequel, shiftings will be always denoted by

underlined Greek letters.

Definition 3.3 (shifting)

A shifting π is an increasing one-to-one application of the type:

π : Rational −→ Rational.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 553

Given a shifting π, and two p-goals G and F such that:

G = {a1[p1], ...ak[pk]} and F = {a1[π(p1)], ...ak[π(pk)]},
we say that F is a shifting of G and write F = Gπ.

It is evident that the composition of two shiftings is a shifting, too, as well as the

inverse of a shifting. Shifting operations enjoy the following four basic properties.

All properties are plain consequence of the definition. The first two properties will

be used very often in the sequel without explicit reference.

Property 3.2

(Ax-i) (A1 + A2 + ...+ Ak)π = A1π + A2π + ... Akπ,

(Ax-ii) (A1|A2|... Ak)π = A1π|A2π|... Akπ,
(Ax-iii) G = A1τ1|A2τ2|... Akτk, F = A1π1|A2π2|... Akπk

=⇒ ∃ σ such that Fσ = G,

(Ax-iv) (A1 + A2 + ... Ak)π = (A1 + A2 + ... Ak)τ

=⇒ A1π = A1τ, A2π = A2τ, ... Akπ = Akτ.

Finally, let us consider a combination of shifting and merging which provides

the convenient tool to formalise our ideas about scheduling of atoms in resolvents.

As outlined in previous section, at any step of derivation, atoms coming from the

body of the applied clause are assigned new priority values, while priorities of old

atoms are left unchanged. This way, new atoms are positioned (i.e. scheduled) with

respect to the old ones. In general, the positioning of atoms from a p-goal B, with

respect to the atoms of another p-goal F , can be described through a composition

of shifting and merging. Indeed, consider an expression like F+Bπ. The effect of the

shifting π is twofold. First, possible conflicts of priority values between F and B can

be removed, so that the merging F + Bπ is correctly performed. At the same time,

yet more important, π allows us to establish the positions which atoms from B go

to occupy. Since priorities are represented by rational values, it is evident that all

possible allocations of atoms from B, with respect to those in F , can be described

through suitable choices of π.

3.3 Priority SLD Derivations

Now we are ready to frame well known Logic Programming concepts, as the ones of

resolvent and SLD derivation, in terms of priority atoms, goals and scheduling. We

start with the following Definition 3.4, which formalises the idea of priority derivation

step. Given a p-goal a|F , in agreement with our concept of scheduling the atom a

with minimum priority is always rewritten and atoms coming from the body of the

applied clause are positioned with respect to old ones to form the new resolvent. The

positioning is obtained through a combination of shifting and merging, as discussed

at the end of the previous Section 3.2. With reference to Definition 3.4, the body B of

the applied clause is first shifted by π and then merged with F , i.e. with the initial

p-goal a|F minus the rewritten atom.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

554 F. Ferrucci, M. I. Sessa and G. Pacini

Definition 3.4 (priority derivation step)

Consider a p-goal G = a|F and a clause c = (ht←− B). Let:

– ξ be a renaming such that var(G) ∩ var(cξ) = ?,

– θ be an idempotent and relevant mgu of a and (ht)ξ,

– π be a shifting such that F and Bπ have no common priority value.

We say that R is a resolvent of G and c by ξ, θ and π, if:

R = (F + Bξπ)θ.

The transformation from a|F to (F + Bξπ)θ will be called a priority derivation step.

It is denoted by:

a|F c−→ (F + Bξπ)θ.

The notation G
cξ,θ−→ R will be used to represent a derivation step by θ and

ξ, where the shifting π is not pointed out. Analogously, we will write G
cξ−→ R

to represent a derivation step by the renaming ξ without specifying the mgu θ.

By G
c−→ R we denote a derivation step which generically produces R as a resolvent

of G and c. Iterating the process of computing resolvents, we obtain a priority

SLD derivation, that is a sequence of priority derivation steps as formalised by the

following definition.

Definition 3.5 (priority SLD derivation)

Let P be a program and Go a p-goal. A priority SLD derivation of Go in P is a

possibly infinite sequence of priority derivation steps

Go
coξo,θo−→ G1 −→ ... Gk

ckξk ,θk−→ Gk+1 −→ ...

where, for any j � 0,

(i) cj is a clause in P,

(ii) var(cjξj) ∩ (var(Go) ∪ var(coξo) ∪ ... ∪ var(cj−1ξj−1)) = ?.

Given a finite priority SLD derivation (p-SLD derivation in the following) of the

form:

Go
coξo,θo−→ G1 −→ ...Gh

chξh,θh−→ G,

the sequence M = c1, c2, ...ch of applied clauses will be called template. The whole

derivation will be denoted by Go
M,θ−→ G, where θ = θ1θ2...θh, or simply Go

M−→ G, if

the substitution θ does not need to be pointed out. We use the notation Go
M−→ •,

when there is not interest in specifying the final resolvent. Given a template M,

the notation #M will indicate the number of clauses in M. In many cases, we will

consider concatenation of templates, which is denoted by a vertical bar ‘|’.
It is intuitive that, given a derivation, any subset of atoms in the current resolvent

derives from other specific atoms in preceding resolvents. As it will be clear in the

sequel, this idea plays an important role in the development of this paper. Thus,

it is convenient to give some formal definitions. Precisely, let us consider a p-SLD

derivation of the form Dr = (F + G
H−→ Q). The following two intuitive concepts

will be characterised:

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 555

(a) the sub-resolvent of F in Dr, i.e. the subset of p-atoms in Q which derive from

the subgoal F (denoted by Q/F),

(b) the sub-template of F in Dr, i.e. the sequence of clauses which are applied to

p-atoms of F and p-atoms derived from F , extracted in the order from the

template H (denoted by H/F).

Definition 3.6 (sub-resolvents and sub-templates)

(i) Given a derivation step of the following form, where c = (ht←− B):

a|(F + G)
c−→ (Q = ((F + G) + Bξπ)α), (1)

let us define sub-resolvents and sub-templates in (1) as follows:

Q/a = Bξπα, Q/F = Fα, Q/(a|F) = Q/a+ Q/F

c/a = c, c/F = ?, c/(a|F) = c.

(ii) Given a derivation of the form:

F + G
c−→ Q

K−→ R, (2)

let us recursively define sub-resolvents and sub-templates in (2) as follows:

R/F = R/(Q/F),

(c|K)/F = (c/F)|(K/(Q/F)).

It is worth noting that the notation relative to sub-templates and sub-resolvents

can be ambiguous. Indeed consider:

G+ F
D−→ Q (3)

G+ F ′ D−→ Q′. (4)

It is possible that D/G with respect to (3) is different from D/G with respect to (4).

In the following of the paper, when such a kind of ambiguity will possibly arise,

we exploit a refined notation of evident meaning, like D/3/G and D/4/G. As an

example, let us consider G = aF ′ = d and D = c such that

G+ F = a|b c−→ Q (3b)

G+ F ′ = d|a c−→ Q′. (4b)

Then, D/3b/G = c and D/4b/G = empty.

3.4 Congruent lowering of derivation steps

This section introduces some important ideas. Precisely, the concepts of specialisa-

tion, lowering, and finally, congruent lowering are defined and analysed. Congruent

lowering is basic for the characterisation of the general concept of scheduling rule,

as well as of the class of specialisation independent scheduling rules (see Section 4)

to which the results about redundancy elimination tolerance of Section 6 refer.

Substitutions and renamings are basic concepts in Logic Programming. In agree-

ment with usual terminology, if a substitution is applied to a goal, an instance is

obtained, while, if a renaming is used, a variant of the original goal is produced.

Goals which are equal up to renamings are in essence equivalent goals. Practically all

the results of Logic Programming are insensible to renamings. An instance may be

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

556 F. Ferrucci, M. I. Sessa and G. Pacini

considered as a specialised version of the original goal, while any goal is more gen-

eral with respect to its instances. The above concepts are easily adjusted in the frame

of priority goals. Intuitively, the application of a renaming/substitution corresponds

to the application of a renaming/substitution together with a shifting. Actually, as

it will be clear in the following, we are interested in an idea of specialisation of a

given p-goal which extends the traditional concept of instantiation. In essence, we

will consider couples of p-goals such that the second is obtained from the first by

performing in the order:

• the application of a generic substitution λ and a shifting σ,

• the embedding in a generic context X of other p-atoms.

Definition 3.7 (specialisation)

A p-goal F is a specialisation of a p-goal a|K by X, if a shifting σ and a substitution

λ exist such that

F = aλσ|(Kλσ +X).

It is worth noting that our idea of specialisation is essentially symmetric to

the concept of subsumption by an instance (see Bol, Apt and Klop, 1991). A

goal G subsumes (as list) a goal F by an instance, if a substitution λ exists such that

Gλ ⊆L F . Indeed, considering that any shifting preserves the order of the atoms, it

is evident that, if F is a specialisation of a|K by X, i.e. F = aλσ|(Kλσ + X), then

a|K subsumes (as list) F by the instance (a|K)λ.

The term ‘lifting’ is used in Logic Programming to express that a derivation step

(or a whole derivation) which is possible from a goal Aλ is repeated starting from the

more general goal A. Analogously, we use the term lifting to mean that a derivation

step (or a whole derivation) which is possible from a specialisation of a|K , i.e. from

a p-goal aλσ|(Kλσ + X), is repeated starting from a|K . In the sequel of the paper,

we will use the dual concept of ‘lowering’. In other words, the term lowering will

mean that a derivation step (or a whole derivation) from a p-goal a|K is repeated,

when possible, starting from a specialisation aλσ|(Kλσ + X) of a|K . Then, let us

give the following definition which refers to single derivation steps.

Definition 3.8 (lowering of derivation steps)

Let us consider two priority derivation steps of the type G
c−→ • and F

c−→ •. We

will say that the second step is a lowering of the first one by X, if the p-goal F is a

specialisation of G by X.

Let us consider two derivation steps (Ds1) and (Ds2), such that (Ds2) is a lowering

of (Ds1) by X, and let c = (ht ←− B). By definition of derivation step, they have

the following form:

a|K c−→ (K + Bξ′θ′)α′ (Ds1)

aλσ|(Kλσ +X)
c−→ (X +Kλσ + Bξ′′θ′′)α′′. (Ds2)

The definition of lowering of derivation steps does not impose any similarity in

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 557

the way priority values are handled in couples of derivation steps like (Ds1) and

(Ds2). In particular, no analogy is required about the positions new atoms go to

occupy with respect to old ones in the resolvents produced by (Ds1) and (Ds2).

Indeed the shifting θ′ and θ′′ are completely independent, so that the positions of

atoms of Bξ′′θ′′, with respect to atoms of Kλσ, will be in general different from the

positions occupied by atoms of Bξ′θ′ with respect to atoms of K . Nevertheless, in

the rest of the paper special importance will be given to derivation step lowering

such that the positioning of new atoms, with respect to the old ones in K and Kλσ,

is maintained passing from (Ds1) to (Ds2). In such hypothesis, we will say that the

lowering is a congruent lowering.

As an elementary example, let us consider a clause like c = a ←− b1|b2 and the

following derivation steps, such that (2) is a lowering of (1) by x1|x2:

a|k1|k2
c−→ b′1θ

′|k1|b2θ
′|k2 (1)

a|x1|k1|x2|k2
c−→ x1|b1θ

′′|k1|x2|b2θ
′′|k2 (2)

In (1) and (2) the relative positions of atoms b1 and b2 with respect to k1 and k2 are

the same, then (2) is a congruent lowering of (1). Now, let us consider the following

other derivation step (3):

a|x1|k1|x2|k2
c−→ x1|k1|b1τ|x2|b2τ|k2 (3)

Also, (3) is a lowering of (1) by x1|x2. However, in this case the positioning of atoms

b1 and b2 with respect to k1 and k2 is not maintained passing from (1) to (3), so that

(3) is not a congruent lowering of (1). Variable substitutions are not considered in

the above examples. Indeed, in agreement with the following formal Definition 3.9,

they are not really influent for a lowering to be congruent or not.

Definition 3.9 (congruent lowering)

Let us consider two derivation steps of the form (Ds1) and (Ds2) above, i.e. two

derivation steps such that the second one is a lowering of the first one by X. We

will say that step (Ds2) is a congruent lowering of step (Ds1) by X if a shifting ρ

exists with:

Kρ = Kσ and Bθ′ρ = Bθ′′. (c1)

It is apparent that the desired analogy, in positioning new atoms in the two

derivation steps (Ds1) and (Ds2), is imposed by means of condition (c1) above in

Definition 3.9. Indeed, condition (c1) says that the shifting ρ creates a correspondence

between atoms of K+Bθ′ and atoms of Kσ+Bθ′′, such that old atoms are mapped

in old atoms (see Kρ = Kσ) and new atoms in new ones (see Bθ′ρ = Bθ′′). Since

any shifting maintains atom precedence, it is intuitive that congruent allocation of

new atoms is imposed. More specifically, let us consider the generic atom b of B and

assume:

K + Bθ′ = M ′|bθ′|N ′,
Kσ + Bθ′′ = M ′′|bθ′′|N ′′.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

558 F. Ferrucci, M. I. Sessa and G. Pacini

It is immediate to verify that[1]:

M ′′|bθ′′|N ′′ = Kσ + Bθ′′ =(c1) Kρ+ Bθ′ρ = (K + Bθ′)ρ
= (M ′|bθ′|N ′)ρ = M ′ρ|bθ′ρ|N ′ρ.

Now, by Bθ′ρ = Bθ′′ in (c1) and Ax-iv in Property 3.2, we have that bθ′ρ = bθ′′.
Then, by Property (3.1-ii) it is M ′ρ = M ′′, and then also #M ′ = #M ′ρ = #M ′′ = n,

for n positive integer. In essence, considered the generic atom b of B, it is found

in the (n + 1)th position in K + Bθ′ as well as in Kσ + Bθ′′. In other words, new

atoms from B are positioned in (Ds1) with respect to old ones (i.e. atoms of K)

exactly as it happens in (Ds2) with respect to Kσ. It is evident that the presence of

various substitutions in (Ds1) and (Ds2) does not interfere with the above positional

considerations.

Example 3.1 (lowering and congruent lowering)

Let us consider a clause of the form c = (a ←− q[1]) and the two following

derivation steps:

a[2]|{b[3]} c−→ {b[3], q[10]}, (1)

a[9]|{b[12], b[13], d[15]} c−→ {b[12], q[12.5], b[13], d[15]}. (2)

In step (1), old atoms are pointed out in bold and new ones are underlined.

(a) In agreement with Definition 3.9, step (2) is a lowering of (1) by X =

{b[13], d[15]}, with Kσ = {b[12]}. Pointing out old and new atoms, derivation

step (2) can be written as follows:

a[9]|{b[12], b[13], d[15]} c−→ {b[12], q[12.5], b[13], d[15]}.
It is evident that (2) is a congruent lowering of (1) by X, with any shifting ρ

such that ρ ⊇ {3/12, 10/12.5}.
(b) Step (2) is a lowering of (1) also by X ′ = {b[12], d[15]}, with Kσ′ = {b[13]}.

However (2) is not a congruent lowering of (1) by X ′. In fact, in agreement

with this second viewpoint, derivation step (2) can be written as follows:

a[9]|{b[12], b[13], d[15]} c−→ {b[12], q[12.5], b[13], d[15]}.
As a consequence, for step (2) being a congruent lowering of step (1) by

X ′, a shifting ρ′ might exist such that ρ′ ⊇ {3/13, 10/12.5}, which is not an

increasing function. �

We close this section considering a couple of p-goals F and G such that they are

specialisations of each other, i.e. F is a specialisation of G by a subgoal X and G is

a specialisation of F by Y . In this case it must be F = Gλσ+X and G = Fτρ+Y ,

which yields:

G = Fτρ+ Y = (Gλσ +X)τρ+ Y = Gλτσρ+Xτρ+ Y .

As a consequence λ must be a renaming for G and X = Y = ? must hold, which

means that F = Gλσ where λ is a renaming. It is evident that the relation ‘F = Gλσ,

1 The notation ”Kσ + Bθ” =(c1) Kρ + Bθ′ρ” expresses that the formula (c1) must be used to establish

the equality. Similar advising will be used frequently in the sequel.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 559

for a renaming λ and a shifting σ’ can be seen as the translation of the usual notion

of ‘F being variant of G’ in the frame of p-SLD resolution. In this sense, we will

usually say that F is a p-variant of a G, to mean that F and G are specialisations of

each other.

Analogously, two derivation steps may be lowerings of each other, as well as

congruent lowerings of each other. Two derivation steps Ds1 and Ds2 are lowerings

of each other if the initial goals are p-variants and the same clause is applied, i.e. it

is Ds1 = (A
c−→ •) and Ds2 = (Aλσ

c−→ •), where λ is a renaming. Two derivation

steps are congruent lowerings of each other if they have the form:

Ds1 = a|K c−→ (K + Bξ′θ′)α′ and Ds2 = (a|K)λσ
c−→ (Kλσ + Bξ′′θ′′)α′′,

where c = (ht←− B), λ is a renaming, and the equalities Kρ = Kσ and Bθ′ρ = Bθ′′

hold for a shifting ρ.

It is worth noting that by the preceding argument if two derivation steps are

lowerings of each other the contexts must be empty.

3.5 State priority scheduling rules

Now, we use the notion of being congruent lowerings of each other to define the

ideas of determinism and completeness of a set of derivation steps. Both concepts

are basic for the definition of state priority scheduling rules.

Definition 3.10 (determinism)

A set S of priority derivation steps is deterministic if, for each couple of derivation

steps Ds1 and Ds2 in S, the following implication holds:

Ds1 and Ds2 are lowerings of each other

=⇒ Ds1 and Ds2 are congruent lowerings of each other.

In other words, the definition of determinism imposes that two derivation steps,

which apply the same clause to p-variant initial goals, give place to congruent

allocations of new atoms. Now let us give the definition of completeness of a set of

derivation steps.

Definition 3.11 (completeness)

A set S of priority derivation steps is complete, if the following assertions hold:

(i) ∃ Ds derivation step of the type G
c−→ •,

=⇒ ∃ Ds′ of the type G
c−→ • with Ds′ ∈ S ,

(ii) ∀Ds′, Ds derivation steps with Ds ∈ S ,

Ds′ and Ds are congruent lowerings of each other =⇒ Ds′ ∈ S .

Assertion (i) of the above definition states that, if a clause c is applicable to a

p-goal G, i.e. a derivation step exists of the type G
c−→ •, the application of the

clause c to G is indeed possible in any complete set of derivation steps. Assertion

(ii) assures that S is closed with respect to being congruent lowerings of each

other. In other words, let Ds′ = (G
c−→ Q) ∈ S be a derivation step, then every

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

560 F. Ferrucci, M. I. Sessa and G. Pacini

other Ds′′ = (F
c−→ R) must belong to S, if F is a p-variant of G and new atoms

are allocated in R as it is done in Q. Now, the formal definition of state priority

scheduling rules can be easily given, by combining the properties of determinism

and completeness.

Definition 3.12 (state priority scheduling rules)

A state priority scheduling rule is a complete and deterministic set of priority deriva-

tion steps.

It can be easily verified that the leftmost selection rule, adopted by the Prolog

execution mechanism, is a state priority scheduling rule. The very nature of a

state scheduling rule is characterised by the following Definition 3.13. Indeed, the

definition simply says that a p-SLD derivation is via a state scheduling rule S if all

derivation steps are admitted in the rule S, i.e. they all belong to the set of derivation

steps which S is constituted by.

Definition 3.13 (derivations via S)

(i) Given a set S of derivation steps, the notation ∆(S) represents the whole of

p-SLD derivations which are composed of derivation steps in S.

(ii) Given a state scheduling rule S, the set ∆(S) is the set of p-SLD derivations

via S.

In the sequel of the paper we only consider state priority scheduling rules, which

therefore will be called just scheduling rules. The following notations will be used

frequently. Given a set S of derivation steps, a clause c and a template M, we will

denote by

G
S,c−→ R and G

S,M−→ R

the fact that the derivation step (G
c−→ R) ∈ S and the p-SLD derivation

(G
M−→ R) ∈ ∆(S), respectively. In the case that the exploited logic program must be

pointed out, a notation like

(G
S,M.P−→ R)

will be used to specify that the derivation is via S in the program P, i.e. every

clause of the template M belongs to P. The notion of p-SLD tree via S could be

characterised in complete analogy with the usual one of SLD tree.

Let us close this section with a property, which can be easily shown on the basis

of completeness and will be used several times in the sequel. Property 3.3 asserts that

if a clause c can be applied to a p-goal aγ|G, every complete set of derivation steps

allows c to be applied to any p-goal of the form a|F . Since the atom a is more general

than aγ, the property may also be interpreted as a sort of lifting of derivation steps.

However, the subgoals G and F are left unrelated at all. The evident explanation is

that they have no active role in rewriting operations. Moreover, the property recalls

that new variables can be always chosen so that conflicts are avoided with arbitrary

pre-established sets of variables. The formal proof of this rather intuitive property

can be found in Appendix A.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 561

In the statement of Property 3.3 and in the sequel of the paper, given a p-SLD

derivation Dr, the notation nvar(Dr) will represent the set of standardisation apart

variables which are introduced during the derivation Dr. In the case of a single

derivation step Ds = (A
cξ−→ •), it is nvar(Ds) = var(cξ).

Property 3.3

Let S be a complete set of derivation steps. Given two p-goals aγτ|G and a|F , let us

fix arbitrarily a finite set V of variables. The following implication holds:

∃Ds derivation step of the type aγτ|G c−→ •
=⇒ ∃Ds′ of the type a|F c−→ •, with Ds′ ∈ S and nvar(Ds′) ∩ V = ?.

4 Specialisation independent scheduling rules

Now, we will exploit the notion of congruent lowering in order to introduce the

concept of specialisation independence. This concept will be used to characterise

the class of scheduling rules that are the main object of the paper (specialisation

independent scheduling rules). In fact, all our results for termination and loop check

completeness preserving will refer to such a class of scheduling rules. In Section 5, a

second characterisation of the same class is given which has an operational nature

and is surprisingly different in appearance.

The definition of specialisation independence enforces the idea of determinism.

Indeed, in agreement with the Definition 4.1 below, every lowering is required to

be a congruent lowering. In other words, the congruence in the allocation of new

atoms must hold any time the initial goals of two derivation steps are related by

specialisation and the same clause is used. This can be interpreted saying that the

positioning of new atoms with respect to old ones is independent of goal specialisation,

which means independent of goal instantiation as well as of the addition of a group

X of other atoms.

Definition 4.1 (specialisation independence)

A set S of priority derivation steps is specialisation independent if, for every couple

of steps Ds1 and Ds2 in S, the following implication holds:

Ds2 is a lowering of Ds1 by X

=⇒ Ds2 is a congruent lowering of Ds1 by X.

Definition 4.2 (Specialisation independent scheduling rules)

A specialisation independent scheduling rule is a complete and specialisation inde-

pendent set of priority derivation steps.

In the next two sections, we provide some results about p-SLD derivations via

specialisation independent scheduling rules. The results will be frequently exploited

in the sequel.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

562 F. Ferrucci, M. I. Sessa and G. Pacini

4.1 Derivation lowering

In this section we give results which relate resolvents coming from a couple of

derivation steps in the congruent lowering relationship. Then, by Lemma 4.1, the

analysis is extended to couples of whole derivations, developed via specialisation

independent scheduling rules. We start by presenting a preliminary statement (Prop-

erty 4.1) which holds for every couple of derivation steps that are in the lowering

relationship. In reference to derivation steps (1) and (2) below, the preliminary

property says that, if we abstract from atom positioning and ignore the additional

subgoal X, the resolvent of (2) is an instance of the resolvent of (1). Property 4.1

can be shown following the line exploited for proving the Variant Lemma (see Apt,

1990), which is done in Appendix A for the sake of completeness of the paper.

Property 4.1

Let c = (ht←− B) be a clause. Let us consider two derivation steps like (1) and (2),

where (2) is a lowering of (1) by X. The following implication holds:

a|K cξ′−→ (K + Bξ′θ′)µ′, (1)

aτσ|(Kτσ +X)
cξ′′−→ (Kτσ + Bξ′′θ′′ +X)µ′′ (2)

=⇒ ∃δ such that Kτµ′′ = Kµ′δ and Bξ′′µ′′ = Bξ′µ′δ,

where δ is a renaming, if τ is a renaming.

Property 4.2 completes Property 4.1, taking into account the preservation of

atom scheduling in the case of congruent lowering. It states that, if we ignore the

additional subgoal X, resolvents are preserved up to a substitution and a shifting. In

reference to derivation steps (1) and (2) below, this means that, apart from R/X, the

resolvent R in (2) is an instance of Q such that also atom scheduling is maintained.

Property 4.2

Let c = (ht←− B) be a clause. Let us consider two derivation steps of the type (1)

and (2), such that the second one is a congruent lowering of the first one by X:

a|K c−→ Q, (1)

aτπ|(Kτπ +X)
c−→ R. (2)

The following assertion holds:

∃δ, ρ such that R/((a|K)τπ) = Qδρ,

where δ is a renaming if τ is a renaming.

Proof

Let c = (ht←− B), so that Q and R may be written as follows:

Q = (K + Bξ′θ′)µ′,
R = (Kτπ +X + Bξ′′θ′′)µ′′.

Since step (2) is a congruent lowering of (1) by X, a shifting ρ exists such that:

Kρ = Kπ, Bθ′ρ = Bθ′′. (3)

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 563

By definition of sub-resolvent and (3), we have:

R/((a|K)τπ) = Bξ′′θ′′µ′′ +Kτπµ′′ =(3) Bξ′′µ′′θ′ρ+Kτµ′′ρ. (4)

Now, we apply Property 4.1 to (1) and (2), deriving that a substitution δ exists such

that:

Kτµ′′ = Kµ′δ and Bξ′′µ′′ = Bξ′µ′δ, (5)

where δ is a renaming if τ is a renaming.

As a consequence, we have that:

R/((a|K)τπ) =(4) Bξ′′µ′′θ′ρ+Kτρµ′′ =(5) Bξ′µ′δθ′ρ+Kµ′δρ = Qδρ,

where δ is a renaming if τ is a renaming. q

The following lemma may be seen as the extension of Property 4.2 to whole

derivations, provided that the used scheduling rule is specialisation independent.

Note that, given a derivation like (1) in the statement below, if a derivation like (2)

exists, it can be considered as a lowering of (1). Indeed, the initial p-goal X + Gγτ

is a specialisation of G by X, and the sequence E of clauses is applied in the same

order to atoms deriving from Gγτ in derivation (2). In this sense we will regard

Lemma 4.1 as a ‘specialisation independent lowering lemma’.

Lemma 4.1 (Specialisation independent lowering lemma)

Let S be a specialisation independent scheduling rule and consider two p-SLD

derivations like (1) and (2). The following implication holds:

G
S,E−→ Q, (1)

Gγτ+X
S,D−→ R, with D/(Gγτ) = E (2)

=⇒ ∃σ, ρ such that R/(Gγτ) = Qσρ,

where σ is a renaming if γ is a renaming and D/X = ?. (p1)

Proof

Let us first prove the thesis, apart from the fact (p1). The proof is by induction on

the length of D. If #D is equal to zero, the thesis is trivially true. Let us suppose

that #D is greater than zero. Two different cases must be considered, i.e. the first

clause of D (say c) is applied either to an atom of X or to an atom of Gγτ.

First case (The clause c is applied to an atom of X).

In this case derivation (2) may be rewritten as:

X + Gγτ
S,cη,α−→ Gγτα+X ′

S,D′−→ R, (3)

with D′/(Gγτα) = D/(Gγτ) = E.

By inductive hypothesis, applied to the tail of derivation (3) and derivation (1), we

have:

∃σ, ρ such that R/(Gγτ) = R/(Gγτα) =(ind.hyp.) Qσρ.

Second case (The clause c is applied to an atom of Gγτ).

In in this case derivations (1) and (2) may be rewritten as (4) and (5), respectively:

G
S,cξ−→ Y

S,E′−→ Q (4)

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

564 F. Ferrucci, M. I. Sessa and G. Pacini

X + Gγτ
S,cη,α−→ Xα+ Z

S,D′−→ R (5)

with D′/Z = E ′, c/4/G = c/5/Gγτ = c. (6)

Since S is specialisation independent, the first step of (5) is a congruent lowering of

the first one of (4) by X. Then, by Property 4.2, we have:

∃σ′, ρ′ such that Z = (Xα+ Z)/(Gγτ) =(Prop.4.2) Y σ′ρ′. (7)

As a consequence, recalling the first fact in (6), the inductive hypothesis can be

applied to the tails of derivations (4) and (5). Then, we have:

∃σ, ρ such that R/Z = Qσρ. (8)

In conclusion, we have that:

R/(Gγτ) = R/Z = Qσρ.

In order to show the fact (p1), i.e. σ is a renaming if γ is a renaming and D/X = ?,

it is sufficient to note that:

– the ‘first case’ does not occur at all,

– the substitutions σ′ and σ, mentioned in (7) and (8), are renamings. q

The following example shows that the hypothesis of specialisation independence

is crucial for the validity of Lemma 4.1.

Example 4.1

Let us consider a scheduling rule S such that new atoms are positioned in the centre

of the old resolvent. New atoms are positioned immediately before the centre if the

length of the resolvent (the rewritten atom excluded) is odd. It is easy to recognise

that lowering Lemma 4.1 does not hold for such a rule. Indeed, let P be the following

program:

c1 = p(x)←− q(x)[1]

c2 = s←− p(b)[1].

Now, in reference to the statement of Lemma 4.1, let:

G = s[1], p(a)[2]

Gγτ = s[1], p(a)[1.5] and X = r[2].

The following are two derivations of G in P and (Gγτ+X) in P, respectively:

{s[1], p(a)[2]} S,c2−→ {p(b)[1], p(a)[2]} S,c1−→ ({q(b)[1], p(a)[2]} = Q)

{s[1], p(a)[1.5], r[2]} S,c2−→ {p(a)[1.5], p(b)[1.7], r[2]} S,c1−→
({p(b)[1.7], q(a)[1.8], r[2]} = R).

Thus, no σ and ρ can exist such that:

R/(Gγτ) = {q(a)[1.8], p(b)[1.7]} = {q(b)[1], p(a)[2]}σρ = Qσρ.

Note that R/(Gγτ) and Q are essentially different, even if they are considered as

multisets abstracting from priority values. It is easy to check that the used scheduling

rule is not specialisation independent, in agreement with Definition 4.2. �

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 565

4.2 Derivation lifting and combining

The following Lemma 4.2 is a result about p-SLD derivation lifting which is valid

for specialisation independent scheduling rules. In reference to derivation (1) below,

the lemma asserts that the sub-template of clauses, applied to the part Gγτ of the

initial p-goal (X + Gγτ) in (1), can be applied again in the order starting from the

more general goal G, via the same scheduling rule. The lemma also recalls that

standardisation apart variables can be chosen in order to avoid conflicts with any

fixed finite set of variables. The lemma does not relate resolvents. Indeed, Lemma

4.1 can be exploited to this purpose.

Lemma 4.2 (specialisation independent lifting lemma)

Let S be a specialisation independent scheduling rule. Given any finite set V of

variables, the following implication holds:

X + Gγτ
S,D−→ • (1)

=⇒ ∃Dr = (G
S,D/Gγτ−→ •), with nvar(Dr) ∩ V = ?.

Proof

The proof is by induction on the length of the template D. If #D is zero, the assert

is evident. Let us suppose that #D > 0. Two cases must be considered, i.e. either the

first clause in D (say c) is applied to an atom of X or the clause c is applied to an

atom of Gγτ.

First case (The clause c is applied to an atom of X).

Derivation (1) may be rewritten as:

X + Gγτ
S,cη,β−→ X ′ + Gγτβ

S,D′−→ •. (2)

By inductive hypothesis applied to the tail of (2), for any finite set V of variables, a

derivation Dr exists such that:

Dr = (G
S,D′/Gγτβ−→ •), with nvar(Dr) ∩ V = ?.

But, by construction of (2), it is D′/Gγτβ = D/Gγτ, so that the thesis is verified.

Second case (The clause c is applied to an atom of Gγτ).

Derivation (1) may be rewritten as follows:

X + Gγτ
S,cη,β−→ Xβ + G′

S,D′−→ •, (3)

where c|(D′/G′) = D/Gγτ. (4)

Let G = a|Z , that is X + Gγτ = aγτ|(X + Zγτ). By (3) and Property 3.3, we can

assert that a derivation step exists like:

Ds′ = ((G = a|Z)
S,c−→ R′), (6a)

with nvar(Ds′) ∩ V = ?. (6b)

Since, by hypothesis S is specialisation independent, the first step of derivation (3)

is a congruent lowering of step (6a) by X. As a consequence, by Property 4.2, a

substitution π’ and a shifting ρ’ exist with:

G′ = (Xβ + G′)/(Gγτ) = R′π′ρ′. (7)

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

566 F. Ferrucci, M. I. Sessa and G. Pacini

Then, by inductive hypothesis applied to the tail of (3), we may assert that, a

derivation Dr′′ exists:

Dr′′ = (R′
S,D′/G′−→ •) (8a)

with nvar(Dr′′) ∩ (nvar(Ds′) ∪ var(G) ∪ V) = ?. (8b)

So, derivation (8a) is standardised apart with respect to (6a). Since S is a state

scheduling rule, (6a) and (8a) can be combined in order to give place to an unique

derivation Dr such that:

Dr = (G
c−→ R′

D′/G′−→ •) ∈ ∆(S),

where, by (6b) and (8b), we have also that:

nvar(Dr) ∩ V = (nvar(Ds′) ∪ nvar(Dr′′)) ∩ V = ?.

By (4), the thesis is proven. q

It is worth noting that lowering Lemma 4.1 and lifting Lemma 4.2 consider

couples of p-goals in a specialisation relationship, i.e. p-goals of the form G and

(Gγτ + X). The distinctive point is that a group X of additional atoms may be

present in the second p-goal, besides the instantiation of G by γ. The correspon-

dence is obvious with the fact that Definition 4.1 requires that positioning of new

atoms is independent of goal specialisation. As it will be clear in the following,

this kind of independence is basic in order to assure tolerance to redundancy

elimination.

In Gabrielli, Levi and Meo (1996) a class of selection rules is introduced for which

independence of atom choices from goal instantiation is assured. These rules are

named skeleton selection rules. Indeed, they are sensible only to a specific structural

extract (the skeleton) of the applied clauses and the initial goal in the story of a

derivation. As shown in Gabrielli, Levi and Meo (1996), instantiation independence

is sufficient to prove a Strong Lifting Lemma which asserts that, for any skeleton

rule S, an SLD derivation of a goal Gγ via S can be lifted to a derivation of G via

the same rule S, relating in a quite strong sense the mgu’s and the resolvents. On the

other hand, instantiation independence seems not sufficient to assure redundancy

elimination tolerance. For example, in agreement to the definition in Gabrielli, Levi

and Meo (1996), the selection rule of Example 2.2 is a skeleton rule, because choices

only depend upon the length of the initial goal and the ones of applied clauses.

Really, choices are performed on the unique basis of the length of the actual

resolvent, so that the rule of Example 2.2 can be seen as a case of state skeleton

selection rule. Anyhow, the rule is not tolerant to redundancy elimination.

To point out the role of the hypothesis of specialisation independence with respect

to derivation lifting, let us give the following example where lifting Lemma 4.2 does

not hold. Note that the used scheduling rule is instantiation independent, but it is

not specialisation independent.

Example 4.2

Let us consider again the scheduling rule of Example 4.1. It is easy to recognise

that lifting Lemma 4.2 does not hold for such a rule. Indeed, let P be the following

program:

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 567

{p[1.1], r[1.5], r[1.6], s[2], s[2.5]} S,c1−→
{r[1.5], r[1.6], p[1.7], r[1.8], r[1.9], s[2], s[2.5]} S,(c2,c2)−→
{p[1.7], r[1.8], r[1.9], s[2], s[2.5]}
....................................

Fig. 2

c1 = p←− p[1], r[2], r[3]

c2 = r ←−.

Now, in reference to the statement of Lemma 4.2, let:

G = {p[1], s[2], s[3]}
Gγτ = {p[1.1], s[2], s[2.5]} and X = {r[1.5], r[1.6]}.
In Figure 2 an infinite p-SLD derivation of (Gγτ+X) in P is shown.

On the contrary, the only p-SLD derivation of G in P is the following one

{p[1], s[2], s[3]} S,c1−→ {s[2], p[2.5], r[2.6], r[2.7], s[3]}.
which fails at the second resolvent. �

From the proofs of Lemmas 4.1 and 4.2, the proof of two corresponding assertions

can be easily drawn. They are given in Lemma 4.3 below, and are valid for all

scheduling rules in the case of two p-SLD derivations which are lowerings of each

other. Part (a) of the lemma may be viewed as a form of variant Lemma.

Lemma 4.3 (determinism lemma)

Let S be any scheduling rule and V any arbitrary finite set of variables. Then

let G and G′ be two p-goals such that G′ is a p-variant of G. The following

implications hold:

(a) G
S,D−→ Q and G′

S,D−→ R

=⇒ R is a p-variant of Q,

(b) G′
S,D−→ •

=⇒ ∃Dr = (G
S,D−→ •), with nvar(Dr) ∩ V = ?.

Proof

Let us consider part (a) of the lemma. By definition of p-variant it is G′ = Gγτ,

for a renaming γ and a shifting τ. By fact (p1) in Lemma 4.1, i.e. ‘where σ is a

renaming if γ is a renaming and D/X = ?’, the result appears as an immediate

consequence of the proof of Lemma 4.1 itself. It is sufficient to note that, if X is

empty and γ is a renaming, the fact that the used scheduling rule is specialisation

independent becomes useless. Indeed, in reference to the proofs of Lemma 4.1,

though the hypothesis of specialisation independence is dropped, the first steps of

(5) and (4) are congruent lowerings of each other, because every scheduling rule

is deterministic. Similar considerations are possible for part (b) of the lemma, in

reference to the proof of Lemma 4.2. q

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

568 F. Ferrucci, M. I. Sessa and G. Pacini

Now, let us give a property that is valid for all scheduling rules and derives easily

from Lemma 4.3. It asserts that two p-SLD derivations Dr1 and Dr2, via the same

scheduling rule S, can be composed giving place to a longer derivation via S, if the

last resolvent of Dr1 coincides with the first of Dr2.

Property 4.3 (combination)

Let S be any (state) scheduling rule. The following implication holds:

∃Dr1, Dr2 with Dr1 = (G
S,E−→ F), Dr2 = (F

S,H−→ Q)

=⇒ ∃Dr = (G
E−→ F

H−→ R), with Dr ∈ ∆(S),

where R is a p-variant of Q.

Proof

By Lemma 4.3-b) applied to Dr2, a p-SLD derivation Dr′ = (F
S,H−→ R) exists with

nvar(Dr′) ∩ (nvar(Dr1) ∪ var(G)) = ?. Thus, Dr′ is standardised apart with respect

to Dr1. Since S is a state scheduling rule, Dr is obtained as the composition of Dr1
and Dr′. The fact that R is a p-variant of Q follows from Lemma 4.3-a), applied to

Dr2 and Dr′. q

5 Stack-queue selection rules

Prolog interpreters adopt a leftmost scheduling policy such that the first atom in the

goal is always selected for rewriting and is replaced in the resolvent by the body

of the applied clause. In other words, the actual resolvent is maintained as a stack,

the atom on the top of the stack is always selected for rewriting, while new atoms

from the applied clause are pushed on the top of the stack. In analogy, a queue

scheduling policy may be considered, which corresponds to a very simple case of fair

selection rule (see Lloyd, 1987). As for the stack scheduling policy the first atom in

the resolvent is always selected, but new atoms are positioned at the end of the old

resolvent. Thus, the resolvent is treated as a queue of atoms and any queued atom

is eventually selected in the case of infinite derivations

In this section, the class of stack-queue scheduling rules is defined, which is a

generalisation of both stack and queue scheduling policies. According to stack-

queue rules, for any clause c = (ht←− B), two p-goals Ms and Mq can be identified,

with B = Ms|Mq , such that the atoms in Ms are always scheduled in stack mode while

the atoms in Mq are scheduled in queue mode. More formally, we have the following

definition. As shown in the sequel of this Section 5, the stack-queue class turns

out to be an operational characterisation of the class of specialisation independent

scheduling rules

Definition 5.1 (stack-queue derivation steps)

A set SQ of derivation steps is said to be of stack-queue type, if it verifies the

following condition. Given any clause c = (ht←− B), two p-goals Ms and Mq exist

with Ms|Mq = B, such that for any p-goal (a|K):

a|K SQ,cξ,µ−→ R =⇒ R = (Msξγ|K|Mqξγ)µ.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 569

The following property states that any set of stack-queue derivation steps is

specialisation independent. Then, as stated in Theorem 5.1, any set of stack-queue

derivation steps which satisfies the completeness property is a specialisation inde-

pendent scheduling rule.

Property 5.1 (stack-queue implies specialisation independence)

Let SQ be a stack-queue set of derivation steps. Then SQ is specialisation indepen-

dent.

Proof

Let us consider two derivation steps in SQ and suppose that derivation step (2)

is a lowering of (1) by F . This means that (1) and (2) have the following form,

where c = (ht←−Ms|Mq):

a|K SQ,c−→ (Msξ
′γ′|K|Mqξ

′γ′)α′ (1)

aλσ|(Kλσ + F)
SQ,c−→ (Msξ

′′γ′′|(Kλσ + F)|Mqξ
′′γ′′)α′′. (2)

To show that SQ is specialisation independent, we have to verify that derivation

step (2) is a congruent lowering of (1) by F , i.e. a shifting ρ exists, such that:

Msγ
′′|Mqγ

′′ = (Msγ
′|Mqγ

′)ρ, Kσ= Kρ. (3)

By Property 3.2, a shifting ρ exists such that:

Msγ
′′|Kσ|Mqγ

′′ =(Ax−iii) (Msγ
′|K|Mqγ

′)ρ = Msγ
′ρ|Kρ|Mqγ

′ρ.
Since it is evident that #Msγ

′ρ = #Msγ
′′ and #Kρ = #Kσ, by Property (3.1-i) we

have:

Msγ
′′ = Msγ

′ρ, Mqγ
′′ = Mqγ

′ρ, Kσ = Kρ,

which immediately implies assertion (3). q

Theorem 5.1 (stack-queue scheduling rules)

Let SQ be a complete set of stack-queue derivation steps. Then SQ is a specialisation

independent scheduling rule.

5.1 Specialisation independence implies stack-queue

Now, we prove (Theorem 5.2) that any specialisation independent scheduling rule is

actually a stack-queue rule. Thus, combining this fact with Theorem 5.1, we have

that Definition 4.2 and the operational characterisation of Definition 5.1 identify

the same family of scheduling rules. To this aim, let us show the following lemma.

Lemma 5.1 (not internal positioning)

Let S be a specialisation independent scheduling rule. Given any clause c =

(ht←− B), for every derivation step of the form:

a|K S,cξ,η−→ R, (1)

two subgoals Ms and Mq exist, with B = Ms|Mq , such that:

R = (Msξγ|K|Mqξγ)η.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

570 F. Ferrucci, M. I. Sessa and G. Pacini

Proof

Let us consider a p-goal like:

a|Kω1|Kω2|...|Kωn, with n > #B.

On the basis of (1), by Property 3.3 a derivation step also exists of the following

form:

a|Kω1|...|Kωn

S,cγ,µ−→ (Q = ((Kω1|...|Kωn) + Bγτ)µ). (2)

Since n > #B, an index j must exist such that no atom of B has been positioned

inside Kωj . A priori several j’s might exist. Without loss of generality, we take any

one of them. Thus, two p-goals Ms and Mq must exist, with Ms|Mq = B, such that:

Q = (Msτγ + (Kω1|...|Kωj−1))|Kωj |(Mqτγ + (Kωj+1|...|Kωn))µ. (3)

Now, by definition, derivation step (1) has the form:

a|K S,c−→ (R = (K + Bξσ)η). (1a)

Since S is a specialisation independent rule, step (2) is a congruent lowering of

step (1a) by the subgoal (Kω1|...|Kωj−1|Kωj+1|...|Kωn), so that a shifting ρ exists

with Kρ = Kωj and Bσρ = Bτ = Msτ|Mqτ. Then, recalling that (3) implies

Msτ a Kωj aMqτ, we obtain:

(K + Bξσ)ρ = Kωj + Bξτ = (Msξτ|Kωj |Mqξτ) = (Msξτ|Kρ|Mqξτ).

Finally:

R = (K + Bξσ)η = (K + Bξσ)ηρρ−1 = (Msξτρ
−1|K|Mqξτρ

−1)η. q

The following Theorem 5.2 shows that, for any scheduling rule, specialisation

independence implies that the rule is stack-queue. Together with Theorem 5.1,

this result proofs that stack-queue is an operational characterisation of the set of

specialisation independent scheduling rules.

Theorem 5.2 (specialisation independence implies stack-queue)

Let S be a specialisation independent scheduling rule. Given any clause c =

(ht ←− B), two p-goals Ms and Mq exist, with Ms|Mq = B, such that for every

derivation step of the form:

a|K S,cξ,η−→ R (1)

it is:

R = (Msξπ|K|Mqξπ)η.

Proof

Let p be the predicate symbol of atom ht. Consider a p-atom b of the form

b = p(x1, ..., xk)[s], where x1, ..., xk are distinct variables. Then, consider a ground

p-atom r such that b a r. By construction of b and completeness of S, a derivation

step of the type (b|r S,c−→ •) exists, which necessarily has the following form because

r is a single atom:

b|r S,c−→ (Msλε|r|Mqλε)µ, with B = Ms|Mq . (2)

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 571

Now, let us prove that Ms|Mq is the partition of B which is required by the thesis.

Consider derivation step (1). Two cases are possible, either K = ? or K 6= ?.

Case 1 (K = ?).

In this case we have:

a
S,c−→ (R = Bξπη = (Msξπ|Mqξπ)η).

Case 2 (K 6= ?).

On the basis of (1), we have that also p-atom a has p as a predicate symbol, so

that a substitution τ and a shifting σ exist with a = bτσ. By (1) and Property 3.3, a

derivation step exists like:

(bτσ|(rτσ +K) = a|(K + rσ))
S,cξ′ ,η′−→ Q, (4)

where by Lemma 5.1 we have that:

Q = (Nsξ
′γ|(rσ +K)|Nqξ

′γ)η′, with B = Ns|Nq . (5)

The proof can be now completed by exploiting derivation step (4) as a sort of ‘bridge’

between (1) and (2). In fact, since S is specialisation independent rule, derivation

step (4) is a congruent lowering of step (2) by K , so that a shifting ρ′ exists with

rρ′ = rσ and (Msε|Mqε)ρ
′ = Nsγ|Nqγ. As a consequence (see (5) and (2)), we can

write:

Nsγ|rσ|Nqγ = Nsγ|Nqγ + rσ = (Msε|Mqε)ρ
′ + rρ′ = (Msε|r|Mqε)ρ

′,

with rσ = rρ′.

Then, by Property (3.1-ii) we have that Nsγ = Msερ
′, which obviously implies:

#Ns = #Ms. (6)

Now, let us note that by Lemma 5.1 it must be:

R = (Asξπ|K|Aqξπ)η, with B = As|Aq . (7)

Since S is a specialisation independent rule, derivation step (4) is a congruent

lowering of step (1) by rσ, so that a shifting ρ′′ exists with Kρ′′ = K and

(Asπ|Aqπ)ρ′′ = Nsγ|Nqγ. As a consequence (see (5) and (7)) we can write:

Nsγ|K|Nqγ = Nsγ|Nqγ +K = (Asπ|Aqπ)ρ′′ +Kρ′′ = (Asπ|K|Aqπ)ρ′′,

with K = Kρ′′.

Then, by Property (3.1-ii), we have that Nsγ = Asπρ
′′, which obviously implies:

#Ns = #As. (8)

By (2) and (7), it is Ms|Mq = As|Aq = B. By (6), (8) and Property (3.1-i), we have

that:

As = Ms and Aq = Mq .

Substituting in (7), the thesis is obtained. q

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

572 F. Ferrucci, M. I. Sessa and G. Pacini

5.2 Notes on the structure of stack-queue derivations

Let us consider a stack-queue derivation like:

A|B SQ,M,σ−→ •, where M = c1, c2, ...ch and M/B = ?. (1)

By definition of stack-queue scheduling rules, only atoms in A together with atoms

deriving from A and allocated in stack mode can be rewritten in derivation (1).

Thus, derivation (1) has the form:

A|B SQ,c1ξ1 ,σ1−→ X1|A1|Bσ1|Y1

SQ,c2ξ2 ,σ2−→ ...

Xi|Ai|Bσ1...σi|Yi SQ,ci+1ξi+1 ,σi+1−→ ...
SQ,chξh,σh−→ Xh|Ah|Bσ1...σh|Yh, (1a)

where:

• each Xi is formed by new atoms deriving from A which are allocated in stack

mode,

• each Ai is formed by atoms of A which are not yet rewritten,

• each Yi is formed by new atoms deriving from A which are allocated in queue

mode.

The above structural considerations suggest the following formal definition.

Definition 5.2 (A-preq type derivations)

A p-SLD derivation, of the form A|B SQ,M−→ •, is of pre-queued type w.r.t. the subgoal

A (simply written A-preq type in the following) if the only rewritten atoms are:

– atoms from the subgoal A,

– atoms deriving from A and allocated in stack mode.

Note that Definition 5.2 is significant even if B = ?. It is evident that any A-preq

derivation has the form (1a). In the sequel we use the following shortened notation

to represent A-preq type derivations:

A|B SQ,M,σ−→ As|Bσ|Aq, (Ap)

where, with reference to (1a), As = Xh|Ah stands for ‘stacked subgoal derived from

A’, and Aq = Yh means ‘queued subgoal derived from A’. It is evident that in any

preq type derivation we have M/B = ?.

The following definition characterises an A-queued derivation as an A-preq deriva-

tion where all atoms of A are rewritten together with all atoms deriving from A and

allocated in stack mode, i.e. As= ?. Intuitively, an A-queued derivation is an A-preq

derivation which cannot be extended without loosing its A-preq nature. Indeed, the

acronym ‘A-preq’ stands for ‘A-pre-queued’ derivation.

Definition 5.3 (A-queued derivations)

Let SQ be a stack-queue scheduling rule. A derivation which is of A-preq type and

has the form:

A|B SQ,K,σ−→ Bσ|Aq (Aq)

is said to be queued w.r.t. A (simply written A-queued in the following).

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 573

In the following Section 5.3, we will exploit the notations introduced in (Ap) and

(Aq) to represent A-preq type and A-queued derivations, respectively. It is worth

noting that starting from a p-goal of the form A|B, when the A-queued derivation

is reached, the last resolvent presents a situation where the roles of A and B are

exchanged. In practice, restarting from Bσ|Aq , the derivation can attempt to proceed

towards a (Bσ)-queued derivation. The proof of an important result in Section

5.3 (Duplication Theorem 5.3) is based on this cyclic behaviour of stack-queue

derivations.

5.3 Duplication tolerance

In this section an important property is shown for stack-queue scheduling rules. Let

us give an intuitive presentation of this result, which is stated in the full duplication

theorem (Theorem 5.4). Suppose that a p-SLD derivation Dr of G in P can be

developed via a stack-queue scheduling rule SQ. Then consider a p-goal G′ which

is equal to G apart from the duplication of some atoms. Furthermore, suppose that

each copy is scheduled after the corresponding original atom. In this hypothesis,

the full duplication theorem asserts that a p-SLD derivation of G′ in P exists via

the same scheduling rule SQ, where all derivation steps of Dr are redone in the

order.

The full duplication theorem is basic for the proof of the final results of the paper,

i.e. results about redundancy elimination tolerance which are given in Section 6.

Indeed, let us consider the problem of preserving program termination. Intuitively,

program termination is preserved if the introduction of redundancy elimination

does not provoke any really different new derivations. Reversing the viewpoint,

termination is retained if any derivation, developed in presence of redundancy

elimination, can be traced again when redundancy is left in place. The full duplication

theorem asserts this kind of fact in the simplest case, i.e. when redundancy has the

form of a replica of atoms already present in the initial p-goal, provided that the

scheduling rule is of stack-queue type.

First we show a duplication theorem (Theorem 5.3) which is valid when only one

atom or group of adjacent atoms is duplicated. Then the result is easily extended to

obtain the full theorem. Though intuitive in appearance, Theorem 5.3 has a relatively

complex proof. In this section we give only a sketch of the argument. In the sketch,

we will make reference to the particular case of completely ground derivations, i.e.

derivations such that all resolvents are ground. This simplification will allow us to

highlight the essence of the argument, without having to do with technical problems

deriving from variable instantiations. Formal presentation of the proof of Theorem

5.3 is given in Appendix B. Note that the hypothesis of ground resolvents is verified

in the case that no new variable is present in clause bodies and initial goals are

ground.

Theorem 5.3 (duplication theorem)

Let P be a logic program and SQ a stack-queue scheduling rule. Given two p-goals

of the form A|B|C|D and A|B|C|Bπ|D, the following implication holds:

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

574 F. Ferrucci, M. I. Sessa and G. Pacini

A|B|C|D SQ,X.P−→ Q (1)

=⇒ ∃Y such that A|B|C|Bπ|D SQ,Y .P−→ R

with X ⊆L Y and #Q � #R.

Proof (sketch)

Let ∆(SQ, n) denote the subset of ∆(SQ) such that, for any derivation Dr in ∆(SQ, n),

it is #Dr � n, where #Dr denotes the length of Dr. We show the thesis by induction

on n. In other words, we show that the thesis holds when derivation (1) belongs

to ∆(SQ, n), for any n � 0. The fact is obvious for ∆(SQ, 0). In order to justify the

inductive step from ∆(SQ, n− 1) to ∆(SQ, n), for n > 0, let us consider a derivation

like:

(A|B|C|D X.P−→ Q) ∈ ∆(SQ, n) (1a)

and show that (A|B|C|Bπ|D SQ,Y .P−→ R) exists with X ⊆L Y and #Q � #R. The

following three possible situations must be taken into account. Then, we start with

case 3, which is the most significant one.

1. derivation (1a) is of (A|B|C)-preq type,

2. derivation (1a) is of (A|B|C|D)-preq type, and not of (A|B|C)-preq type,

3. derivation (1a) is not of (A|B|C|D)-preq type.

Case 3.

As already said, the simplified argument, which we use in this sketch, works in the

hypothesis that all resolvents are ground, so that derivation (1a) has the following

form:

A|B|C|D H−→ B|C|D|Aq K−→ C|D|Aq|Bq M−→
D|Aq|Bq|Cq N−→ Aq|Bq|Cq|Dq T−→ Q, where H |K|M|N|T = X. (2)

Then, it is intuitive that a derivation can be constructed like the following, where φ

is a suitable shifting:

A|B|C|Bπ|D SQ,H−→ B|C|Bπ|D|Aq SQ,K−→
C|Bπ|D|Aq|Bq SQ,M−→ Bπ|D|Aq|Bq|Cq

SQ,K−→ (3)

D|Aq|Bq|Cq|Bqφ SQ,N−→ Aq|Bq|Cq|Bqφ|Dq.
By construction of (2), Aq|Bq|Cq|Dq T−→ Q is a derivation belonging to ∆(SQ,m),

with m < n. By inductive hypothesis, a derivation exists such that:

Aq|Bq|Cq|Bqφ|Dq SQ,Y ′ .P−→ R′, (5)

with T ⊆L Y ′ and #Q � #R′. (5a)

By Property 4.3, derivations (3) and (5) can be combined to yield a derivation of

the form:

A|B|C|Bπ|D SQ,(H |K|M|K|N).P−→ Aq|Bq|Cq|Bqφ|Dq SQ,Y ′ .P−→ R, (6)

where R is a p-variant of R′, which implies #R = #R′. Finally:

X = H |K|M|N|T ⊆(5a)
L (H |K|M|K|N|Y ′), #Q �(5a) #R′ = #R.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 575

Case 2.

Derivation (1a) has the form A|B|C|D H |K|M|N−→ Ds|Aq|Bq|Cq|Dq , where H |K|M|N=X .

Analogously to case 3), a derivation can be constructed like:

A|B|C|Bπ|D SQ,(H |K|M|K|N).P−→ Ds|Aq|Bq|Cq|Bqπ|Dq .

Case 1.

Derivation (1a) has the form A|B|C|D X−→ (A|B|C)s|D|(A|B|C)q . A derivation exists

like:

(A|B|C)|Bπ|D SQ,X−→ (A|B|C)s|Bπ|D|(A|B|C)q. q

Now we can state and prove the full duplication theorem, which extends the

previous Theorem 5.3 to the duplication of two or more not adjacent atoms in the

initial goal of a p-SLD derivation.

Theorem 5.4 (full duplication theorem)

Let P be a logic program and SQ a stack-queue scheduling rule. Given a p-goal

N + F such that:

∀b[s] ∈ F, ∃b[s′] ∈ N with s′ < s,

the following implication holds:

N
SQ,M.P−→ Q

=⇒ ∃Y such that N + F
SQ,Y .P−→ R

with M ⊆L Y and #Q � #R.

Proof

By hypothesis, the subgoal F is made of duplicated atoms. Then, the proof is by

induction on the length of F . Indeed, if F is empty the thesis is true. Now, suppose

that the thesis is already proven for any F with #F = n � 0. Then let us consider

any p-goal G = F |b[s] with #F = n. By inductive hypothesis a derivation exists such

that:

N + F
SQ,Z.P−→ S, with M ⊆L Z and #Q � #S .

By hypothesis, three p-goals A,C and D exist together with a p-atom b[s′], such

that:

N + (F |b[s]) = A|b[s′]|C|b[s]|D and N + F = A|b[s′]|C|D.

As a consequence, Theorem 5.3 can be applied to N + F and N + (F |b[s]) yielding:

N + (F |b[s]) SQ,Y .P−→ R, with Z ⊆L Y and #S � #R.

Now the induction step is completed, because:

M ⊆L Z ⊆L Y and #Q � #S � #R. q

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

576 F. Ferrucci, M. I. Sessa and G. Pacini

6 Redundancy elimination tolerance

In this section, the tolerance of stack-queue scheduling rules to redundancy elimi-

nation is considered. The preservation of program termination in shown in Section

6.1. The preservation of the completeness of EVRL loop check is shown in Section

6.2 for function free programs. First, the idea of goal reduction, which is originally

given in Ferrucci, Pacini and Sessa (1995), and is recalled in Definition 2.1 of this

paper, is restated. Indeed, in Section 2, little attention is paid to the positions of

atoms which are removed from a resolvent. However, if the execution is based on

atom priority values, it is intuitive that removing an atom without any convenient

expedient may overthrow the essence of previous atom scheduling. Thus, a refined

definition of goal reduction is given below (Definition 6.1) which fits the frame of

priority SLD derivation mechanisms.

The inspiring idea of priority reduction is quite simple. According to Definition

2.1, for any removed atom b, an eliminating atom a = bτ exists which remains in the

reduced resolvent. Several removed atoms may share the same eliminating one. In

reference to Definition 6.1 below, for any eliminating atom aj[pj], the corresponding

subset Aj of eliminated atoms is pointed out. Then, except for the case aj[pj] a Aj ,
any aj[pj] is advanced to the least priority value in Aj . In other words, each

eliminating atom is advanced to replace the first scheduled atom among its eliminated

ones. Intuitively, the aim is to restore the essence of the previous atom priorities.

The notation {+Aj, 1 � j � h} will represent the merging A1 +A2 + ...+Ah, and the

notation prs(Aj) the set of priority values in Aj .

Definition 6.1 (priority reduced goals)

Let X be a set of variables, τ a substitution and G a p-goal. A p-goal N is a reduced

p-goal of G by τ up to X, denoted by G >>τ N, if the following conditions hold:

(i) G = F + {+aj[pj], 1 � j � h} + {+Aj, 1 � j � h},
where ∀b[s] ∈ Aj, bτ = aj , 1 � j � h,

(ii) N = F + {+aj[rj], 1 � j � h},
where rj = min({pj} ∪ prs(Aj)), 1 � j � h,

(iii) ∀x ∈ (X ∪ var(N)) it is xτ = x.

Example 6.1

Given the p-goal

G = p(z)[1], q(w)[2], p(a)[3], p(y)[4], q(v)[5],

the following N is a reduced p-goal of G by the substitution τ = {z/a, y/a, v/w}:
N = p(a)[1], q(w)[2].

Note that p(a)[3] has been advanced to replace the first of the atoms it eliminates,

that is p(z)[1]. �

Now, the idea of priority reduced SLD derivation can be defined as a generalisation

of Definition 3.5. In essence a priority reduced SLD derivation is a p-SLD derivation

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 577

where, at any step, a priority reduction of the resolvent according to Definition 6.1

is allowed.

Definition 6.2 (priority Reduced SLD derivation)

Let P be a program and Go a p-goal. A priority reduced SLD derivation of Go in P

(p-RSLD derivation for short) is a possibly infinite sequence of priority reductions

and derivation steps

Go >>
αo No

coξo,θo−→ G1 ... Gk >>
αk Nk

ckξk ,θk−→ Gk+1 >>
αk+1 Nk+1 ...

where, for any j � 0,

(i) cj is a clause in P,

(ii) var(cjξj) ∩ (var(Go) ∪ var(coξo) ∪ ... ∪ var(cj−1ξj−1)) = ?,

(iii) Gj >>
αj Nj up to var(Goθo...θj−1).

The notation

G
S,D−→>> N

will be used to represent a p-RSLD derivation which is developed in agreement with

the scheduling rule S using the template D. The last resolvent N is intended to be a

reduced resolvent.

6.1 Termination preserving

In this section, the redundancy elimination tolerance of stack-queue scheduling

rules is shown, with reference to program termination (Theorem 6.1). The following

lemma is fundamental for proving the preservation of termination, as well as the

preservation of EVRL loop check completeness.

Lemma 6.1

Let P be a program and SQ a stack-queue scheduling rule. The following implication

holds:

G
SQ,X.P−→ >> Q (1)

=⇒ ∃Z such that G
SQ,Z.P−→ R, with X ⊆L Z, #Q � #R.

Proof

The proof is by induction on the length of X. If #X = 0, the thesis is trivially

verified with Z = ?. Then let us consider X = c|H . Derivation (1) may be rewritten

as:

(G >>τ N)
SQ,c−→ F

SQ,H−→>> Q. (2)

Since #H < #X, by inductive hypothesis, a p-SLD derivation exists of the form:

F
SQ,K.P−→ T , with H ⊆L K, #Q � #T . (3)

By Property 4.3, the first derivation step of (2) and derivation (3) can be combined

to yield a derivation of the following form:

N
SQ,c−→ F

SQ,K−→ S, where S is a p-variant of T . (4)

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

578 F. Ferrucci, M. I. Sessa and G. Pacini

Now, let us consider the p-goal Gτ. With reference to Definition 6.1, we have that:

Gτ = (F + {+aj[pj], 1 � j � h})τ+ {+Ajτ, 1 � j � h} =(Def. 6.1−iii)

F + {+aj[pj], 1 � j � h}+ {+Ajτ, 1 � j � h} =(Def. 6.1−i−ii)

F + {+aj[rj], 1 � j � h}+ {+Ajτ{rj/pj}, 1 � j � h}
= N + {+Ajτ{rj/pj}, 1 � j � h}[2],

where aj[rj] a Ajτ{rj/pj} and any atom in Ajτ{rj/pj} is a duplicate of aj , 1 � j � h.
Then, N and Gτ verify the hypothesis of Theorem 5.4. As a consequence, by (4) a

derivation also exists such that:

Gτ
SQ,Z.P−→ V , with c|K ⊆L Z and #S � #V (5)

Now, let us apply lifting Lemma 4.2 to (5). We obtain that a p-SLD derivation exists

like:

G
SQ,Z.P−→ R. (6)

where, applying lowering Lemma 4.1 to (5) and (6), we have that #V = #R. Finally,

we conclude:

X = c|H ⊆(3)
L c|K ⊆(5)

L Z,

#Q �(3) #T =(4) #S �(5) #V = #R. q

Theorem 6.1 (Termination preserving)

Let P be a program, G a p-goal and SQ a stack-queue scheduling rule. If every

p-SLD derivation of G in P via SQ is finite, then any p-RSLD derivation via SQ is

finite too.

Proof

Let T be the p-SLD tree of G in P via SQ. By hypothesis, every p-SLD derivation

of G in P via SQ is finite. As a consequence, since T is a finitely branching tree,

by Konig’s lemma (see Theorem K, in Knuth, 1997) T is a finite tree. Let f be the

depth of T . Given any p-RSLD derivation of the form G
SQ,X.P−→ >> •, by Lemma

6.1 a p-SLD derivation of the form G
SQ,Z.P−→ • exists in T , with X ⊆L Z . However,

#Z � f, so that we obtain #X � #Z � f. In conclusion, the length of all p-RSLD

derivations of G in P via SQ is limited by f. q

Let us close this section with two examples which show that both stack-queue

scheduling and eliminating atom advancement are essential for redundancy elimina-

tion tolerance. The first example shows the necessity of advancement of eliminating

atoms. The second one is an example of state scheduling rule which is not tolerant

to redundancy elimination, though goal reduction is performed in agreement with

Definition 6.1. Of course, the scheduling rule is not of stack-queue type. In the

following sketches of p-SLD and p-RSLD derivations, explicit indication of priority

values is omitted, for the sake of brevity.

2 The notation Ajτ{rj/pj} means that the priority value rj is replaced by pj in the p-goal Ajτ.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 579

Resolvent Reduced Resolvents

p|q(a) >>ε p|q(a)
S,c−→

q(x1)|p|q(a) >>{x1/a} p|q(a)
S,c−→

q(x2)|p|q(a) >>{x2/a} p|q(a)
S,c−→

......................................

Fig. 3

Resolvents Reduced Resolvents

q(x, x1)|t(x1, x) >>ε q(x, x1)|t(x1, x)
S,c3−→

r|s(x2, x1)|r|q(x, x2)|t(x1, x) >>ε r|s(x2, x1)|q(x, x2)|t(x1, x)
S,c1−→

s(x2, x1)|q(x, x2)|t(x1, x) >>ε s(x2, x1)|q(x, x2)|t(x1, x)
S,c2−→

q(x, x2)|t(x2, x1)|t(x1, x) >>ε q(x, x2)|t(x2, x1)|t(x1, x)
S,c3−→

......................................

Fig. 4

Example 6.2

Let us consider the stack scheduling rule (i.e. the usual leftmost rule) and the

following single clause program P:

c = p←− q(x)|p.
It is evident that all p-SLD derivations fail. However, if advancement of eliminating

atoms is not performed, an infinite p-RSLD derivation of P exists, as shown in

Figure 3. �

Example 6.3

Let S be a scheduling rule which behaves as a stack rule, with an exception when

atoms having s as a predicate symbol are rewritten. In this case new atoms are

positioned immediately after the first old atom, if one exists. Then, let us consider

the logic program P consisting of the following clauses:

c1 = r ←−
c2 = s(x, y)←− t(x, y)

c3 = q(x, y)←− r|s(z, y)|r|q(x, z).

It is easy to verify that all p-SLD derivations of P terminate independently of the

initial p-goal. In fact, given a p-SLD derivation of G in P, where G is any p-goal,

two cases are possible: either an atom with predicate symbol q is rewritten or not.

If no atom with predicate symbol q is rewritten, the derivation terminates evidently.

Otherwise the derivation fails, as described below:

G
S−→ q(..)|K S,c3−→ r|s(..)|r|q(..)|K S,c1−→
s(..)|r|q(..)|K S,c2−→ r|t(..)|q(..)|K S,c1−→ t(..)|q(..)|K.

Now let us show that, if reduction of resolvents is allowed, an infinite p-RSLD

derivation of P exists.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

580 F. Ferrucci, M. I. Sessa and G. Pacini

It is easy to verify that the infinite RSLD derivation in Figure 4 cannot be pruned

neither by EVRL loop check nor by more powerful checks (like SIRM) which

are based on subsumption relationships between resultants (Bol, Apt and Klop,

1991). �

6.2 Preserving the completeness of EVRL loop check

In this section we prove the preservation of EVRL loop check completeness, passing

from p-SLD to p-RSLD. The result holds for function free programs, provided that

stack-queue scheduling rules are used in combination with priority reduction of

resolvents, as introduced in Definition 6.1. The section starts with a characterisation

of EVRL loop check which exploits the concept of priority shifting and is equivalent

to the one stated in Definition 2.3. In essence, passing from Definition 2.3 to Defi-

nition 6.3 below, only assertion (ii) is modified. On the other hand, the requirement

Nj = Niττ is plainly equivalent to Niτ =L Nj , since any shifting τ implies that the

order of atoms is preserved.

Definition 6.3 (Priority Equality Variant Check for Resultants)

A p-RSLD derivation

Go >>
αo No

coξo,θo−→ G1 ... Gh−1 >>
αh−1 Nh−1

ch−1ξh−1 ,θh−1−→ Gh >>
αh Nh...

is pruned by priority Equality Variant of Resultant check (called p-EVRL check, in

the following), if for some i and j, with 0 � i < j, a renaming τ and a shifting τ

exist such that:

(i) Goθo...θj−1 = Goθo...θi−1τ,

(ii) Nj = Niττ.

With reference to the above definition, any couple Rsh = [Nh, Goθo...θh−1] is a

reduced resultant. Given two reduced resultants Rsj = [Nj, Goθo...θj−1] and Rsi =

[Ni, Goθo...θi−1], for which requirements (i) and (ii) of Definition 6.3 hold, we will

write Rsi ∼= Rsj . In other words, Definition 6.3 expresses that p-EVRL loop check is

based on detecting that a reduced resultant is obtained which is connected by the

relationship ∼= to a preceding one in the same derivation. It is worth noting that ∼=
is an equivalence relationship.

Now let us prove Theorem 6.2, which states that the completeness of p-EVRL
loop check is preserved passing from p-SLD to p-RSLD, if stack-queue scheduling

rules are used. To this aim we provide a necessary condition which holds whenever

p-EVRL prunes every infinite p-SLD derivation of a goal G in a program P via a

scheduling rule S. Indeed, as shown in Lemma 6.2, in this hypothesis the length of

resolvents of all possible derivations of G in P via S is limited. The structure and

the proof of Lemma 6.2 are strictly analogous to the ones of Lemma 2.2. Note also

that Lemma 6.2 holds for any scheduling rule. On the contrary, the stack-queue

hypothesis is necessary in Theorem 6.2, which concludes the section.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 581

Lemma 6.2

Let P be a program and G a p-goal. Suppose that all infinite p-SLD derivations

of G in P via a scheduling rule S are pruned by p-EVRL. Then, a finite bound l

exists such that, for each resolvent R in any p-SLD derivation of G in P via S, it is

#R � l.
Proof

The proof of this lemma can be obtained from the one of Lemma 2.2, by means of

the following replacements:

‘Let T be the p-SLD tree of G in P via S ’ for ‘Let T be an S-tree of G in P’,

‘By Determinism Lemma 4.3’ for ‘Since T contains all SLD derivations of G in P’,

‘p-EVRL’ and ‘p-variant’ for ‘EVRL’ and ‘variant’, respectively. q

Theorem 6.2 (p-EVRL loop check completeness preservation)

Let P be a function free program, Go a p-goal and SQ a stack-queue scheduling

rule. Suppose that all infinite p-SLD derivations of Go in P via SQ are pruned by

p-EVRL, then all infinite p-RSLD derivations of Go in P via SQ are pruned by

p-EVRL.

Proof

Let D be an infinite p-RSLD derivation of Go in P via SQ. Let (Go
SQ,X−→>> Q)

be any finite prefix of D. By Lemma 6.1, a p-SLD derivation D′ = (Go
SQ,Z−→ R)

exists with #Q � #R. On the other hand, by Lemma 6.2 a bound l exists such

that #Q � #R � l. However, Q is the generic reduced resolvent in D, so that the

number of atoms in all reduced resolvents of D is bounded by l. As a consequence,

the number of atoms in all reduced resultants of D is also limited. Since the

program P has finite many predicate symbols and constants and no function symbol

is allowed, the relationship ∼= between reduced resultants of D has only finitely

many equivalence classes. Then, for some 0 � i < k in D, we have that the kth

reduced resultant is related by ∼= to the ith one. This implies that D is pruned by

p-EVRL. q

7 Conclusions

In the paper, the problem of possible undesirable effects of redundancy elimination

from resolvents is addressed. In particular we have shown that program termination

and loop check completeness can be lost. Conditions are characterised which ensure

the redundancy elimination tolerance, in the sense that program termination and

completeness of equality loop check are preserved when redundancy is eliminated.

However, difficulties in analysing interdependence of redundancy elimination effects

from the used selection rule have arisen, and the necessity of a framework to

formalise suitable features of selection rules has been highlighted. To this aim, a

highly expressive execution model based on priority mechanism for atom selection

is developed in the paper. The distinctive aspect is that primary importance is given

to the event of arrival of new atoms from the body of the applied clause at rewriting

time, when new atoms can be freely positioned with respect to old ones in the

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

582 F. Ferrucci, M. I. Sessa and G. Pacini

resolvent. Then, at any derivation step, the atom with optimum priority is simply

selected.

The results presented in the paper show that the new computational model is

able to give remarkable insights into general properties of selection rules. As a

matter of fact, the priority model allows us to formalise the delicate concepts on

which the axiomatic definition of specialisation independent scheduling rules is

based. As a quite unexpected result, the specialisation independence turns out to be

equivalent to stack-queue scheduling technique, which has a very simple operational

characterisation. In other words, the priority mechanism is necessary to formalise

the real semantic features of specialisation independent scheduling rules. On the

contrary, the full generality of the same mechanism can be abandoned if only

operational aspects of specialisation independent rules are of interest, in the sense

that all we need is a ‘watershed’ between the stacked and the queued atoms.

It is widely acknowledged that the study of selection rules is a difficult subject

which deserves attention. We are confident that the computational model proposed

in the paper can be usefully exploited in future work to get further insights into

topics which are related to selection rule theory and application, such as loop check,

termination and optimisation of derivation processes.

A Appendix

This Appendix contains the formal proofs of Properties 3.3 and 4.1. The very simple

Property A1 is considered before proving Property 3.3.

Property A.1

Let S be a complete set of derivation steps. Given a p-goal G and a clause c, the

following implication holds:

∃Ds derivation step of the type (G
cξ−→ •), (1)

=⇒ ∃Ds′ of the type (G
cξ−→ •), with Ds′ ∈ S .

Proof

Let G = a|K and c = (ht ←− B). By (1) and the completeness of S (part i), a

derivation step exists of the form:

(a|K c−→ (K + Bξ′θ)µ′) ∈ S (2)

By definition, the derivation step in (1) has the form:

a|K c−→ (K + Bξτ)µ.

Then, it is evident that a derivation also exists like:

Ds′ = (a|K c−→ (K + Bξθ)µ).

By construction, derivation steps (2) and Ds′ are congruent lowerings of each other.

Then, by completeness of S (part ii), derivation step Ds′ belongs to S . q

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 583

Property A.2 (Property 3.3)

Let S be a complete set of derivation steps. Given two p-goals aγτ|G and a|F , let us

fix arbitrarily a finite set V of variables. The following implication holds:

∃Ds derivation step of the form aγτ|G c−→ • (1)

=⇒ ∃Ds′ of the form a|F c−→ •, with Ds′ ∈ S and nvar(Ds′) ∩ V = ?.

Proof

Let c = (ht ←− B). On the basis of (1), by definition of derivation step, a

standardisation apart renaming ξ′ for c and an mgu β exist, with aγβ = (ht)ξ′β.

Then, let us consider a renaming ξ of cξ′, such that the following assertions hold

for the range of ξ:

var(a|F) ∩ var(cξ′ξ) = ?, (2a)

domain(γ) ∩ var((ht)ξ′ξ) = ?, (2b)

domain(ξ−1) ∩ var(aγ) = ? (2c)

var(cξ′ξ) ∩ V = ?. (2d)

By facts (2b) and (2c), we have that:

aγξ−1β =(2c) aγβ = (ht)ξ′β = (ht)ξ′ξξ−1β =(2b) (ht)ξ′ξγξ−1β.

In other words, a and (ht)ξ′ξ unify through the unifier γξ−1β. On the other hand,

the fact (2a) says that ξ′ξ is a standardisation apart renaming for c with respect to

a|F . Then, a derivation step exists of the form a|F cξ′ξ−→ •. By hypothesis the set S is

complete, so that by Property A1 we have also a derivation step such that:

Ds′ = (a|F cξ′ξ−→ •) ∈ S.
Since it is nvar(Ds′) = var(cξ′ξ), by (2d) we have that nvar(Ds′) ∩ V = ?. q

Property A.3 (Property 4.1)

Let c = (ht ←− B) be a clause. Let us consider two derivation steps Ds1 and Ds2
such that the Ds2 is a lowering of Ds1 by X. The following implication holds:

Ds1 = (a|K c−→ (K + Bξ′θ′)µ′), (1)

Ds2 = (aτσ|(Kτσ +X)
c−→ (Kτσ + Bξ′′θ′′ +X)µ′′) (2)

=⇒ ∃δ such that Kτµ′′ = Kµ′δ, Bξ′′µ′′ = Bξ′µ′δ,
where δ is a renaming, if τ is a renaming.

Proof

By definition of derivation step, we have:

var(a|K) ∩ var((ht←− B)ξ′) = ?, (3)

var((a|K)τ) ∩ var((ht←− B)ξ′′) = ?, (4)

µ′ = mgu(a, (ht)ξ′), µ′′ = mgu(aτ, (ht)ξ′′). (5)

Let π = τ/var(a|K)[3] and φ = ((ξ′)−1ξ′′)/var((ht←− B)ξ′). By (3) it is:

domain(π) ∩ domain(φ) = ?, (6a)

(ht←− B)ξ′π = (ht←− B)ξ′ and (a|K)φ = (a|K). (6b)

3 The notation τ/var(a|K) represents τ restricted to the variables of a|K .

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

584 F. Ferrucci, M. I. Sessa and G. Pacini

As a consequence of (6a), the union (π ∪ φ) is a well defined substitution. Then, we

may write that:

a(π ∪ φ)µ′′ =(6b) aπµ′′ = aτµ′′ =(5) (ht)ξ′′µ′′ = (ht)ξ′(ξ′)−1ξ′′µ′′

= (ht)ξ′φµ′′ =(6b) (ht)ξ′(π ∪ φ)µ′′,
so that (π ∪ φ)µ′′ is an unifier of a and (ht)ξ′. Since µ′ is an mgu of a and (ht)ξ′, a

substitution δ exists with:

(π ∪ φ)µ′′ = µ′δ. (7)

Then, we have:

Kτµ′′ = Kπµ′′ =(6b) K(π ∪ φ)µ′′ =(7) Kµ′δ, (8a)

Bξ′′µ′′ = Bξ′(ξ′)−1ξ′′µ′′ = Bξ′φµ′′ =(6b) Bξ′(π ∪ φ)µ′′ =(7) Bξ′µ′δ. (8b)

Now let us suppose that τ is a renaming. In this case, facts (3) and (4) become

symmetric at all. As a consequence, by symmetry with respect to (8a) and (8b), a

substitution γ exists such that Kµ′ = Kτµ′′γ and Bξ′µ′ = Bξ′′µ′′γ. Then we have:

(Kµ′ + Bξ′µ′)δγ = (Kτµ′′ + Bξ′′µ′′)γ = Kµ′ + Bξ′µ′.
It is evident that δ is a renaming for Kµ′ + Bξ′µ′, then the thesis is verified. q

B Appendix

In this Appendix we provide a formal proof of the duplication theorem (Theorem

5.3). Such a proof exploits two lemmas which are given below. Lemma B1 establishes

a condition which allows us to repeat derivations via a specialisation independent

scheduling rule, when we pass from a goal G to a suitable kind of instantiations

of G. Lemma B1 is a correspondent, for p-SLD derivations, of part (ii) of Strong

Lifting Lemma (Gabrielli, Levi and Meo, 1996). Indeed, both part (ii) of the Strong

Lifting Lemma and Lemma B1 can be seen as results about sufficient conditions for

derivation lowering from a goal G to instantiations of G itself. Here a direct proof

of Lemma B1 is given which takes into account technical aspects concerning our

priority value mechanism. Lemma B1 does not relate resolvents, because it is not

important for the purposes of this Appendix.

Lemma B.1

Let S be a specialisation independent scheduling rule, G a p-goal and φ a substitu-

tion. The following implication holds:

G
S,X,θ−→ • =⇒ Gθφ

S,X−→ •. (1)

Proof

The proof is by induction on the length of X. If #X = 0, the thesis is trivially true.

For #X > 0, let G = a|F , X = c|H with c = (ht ←− B), and rewrite derivation (1)

as follows:

a|F S,cξ,γ−→ (Q = (F + Bξπ)γ)
S,H,µ−→ •, where γµ = θ. (2)

Then, let us consider the substitution φg = φσg, where σg is such that (a|F)θφg =

Gθφg is ground. Since γ is an mgu of a and (ht)ξ, we have aγ = (ht)ξγ, which means

aθφg = aγµφg = (ht)ξγµφg = (ht)ξθφg. But aθφg is ground, so that we obtain

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 585

the equality (aθφg)θφg = aθφg = ((ht)ξ)θφg . In other words, aθφg and (ht)ξ unify

through the unifier θφg . Moreover, the renamed clause cξ is obviously standardised

apart with respect to the ground p-goal (a|F)θφg , so that a derivation step like

(a|F)θφg
cξ−→ • exists. Thus, by completeness of S and Property A1, a derivation

step also exists of the form:

(Gθφg = (a|F)θφg)
S,cξ,η−→ (R = (Fθφg + Bξπ′)η). (3)

Now, the substitution η is an mgu of aθφg and (ht)ξ, so that a substitution π exists

with:

θφg = ηπ. (4)

On the other hand, since S is specialisation independent, step (3) is a congruent

lowering of the first step of (2) by ?, i.e.

∃ρ such that Fρ = F, Bπρ = Bπ′, (5)

which implies:

Qµφg = (F + Bξπ)γµφgρρ
−1 = (Fρ+ Bξπρ)θφgρ

−1 =(5) (F + Bξπ′)θφgρ−1.

But Fθφg is ground, so that (Fθφg)θφg = Fθφg . As a consequence:

Qµφg = (Fθφg + Bξπ′)θφgρ−1 =(4) (Fθφg + Bξπ′)ηπρ−1 = Rπρ−1.

By inductive hypothesis applied to the tail of (2), we have that (Qµφg = Rπρ−1)
S,H−→ •, which by Lifting Lemma 4.2 implies that R

S,H−→ •. Now, by Property 4.3, the

last obtained derivation can be combined with (3) yielding:

(Gθφg = Gθφσg)
S,X−→ •.

By Lifting Lemma 4.2, we conclude (Gθφ
S,X−→ •), so that the inductive step is

completed. q

The following Lemma B2 is a special form of determinism lemma which holds

for preq type stack-queue derivations. Roughly speaking, the lemma states that an

A-preq type derivation, starting from a p-goal of the form A|X, can be replicated

from a p-goal like Aλλ|Y , where λ is a renaming. Note that no hypothesis is made on

X and Y which can be completely unrelated. The intuitive explication is that only

atoms deriving from A are rewritten so that neither X nor Y have any active role

in the derivations. The formal statement and the proof of Lemma B2 are preceded

by the quite simple Property B1.

Property B.1

Let SQ be a stack-queue scheduling rule. The following implication holds:

A|X SQ,D−→ Q, of A-preq type (1)

Aγλ|Y SQ,D−→ R, of (Aγλ)-preq type, where γ is a renaming (2)

=⇒ ∃δ, δ such that R/(Aγλ) = (Q/A)δδ, where δ is a renaming.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

586 F. Ferrucci, M. I. Sessa and G. Pacini

Proof

By hypothesis, derivations (1) and (2) are of A-preq and (Aγλ)-preq type respectively,

so that D/A = D/(Aγλ) = D. Then, by lifting Lemma 4.2, a derivation exists like:

A
S,D−→ T . (3)

By lowering Lemma 4.1, applied to (3) and (1), a renaming α and a shifting α exist

with Q/A = Tαα. By lowering Lemma 4.1 applied to (3) and (2), a renaming β and

a shifting β exist with R/(Aγλ) = Tββ. Finally, we derive that:

R/(Aγλ) = Tααα−1α−1ββ = (Q/A)α−1α−1ββ. q

Lemma B.2 (preq type determinism)

Let SQ be a stack-queue scheduling rule and V any finite set of variables. Let A|X
and Aλλ|Y two p-goals, where λ is a renaming. The following implication holds:

A|X SQ,K,ψ−→ As|Xψ|Aq , of A-preq type, (1)

=⇒ ∃δ, δ and D = (Aλλ|Y SQ,K,θ−→ Asδδ|Y θ|Aqδδ), of (Aλλ)-preq type,

where δ is a renaming and nvar(D) ∩ V = ?.

Proof

Let A = a|F . We show Lemma B2 by induction on the length of the template K .

If #K = 0, the assert is evident. If #K > 0, let K = c|H with c = (ht ←− Ms|Mq).

Derivation (1) can be rewritten as follows:

a|F |X SQ,cξ,µ−→ (Q = as|Fµ|Xµ|aq) SQ,H,σ−→ As|Xψ|Aq (1a)

with as = Msξαµ and As = (as|Fµ)s. (1b)

Then, by Property 3.3 with reference to the first step of (1a), a derivation step Ds

exists such that:

Ds = ((a|F)λλ|Y SQ,cτ,η−→ R), with nvar(Ds) ∩ V = ?. (2)

Since the selection rule SQ is stack queue, it must be:

R = Msτγη|Fλλη|Y η|Mqτγη.

By Property B1 applied to derivation step (2) and the first step of (1a), a renaming

β and a shifting β exist with:

Msτγη|Fλλη|Mqτγη = R/2/(Aλλ) = (Q/1a/A)ββ = (as|Fµ|aq)ββ.
Now, by (1b) it is #as = #Msτγη, so that the equality Msτγη|Fλλη = (as|Fµ)ββ

holds, by Property (3.1-i). Thus, the inductive hypothesis can be applied to the tail of

(1a). As a consequence, a p-SLD derivation D′ exists, which is of (Msτγη|Fλλη)-preq

type and has the following form:

R
SQ,H,π−→ ((as|Fµ)sδ′δ′|Y ηπ|Z =(1b) Asδ′δ′|Y ηπ|Z), (3)

with nvar(D′) ∩ (var((a|F)λλ|Y) ∪ nvar(Ds) ∪ V) = ?. (3a)

On the basis of (3a) above, derivation step (2) and derivation (3) can be combined

to yield the derivation D:

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 587

D = (Aλλ|Y SQ,K−→ Asδ′δ′|Y ηπ|Z), (4)

where D is of (Aλλ)-preq type. The thesis is now proven. Indeed, by Property

B1 applied to derivations (1) and (4), a renaming δ and a shifting δ exist with

Asδ′δ′|Z = (As|Aq)δδ, so that by Property (3.1-i) we have Asδ′δ′ = Asδδ and

Z = Aqδδ. The fact that nvar(D) ∩ V = ? follows from (2) and (3a). q

Theorem B.1 (Theorem 5.3 – duplication theorem)

Let SQ be a stack-queue scheduling rule. Given two p-goals of the form A|B|C|D
and A|B|C|Bπ|D, the following implication holds:

(A|B|C|D SQ,X.P−→ Q) (1)

=⇒ ∃Y such that (A|B|C|Bπ|D SQ,Y .P−→ R)

with X ⊆L Y and #Q � #R.

Proof

Let ∆(SQ, n) denote the subset of ∆(SQ), such that for any derivation Dr in ∆(SQ, n)

it is #Dr � n, where #Dr denotes the length of Dr. We show the thesis by induction

on n, i.e. we show that the thesis holds when derivation (1) belongs to ∆(SQ, n), for

any n � 0. The fact is obvious for ∆(SQ, 0). In order to prove the inductive step

from ∆(SQ, n− 1) to ∆(SQ, n), for n > 0, let us consider a derivation like:

(A|B|C|D X.P ,θ−→ Q) ∈ ∆(SQ, n), (1a)

and show that (A|B|C|Bπ|D SQ,Y .P−→ R) exists with X ⊆L Y and #Q � #R. Actually,

the proof of the inductive step will be organised in two phases:

• first, the inductive step is shown in the case that the initial p-goal A|B|C|D is

ground,

• then, the validity of the inductive step is extended to generic initial p-goals.

Let us recall that the sketch of Section 5.3 was given in the simplifying hypothesis

that: every clause body introduces no new variable and initial p-goals are ground.

In this sense, we may say that the first phase removes the first restriction, while the

second one is retained. In the second phase, also the restriction on the groundness

of initial goals is overcome.

First phase (the initial p-goal A|B|C|D is ground).

With reference to (1a), the following three possible situations must be taken into

account. Then, we start with Case 3, which is the most significant one.

1. derivation (1a) is of (A|B|C)-preq type,

2. derivation (1a) is of (A|B|C|D)-preq type, and not of (A|B|C)-preq type,

3. derivation (1a) is not of (A|B|C|D)-preq type.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

588 F. Ferrucci, M. I. Sessa and G. Pacini

Case 3.

Derivation (1a) has the following form:

A|B|C|D H−→ B|C|D|Aq K−→ C|D|Aq|Bq M−→
D|Aq|Bq|Cq N−→ Aq|Bq|Cq|Dq T−→ Q, (2)

where H |K|M|N|T = X.

In fact, since A|B|C|D is ground, in each of the four initial segments of (2) only

standardisation apart variables, introduced in the same segment, can be instantiated.

In particular, var(Aq) are not instantiated in the second segment, var(Aq|Bq) are not

in the third segment, and var(Aq|Bq|Cq) are not in the fourth one. It is evident,

as a consequence, that the p-goal Aq|Bq|Cq|Dq consists of four subgoals without

common variables. Now, since also Bπ is ground, a derivation can be constructed

through five successive applications of Lemma B2, as depicted below:

A|B|C|Bπ|D SQ,H−→ B|C|Bπ|D|Aqαα SQ,K−→
C|Bπ|D|Aqαα|Bqββ SQ,M−→ Bπ|D|Aqαα|Bqββ|Cqγγ

SQ,K−→ (3)

D|Aqαα|Bqββ|Cqγγ|Bqφφ SQ,N−→ (Z = Aqαα|Bqββ|Cqγγ|Bqφφ|Dqδδ)

where α, β, γ, φ and δ are renamings.

At each application of Lemma B2, a segment of derivation (3) is obtained on the

basis of a corresponding segment of derivation (2). Moreover, Lemma B2 assures

that each new segment can be freely standardised apart, so that each segment can

be readily added to the sequence of its predecessors in (3). Note that the second

segment of (2) is considered twice, in order to generate both the second and the

fourth segment of (3). In analogy with derivation (2), the final p-goal Z of derivation

(3) consists of five subgoals without common variables. As a consequence, the five

renamings α−1, β−1, γ−1, φ−1 and δ−1 have disjoint domains, so that they can be

joined in order to form a unique substitution

ξ = (α−1 ∪ β−1 ∪ γ−1 ∪ φ−1 ∪ δ−1). (4a)

Then, let us consider the p-goal Aq|Bq|Cq|Bqπ′|Dq , where π′ is a suitable shifting.

By (4a) and Property 3.2, we have that:

Aq|Bq|Cq|Bqπ′|Dq =(Ax−iii) (Aqα|Bqβ|Cqγ|Bφ|Dqδ)σ =(4a)

(Aqαα|Bqββ|Cqγγ|Bqφφ|Dqδδ)ξσ = Zξσ. (4b)

By construction of (2) the derivation (Aq|Bq|Cq|Dq T−→ Q) belongs to ∆(SQ,m), with

m < n. By inductive hypothesis, a derivation exists of the form:

(Zξσ = Aq|Bq|Cq|Bqπ′|Dq) SQ,Y ′ .P−→ R′, (5)

with T ⊆L Y ′ and #Q � #R′. (5a)

By (5) and Lifting Lemma 4.2 a derivation exists like:

Z
SQ,Y ′−→ •, (6)

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules 589

By Property 4.3, derivations (3) and (6) can be combined to yield a derivation of

the form:

A|B|C|Bπ|D SQ,(H |K|M|K|N).P−→ Z
SQ,Y ′ .P−→ R, (7)

where, by lowering Lemma 4.1 applied to (5) and the tail of (7), it is #R = #R′.
Finally:

X = H |K|M|N|T ⊆(5a)
L (H |K|M|K|N|Y ′) and #Q �(5a) #R′ = #R.

Case 2.

Derivation (1a) has the following form:

A|B|C|D H |K|M|N−→ Ds|Aq|Bq|Cq|Dq , with H |K|M|N = X.

Analogously to preceding case (3), through Lemma B2 a derivation can be con-

structed like:

A|B|C|Bπ|D SQ,(H |K|M|K|N).P−→ Dsδδ|Aqαα|Bqββ|Cqγγ|Bqφφ|Dqδδ.

Case 1.

Derivation (1a) has the form:

A|B|C|D X−→ (A|B|C)s|D|(A|B|C)q.

Through Lemma B2, a derivation can be constructed like:

(A|B|C)|Bπ|D SQ,X−→ (A|B|C)sγγ|Bπ|D|(A|B|C)qγγ.

Second phase (the initial p-goal A|B|C|D is generic).

In the preceding first phase of this proof, the inductive step is verified in the

hypothesis that the initial p-goal A|B|C|D is ground. Now consider a generic p-goal

of the form A|B|C|D. With reference to (1a), let φg be a grounding substitution for

(A|B|C|D)θ. By Lemma B1, a derivation exists such that:

((A|B|C|D)θφg
X−→ Q′) ∈ ∆(SQ, n), (8)

where, by lowering Lemma 4.1 applied to (1a) and (8), we have:

#Q′ = #Q. (8a)

Since the inductive hypothesis is already proven for ground initial goals, by (8) a

derivation exists:

(A|B|C|Bπ|D)θφg
SQ,Y .P−→ R′, (9)

with X ⊆L Y and #Q′ � #R′. (9a)

Then, by lifting Lemma 4.2 a derivation exists:

A|B|C|Bπ|D SQ,Y .P−→ R, (10)

where, by lowering Lemma 4.1 applied to (9) and (10), we have

X ⊆(9a)
L Y and #Q =(8a) #Q′ �(9a) #R′ =(Lem.4.1) #R.

As a consequence, the induction step is completely verified. q

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

590 F. Ferrucci, M. I. Sessa and G. Pacini

References

Apt, K. R. (1990) Logic Programming. In: van Leeuwen, J. (ed.), Handbook of Theoretical

Computer Science, Vol. B, pp. 493–574. Elsevier.

Apt, K. R. (1998) From Logic Programming to Prolog. Prentice-Hall.

Apt, K. R., Bol, R. N. and Klop, J. W. (1989) On the Safe Termination of Prolog Programs. In:

G. Levi and M. Martelli (eds.), Proc. Sixth Int. Conf. on Logic Programming, pp. 353–368.

MIT Press.

Apt, K. R. and Pedreschi, D. (1993) Reasoning about Termination of Pure Prolog Programs

Information and Computation, 106, 109–157.

Bol, R. N. (1992) Generalising Completeness Results for Loop Checks in Logic Programming

Theoretical Computer Science, 104, 3–28.

Bol, R. N, Apt, K. R. and Klop, J. W. (1991) An Analysis of Loop Checking Mechanisms for

Logic Programs Theoretical Computer Science, 86, 35–79 .

Bol, R. N. and Degersted, L. (1998) Tabulated Resolution for the well-founded Semantics

Journal of Logic Programming, 34, 67–109 .

De Schreye, D. and S. Decorte, S. (1994) Termination of Logic Programs: the never-ending

story Journal of Logic Programming, 19/20, 199–260.

Dietrich, S. W. (1987) Extension Tables: Memo Relations in Logic Programming. Proc. of

Symp. on Logic Programming, pp. 264–273. IEEE Press.

Ferrucci, F., Pacini, G. and Sessa, M. I. (1995) Redundancy Elimination and Loop Checks for

Logic Programs Information and Computation, 119, 137–153.

Gabbrielli, M., Levi, G. and Meo, M. C. (1996) Resultants Semantics for Prolog Journal of

Logic Computation, 6, 491–521.

Joyner, W. H. Jr. (1976) Resolution Strategies as Decision Procedures Journal of the Association

for Computing Machinery, 23, 398–417.

Knuth, D. E. (1997) The Art of Computer Programming Vol. 1. Addison-Wesley.

Kowalski, R. (1979) Algorithm=Logic+Control Comm. ACM, 22, 424–435.

Lloyd, J. W. (1987) Foundations of Logic Programming. Springer Verlag.

Pacini, G. & Sessa, M. I. (2000) Loop Checking in SLD-derivations by Well-Quasi-Ordering

of Goals, Theoretical Computer Science, 238, 221-246.

Ramakrishnan, I. V., Rao, P., Sagonas, K., Swift T. and Warren, D. S. (1999) Efficient Access

Mechanisms for Tabled Logic Programs, Journal of Logic Programming, 38, 31–54.

Smith, D. E., Genesereth, M. R. and Ginsberg, M. L. (1986) Controlling Recursive Inference

Artificial Intelligence, 30, 343–389.

Tamaki, T. and T. Sato (1986) OLD Resolution with Tabulation. In: Shapiro, E. (ed.), Proc.

Third Int. Conf. on Logic Programming: Lecture Notes in Computer Science 225, pp. 84–98.

Springer-Verlag.

Van Gelder, A. (1987) Efficient Loop Detection in PROLOG using the Tortoise-and-Hare

Technique Journal of Logic Programming, 4, 23–31.

Vieille, L. (1989) Recursive Query Processing: The Power of Logic, Theoretical Computer

Science, 69, 1–53.

https://doi.org/10.1017/S1471068401001235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001235

