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Abstract

In Ferrucci, Pacini and Sessa (1995) an extended form of resolution, called Reduced SLD
resolution (RSLD), is introduced. In essence, an RSLD derivation is an SLD derivation
such that redundancy elimination from resolvents is performed after each rewriting step.
It is intuitive that redundancy elimination may have positive effects on derivation process.
However, undesiderable effects are also possible. In particular, as shown in this paper, program
termination as well as completeness of loop checking mechanisms via a given selection rule
may be lost. The study of such effects has led us to an analysis of selection rule basic
concepts, so that we have found convenient to move the attention from rules of atom
selection to rules of atom scheduling. A priority mechanism for atom scheduling is built,
where a priority is assigned to each atom in a resolvent, and primary importance is given
to the event of arrival of new atoms from the body of the applied clause at rewriting time.
This new computational model proves able to address the study of redundancy elimination
effects, giving at the same time interesting insights into general properties of selection rules.
As a matter of fact, a class of scheduling rules, namely the specialisation independent ones,
is defined in the paper by using not trivial semantic arguments. As a quite surprising result,
specialisation independent scheduling rules turn out to coincide with a class of rules which
have an immediate structural characterisation (named stack-queue rules). Then we prove
that such scheduling rules are tolerant to redundancy elimination, in the sense that neither
program termination nor completeness of equality loop check is lost passing from SLD to
RSLD.

KEYWORDS: redundancy elimination, selection rule, scheduling rule, termination, loop check,
Stack-Queue scheduling rule

1 Introduction

Several different approaches have been considered so far to enrich the SLD res-
olution in order to improve the performance of top-down interpreters. The usual
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objective is to reduce the search space without loss of results of the refutation
process, possibly obtaining a finite search space. Among the proposed methods, the
loop check mechanisms (Apt, Bol and Klop, 1989; Bol, Apt and Klop, 1991; Smith,
Genesereth and Ginsberg, 1986; Van Gelder, 1987) and the tabulation technique
(Bol and Degersted, 1998; Dietrich, 1987; Ramakrishnan et al., 1999; Tamaki and
Sato, 1986; Vieille, 1989) aim to eliminate redundant computations and to enforce
the termination of a query over a logic program.

Loop check mechanisms provide the interpreter with the capability of pruning
certain nodes of the SLD tree. The pruning is based on excluding some kinds of
structural repetitions for the goals in a derivation path. When suitable structure
repetitions are found, further rewritings of the current node are ignored, because
any solution possibly existing in the cut sub-tree is also present in other parts of
the SLD tree. Different forms of loop checks are proposed in the literature. In
particular, Bol et al. have defined several simple loop checks, i.e. loop checks whose
pruning mechanisms do not depend on the considered logic program, and have
analysed them against the basic property of soundness and completeness (Bol, Apt
and Klop, 1991). The completeness property concerns with the capability of pruning
every infinite derivation. In contrast, soundness concerns with the preservation of
the computed answer substitutions.

The main idea of tabulation originates from functional programming and consists
in building a table during the search of answers in an SLD tree. The table contains
entries for atoms with the corresponding answers so far computed. These answers
are to be used later, when instances of such atoms should be recomputed. Such
instantiated occurrences are named non-admissible atoms (or consumer). In essence,
non-admissible atoms are not resolved against clauses but against answers computed
in other parts of the SLD tree. The re-using approach exploited by the tabulation
technique was already mentioned by Kowalski (1979), and has been proposed
several times under different names, such as memo-isation (Dietrich, 1987) and the
AL-technique (Vieille, 1989).

The conceptual differences between loop checks and tabulation are reflected in
several interesting aspects. In particular, tabulation requires a local selection rule
to guarantee the answer preservation, while no missing of solution is possible with
(sound) loop checks independently of the used selection rule. On the other hand,
the tabulation technique ensures termination for any function-free program and for
any program with a finite Herbrand model, while the completeness of loop checks
takes place for specific classes of programs possibly with respect to given selection
rules (Bol, 1992; Bol, Apt and Klop, 1991; Pacini and Sessa, 2000). Finally, loop
checks exploit no auxiliary data structure and the pruning decision usually depends
on the current derivation only, while tabulation needs a table to store the answers
of atoms solved in the previously traversed portion of the tree.

Proposals can be also found in literature for a synergistic use of different techniques
aiming to optimise the query evaluation procedure. In particular, in Vieille (1989),
a loop checking mechanism is combined with the tabulation technique in order to
eliminate some redundant parts of the search space. In Ferrucci, Pacini and Sessa
(1995), the simple loop check mechanisms proposed in Bol, Apt and Klop (1991)
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are combined with another form of redundancy elimination which is named (goal)
reduction. Goal reduction is conceptually analogous to the condensing technique
proposed by Joyner for the proof of the unsatisfiability of first-order formulas
(Joyner, 1976). In both cases, redundant atoms are eliminated from resolvents, in
order to avoid useless computations and to contain the size of the resolvents at
the same time. The main idea of reduction originates from the observation that if
there exists a refutation for an atom, then a refutation exists also for any more
general version of that atom. In this sense, such more general versions can be seen
as potentially redundant and we can imagine to remove them from the resolvent,
though suitable cares are to be taken as discussed in Ferrucci, Pacini and Sessa
(1995). By goal reduction, a generalised form of SLD resolution (named RSLD) can
be obtained, where a reduction of the resolvent is performed after each rewriting
step.

A goal reduction technique has a modus operandi which shows evident affinity
with the one of loop checking mechanisms. Indeed, with reduction redundant atoms
are definitively ignored, as it is done with loop checks for pruned nodes. This
is not the case with tabulation, in the sense that non-admissible atoms, which
are indeed solved against previously tabulated answers, are not redundant. Such
different philosophy between tabulation and RSLD is highlighted also by the fact
that the reduction technique eliminates atoms in their more general version, while
non-admissible atoms are instances of previously solved goals. It is evident that
RSLD does not need any auxiliary data structure because it considers only the
current goal (not even the current derivation path). The soundness of RSLD is
shown in Ferrucci, Pacini and Sessa (1995) independently of the selection rule used.
This means that RSLD does not require particular selection rules in order to ensure
answer preservation.

It is intuitive that redundancy elimination may have positive effects on derivation
process. In Ferrucci, Pacini and Sessa (1995), advantageous combinations are shown
with respect to loop checking mechanisms. In particular, it is proven that a well
known simple loop check mechanism, namely Equality Variant check of Resultant
as Lists (EVR), becomes complete for several classes of programs, provided that
RSLD is exploited instead of usual SLD. The specific reason is that the length of
resolvents can be maintained within the limit of a finite value through systematic
elimination of redundant atoms. In essence, there is clear evidence that the strength
of equality loop checks can augment if RSLD resolution is used.

However, even though not completely intuitive, redundancy elimination can pro-
duce undesirable effects, too. In fact, as exemplified later, problems can arise with
program termination, as well as with the completeness of loop checking mechanisms.
The rationale behind this is that redundancy elimination can affect the actual se-
quence of atom rewriting with respect to given selection rules. This can (infinitely)
delay the selection of failing atoms, so that termination is missed. On the other hand,
the structure of the obtained resolvents can be altered by redundancy elimination,
so that loop checks may become unable to detect infinite derivations.

As shown in this paper, missing termination and loop detection depends critically
on the used selection rule. We say in the sequel that a selection rule is redundancy
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elimination tolerant if no loss in termination and/or loop detection comes out,
passing from SLD to RSLD.

In Section 2, we prove that termination and EV R;, completeness are preserved if
they hold in SLD with respect to all possible selection rules. Then, a more accurate
analysis of redundancy elimination tolerance is performed. To this aim, a careful
reconsideration of selection rule basic concepts will be required, so that we will be led
to a reformulation of selection rule ideas in terms of their operational counterparts,
namely scheduling mechanisms, so that we will prefer to talk of tolerant scheduling
rules. As a matter of fact, in Section 3 we provide a highly expressive execution
model based on priority mechanism for atom selection. A priority is assigned to
each atom in a resolvent, and primary importance is given to the event of arrival
of new atoms from the body of the applied clause at rewriting time. Indeed, new
atoms can be freely positioned with respect to the old ones in the resolvent, through
the assignment of priority values according to a given scheduling rule. Then, at any
derivation step, the atom with optimum priority is simply selected.

This new computational model proves able to address the study of redundancy
elimination effects, giving at the same time interesting insights into general properties
of selection rules. As a matter of fact, in Section 4 a class of scheduling rules, namely
the specialisation independent ones, is defined by using not trivial semantic arguments.
Several properties of specialisation independent scheduling rules are also proven.
As a quite surprising result, in Section 5 we show that specialisation independent
scheduling rules coincide with stack-queue rules, which have an immediate structural
characterisation. Indeed, the stack-queue scheduling technique is simply defined so
that, in order to obtain the new resolvent at rewriting time, part of new atoms are
stacked at the beginning of the old resolvent while the remaining ones are queued.
Then in Section 6 we prove that such scheduling rules are tolerant to redundancy
elimination, in the sense that neither program termination nor completeness of
equality loop check is lost passing from SLD to RSLD. The proof is largely based
on properties which we have established for specialisation independent (and stack-
queue) scheduling rules.

2 Goal reduction, program termination and EV R, completeness

Throughout the paper we assume familiarity with the basic concepts of Logic
Programming (Apt, 1990; Apt, 1998; Lloyd, 1987).

Here, only some notations are given about SLD derivation procedure, which can
be described as follows. Let G = ay, ay, ...a; be a goal, constituted by a conjunction
of k atoms, and ¢ = (ht «— B) a clause, where ht is an atom and B is a goal. The
goal G’ is a resolvent of G and ¢ by a renaming ¢ and a substitution 6, if an atom
a; exists, with 1 < i < k, such that G’ = (ay,...a;_1, B¢, a;i11,...a;)0, where 0 is an
idempotent and relevant mgu of (ht)¢ and a;. In the sequel, given an expression E,
the notation var(E) will indicate the set of variables in E. Moreover, we will denote

by (G *8 G') the fact that G’ is a resolvent of G and ¢ by ¢ and 6. Given an initial
goal G, and a logic program P, an SLD derivation of G, in P is a possibly infinite
sequence of the type:
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o€obo ¢i€jpb;
G(, — G1 Gj — Gj+1...

such that, for any j > 0, each clause c¢; belongs to P and each c;¢; is standardised
apart, i.e.

var(c;&;) N (var(G,) Uvar(c,&,) U ... Uvar(cj—i&j-1)) = 2.

A selection rule is a function which chooses the atom to be rewritten in the last
resolvent of any finite SLD derivation. Given a selection rule S, an SLD derivation
is via S if all the selections of atoms are performed in agreement with S. An SLD
refutation is a finite SLD derivation such that the last resolvent is empty.

Now we can introduce the definitions of goal reduction and RSLD derivation. The
reduction technique aims to eliminate redundant atoms from the resolvents in order
to contain their size. Analogous issue was already been faced for the proof of the
unsatisfiability of first-order formulas. Indeed Joyner (1976) noted that the increase
in size of resolvents is a factor which prevents resolution strategies being decision
procedures for solvable classes of first-order formulas (i.e. classes of formulas for
which the question of satisfiability or unsatisfiability can be effectively decided).
To limit the growth of the number of literals, Joyner introduced a technique for
simplifying resolvents, called condensing. The condensation of a clause is defined as
the smallest subset of the clauses which is also an instance of it. In other words,
the condensation of a clause can be obtained by applying a substitution o and
eliminating all the atom repetitions.

With reference to SLD derivations, the most evident form of redundancy corre-
sponds to multiple occurrences of the same atom in a resolvent. It is obvious that
this kind of atom repetition is essentially redundant. However, this is not the only
possible case of redundancy. Indeed, the reduction technique, which is introduced
in Ferrucci, Pacini and Sessa (1995) as a variant of Joyner’s condensing technique,
is able to perform quite general actions of redundancy elimination from resolvents
while preserving the soundness and the completeness of RSLD resolution. By con-
densation, Joyner obtains a complete and sound resolution procedures, which work
as decision procedures for several solvable classes of first order formulas (Joyner,
1976). By reduction, the well known sound EV Ry, loop check becomes complete for
several classes of logic programs (Ferrucci, Pacini and Sessa, 1995).

Intuitively, the basic idea of goal reduction technique can be explained as follows.
Suppose having to refute a resolvent which contains p(x) and p(a), where x is a
variable and a is a constant. Obviously, any refutation for p(a) implies a refutation
for the atom p(x), as p(x) is more general than p(a). In this sense, the atom p(x)
may appear as a redundant one. Actually, in order to ensure the soundness of
the derivation process, the elimination of redundant atoms (such as p(x) above)
is conditioned in two aspects which can be sketched through the following simple
examples:

(a) Consider a resolvent like p(x),q(x), p(a). In this case, the atom p(x) cannot be
eliminated, because the connection between the atoms p(x) and ¢(x), by the
variable x, is lost.

(b) Suppose that x is a variable in the initial goal of a derivation, and the actual
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resolvent is p(x), p(a). In this case p(x) cannot be dropped, because possible
instantiations of x in computed answers could be lost. So we would obtain
computed answers which are too general with respect the correct answers, thus
missing soundness.

Now we present a formal definition of goal reduction which takes into account the
observations (a) and (b) and follows the line of Definition 2.1 presented in Ferrucci,
Pacini and Sessa (1995). We will denote by <, the inclusion relation between goals,
and G — N will indicate the goal obtained from G by eliminating the atoms which
are present in N. In both cases the goals are regarded as lists.

Definition 2.1 (Reduced goal)
Let X be a set of variables, t a substitution and G a goal. A goal N is a reduced
goal of G by t up to X, denoted by G >>" N, if the following conditions hold:
(i) N=L G,
(i) Vb € (G—N), bt €N,
(iii)) Vx € (var(N) U X) it is xt = x.

In agreement with the above definition, a part (G — N) of atoms of G can be
eliminated if a substitution 7 exists such that bt € N, for any atom b € (G — N),
provided that t does not affect neither the variables in N nor those in X. The
imposition that ¢ does not affect the variables in N prevents the kind of difficulties
which are exemplified in (a).

Example 2.1

Let:
G = p(z,v),q(w), p(w,v), p(w, x), p(w, y), q(v), q(y),
X = {x,w}.

The following goal N is a reduced goal of G by © = {z/w,y/v} up to X:
N = q(w), p(w,v), p(w,x),q(v). O

Performing reductions in the resolvents of an SLD derivation corresponds to an
actual extension of the SLD resolution process. Then, a generalised version of SLD
resolution can be introduced, i.e. the Reduced SLD resolution (RSLD in the sequel),
where at any resolution step a reduction of the resolvent is allowed. The following
is the formal definition of RSLD derivations.

Definition 2.2 (Reduced SLD derivation)
Let P be a program and G, a goal. A Reduced SLD derivation of G, in P (RSLD
in the following) is a possibly infinite sequence of the form:

co&o.00 cn&n.O0n
Gy, >>% N, — Gy ... Gy >>% N —> Gy >>% Ny

where, for any j > 0,
(i) ¢j is a clause in P,
(i) var(c;é;) N (var(G,) Uvar(ceé,) U... Uvar(cj—1&j—1)) = &,
(i) G; >>% N; up to var(G,0,...0;-1).
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It is evident that an SLD derivation is a particular case of RSLD derivation
where G; = Nj, for any j. Each N; is called a reduced resolvent. Condition (ii)
above is the usual standardisation apart requirement. Condition (iii) prevents the
kind of difficulties which are exemplified in (b), guaranteeing the soundness of the
mechanism. The soundness and completeness of RSLD resolution are proven in
Theorems 2.1 and 2.2 of Ferrucci, Pacini and Sessa (1995).

2.1 Program termination

The completeness of RSLD resolution ensures that missing computed answers is
impossible when we pass from SLD to RSLD. This is not the case with termination,
as shown by the following Example 2.2. In the example a selection rule S and
a program P are given, such that any SLD derivation of P via S terminates
independently of the initial goal. However, we show that termination is lost, if
reduction of resolvents is performed.

Example 2.2

Let us consider a selection rule S such that, given a goal G, the first atom is chosen
for rewriting if the length of G is odd, and the last atom is chosen otherwise. Let us
consider the logic program P consisting of the following clause:

¢ = p(x,y) «— q,p(x,21), p(z1, 22), p(22, y).
It can be easily seen that all SLD derivations in P via S terminate, independently of
the initial goal. Indeed, suppose that the initial goal has an odd number of atoms.
It is evident that either the derivation via S fails immediately or the initial goal has
the form ‘p(..), Y, so that the first step of the derivation produces a resolvent of an
even length as follows:

p(-), Y — q,p(.),p(), p(-), Y.

Now, either the derivation fails immediately or Y = Z,p(..), so that a second
derivation step is performed:

4, p(), p(.), (-0 Z, p() = ¢, (), (), p(-)s Z @, P, L), L),

and the process fails anyway, since the last resolvent has an odd length. Then,
suppose on the contrary that the initial goal has an even number of atoms. Either
the derivation fails immediately or the initial goal has the form ‘T,p(..). In the
second case, the first derivation step gives place to a resolvent with an odd length, so
that the derivation fails. Now, let us verify that termination can be lost if reduction
of resolvents is performed. Indeed, let us consider the RSLD derivation of the goal
(¢, p(x,x)) in P via S given in Figure 1. It is evident that the number of atoms is even
in any reduced resolvent. Thus, the last atom is always selected and the derivation
is infinite. [J

As shown by the example in Figure 1, termination with respect to a given selection
rule can be missed, if we pass from SLD to RSLD resolution. On the contrary, we
show in this section (Theorem 2.1) that termination is preserved, when any SLD
derivation of G in P is finite independently of the used selection rule. Theorem 2.1
will be proven as an immediate consequence of the following Lemma 2.1
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Resolvents Reduced Resolvents
4, p(x, x)
>> ¢, p(x, x) BN
4,49, p(x, 21), p(z1, 22), (22, X)
>> q,p(x.21), plz1,22), pz2,X)  —>
4, p(x,21), p(21, 22), 4, P(22, 23), P(23, Z4), (24, X)

>> q, p(x,21), p(21, 22), P(22, 23), P(23, Z4), p(24, X) o

Fig. 1

Lemma 2.1

Let P be a program and G, a goal. For any possibly infinite RSLD derivation D of
G, in P, an SLD derivation D’ of G, in P exists, such that every reduced resolvent
of D is included in the corresponding resolvent of D’ up to renamings.

Proof
Consider a possibly infinite RSLD derivation D of G, in P
90,00

D = (G, >>% N, =5’ Gj...
o cnn.0n o
Gy >>% Ny — Gy >>4 Njpyq..) (1)

Intuitively, the SLD derivation D’ is obtained by choosing, step by step, the same
clause and the same atom as in D. This way, redundant atoms are not eliminated
from resolvents of D', but they have no real influence on the derivation process.
More formally, suppose that an SLD derivation of G, in P is already constructed
like

oo,

G, — Gj.. — G, (2)
such that, for any 0 < j < i, a renaming t; exists with N;7; =, G}. It is easy to
show that derivation (2) can be extended of one step in agreement with the lemma.
Let a be the atom which is rewritten in the step N; ) Gy of derivation (1). It is
evident that the clause ¢; is applicable to the atom at; € Nit; =1 G, so that we have
an SLD derivation step of the form:

, adhli

G, — Gi,. 3)
Now let F denote the sublist of atoms in G;,; which derives from N;z;. It is obvious
that the subgoal (G;— N;t;) has no active role in derivation step (3). So, we have that
F is a variant of Gj;i, i.e. a renaming 7,4 exists with F = G741, which means
that G141 <1 Gi,,. But, by definition of goal reduction we have Niy; S Giyy.
As a consequence

!
Niy1ti1 EL Giptipr S0 Gy O

Theorem 2.1

Let P be a program and G a goal. If every SLD derivation of G in P is finite
independently of the used selection rule, then every RSLD derivation of G in P is
finite too.
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Proof
Suppose that an infinite RSLD derivation of G in P exists. By Lemma 2.1, an
infinite SLD derivation of G in P also exists, which contradicts the hypothesis. []

2.2 EVRy loop check completeness

The termination issue of a query to a logic program has attracted much attention
over the past few years, both in the logic programming field, and in the deductive
database field (see De Shreye and Decorte (1994) for a survey).

A well known approach to the termination problem of a query in a logic program
consists in modifying the computation mechanism by adding a capability of pruning,
i.e. at some point the interpreter is forced to stop its search through a certain part of
the SLD tree (Apt, Bol and Klop, 1989; Bol, 1992; Bol, Apt and Klop, 1991; Pacini
and Sessa, 2000; Smith, Genesereth and Ginsberg, 1986; Van Gelder, 1987). These
mechanisms are called loop checks, as they are based on discovering some kinds of
repetitions in derivation paths. The purpose of a loop check is to reduce the search
space for top-down interpreters in order to prune infinite derivations, without loss
of results of the refutation process. Thus, two basic properties are considered for
loop checks. The completeness property of a loop check concerns the capability of
pruning every infinite derivation. In contrast, the soundness property has to do with
the preservation of computed answer substitutions.

Different forms of loop checking are considered in literature. A systematic analysis
of loop checking for SLD resolution is given in Bol, Apt and Klop (1991). Simple
loop checks have deserved special interest, because the decision of pruning does not
depend on the logic program we are confronted with. The more immediate form of
simple and sound loop check is the so called Equality Variant of Resultant check,
which requires the detection of equal (up to renaming) resultants in the derivation.
Such a loop check is formulated with respect to RSLD derivations in the following
Definition 2.3 which recalls the essence of the analogous Definition 3.19 in Ferrucci,
Pacini and Sessa (1995). The notation (F =, G) is used, which means that the goal
F is equal to G, where the goals are regarded as lists.

Definition 2.3 (Equality Variant Check for Resultants)
An RSLD derivation
¢o&o.00 Ch1En-1,0n1
G, >>% N, — G;..Gy—; >>%1 Nj_4 — Gy, >>% Nj...
is pruned by Equality Variant of Resultant as Lists loop check (EV Ry, in the follow-
ing), if for some i and j, with 0 <i < j, a renaming 7 exists such that:
(1) GOOO...OJ'_l = GOOO...Oi_lf,

(ll) Nj =L N,“L’.
Given an RSLD tree T, the application of EV Ry, yields a prefix Tp of T which is
obtained in this way. The descendants of a node are thrown away iff the derivation

associated with the path from the root to the node is pruned.
Any couple Rs;, = [Ny, G,0,...0;,_1] is a reduced resultant. Given two resultants
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Rs; = [N}, G,0,..0;_1] and Rs; = [N;, G,0,..0;_1], for which requirements (i) and
(ii) of Definition 2.3 hold, we will write Rs; =, Rs;. In other words, Definition 2.3
expresses that EV Ry, check is based on detecting that a resultant is obtained which
is related by = to a preceding one in the same derivation. It is worth noting that
the relationship =, is an equivalence relationship. It is evident that, if reduction of
resolvents is always ineffective (ie. G; = Nj, for any j), the usual EVR; loop check
for SLD derivations is found again. It is well known that EV Ry is a sound loop
check in the case of SLD resolution. The soundness of EV R, is extended to the
more general case of RSLD by Theorem 4.1 of Ferrucci, Pacini and Sessa (1995).

Let us observe that if we do not consider condition (i) in Definition 2.3 we obtain
the EV G, loop check which is based on detecting that a resolvent is obtained which
is a variant of a preceding one in the same derivation. It is worth noting that EV Gy,
is a weakly sound loop check, in sense that it preserves at least a successful, but it
does not ensure the preservation of the computed answer substitutions (Bol, Apt
and Klop, 1991).

The completeness of a loop check is usually referred to given selection rules and
classes of programs. A loop check is complete for a program P with respect to
a selection rule S if all infinite derivations of P via S are pruned. A loop check
is complete for a class C of programs, if it is complete for every program in C.
Several classes of logic programs are characterised in literature for which complete
loop checks can be found. Actually, most of them are classes of function free
programs, i.e. programs whose clauses contain no function symbol (Bol, 1992; Bol,
Apt and Klop, 1991; Ferrucci, Pacini and Sessa, 1995; Pacini and Sessa, 2000). In
the following part of this section, and later in Section 6, we consider the problem of
preserving the completeness of EV Ry, check, passing from SLD to RSLD resolution,
in the case of function free programs.

Let us first show how the completeness of equality loop checks, with respect to a
given selection rule, can be lost passing from SLD to RSLD. Indeed, it is sufficient
reconsider Example 2.2. In that case EV R}, loop check is obviously complete, since
no infinite SLD derivation exists. On the other hand, it is obvious that EV R;, loop
check cannot prune the infinite RSLD derivation developed in the same example,
because the length of resolvents increases at each derivation step. Actually, it is
immediate to verify that the infinite derivation in Example 2.2 cannot even be
pruned by using more complex and powerful checks (like SIRy,) which are based
on subsumption relationships between resultants (Bol, Apt and Klop, 1991).

Now we prove that EV Ry loop check completeness is preserved for function free
programs, in the case that EV R, is complete with respect to all selection rules.
Precisely, Theorem 2.2 states that, if EV Ry, prunes every infinite SLD derivation of
a goal G in a function free program P, then EV R, prunes also every infinite RSLD
derivation of G in P. In order to show this result, let us provide a condition which
holds whenever EV Ry, prunes every infinite derivation of G in P. Lemma 2.2 states
that, if EV Ry check prunes all infinite derivations of G in P, then the length of
resolvents in all possible derivations is limited. In the proof of Lemma 2.2 we exploit
the notion of S-tree (Apt and Pedreschi, 1993). Given a program P and a goal G,
an S-tree of G in P is a tree where the descendants of a goal are its resolvents with
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respect to all selection rules and all input clauses. In other words, an S-tree groups
all SLD derivations of G in P. The notation #R represents the number of atoms in
the goal R.

Lemma 2.2

Let P be a program and G a goal. Suppose that all infinite SLD derivations of G in P
are pruned by EV Ry. Then, a finite bound [ exists such that, for each resolvent R in
any SLD derivation of G in P, it is #R < [.

Proof

Let T be an S-tree of G in P. Given a node n in T, let Dr(n) denote the derivation
associated to the path from the root of T to n, and R(n) the final resolvent of Dr(n).
Then, let Tp be the prefix of T which is obtained by applying the EV R}, check to
T, i.e. the prefix where the descendants of any node n of T are thrown away if and
only the derivation Dr(n) is not pruned by EVR;. By hypothesis, all infinite SLD
derivations of G in P are pruned by EVR;, which means that Tp has no infinite
path. As a consequence, since T is a finitely branching tree, by Konig’s lemma (see
Theorem K in Knuth (1997)) the prefix Tp is finite. Now, let d be the depth of Tp,
and [ the maximum of the set {#R(n)| n is a node in Tp}. We prove that:

#R(n) < I, for any node n in T.
The proof is by induction on the value of depth(n). For depth(n) < d the thesis is
trivial. Then consider an integer h > d, and suppose that #R(n') < [, for any node
n' with depth(n’) < h. Given a node n of T such that depth(n) = h, we show that also
#R(n) <[ holds. Since n ¢Tp, the derivation Dr(n) is pruned by EV Ry, so that two
nodes ny; and n, exist in the path from the root of T to n with:

— depth(ny) < depth(n;), (1)

— R(ny) is a variant of R(np). (2)
Now, consider the sequence of clauses which has determined the path from n; to n
in T. Since T contains all SLD derivations of G in P, the same derivation steps can
be repeated in T starting from ny. As a consequence, by (1) and (2), a path from ny
to a node n’ exists such that:

— depth(n') = depth(n) — (depth(ny) — depth(ny)) < depth(n) = h,

— R(#) is a variant of R(n).
By inductive hypothesis it is #R(n') < I. But R(n) is a variant of R(n), so
that #R(n) = #R(n') < L.

In conclusion, the thesis holds for every node n in T. [

Theorem 2.2

Let P be a function free program and G a goal. If EV R, prunes every infinite SLD
derivation of G in P independently of the used selection rule, then EV Ry prunes
every infinite RSLD derivation of G in P.

Proof
Let D be an infinite RSLD derivation of G in P. By Lemma 2.1, an SLD derivation
D’ of G in P also exists such that every reduced resolvent of D is included in a
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resolvent of D’ (up to renamings). Since EV R, prunes every infinite SLD derivation
of G in P, by Lemma 2.2 the length of resolvents of D’ is limited. Then, the length of
reduced resolvents and resultants of D is also limited. Now, since the language of P is
function free and has finite many predicate symbols and constants, the relationship
denoted by =, has only finitely many equivalence classes on resultants of D. As a
consequence, for some 0 < i < k we have that the k" and the i" resultants of D are
in = relationship. This implies that D is pruned by EVR;. [

In this section, redundancy elimination tolerance has been proven on the basis of
a rather strong hypothesis, i.e. termination and completeness of loop checking for all
possible selection rules. In Section 3 we will introduce a new computational model
which will allow us to characterise a class of selection rules which are shown to be
redundancy elimination tolerant. As a matter of fact, in Section 6 we will prove that
program termination and EV Ry loop check completeness are maintained for that
class of rules, passing from SLD to RSLD.

3 Priority scheduling rules

As shown in Section 2, redundancy elimination can determine missing termination
and loop check detection. This fact depends critically on the used selection rule,
because redundancy elimination can affect the actual sequence of atom rewriting.
As a matter of fact, it is widely acknowledged that the analysis of interdependence
between derivation processes and the used selection rules is a difficult task. In
our study, the necessary insights have been provided by a computation model
which is based on a novel mechanism of atom choice, which works in terms of
scheduling rules rather than in terms of conventional selection rules. Through this
new computational model, a class of scheduling rules is identified in Section 4, which
is redundancy elimination tolerant in the sense that no loss in termination and/or
loop detection comes out, passing from SLD to RSLD.

We start the analysis with an observation about selection rules, as they are
normally conceived in literature and used in practice. In SLD derivations, resolvents
are usually regarded as lists, nevertheless selection rules are given complete free
choice ability of the atom to rewrite. In this sense, two different philosophies are
superimposed, because a scheduling (i.e. an ordering) must coexist with an atom
choice which can actually overcome the scheduling. Now, in the case that resolvents
are viewed as unstructured multisets instead of lists, the obvious solution is that
a free choice ability is provided at rewriting time. However, if scheduling policies
(i.e. an ordering or a priority assignment) are exploited, it may appear natural that
priorities are obeyed at rewriting time, so that the atom with optimum priority is
always selected. Indeed, if a scheduling policy is used, the moment of addition of
new atoms in the resolvent may be recognised as the really important event, when
suitable priority values must be established and assigned.

In the following, we consider execution mechanisms for logic programs which are
based on priority scheduling policies. In particular, we characterise scheduling rules
informally as follows:
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e a priority value is assigned to each atom in the actual resolvent,
e assigned priorities are not modified in the following of the derivation,
e the atom with optimum priority is always taken for rewriting.

In essence a scheduling rule is a rule that defines a priority values for any new
atom which enters the actual resolvent. It is crucial that atoms from the body of the
applied clause can be freely scheduled with respect to the ones already present in
the resolvent, which maintain their own priority values. It is intuitive that this can
be easily done if a set of ‘dense’ priority values is adopted. Indeed, as formalised in
Section 3.1, we will use rational numbers as priority values.

Now, in analogy with Lloyd’s definition of selection rules (Lloyd, 1987), we
consider the subclass of scheduling rules where the schedule of new atoms is
determined only by the last resolvent in the derivation, i.e. by the current state of
the computation. Such rules will be named state scheduling rules. A state scheduling
rule can be seen as a rule which, for any resolvent G and clause ¢ (that is applied to
the optimum priority atom), determines the schedule positions of the new atoms in
the resolvent, through the assignment of appropriate priority values.

In other words, a state scheduling rule determines new resolvents, starting from
the old ones and from applied clauses. The rewritten atom is necessarily the one with
the optimum priority value. It is evident that the transformation from a resolvent
to a new one, which is obtained by the addition of new atoms from the applied
clause, is nothing more than a step of an SLD derivation. In this sense, we can
say that a state scheduling rule characterises a set of derivation steps. Indeed, as
formalised in Section 3.5, a state scheduling rule can be straight conceived as a set
of derivation steps, that is: the set of derivation steps which are allowed according
to the scheduling rule itself. Formal definition of state scheduling rules is provided
in Section 3.5.

3.1 Atoms, goals and priorities

To characterise state scheduling rules in a formal way, we introduce the notions of
priority goal and priority clause. A priority goal is a goal where each atom has an
associated priority value. Thus, a priority goal G can be thought as a set of couples,
where any couple is named priority atom. In the following formal definition, priority
atom will be denoted by a[p], where a is an usual atom and p is a rational number
which establishes the priority of @ in G. The symbol = will be frequently used in
the rest of the paper to denote logical implication.

Definition 3.1
(i) A priority goal G (p-goal in the sequel) is defined by a set of priority atoms
(or simply p-atoms) of the form:
G = {ai[p1], ..ak[pc]}, with Vi, j : i # j = pi # pj,
where each a,, is an usual atom and each p,, is a rational number, 1 <m <k.
(i1) A priority clause (or simply a p-clause) has the form ¢ = ht «— B, where ht is
an atom (without priority) and B is a priority goal.
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In the sequel, priority clauses will be referred as clauses for the sake of simplicity.
Capital letters will be used in the following to represent p-goals. To denote p-atoms,
we will use notations like a[p], as well as simple small letters (as a,b, etc.) when
explicit reference to priority values is not important. As a slight abuse of notation,
p-goals made of only one p-atom a will be often denoted by a. Given a p-goal G,
the notations #G will indicate the number of p-atoms in G.

In the sequel, we will exploit very frequently a basic operation which corresponds
to the union of two p-goals with no common priority values. This operation is
denoted by ‘+’ and is said p-goal merging. During merging operations, atoms retain
their priority values. We introduce also the idea of concatenation, which is a particular
case of merging. Concatenations will be denoted by the symbol ‘|’ (vertical bar).
The following are the formal definitions of merging and concatenation. It is worth
noting that both these operations are associative.

Definition 3.2
(i) A p-goal M is the merging of F and G (denoted by M = F+G) if F and G have
no common priority values and M = F UG.

(i) Given two p-goals F and G, we write F 4 G to denote that all priori-
ties in F are less than any priority in G. A p-goal N is the concatenation
of F and G (denoted by N = F|G),if N=F + G and F 4 G.

The fact that equal priority values are not admitted in a p-goal has two principal
effects. The first one is that a complete ordering (i.e. a scheduling) is imposed on the
atoms of a p-goal. In particular we assume that atoms with less priorities precede
atoms with greater ones. The second effect is that possible multiple occurrences
of atoms are distinguished by different priority values. On the basis of the above
observations, the following evident properties of concatenation can be stated.

Property 3.1

Given the p-goals A4y, A», A3, B, By, and Bj, the following propositions hold:
(i) Ai|A2 = Bi|By, #A41 =#By or #A, =By = A; =By, A» = B;.
(ii) A1|A2|A3 = B1|By|B3, Ay # @, Ay = By = Ay = By, A3 = Bs.

3.2 Shifting and positioning

Throughout the paper, we will exploit a basic operator for handling priority values.
It will be called (priority) shifting, and corresponds to a modification of priority
values which does not alter the scheduling of the atoms in a p-goal. The following
is the formal definition of shifting. In the sequel, shiftings will be always denoted by
underlined Greek letters.

Definition 3.3 (shifting)
A shifting & is an increasing one-to-one application of the type:

n : Rational — Rational.
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Given a shifting =, and two p-goals G and F such that:

G = {ai[p1], .ac[pi]} and F = {a; [z(p1)], ...a [m(pi)]},
we say that F is a shifting of G and write F = Gx.

It is evident that the composition of two shiftings is a shifting, too, as well as the
inverse of a shifting. Shifting operations enjoy the following four basic properties.
All properties are plain consequence of the definition. The first two properties will
be used very often in the sequel without explicit reference.

Property 3.2

(Ax-1) A1+ A+ ..+ A=A+ Ay + ... Akx,

(Ax-ii)  (Ai1]Az|.. Az = A1z|Arm|... Akm,

(Ax-iil) G = A17|Aszy]... AkTy, F = A1y |Aomy|... Ak,
= ¢ such that Fo =G,

(AX4V) (A1 + As + o AT = (A} + 4> + .. AT

= Ain = A1z, Aon = Aoz, ... At = Az

Finally, let us consider a combination of shifting and merging which provides
the convenient tool to formalise our ideas about scheduling of atoms in resolvents.
As outlined in previous section, at any step of derivation, atoms coming from the
body of the applied clause are assigned new priority values, while priorities of old
atoms are left unchanged. This way, new atoms are positioned (i.e. scheduled) with
respect to the old ones. In general, the positioning of atoms from a p-goal B, with
respect to the atoms of another p-goal F, can be described through a composition
of shifting and merging. Indeed, consider an expression like F + Bx. The effect of the
shifting = is twofold. First, possible conflicts of priority values between F and B can
be removed, so that the merging F + Bz is correctly performed. At the same time,
yet more important,  allows us to establish the positions which atoms from B go
to occupy. Since priorities are represented by rational values, it is evident that all
possible allocations of atoms from B, with respect to those in F, can be described
through suitable choices of z.

3.3 Priority SLD Derivations

Now we are ready to frame well known Logic Programming concepts, as the ones of
resolvent and SLD derivation, in terms of priority atoms, goals and scheduling. We
start with the following Definition 3.4, which formalises the idea of priority derivation
step. Given a p-goal a|F, in agreement with our concept of scheduling the atom a
with minimum priority is always rewritten and atoms coming from the body of the
applied clause are positioned with respect to old ones to form the new resolvent. The
positioning is obtained through a combination of shifting and merging, as discussed
at the end of the previous Section 3.2. With reference to Definition 3.4, the body B of
the applied clause is first shifted by = and then merged with F, i.e. with the initial
p-goal a|F minus the rewritten atom.
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Definition 3.4 (priority derivation step)
Consider a p-goal G = a|F and a clause ¢ = (ht «— B). Let:
— ¢ be a renaming such that var(G) Nvar(cé) = @,
— 0 be an idempotent and relevant mgu of a and (ht)¢,
— 7z be a shifting such that F and Bz have no common priority value.
We say that R is a resolvent of G and ¢ by &, 6 and =, if:
R = (F + B&n)b.
The transformation from a|F to (F + Bén)0 will be called a priority derivation step.
It is denoted by:

alF = (F + B&n)0.

The notation G —5 R will be used to represent a derivation step by 6 and

¢, where the shifting = is not pointed out. Analogously, we will write G N R
to represent a derivation step by the renaming ¢ without specifying the mgu 6.
By G — R we denote a derivation step which generically produces R as a resolvent
of G and c. Iterating the process of computing resolvents, we obtain a priority
SLD derivation, that is a sequence of priority derivation steps as formalised by the
following definition.

Definition 3.5 (priority SLD derivation)
Let P be a program and G, a p-goal. A priority SLD derivation of G, in P is a
possibly infinite sequence of priority derivation steps

Co€oslo €1 Cres Ok
Go _—> G] _—> ... Gk I Gk+1 —_—> ...

where, for any j > 0,
(i) ¢j is a clause in P,
(i) var(c;&;) N (var(Gy) Uvar(coéy) U... Uvar(cj—1&j—1)) = @.

Given a finite priority SLD derivation (p-SLD derivation in the following) of the

form:

€900, cnnOn
G, — Gy — .G, — G,

the sequence M = cy, ¢y, ...c; of applied clauses will be called template. The whole
derivation will be denoted by G, M G, where 0 = 0,0,...0;, or simply G, M, G, if
the substitution 0 does not need to be pointed out. We use the notation G, M, o,
when there is not interest in specifying the final resolvent. Given a template M,
the notation #M will indicate the number of clauses in M. In many cases, we will
consider concatenation of templates, which is denoted by a vertical bar ‘|’

It is intuitive that, given a derivation, any subset of atoms in the current resolvent
derives from other specific atoms in preceding resolvents. As it will be clear in the
sequel, this idea plays an important role in the development of this paper. Thus,
it is convenient to give some formal definitions. Precisely, let us consider a p-SLD

derivation of the form Dr = (F + G A, Q). The following two intuitive concepts
will be characterised:
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(a) the sub-resolvent of F in Dr, i.e. the subset of p-atoms in Q which derive from
the subgoal F (denoted by Q/F),

(b) the sub-template of F in Dr, ie. the sequence of clauses which are applied to
p-atoms of F and p-atoms derived from F, extracted in the order from the
template H (denoted by H/F).

Definition 3.6 (sub-resolvents and sub-templates)
(i) Given a derivation step of the following form, where ¢ = (ht «— B):
al(F + G) = (Q = ((F + G) + Bén)a), (1)
let us define sub-resolvents and sub-templates in (1) as follows:

Q/a = Blmo, Q/F =Fo, Q/(alF)=Q/a+Q/F
c/la=c, ¢/F=¢, c/(alF)=c.

(i) Given a derivation of the form:
F+6-50 5 R )
let us recursively define sub-resolvents and sub-templates in (2) as follows:

R/F = R/(Q/F),
(cIK)/F = (¢/F)I(K/(Q/F)).

It is worth noting that the notation relative to sub-templates and sub-resolvents
can be ambiguous. Indeed consider:

G+F -0 (3)
G+F 0. 4)
It is possible that D/G with respect to (3) is different from D/G with respect to (4).
In the following of the paper, when such a kind of ambiguity will possibly arise,
we exploit a refined notation of evident meaning, like D/3/G and D/*/G. As an

example, let us consider G = aF’ = d and D = ¢ such that
G+F=ab—>0Q (3b)

G+F =da—>0Q. (4b)
Then, D/3/G = ¢ and D/* /G = empty.

3.4 Congruent lowering of derivation steps

This section introduces some important ideas. Precisely, the concepts of specialisa-
tion, lowering, and finally, congruent lowering are defined and analysed. Congruent
lowering is basic for the characterisation of the general concept of scheduling rule,
as well as of the class of specialisation independent scheduling rules (see Section 4)
to which the results about redundancy elimination tolerance of Section 6 refer.
Substitutions and renamings are basic concepts in Logic Programming. In agree-
ment with usual terminology, if a substitution is applied to a goal, an instance is
obtained, while, if a renaming is used, a variant of the original goal is produced.
Goals which are equal up to renamings are in essence equivalent goals. Practically all
the results of Logic Programming are insensible to renamings. An instance may be
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considered as a specialised version of the original goal, while any goal is more gen-
eral with respect to its instances. The above concepts are easily adjusted in the frame
of priority goals. Intuitively, the application of a renaming/substitution corresponds
to the application of a renaming/substitution together with a shifting. Actually, as
it will be clear in the following, we are interested in an idea of specialisation of a
given p-goal which extends the traditional concept of instantiation. In essence, we
will consider couples of p-goals such that the second is obtained from the first by
performing in the order:

e the application of a generic substitution 4 and a shifting g,

e the embedding in a generic context X of other p-atoms.

Definition 3.7 (specialisation)
A p-goal F is a specialisation of a p-goal a|K by X, if a shifting ¢ and a substitution
A exist such that

F = alg|(Kio + X).

It is worth noting that our idea of specialisation is essentially symmetric to
the concept of subsumption by an instance (see Bol, Apt and Klop, 1991). A
goal G subsumes (as list) a goal F by an instance, if a substitution A exists such that
GA <1, F. Indeed, considering that any shifting preserves the order of the atoms, it
is evident that, if F is a specialisation of a|K by X, ie. F = alg|(Klg + X), then
alK subsumes (as list) F by the instance (a|K)A.

The term ‘lifting’ is used in Logic Programming to express that a derivation step
(or a whole derivation) which is possible from a goal A/ is repeated starting from the
more general goal A. Analogously, we use the term lifting to mean that a derivation
step (or a whole derivation) which is possible from a specialisation of a|K, i.e. from
a p-goal alg|(K g + X), is repeated starting from a|K. In the sequel of the paper,
we will use the dual concept of ‘lowering’. In other words, the term lowering will
mean that a derivation step (or a whole derivation) from a p-goal a|K is repeated,
when possible, starting from a specialisation alg|(Kig + X) of a|K. Then, let us
give the following definition which refers to single derivation steps.

Definition 3.8 (lowering of derivation steps)

Let us consider two priority derivation steps of the type G > eand F - e. We
will say that the second step is a lowering of the first one by X, if the p-goal F is a
specialisation of G by X.

Let us consider two derivation steps (Ds1) and (Ds2), such that (Ds2) is a lowering
of (Dsl) by X, and let ¢ = (ht «— B). By definition of derivation step, they have
the following form:

alK = (K + B&'0')o/ (Ds1)
aio|(Kioc + X) — (X + KJig + BE"0")o!". (Ds2)

The definition of lowering of derivation steps does not impose any similarity in
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the way priority values are handled in couples of derivation steps like (Dsl) and
(Ds2). In particular, no analogy is required about the positions new atoms go to
occupy with respect to old ones in the resolvents produced by (Dsl) and (Ds2).
Indeed the shifting 0’ and 0" are completely independent, so that the positions of
atoms of BE”0”, with respect to atoms of K/ g, will be in general different from the
positions occupied by atoms of B&'0 with respect to atoms of K. Nevertheless, in
the rest of the paper special importance will be given to derivation step lowering
such that the positioning of new atoms, with respect to the old ones in K and K Ag,
is maintained passing from (Dsl1) to (Ds2). In such hypothesis, we will say that the
lowering is a congruent lowering.

As an elementary example, let us consider a clause like ¢ = a «— by|b, and the
following derivation steps, such that (2) is a lowering of (1) by xy|x:

alkylky — B0/ k|20 ks (1)
alxi k| xalka == x1|b10" ky|x2]b20" |k )

In (1) and (2) the relative positions of atoms by and b, with respect to k; and k; are
the same, then (2) is a congruent lowering of (1). Now, let us consider the following
other derivation step (3):

alxi k| xalka —= x;lky|byiz|xa|boz|ks 3)

Also, (3) is a lowering of (1) by x1|x,. However, in this case the positioning of atoms
by and b, with respect to k; and k; is not maintained passing from (1) to (3), so that
(3) is not a congruent lowering of (1). Variable substitutions are not considered in
the above examples. Indeed, in agreement with the following formal Definition 3.9,
they are not really influent for a lowering to be congruent or not.

Definition 3.9 (congruent lowering)

Let us consider two derivation steps of the form (Dsl) and (Ds2) above, i.e. two
derivation steps such that the second one is a lowering of the first one by X. We
will say that step (Ds2) is a congruent lowering of step (Dsl) by X if a shifting p
exists with:

Kp =Kg and B0'p = BO". (c1)

It is apparent that the desired analogy, in positioning new atoms in the two
derivation steps (Dsl) and (Ds2), is imposed by means of condition (cl) above in
Definition 3.9. Indeed, condition (c1) says that the shifting p creates a correspondence
between atoms of K + B0 and atoms of Ko + B0", such that old atoms are mapped
in old atoms (see Kp = Kg) and new atoms in new ones (see B6'p = B0"). Since
any shifting maintains atom precedence, it is intuitive that congruent allocation of
new atoms is imposed. More specifically, let us consider the generic atom b of B and
assume:

K + BO' = M'|bg'|N',
Ko+ B0 = M"|b0"|N".
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It is immediate to verify thatl!l:

M//‘bQ//|N// ZKQ-FBQN —(c) KB-{-BQ/B: (K +BQ/)B

= (M'|b0/|N")p = M'plb) p|N'p.

Now, by BO'p = B6" in (c1) and Ax-iv in Property 3.2, we have that h0'p = b0".
Then, by Property (3.1-ii) it is M'p = M", and then also #M' = #M'p = #M" = n,
for n positive integer. In essence, considered the generic atom b of B, it is found
in the (n + 1)th position in K + B0' as well as in Kg + B0". In other words, new
atoms from B are positioned in (Dsl) with respect to old ones (i.e. atoms of K)
exactly as it happens in (Ds2) with respect to Kg. It is evident that the presence of
various substitutions in (Ds1) and (Ds2) does not interfere with the above positional
considerations.

Example 3.1 (lowering and congruent lowering)

Let us consider a clause of the form ¢ = (¢ «— ¢[1]) and the two following
derivation steps:
a[2]] {b[31} — {b[3], q[101}, (1)
al911{b[12], b[13],d[15]} — {b[12],q[12.5], b[13],d[15]}. (2)

In step (1), old atoms are pointed out in bold and new ones are underlined.

(a) In agreement with Definition 3.9, step (2) is a lowering of (1) by X =
{b[13],d[15]}, with Kg = {b[12]}. Pointing out old and new atoms, derivation
step (2) can be written as follows:
al91I{b[12], b[13],d[15]} — {b[12],q[12.5], b[13],d[15]}.

It is evident that (2) is a congruent lowering of (1) by X, with any shifting p
such that p = {3/12,10/12.5}.

(b) Step (2) is a lowering of (1) also by X’ = {b[12],d[15]}, with Kg' = {b[13]}.
However (2) is not a congruent lowering of (1) by X’. In fact, in agreement
with this second viewpoint, derivation step (2) can be written as follows:
a[9]/{b[12], b[13],d[15]} — {b[12],q[12.5], b[13].d[15]}.

As a consequence, for step (2) being a congruent lowering of step (1) by
X', a shifting p" might exist such that p" = {3/13,10/12.5}, which is not an
increasing function. [

We close this section considering a couple of p-goals F and G such that they are
specialisations of each other, i.e. F is a specialisation of G by a subgoal X and G is
a specialisation of F by Y. In this case it must be F = Gic + X and G = Ftp+Y,
which yields:

G =Ftpp+Y =(Gla+X)tp+Y =Gitap+ Xtp+ Y.

As a consequence A must be a renaming for G and X = Y = @ must hold, which
means that F = Glg where A is a renaming. It is evident that the relation ‘F = G/g,

! The notation "Kg + B0” =) Kp + B0'p” expresses that the formula (c1) must be used to establish
the equality. Similar advising will be used frequently in the sequel.
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for a renaming / and a shifting ¢’ can be seen as the translation of the usual notion
of ‘F being variant of G’ in the frame of p-SLD resolution. In this sense, we will
usually say that F is a p-variant of a G, to mean that F and G are specialisations of
each other.

Analogously, two derivation steps may be lowerings of each other, as well as
congruent lowerings of each other. Two derivation steps Ds; and Ds; are lowerings
of each other if the initial goals are p-variants and the same clause is applied, i.e. it
is Ds; = (A SN o) and Ds; = (Ao SN o), where / is a renaming. Two derivation
steps are congruent lowerings of each other if they have the form:

Ds; = alK — (K + B&'0')¢ and Ds, = (a|K)ig — (K ig + BE"0")d!",
where ¢ = (ht «— B), A is a renaming, and the equalities Kp = K¢ and B0'p = BO"
hold for a shifting p.

It is worth noting that by the preceding argument if two derivation steps are
lowerings of each other the contexts must be empty.

3.5 State priorvity scheduling rules

Now, we use the notion of being congruent lowerings of each other to define the
ideas of determinism and completeness of a set of derivation steps. Both concepts
are basic for the definition of state priority scheduling rules.

Definition 3.10 (determinism)
A set S of priority derivation steps is deterministic if, for each couple of derivation
steps Ds; and Ds; in S, the following implication holds:

Ds; and Ds, are lowerings of each other

= Ds; and Ds; are congruent lowerings of each other.

In other words, the definition of determinism imposes that two derivation steps,
which apply the same clause to p-variant initial goals, give place to congruent
allocations of new atoms. Now let us give the definition of completeness of a set of
derivation steps.

Definition 3.11 (completeness)
A set S of priority derivation steps is complete, if the following assertions hold:
(i) 3 Ds derivation step of the type G 5 e,
= 3 D¢ of the type G —> o with Ds €8S,
(ii) VDs', Ds derivation steps with Ds € S,

Ds’ and Ds are congruent lowerings of each other = Ds' € S.

Assertion (i) of the above definition states that, if a clause ¢ is applicable to a
p-goal G, ie. a derivation step exists of the type G —> o, the application of the
clause ¢ to G is indeed possible in any complete set of derivation steps. Assertion
(ii) assures that S is closed with respect to being congruent lowerings of each
other. In other words, let Ds' = (G SN Q) € S be a derivation step, then every
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other Ds" = (F SN R) must belong to S, if F is a p-variant of G and new atoms
are allocated in R as it is done in Q. Now, the formal definition of state priority
scheduling rules can be easily given, by combining the properties of determinism
and completeness.

Definition 3.12 (state priority scheduling rules)
A state priority scheduling rule is a complete and deterministic set of priority deriva-
tion steps.

It can be easily verified that the leftmost selection rule, adopted by the Prolog
execution mechanism, is a state priority scheduling rule. The very nature of a
state scheduling rule is characterised by the following Definition 3.13. Indeed, the
definition simply says that a p-SLD derivation is via a state scheduling rule S if all
derivation steps are admitted in the rule S, i.e. they all belong to the set of derivation
steps which S is constituted by.

Definition 3.13 (derivations via S)
(i) Given a set S of derivation steps, the notation A(S) represents the whole of
p-SLD derivations which are composed of derivation steps in S.

(i) Given a state scheduling rule S, the set A(S) is the set of p-SLD derivations
via S.

In the sequel of the paper we only consider state priority scheduling rules, which
therefore will be called just scheduling rules. The following notations will be used
frequently. Given a set S of derivation steps, a clause ¢ and a template M, we will
denote by

625R and G625 R
the fact that the derivation step (G = R) € S and the p-SLD derivation

(G M, R) € A(S), respectively. In the case that the exploited logic program must be
pointed out, a notation like

(G MY R

will be used to specify that the derivation is via S in the program P, ie. every
clause of the template M belongs to P. The notion of p-SLD tree via S could be
characterised in complete analogy with the usual one of SLD tree.

Let us close this section with a property, which can be easily shown on the basis
of completeness and will be used several times in the sequel. Property 3.3 asserts that
if a clause ¢ can be applied to a p-goal ay|G, every complete set of derivation steps
allows ¢ to be applied to any p-goal of the form a|F. Since the atom a is more general
than ay, the property may also be interpreted as a sort of lifting of derivation steps.
However, the subgoals G and F are left unrelated at all. The evident explanation is
that they have no active role in rewriting operations. Moreover, the property recalls
that new variables can be always chosen so that conflicts are avoided with arbitrary
pre-established sets of variables. The formal proof of this rather intuitive property
can be found in Appendix A.
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In the statement of Property 3.3 and in the sequel of the paper, given a p-SLD
derivation Dr, the notation nvar(Dr) will represent the set of standardisation apart
variables which are introduced during the derivation Dr. In the case of a single

derivation step Ds = (4 -, o), it is nvar(Ds) = var(cé&).

Property 3.3
Let S be a complete set of derivation steps. Given two p-goals ayz|G and a|F, let us
fix arbitrarily a finite set V' of variables. The following implication holds:

3Ds derivation step of the type ayz|G e

=> 3IDs of the type a|lF —> o, with Ds' € S and nvar(Ds' )NV = &.

4 Specialisation independent scheduling rules

Now, we will exploit the notion of congruent lowering in order to introduce the
concept of specialisation independence. This concept will be used to characterise
the class of scheduling rules that are the main object of the paper (specialisation
independent scheduling rules). In fact, all our results for termination and loop check
completeness preserving will refer to such a class of scheduling rules. In Section 5, a
second characterisation of the same class is given which has an operational nature
and is surprisingly different in appearance.

The definition of specialisation independence enforces the idea of determinism.
Indeed, in agreement with the Definition 4.1 below, every lowering is required to
be a congruent lowering. In other words, the congruence in the allocation of new
atoms must hold any time the initial goals of two derivation steps are related by
specialisation and the same clause is used. This can be interpreted saying that the
positioning of new atoms with respect to old ones is independent of goal specialisation,
which means independent of goal instantiation as well as of the addition of a group
X of other atoms.

Definition 4.1 (specialisation independence)
A set S of priority derivation steps is specialisation independent if, for every couple
of steps Ds; and Ds, in S, the following implication holds:

Ds; is a lowering of Ds; by X

=—> Ds; is a congruent lowering of Ds; by X.

Definition 4.2 (Specialisation independent scheduling rules)
A specialisation independent scheduling rule is a complete and specialisation inde-
pendent set of priority derivation steps.

In the next two sections, we provide some results about p-SLD derivations via

specialisation independent scheduling rules. The results will be frequently exploited
in the sequel.
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4.1 Derivation lowering

In this section we give results which relate resolvents coming from a couple of
derivation steps in the congruent lowering relationship. Then, by Lemma 4.1, the
analysis is extended to couples of whole derivations, developed via specialisation
independent scheduling rules. We start by presenting a preliminary statement (Prop-
erty 4.1) which holds for every couple of derivation steps that are in the lowering
relationship. In reference to derivation steps (1) and (2) below, the preliminary
property says that, if we abstract from atom positioning and ignore the additional
subgoal X, the resolvent of (2) is an instance of the resolvent of (1). Property 4.1
can be shown following the line exploited for proving the Variant Lemma (see Apt,
1990), which is done in Appendix A for the sake of completeness of the paper.

Property 4.1
Let ¢ = (ht «— B) be a clause. Let us consider two derivation steps like (1) and (2),
where (2) is a lowering of (1) by X. The following implication holds:

alK -5 (K + BEO W, (1)
atgl(K1g + X) <5 (K1g + BE0" + X" 2)

= 36 such that Ktu” = K6 and BE"W” = BE'1/9,

where ¢ is a renaming, if 7 is a renaming.

Property 4.2 completes Property 4.1, taking into account the preservation of
atom scheduling in the case of congruent lowering. It states that, if we ignore the
additional subgoal X, resolvents are preserved up to a substitution and a shifting. In
reference to derivation steps (1) and (2) below, this means that, apart from R/X, the
resolvent R in (2) is an instance of Q such that also atom scheduling is maintained.

Property 4.2
Let ¢ = (ht «— B) be a clause. Let us consider two derivation steps of the type (1)
and (2), such that the second one is a congruent lowering of the first one by X:

akK — 0, (1)
arn|(Ktz 4+ X) R (2)
The following assertion holds:
30, p such that R/((a|K)tz) = Qdp,
where 0 is a renaming if 7 is a renaming.
Proof
Let ¢ = (ht «— B), so that Q and R may be written as follows:
0= (K + B&0 ),
R=(Ktn+ X + B0 ).
Since step (2) is a congruent lowering of (1) by X, a shifting p exists such that:
Kp=Kmn, BO'p=B0" (3)
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By definition of sub-resolvent and (3), we have:

R/((alK)en) = BE0"w" + Kenpl =% BE"1'0'p + Kil'p. (4)
Now, we apply Property 4.1 to (1) and (2), deriving that a substitution J exists such
that:

Kty =Kué and BE"'W = BEWI, (5)

where J is a renaming if 7 is a renaming.
As a consequence, we have that:

R/((G|K)‘EE) —4) Béﬁﬂﬂﬁ/ﬁ‘f'KTB,U” —05 BfWéQ'B—I—K//ég — Qéga

where 0 is a renaming if 7 is a renaming. [

The following lemma may be seen as the extension of Property 4.2 to whole
derivations, provided that the used scheduling rule is specialisation independent.
Note that, given a derivation like (1) in the statement below, if a derivation like (2)
exists, it can be considered as a lowering of (1). Indeed, the initial p-goal X + Gyt
is a specialisation of G by X, and the sequence E of clauses is applied in the same
order to atoms deriving from Gyz in derivation (2). In this sense we will regard
Lemma 4.1 as a ‘specialisation independent lowering lemma’.

Lemma 4.1 (Specialisation independent lowering lemma)
Let S be a specialisation independent scheduling rule and consider two p-SLD
derivations like (1) and (2). The following implication holds:

G50, (1)
Gyt + X 25 R, with D/(Gyr) = E )
= 3o, p such that R/(Gyz) = Qop,
where ¢ is a renaming if 7 is a renaming and D/X = @. (p1)
Proof

Let us first prove the thesis, apart from the fact (p1). The proof is by induction on
the length of D. If #D is equal to zero, the thesis is trivially true. Let us suppose
that #D is greater than zero. Two different cases must be considered, i.c. the first
clause of D (say c) is applied either to an atom of X or to an atom of Gyz.

First case (The clause c is applied to an atom of X).
In this case derivation (2) may be rewritten as:
S.en. 8.0’
X+Gy1ﬂ>yGyza+X’—D>R, (3)
with D’ /(Gyza) = D/(Gyz) = E.
By inductive hypothesis, applied to the tail of derivation (3) and derivation (1), we
have:
3o, p such that R/(Gyt) = R/(Gyza) =mr) Qgp.
Second case (The clause c is applied to an atom of Gyz).

In in this case derivations (1) and (2) may be rewritten as (4) and (5), respectively:

¢35y o 4)
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X462 xat+7z 22 R (5)
with D'/Z = E', ¢/*/G=c/?/Gyt = c. (6)

Since S is specialisation independent, the first step of (5) is a congruent lowering of

the first one of (4) by X. Then, by Property 4.2, we have:
o', p’ such that Z = (Xa + Z)/(Gyz) =\Pror4d Y o'p'. (7)

As a consequence, recalling the first fact in (6), the inductive hypothesis can be
applied to the tails of derivations (4) and (5). Then, we have:

30, p such that R/Z = Qap. (8)
In conclusion, we have that:
R/(Gyz) = R/Z = Qap.

In order to show the fact (pl), i.e. ¢ is a renaming if y is a renaming and D/X = ,
it is sufficient to note that:

— the ‘first case’ does not occur at all,
— the substitutions ¢’ and ¢, mentioned in (7) and (8), are renamings. []

The following example shows that the hypothesis of specialisation independence
is crucial for the validity of Lemma 4.1.

Example 4.1

Let us consider a scheduling rule S such that new atoms are positioned in the centre
of the old resolvent. New atoms are positioned immediately before the centre if the
length of the resolvent (the rewritten atom excluded) is odd. It is easy to recognise
that lowering Lemma 4.1 does not hold for such a rule. Indeed, let P be the following
program:

¢l = p(x) «— q(x)[1]
2 =5« p(b)[1].
Now, in reference to the statement of Lemma 4.1, let:
G = s[1], p(a)[2]
Gyz = s[1],p(a)[1.5] and X =r[2].
The following are two derivations of G in P and (Gyz + X) in P, respectively:

) @21 25 ()] p@) 21} 25 (k)11 p@)2]} = 0)

{s[1], p(a)[1.5], r[2]} = {p(a)[1.5], p(D)[1.7], 7 [2]} 5
({p(b)[1.7], q(a)[1.8], [2]} = R).
Thus, no ¢ and p can exist such that:
R/(Gyz) = {q(a)[1.8], p(b)[1.7]} = {q(b)[1], p(a)[2]}op = Qop.
Note that R/(Gyz) and Q are essentially different, even if they are considered as

multisets abstracting from priority values. It is easy to check that the used scheduling
rule is not specialisation independent, in agreement with Definition 4.2. [
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4.2 Derivation lifting and combining

The following Lemma 4.2 is a result about p-SLD derivation lifting which is valid
for specialisation independent scheduling rules. In reference to derivation (1) below,
the lemma asserts that the sub-template of clauses, applied to the part Gyz of the
initial p-goal (X + Gyz) in (1), can be applied again in the order starting from the
more general goal G, via the same scheduling rule. The lemma also recalls that
standardisation apart variables can be chosen in order to avoid conflicts with any
fixed finite set of variables. The lemma does not relate resolvents. Indeed, Lemma
4.1 can be exploited to this purpose.

Lemma 4.2 (specialisation independent lifting lemma)
Let S be a specialisation independent scheduling rule. Given any finite set V' of
variables, the following implication holds:

X+GrDe (1)

$,D/Gyz .
=> 3Dr=(G — ), with nvar(Dr)NV = <.

Proof

The proof is by induction on the length of the template D. If #D is zero, the assert
is evident. Let us suppose that #D > 0. Two cases must be considered, i.e. either the
first clause in D (say c¢) is applied to an atom of X or the clause ¢ is applied to an
atom of Gyz.

First case (The clause c is applied to an atom of X).

Derivation (1) may be rewritten as:
S.en. s.D’
X+GyzigX’+Gy1[)’—>0. (2)

By inductive hypothesis applied to the tail of (2), for any finite set V' of variables, a

derivation Dr exists such that:
S,D'/Gyzp .
Dr=(G — ), with nvar(Dr)NV =@&.

But, by construction of (2), it is D’/Gyzff = D/Gyz, so that the thesis is verified.

Second case (The clause c is applied to an atom of Gyz).

Derivation (1) may be rewritten as follows:

X—i—Gy;S’Cngﬁ—i—G’go, (3)
where ¢|(D'/G') = D/Gyz. 4)

Let G = a|Z, that is X 4+ Gyz = ayz|/(X + Zyz). By (3) and Property 3.3, we can
assert that a derivation step exists like:
Ds' = ((G = a|Z) =5 R)), (6a)
with nvar(Ds')NV = . (6b)
Since, by hypothesis S is specialisation independent, the first step of derivation (3)

is a congruent lowering of step (6a) by X. As a consequence, by Property 4.2, a
substitution 7 and a shifting p’ exist with:

G¢'=(Xp+G"/(Gyz) =R’y (7)
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Then, by inductive hypothesis applied to the tail of (3), we may assert that, a
derivation Dr” exists:

$.0'/G
D' = (R/ NN .) (8a)
with nvar(Dr") N (nvar(Ds') Uvar(G)U V) = @. (8b)

So, derivation (8a) is standardised apart with respect to (6a). Since S is a state
scheduling rule, (6a) and (8a) can be combined in order to give place to an unique

derivation Dr such that:
¢ /G
Dr = (G -5 RS oy e AS),

where, by (6b) and (8b), we have also that:
nvar(Dr) NV = (nwar(Ds') U nvar(Dr")) NV = &.
By (4), the thesis is proven. []

It is worth noting that lowering Lemma 4.1 and lifting Lemma 4.2 consider
couples of p-goals in a specialisation relationship, i.e. p-goals of the form G and
(Gyz + X). The distinctive point is that a group X of additional atoms may be
present in the second p-goal, besides the instantiation of G by y. The correspon-
dence is obvious with the fact that Definition 4.1 requires that positioning of new
atoms is independent of goal specialisation. As it will be clear in the following,
this kind of independence is basic in order to assure tolerance to redundancy
elimination.

In Gabrielli, Levi and Meo (1996) a class of selection rules is introduced for which
independence of atom choices from goal instantiation is assured. These rules are
named skeleton selection rules. Indeed, they are sensible only to a specific structural
extract (the skeleton) of the applied clauses and the initial goal in the story of a
derivation. As shown in Gabrielli, Levi and Meo (1996), instantiation independence
is sufficient to prove a Strong Lifting Lemma which asserts that, for any skeleton
rule S, an SLD derivation of a goal Gy via S can be lifted to a derivation of G via
the same rule S, relating in a quite strong sense the mgu’s and the resolvents. On the
other hand, instantiation independence seems not sufficient to assure redundancy
elimination tolerance. For example, in agreement to the definition in Gabrielli, Levi
and Meo (1996), the selection rule of Example 2.2 is a skeleton rule, because choices
only depend upon the length of the initial goal and the ones of applied clauses.
Really, choices are performed on the unique basis of the length of the actual
resolvent, so that the rule of Example 2.2 can be seen as a case of state skeleton
selection rule. Anyhow, the rule is not tolerant to redundancy elimination.

To point out the role of the hypothesis of specialisation independence with respect
to derivation lifting, let us give the following example where lifting Lemma 4.2 does
not hold. Note that the used scheduling rule is instantiation independent, but it is
not specialisation independent.

Example 4.2

Let us consider again the scheduling rule of Example 4.1. It is easy to recognise
that lifting Lemma 4.2 does not hold for such a rule. Indeed, let P be the following
program:
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(plL.1],r[L.5], r[L6], 521, s[2.5]} 25
(c2,c2)

{r[1.5],r[1.6], p[1.7],7[1.8],#[1.9], s[2], s[2.5]} e
{p[1.7],r[1.8],r[1.9],s[2], s[2.5]}

Fig. 2

cl = p — p[l],r[2],r[3]
c2=r«—.

Now, in reference to the statement of Lemma 4.2, let:

G = {pll].s[2],s[3]}
Gyz = {p[1.1],s[2],s[2.5]} and X = {r[1.5],r[1.6]}.

In Figure 2 an infinite p-SLD derivation of (Gyz + X) in P is shown.
On the contrary, the only p-SLD derivation of G in P is the following one

S,cl
{p[1],5[2],s[3]} — {s[2], p[2.5],7[2.6],r[2.7],s[3]}.
which fails at the second resolvent. [

From the proofs of Lemmas 4.1 and 4.2, the proof of two corresponding assertions
can be easily drawn. They are given in Lemma 4.3 below, and are valid for all
scheduling rules in the case of two p-SLD derivations which are lowerings of each
other. Part (a) of the lemma may be viewed as a form of variant Lemma.

Lemma 4.3 (determinism lemma)

Let S be any scheduling rule and V' any arbitrary finite set of variables. Then
let G and G’ be two p-goals such that G’ is a p-variant of G. The following
implications hold:

(a) GEQ and ¢’ 25 R

=> Ris a p-variant of Q,
) 6 25 o

— 3IDr=(G by o), with nvar(Dr)NV =@.

Proof

Let us consider part (a) of the lemma. By definition of p-variant it is G’ = Gyz,
for a renaming y and a shifting z. By fact (pl) in Lemma 4.1, i.e. ‘where ¢ is a
renaming if y is a renaming and D/X = &, the result appears as an immediate
consequence of the proof of Lemma 4.1 itself. It is sufficient to note that, if X is
empty and y is a renaming, the fact that the used scheduling rule is specialisation
independent becomes useless. Indeed, in reference to the proofs of Lemma 4.1,
though the hypothesis of specialisation independence is dropped, the first steps of
(5) and (4) are congruent lowerings of each other, because every scheduling rule
is deterministic. Similar considerations are possible for part (b) of the lemma, in
reference to the proof of Lemma 4.2. []
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Now, let us give a property that is valid for all scheduling rules and derives easily
from Lemma 4.3. It asserts that two p-SLD derivations Dry and Dr;, via the same
scheduling rule S, can be composed giving place to a longer derivation via S, if the
last resolvent of Dr; coincides with the first of Dr,.

Property 4.3 (combination)
Let S be any (state) scheduling rule. The following implication holds:

iDry,Dr, with Dr; = (G LN F), Dry=(F 4 0)
— IDr=(G 5 F L R), with DreA(S),

where R is a p-variant of Q.

Proof

By Lemma 4.3-b) applied to Drp, a p-SLD derivation D’ = (F A R) exists with
nvar(Dr') N (nvar(Drq) U var(G)) = &. Thus, D’ is standardised apart with respect
to Dry. Since S is a state scheduling rule, Dr is obtained as the composition of Dry
and Dr'. The fact that R is a p-variant of Q follows from Lemma 4.3-a), applied to
Dr, and DY'. [0

5 Stack-queue selection rules

Prolog interpreters adopt a leftmost scheduling policy such that the first atom in the
goal is always selected for rewriting and is replaced in the resolvent by the body
of the applied clause. In other words, the actual resolvent is maintained as a stack,
the atom on the top of the stack is always selected for rewriting, while new atoms
from the applied clause are pushed on the top of the stack. In analogy, a queue
scheduling policy may be considered, which corresponds to a very simple case of fair
selection rule (see Lloyd, 1987). As for the stack scheduling policy the first atom in
the resolvent is always selected, but new atoms are positioned at the end of the old
resolvent. Thus, the resolvent is treated as a queue of atoms and any queued atom
is eventually selected in the case of infinite derivations

In this section, the class of stack-queue scheduling rules is defined, which is a
generalisation of both stack and queue scheduling policies. According to stack-
queue rules, for any clause ¢ = (ht «— B), two p-goals M, and M, can be identified,
with B = M|M,, such that the atoms in M, are always scheduled in stack mode while
the atoms in M, are scheduled in queue mode. More formally, we have the following
definition. As shown in the sequel of this Section 5, the stack-queue class turns
out to be an operational characterisation of the class of specialisation independent
scheduling rules

Definition 5.1 (stack-queue derivation steps)

A set SQ of derivation steps is said to be of stack-queue type, if it verifies the
following condition. Given any clause ¢ = (ht «— B), two p-goals M, and M, exist
with M M, = B, such that for any p-goal (a|K):

SQ.cé.u
—

alK R = R=(My|K|M;Ey)p.
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The following property states that any set of stack-queue derivation steps is
specialisation independent. Then, as stated in Theorem 5.1, any set of stack-queue
derivation steps which satisfies the completeness property is a specialisation inde-
pendent scheduling rule.

Property 5.1 (stack-queue implies specialisation independence)
Let SQ be a stack-queue set of derivation steps. Then SQ is specialisation indepen-
dent.

Proof

Let us consider two derivation steps in SQ and suppose that derivation step (2)
is a lowering of (1) by F. This means that (1) and (2) have the following form,
where ¢ = (ht «— M|M,):

SQ'C Iyl Ia! !
alK 225 (M.&y KM, &) (1)
SQ.c
aig|(K g + F) 225 (M&"y" (K 2a + F) My&"y" Yo" @)

To show that SQ is specialisation independent, we have to verify that derivation
step (2) is a congruent lowering of (1) by F, i.e. a shifting p exists, such that:

My"IMyy" = (Myy'|Myy")p, Ko= Kp. (3)
By Property 3.2, a shifting p exists such that:

Myy"|Kg|Mgy" =1 (Myy'|K|Myy")p = Myy'p|K p|Myy'p.
Since it is evident that #M,)'p = #M,)y" and #Kp = #Ka, by Property (3.1-i) we
have:

Mgy" = Msy'p, Myy" = Myy'p, Ka=Kp,

which immediately implies assertion (3). [

Theorem 5.1 (stack-queue scheduling rules)
Let SQ be a complete set of stack-queue derivation steps. Then SQ is a specialisation
independent scheduling rule.

5.1 Specialisation independence implies stack-queue

Now, we prove (Theorem 5.2) that any specialisation independent scheduling rule is
actually a stack-queue rule. Thus, combining this fact with Theorem 5.1, we have
that Definition 4.2 and the operational characterisation of Definition 5.1 identify
the same family of scheduling rules. To this aim, let us show the following lemma.

Lemma 5.1 (not internal positioning)
Let S be a specialisation independent scheduling rule. Given any clause ¢ =
(ht «— B), for every derivation step of the form:
S,cé,
alK R R, (1)
two subgoals M, and M, exist, with B = MM, such that:

R = (M&y|K|MyEp)n.
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Proof
Let us consider a p-goal like:
alKw,|Kw,|..|Kw,, with n > #B.

On the basis of (1), by Property 3.3 a derivation step also exists of the following
form:

S,cy,
alKw,|..[Kw, 25 (0 = (K, |..[Kw,) + Byo)u). (2)

Since n > #B, an index j must exist such that no atom of B has been positioned
inside Kw;. A priori several j’s might exist. Without loss of generality, we take any
one of them. Thus, two p-goals M, and M, must exist, with M,|M, = B, such that:

0 =Mty + (Koy|..|[Kw; 1)Ko (Mgzy + (Ko |[Kw,))u (3)
Now, by definition, derivation step (1) has the form:

alK 5 (R = (K + BEg)n). (1a)
Since S is a specialisation independent rule, step (2) is a congruent lowering of
step (la) by the subgoal (Kw,|..|Kw; ;|Kw;l..|[Kw,), so that a shifting p exists
with Kp = Ko; and Bop = Br = Mz|M,z. Then, recalling that (3) implies
Mz 4 Kw; 4 Myz, we obtain:

(K +Béo)p =Kw; + Bl = (Mt|Kw;|MCt) = (MK p| My <)
Finally:
R = (K + Béao)y = (K + Béa)npp~" = (Mrp ! |[KIMyErp~ ). O

The following Theorem 5.2 shows that, for any scheduling rule, specialisation
independence implies that the rule is stack-queue. Together with Theorem 5.1,
this result proofs that stack-queue is an operational characterisation of the set of
specialisation independent scheduling rules.

Theorem 5.2 (specialisation independence implies stack-queue)
Let S be a specialisation independent scheduling rule. Given any clause ¢ =
(ht «— B), two p-goals My and M, exist, with M M, = B, such that for every
derivation step of the form:
S.cé,

aK == R (1)
it is:

R = (M n|K|MEm)n.
Proof
Let p be the predicate symbol of atom ht. Consider a p-atom b of the form
b = p(x1,...,x;)[s], where xi,..,x; are distinct variables. Then, consider a ground
p-atom r such that b 4 r. By construction of b and completeness of S, a derivation

S.c . . . .
step of the type (b|r — e) exists, which necessarily has the following form because
r is a single atom:

blr -5 (Myglr|Myie)u, with B = M|M,. )
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Now, let us prove that MM, is the partition of B which is required by the thesis.
Consider derivation step (1). Two cases are possible, either K = @ or K #+ &.

Case 1 (K = @).

In this case we have:

a 25 (R = Bénn = (MyEn|M,En)n).

Case 2 (K # @).

On the basis of (1), we have that also p-atom a has p as a predicate symbol, so
that a substitution 7 and a shifting ¢ exist with a = bta. By (1) and Property 3.3, a
derivation step exists like:

S.c&'

(bta|(rtg + K) = al(K +rg)) — O, 4)
where by Lemma 5.1 we have that:
0 = (N&y|(ra + K)INgE'y)n',  with B = N[N, )

The proof can be now completed by exploiting derivation step (4) as a sort of ‘bridge’
between (1) and (2). In fact, since S is specialisation independent rule, derivation
step (4) is a congruent lowering of step (2) by K, so that a shifting p’ exists with
rp’ =ra and (Me|Mye)p’ = Nsy[Ngy. As a consequence (see (5) and (2)), we can
write:

Nyylra|Nyy = Ngy|Nyy +ra = (Mge|Mye)p' +rp’ = (Melr|Mye)p',

with rg =rp’.

Then, by Property (3.1-ii) we have that Ny = Mep’, which obviously implies:

#N; = #M. (6)
Now, let us note that by Lemma 5.1 it must be:
R = (An|K|A &)y, with B = AglA,. (7)

Since S is a specialisation independent rule, derivation step (4) is a congruent
lowering of step (1) by rg, so that a shifting p” exists with Kp” = K and
(Asm|Aym)p” = Nsy|Nyy. As a consequence (see (5) and (7)) we can write:

Ny |K|Ngy = NgyINgy + K = (4;n|Aym)p” + Kp" = (4A;n|K|A4m)p”,

with K = Kp".

Then, by Property (3.1-ii), we have that Nyy = Asmp”, which obviously implies:

#Ns = #As. (8)
By (2) and (7), it is M |M, = As|A, = B. By (6), (8) and Property (3.1-i), we have
that:

A; = M; and A, = M,,.
Substituting in (7), the thesis is obtained. [
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5.2 Notes on the structure of stack-queue derivations

Let us consider a stack-queue derivation like:

A1B 2% o where M = ¢, ¢5,..c; and M/B = . (1)

By definition of stack-queue scheduling rules, only atoms in A together with atoms
deriving from A and allocated in stack mode can be rewritten in derivation (1).
Thus, derivation (1) has the form:

SO.c1é1, SQ.c262,
AIB Y2557 X 14, |Bay |1, DO

SQ.cit1Ci+1,0i41  SQ.cnén,on

Xi|Ai|Boi..0i]Y;

where:

Xu|An|Bay...on| Yi, (1a)

e cach X; is formed by new atoms deriving from A which are allocated in stack
mode,

e cach 4; is formed by atoms of 4 which are not yet rewritten,

e cach Y; is formed by new atoms deriving from 4 which are allocated in queue
mode.

The above structural considerations suggest the following formal definition.

Definition 5.2 (A-preq type derivations)

SQM .
A p-SLD derivation, of the form A|B gd e, is of pre-queued type w.r.t. the subgoal
A (simply written A-preq type in the following) if the only rewritten atoms are:

— atoms from the subgoal A4,
— atoms deriving from 4 and allocated in stack mode.

Note that Definition 5.2 is significant even if B = . It is evident that any 4-preq
derivation has the form (1a). In the sequel we use the following shortened notation
to represent A-preq type derivations:

A1B 257 43\Bo| A, (Ap)

where, with reference to (1a), A° = X;|A4; stands for ‘stacked subgoal derived from
A’, and A? = Y, means ‘queued subgoal derived from A’. It is evident that in any
preq type derivation we have M/B = .

The following definition characterises an A-queued derivation as an A-preq deriva-
tion where all atoms of 4 are rewritten together with all atoms deriving from 4 and
allocated in stack mode, i.e. 4= &. Intuitively, an A-queued derivation is an A-preq
derivation which cannot be extended without loosing its A-preq nature. Indeed, the
acronym ‘A-preq’ stands for ‘A-pre-queued’ derivation.

Definition 5.3 (A-queued derivations)
Let SQ be a stack-queue scheduling rule. A derivation which is of A-preq type and
has the form:

AB %Y Bg|as (Aq)

is said to be queued w.r.t. A (simply written A-queued in the following).
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In the following Section 5.3, we will exploit the notations introduced in (Ap) and
(Aq) to represent A-preq type and A-queued derivations, respectively. It is worth
noting that starting from a p-goal of the form A|B, when the A-queued derivation
is reached, the last resolvent presents a situation where the roles of 4 and B are
exchanged. In practice, restarting from Bo|A4Y, the derivation can attempt to proceed
towards a (Bo)-queued derivation. The proof of an important result in Section
5.3 (Duplication Theorem 5.3) is based on this cyclic behaviour of stack-queue
derivations.

5.3 Duplication tolerance

In this section an important property is shown for stack-queue scheduling rules. Let
us give an intuitive presentation of this result, which is stated in the full duplication
theorem (Theorem 5.4). Suppose that a p-SLD derivation Dr of G in P can be
developed via a stack-queue scheduling rule SQ. Then consider a p-goal G’ which
is equal to G apart from the duplication of some atoms. Furthermore, suppose that
each copy is scheduled after the corresponding original atom. In this hypothesis,
the full duplication theorem asserts that a p-SLD derivation of G’ in P exists via
the same scheduling rule SQ, where all derivation steps of Dr are redone in the
order.

The full duplication theorem is basic for the proof of the final results of the paper,
i.e. results about redundancy elimination tolerance which are given in Section 6.
Indeed, let us consider the problem of preserving program termination. Intuitively,
program termination is preserved if the introduction of redundancy elimination
does not provoke any really different new derivations. Reversing the viewpoint,
termination is retained if any derivation, developed in presence of redundancy
elimination, can be traced again when redundancy is left in place. The full duplication
theorem asserts this kind of fact in the simplest case, i.e. when redundancy has the
form of a replica of atoms already present in the initial p-goal, provided that the
scheduling rule is of stack-queue type.

First we show a duplication theorem (Theorem 5.3) which is valid when only one
atom or group of adjacent atoms is duplicated. Then the result is easily extended to
obtain the full theorem. Though intuitive in appearance, Theorem 5.3 has a relatively
complex proof. In this section we give only a sketch of the argument. In the sketch,
we will make reference to the particular case of completely ground derivations, i.e.
derivations such that all resolvents are ground. This simplification will allow us to
highlight the essence of the argument, without having to do with technical problems
deriving from variable instantiations. Formal presentation of the proof of Theorem
5.3 is given in Appendix B. Note that the hypothesis of ground resolvents is verified
in the case that no new variable is present in clause bodies and initial goals are
ground.

Theorem 5.3 (duplication theorem)

Let P be a logic program and SQ a stack-queue scheduling rule. Given two p-goals
of the form A|B|C|D and A|B|C|Bxz|D, the following implication holds:

https://doi.org/10.1017/51471068401001235 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068401001235

574 F. Ferrucci, M. 1. Sessa and G. Pacini

ABlcp "5 g (1)

— 3Y such that A|B|C|Bz|D 25’ R

with X =, Y and #Q <#R.

Proof (sketch)
Let A(SQ, n) denote the subset of A(SQ) such that, for any derivation Dr in A(SQ, n),
it is #Dr < n, where #Dr denotes the length of Dr. We show the thesis by induction
on n. In other words, we show that the thesis holds when derivation (1) belongs
to A(SQ,n), for any n > 0. The fact is obvious for A(SQ,0). In order to justify the
inductive step from A(SQ,n — 1) to A(SQ, n), for n > 0, let us consider a derivation
like:

(AIBICID =5 Q) € A(SQ,n) (1a)

and show that (A|B|C|Bzx|D serF R) exists with X <; Y and #Q < #R. The

following three possible situations must be taken into account. Then, we start with
case 3, which is the most significant one.

1. derivation (1a) is of (4|B|C)-preq type,

2. derivation (la) is of (A|B|C|D)-preq type, and not of (4|B|C)-preq type,

3. derivation (1a) is not of (4|B|C|D)-preq type.

Case 3.

As already said, the simplified argument, which we use in this sketch, works in the
hypothesis that all resolvents are ground, so that derivation (1a) has the following

form:
4|B/cip 2L Bic|pjat £ c|pjaeBe L
D|49|B9|C? X5 441B4|C9|D -5 0, where HIK|M|N|T = X. (2)

Then, it is intuitive that a derivation can be constructed like the following, where ¢
is a suitable shifting:

AB|C|BzID 225 Bic|Bx/D|4¢ 225
C|Bx|D|44|B *2Y Br|D|49)B|Cce 225 )
D|A‘1|Bq\Cfi\BqQSQ_’])\TAq|Bq|Cq|Bq9|Dq.

By construction of (2), 49|B4|C?|D14 N Q is a derivation belonging to A(SQ,m),
with m < n. By inductive hypothesis, a derivation exists such that:

Q.Y'.P
—

A4|Ba|ca|BIg|De 25" R, (5)

with T =; Y’ and #Q < #R’. (5a)
By Property 4.3, derivations (3) and (5) can be combined to yield a derivation of
the form:

ABIC|BD "N a1 gajcaypagipe P25 R, 6)

where R is a p-variant of R’, which implies #R = #R’. Finally:
X = HIKIMIN|T = (HIKIMIK|N|Y'), #Q <C9 #R' = #R.
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Case 2.

HIK|M|N
Derivation (1a) has the form A|B|C|D ‘—‘»‘ D5|A?|B1|C1|D1, where H K| M|N=X.

Analogously to case 3), a derivation can be constructed like:

SQ.(H|K|MIK|N).P
—

A|B|C|Bx|D D¥|A%|B4|C4|Bix| DA

Case 1.

Derivation (1a) has the form A|B|C|D = (A|B|C)*|D|(A|B|C)4. A derivation exists
like:

(4BIC)|Bx|D 25 (4|BICYBx/DI(AIBIC). O

Now we can state and prove the full duplication theorem, which extends the
previous Theorem 5.3 to the duplication of two or more not adjacent atoms in the
initial goal of a p-SLD derivation.

Theorem 5.4 (full duplication theorem)

Let P be a logic program and SQ a stack-queue scheduling rule. Given a p-goal
N + F such that:

Vb[s] € F, 3b[s'1 € N withs <s,

the following implication holds:

SQ.M.P
N — Q

— 3Y such that N+ F 25" R

with M <) Y and #Q < #R.

Proof

By hypothesis, the subgoal F is made of duplicated atoms. Then, the proof is by
induction on the length of F. Indeed, if F is empty the thesis is true. Now, suppose
that the thesis is already proven for any F with #F = n > 0. Then let us consider
any p-goal G = F|b[s] with #F = n. By inductive hypothesis a derivation exists such

that:
N+F25' s, with Mc.Z and #0Q <#S.

By hypothesis, three p-goals 4,C and D exist together with a p-atom b[s'], such
that:

N + (F|b[s]) = A|b[s']|C|b[s]|]D and N + F = A|b[s']|C|D.

As a consequence, Theorem 5.3 can be applied to N 4+ F and N + (F|b[s]) yielding:

N+ FIbls]) *25" R, with Z <, ¥ and #S < #R.

Now the induction step is completed, because:

Mc, Z<, Y and #0 < #S < #R. O
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6 Redundancy elimination tolerance

In this section, the tolerance of stack-queue scheduling rules to redundancy elimi-
nation is considered. The preservation of program termination in shown in Section
6.1. The preservation of the completeness of EV R, loop check is shown in Section
6.2 for function free programs. First, the idea of goal reduction, which is originally
given in Ferrucci, Pacini and Sessa (1995), and is recalled in Definition 2.1 of this
paper, is restated. Indeed, in Section 2, little attention is paid to the positions of
atoms which are removed from a resolvent. However, if the execution is based on
atom priority values, it is intuitive that removing an atom without any convenient
expedient may overthrow the essence of previous atom scheduling. Thus, a refined
definition of goal reduction is given below (Definition 6.1) which fits the frame of
priority SLD derivation mechanisms.

The inspiring idea of priority reduction is quite simple. According to Definition
2.1, for any removed atom b, an eliminating atom a = bt exists which remains in the
reduced resolvent. Several removed atoms may share the same eliminating one. In
reference to Definition 6.1 below, for any eliminating atom a;[p;], the corresponding
subset A; of eliminated atoms is pointed out. Then, except for the case a;[p;] 4 4},
any aj[p;] is advanced to the least priority value in A;. In other words, each
eliminating atom is advanced to replace the first scheduled atom among its eliminated
ones. Intuitively, the aim is to restore the essence of the previous atom priorities.
The notation {+A4;,1 < j < h} will represent the merging 4; + A» + ... + 4, and the
notation prs(4;) the set of priority values in A;.

Definition 6.1 (priority reduced goals)
Let X be a set of variables, t a substitution and G a p-goal. A p-goal N is a reduced
p-goal of G by 7 up to X, denoted by G >>" N, if the following conditions hold:

(i) G = F + {+ajlpjl, 1 <j<h} + {+4;, 1 < j<h},
where Vb[s] € A, bt=a;, 1<Lj=<h,
()N = F + {+a;[rj], 1 <j<h},
where r; = min({p;} U prs(4;)), 1=<j=<h,
(iii)) Vx € (X Uvar(N)) 1itis xt = x.

Example 6.1
Given the p-goal

G = p(2)[1],q(w)(2], p(a)[3], p(y)[4], q(v)[5],
the following N is a reduced p-goal of G by the substitution t = {z/a,y/a,v/w}:

N = p(a)[1],q(w)[2].
Note that p(a)[3] has been advanced to replace the first of the atoms it eliminates,
that is p(z)[1]. O

Now, the idea of priority reduced SLD derivation can be defined as a generalisation
of Definition 3.5. In essence a priority reduced SLD derivation is a p-SLD derivation
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where, at any step, a priority reduction of the resolvent according to Definition 6.1
is allowed.

Definition 6.2 (priority Reduced SLD derivation)

Let P be a program and G, a p-goal. A priority reduced SLD derivation of G, in P
(p-RSLD derivation for short) is a possibly infinite sequence of priority reductions
and derivation steps

¢o&o.00 k.0,
G, >>% N, — Gy ... Gy >>% Ny —> Gpqq >>% Npgq ...

where, for any j > 0,
(i) ¢j is a clause in P,
(i) var(c;&;) N (var(G,) Uvar(c,éo) V... Uvar(cj—1¢j—1)) = &,
(i) G; >>% N; up to var(G,0,...0,_1).

The notation
S,D
G —>>N
will be used to represent a p-RSLD derivation which is developed in agreement with

the scheduling rule S using the template D. The last resolvent N is intended to be a
reduced resolvent.

6.1 Termination preserving

In this section, the redundancy elimination tolerance of stack-queue scheduling
rules is shown, with reference to program termination (Theorem 6.1). The following
lemma is fundamental for proving the preservation of termination, as well as the
preservation of EV Ry, loop check completeness.

Lemma 6.1
Let P be a program and SQ a stack-queue scheduling rule. The following implication
holds:

R ) (1)

50.Z. .
= 37 such that G ez R, with X =1 Z, #0 < #R.

Proof
The proof is by induction on the length of X. If #X = 0, the thesis is trivially
verified with Z = &. Then let us consider X = ¢|H. Derivation (1) may be rewritten

as:
(G >>*N)2E F¥ s 0. )

Since #H < #X, by inductive hypothesis, a p-SLD derivation exists of the form:
F25" T, with H <1 K, #0 < #T. (3)

By Property 4.3, the first derivation step of (2) and derivation (3) can be combined
to yield a derivation of the following form:

N 325 gk S, where S is a p-variant of T. @
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Now, let us consider the p-goal Gt. With reference to Definition 6.1, we have that:
Gt = (F + {+a;[p;], | < j < h})t+ {+4;7, 1 < j < h} =Pes-6.1-iil)
F+{+ajlpjl, 1 <j < h}+ {+4j7, 1 < j < b} =Pe-017m0
F+{+a;[rj], 1 <j < h} +{+Ajt{rj/p;j}, 1 < j < h}
=N+ {+Aje{rj/pj}, 1 < j < h}P,
where a;[r;] 4 Ajz{r;j/p;} and any atom in 4;t{r;/p;} is a duplicate of a;, 1 < j < h.
Then, N and Gt verify the hypothesis of Theorem 5.4. As a consequence, by (4) a

derivation also exists such that:
50.2.P

Gt — V, with ¢|K €, Z and #S < #V (5)
Now, let us apply lifting Lemma 4.2 to (5). We obtain that a p-SLD derivation exists
like:

624" R (6)

where, applying lowering Lemma 4.1 to (5) and (6), we have that #V = #R. Finally,
we conclude:

X=cHY Kk P 2z,
#O <V #T = 45 <O ¢V =4#R. O

Theorem 6.1 (Termination preserving)

Let P be a program, G a p-goal and SQ a stack-queue scheduling rule. If every
p-SLD derivation of G in P via SQ is finite, then any p-RSLD derivation via SQ is
finite too.

Proof

Let T be the p-SLD tree of G in P via SQ. By hypothesis, every p-SLD derivation
of G in P via SQ is finite. As a consequence, since T is a finitely branching tree,
by Konig’s lemma (see Theorem K, in Knuth, 1997) T is a finite tree. Let f be the

. . 50.X.
depth of T. Given any p-RSLD derivation of the form G Q—X>P>> e, by Lemma

50.Z. L .
6.1 a p-SLD derivation of the form G Q—Z>P e exists in T, with X =; Z. However,
#7 < f, so that we obtain #X < #Z < f. In conclusion, the length of all p-RSLD
derivations of G in P via SQ is limited by f. []

Let us close this section with two examples which show that both stack-queue
scheduling and eliminating atom advancement are essential for redundancy elimina-
tion tolerance. The first example shows the necessity of advancement of eliminating
atoms. The second one is an example of state scheduling rule which is not tolerant
to redundancy elimination, though goal reduction is performed in agreement with
Definition 6.1. Of course, the scheduling rule is not of stack-queue type. In the
following sketches of p-SLD and p-RSLD derivations, explicit indication of priority
values is omitted, for the sake of brevity.

2 The notation Ajt{rj/p;} means that the priority value r; is replaced by p; in the p-goal 4;t.

https://doi.org/10.1017/51471068401001235 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068401001235

Redundancy elimination tolerant scheduling rules

Resolvent Reduced Resolvents
plg(a) >>* plata) =

g(x1)lpla(a) >>11/ plgta) =

q(x2)Iplg(a) >>02/a pla(a) =5

Resolvents

q(x, x1)[t(x1, x) >>*

rls(xa, x1)[rlg(x, x2)|t(x1, x) >>*
s(x2, x1)1q(x, X2)|t(x1, X) >>*

q(x, x2)[t(x2, x1)|t(x1, x) >>°

Fig. 3

Reduced Resolvents

S,c3
q(x, x1)|t(x1, x) —
S,cl
Fls(xa, x1)|q(x, x2)t(x1, X) —>
S,c2
S(x2, x1)|q(x, x2)[t(x1, X) —>

S,e3
q(x, x2)|t(x2, x1)[t(x1, x) —>

579

Fig. 4

Example 6.2
Let us consider the stack scheduling rule (i.e. the usual leftmost rule) and the
following single clause program P:

¢ =p < q(x)lp.
It is evident that all p-SLD derivations fail. However, if advancement of eliminating

atoms is not performed, an infinite p-RSLD derivation of P exists, as shown in
Figure 3. O

Example 6.3
Let S be a scheduling rule which behaves as a stack rule, with an exception when
atoms having s as a predicate symbol are rewritten. In this case new atoms are
positioned immediately after the first old atom, if one exists. Then, let us consider
the logic program P consisting of the following clauses:

cl=r«—

2 =s(x,y) «— t(x,y)

3 =q(x,y) < rls(z,y)Irlg(x, 2).
It is easy to verify that all p-SLD derivations of P terminate independently of the
initial p-goal. In fact, given a p-SLD derivation of G in P, where G is any p-goal,
two cases are possible: either an atom with predicate symbol g is rewritten or not.
If no atom with predicate symbol g is rewritten, the derivation terminates evidently.
Otherwise the derivation fails, as described below:

s S.c3 Sl
G — q()IK —> rls(.)Irlg()IK —

SCIFIIK 25 rtla(IIK 25 t0)1g()IK.

Now let us show that, if reduction of resolvents is allowed, an infinite p-RSLD
derivation of P exists.
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It is easy to verify that the infinite RSLD derivation in Figure 4 cannot be pruned
neither by EV Ry loop check nor by more powerful checks (like SIRy) which
are based on subsumption relationships between resultants (Bol, Apt and Klop,
1991). O

6.2 Preserving the completeness of EV Ry, loop check

In this section we prove the preservation of EV Ry, loop check completeness, passing
from p-SLD to p-RSLD. The result holds for function free programs, provided that
stack-queue scheduling rules are used in combination with priority reduction of
resolvents, as introduced in Definition 6.1. The section starts with a characterisation
of EV Ry, loop check which exploits the concept of priority shifting and is equivalent
to the one stated in Definition 2.3. In essence, passing from Definition 2.3 to Defi-
nition 6.3 below, only assertion (ii) is modified. On the other hand, the requirement
N; = Njtz is plainly equivalent to N;t =; N}, since any shifting t implies that the
order of atoms is preserved.

Definition 6.3 (Priority Equality Variant Check for Resultants)
A p-RSLD derivation

€o€o00 Ch—1En—1,0n—1

G, >>% N, — Gy ... Gj_1 >>"1 Nj_4 — Gy, >>% Nj...

is pruned by priority Equality Variant of Resultant check (called p-EV Ry check, in
the following), if for some i and j, with 0 < i < j, a renaming 7 and a shifting
exist such that:

(1) GOHO...Qj_l = GOHO...BZ»_IT,
(11) Nj = NiTL

With reference to the above definition, any couple Rs, = [Ny, G,0,...0;,_1] is a
reduced resultant. Given two reduced resultants Rs; = [N}, G,0,..0;_1] and Rs; =
[Ni, G,0,...0,_1], for which requirements (i) and (ii) of Definition 6.3 hold, we will
write Rs; = Rs;. In other words, Definition 6.3 expresses that p-EV R;, loop check is
based on detecting that a reduced resultant is obtained which is connected by the
relationship = to a preceding one in the same derivation. It is worth noting that =
is an equivalence relationship.

Now let us prove Theorem 6.2, which states that the completeness of p-EV R,
loop check is preserved passing from p-SLD to p-RSLD, if stack-queue scheduling
rules are used. To this aim we provide a necessary condition which holds whenever
p-EV R, prunes every infinite p-SLD derivation of a goal G in a program P via a
scheduling rule S. Indeed, as shown in Lemma 6.2, in this hypothesis the length of
resolvents of all possible derivations of G in P via S is limited. The structure and
the proof of Lemma 6.2 are strictly analogous to the ones of Lemma 2.2. Note also
that Lemma 6.2 holds for any scheduling rule. On the contrary, the stack-queue
hypothesis is necessary in Theorem 6.2, which concludes the section.
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Lemma 6.2

Let P be a program and G a p-goal. Suppose that all infinite p-SLD derivations
of G in P via a scheduling rule S are pruned by p-EVR;. Then, a finite bound [
exists such that, for each resolvent R in any p-SLD derivation of G in P via S, it is
#R <.

Proof
The proof of this lemma can be obtained from the one of Lemma 2.2, by means of
the following replacements:
‘Let T be the p-SLD tree of G in P via S’ for ‘Let T be an S-tree of G in P’,
‘By Determinism Lemma 4.3’ for ‘Since T contains all SLD derivations of G in P’,
‘p-EV Ry’ and ‘p-variant’ for ‘EV R}’ and ‘variant’, respectively. []

Theorem 6.2 (p-EV Ry, loop check completeness preservation)

Let P be a function free program, G, a p-goal and SQ a stack-queue scheduling
rule. Suppose that all infinite p-SLD derivations of G, in P via SQ are pruned by
p-EV Ry, then all infinite p-RSLD derivations of G, in P via SQ are pruned by
p-EVRL.

Proof
o o . . 50.x
Let D be an infinite p-RSLD derivation of G, in P via SQ. Let (G, i>>> 0)

be any finite prefix of D. By Lemma 6.1, a p-SLD derivation D’ = (G, et R)
exists with #Q < #R. On the other hand, by Lemma 6.2 a bound [ exists such
that #Q < #R < I. However, Q is the generic reduced resolvent in D, so that the
number of atoms in all reduced resolvents of D is bounded by I. As a consequence,
the number of atoms in all reduced resultants of D is also limited. Since the
program P has finite many predicate symbols and constants and no function symbol
is allowed, the relationship = between reduced resultants of D has only finitely
many equivalence classes. Then, for some 0 < i < k in D, we have that the k"
reduced resultant is related by = to the ith one. This implies that D is pruned by
p-EVR.. 0O

7 Conclusions

In the paper, the problem of possible undesirable effects of redundancy elimination
from resolvents is addressed. In particular we have shown that program termination
and loop check completeness can be lost. Conditions are characterised which ensure
the redundancy elimination tolerance, in the sense that program termination and
completeness of equality loop check are preserved when redundancy is eliminated.
However, difficulties in analysing interdependence of redundancy elimination effects
from the used selection rule have arisen, and the necessity of a framework to
formalise suitable features of selection rules has been highlighted. To this aim, a
highly expressive execution model based on priority mechanism for atom selection
is developed in the paper. The distinctive aspect is that primary importance is given
to the event of arrival of new atoms from the body of the applied clause at rewriting
time, when new atoms can be freely positioned with respect to old ones in the
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resolvent. Then, at any derivation step, the atom with optimum priority is simply
selected.

The results presented in the paper show that the new computational model is
able to give remarkable insights into general properties of selection rules. As a
matter of fact, the priority model allows us to formalise the delicate concepts on
which the axiomatic definition of specialisation independent scheduling rules is
based. As a quite unexpected result, the specialisation independence turns out to be
equivalent to stack-queue scheduling technique, which has a very simple operational
characterisation. In other words, the priority mechanism is necessary to formalise
the real semantic features of specialisation independent scheduling rules. On the
contrary, the full generality of the same mechanism can be abandoned if only
operational aspects of specialisation independent rules are of interest, in the sense
that all we need is a ‘watershed” between the stacked and the queued atoms.

It is widely acknowledged that the study of selection rules is a difficult subject
which deserves attention. We are confident that the computational model proposed
in the paper can be usefully exploited in future work to get further insights into
topics which are related to selection rule theory and application, such as loop check,
termination and optimisation of derivation processes.

A Appendix

This Appendix contains the formal proofs of Properties 3.3 and 4.1. The very simple
Property Al is considered before proving Property 3.3.

Property A.1
Let S be a complete set of derivation steps. Given a p-goal G and a clause ¢, the
following implication holds:

3Ds derivation step of the type (G -, o), (1)
= 3Ds of the type (G -, e), with Ds' € S.

Proof
Let G = a|K and ¢ = (ht «— B). By (1) and the completeness of S (part i), a
derivation step exists of the form:

(alK = (K +BEO)) € S (2)
By definition, the derivation step in (1) has the form:

alK — (K + B&1).
Then, it is evident that a derivation also exists like:

Ds' = (alK = (K + B&EO)u).

By construction, derivation steps (2) and Ds’ are congruent lowerings of each other.
Then, by completeness of S (part ii), derivation step Ds’ belongs to S. [
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Property A.2 (Property 3.3)
Let S be a complete set of derivation steps. Given two p-goals ayz|G and alF, let us
fix arbitrarily a finite set V' of variables. The following implication holds:

dDs derivation step of the form ayz|G e (1)

= 3Ds' of the form a|lF — e, with Ds' € S and nvar(Ds)NV = @.

Proof

Let ¢ = (ht «— B). On the basis of (1), by definition of derivation step, a
standardisation apart renaming & for ¢ and an mgu f exist, with ayf = (ht)&'p.
Then, let us consider a renaming ¢ of ¢&’, such that the following assertions hold
for the range of &:

var(a|F) Nvar(ct'é) = &, (2a)
domain(y) Nvar((ht)&'¢) = @, (2b)
domain(E~Y) Nvar(ay) = @ (2¢)
var(cZ'E)NV = @. (2d)

By facts (2b) and (2c), we have that:

apé'p =) app = (h)&'p = (h)&'E7' B =) (ht)&'EyE' B
In other words, a and (ht)¢’¢ unify through the unifier y¢~!f. On the other hand,
the fact (2a) says that £'¢ is a standardisation apart renaming for ¢ with respect to

alF. Then, a derivation step exists of the form a|F “5 e, By hypothesis the set S is
complete, so that by Property A1 we have also a derivation step such that:

Ds = (a|F &5 o) €35.
Since it is nvar(Ds') = var(c&'E), by (2d) we have that nvar(Ds' )NV = &. [
Property A.3 (Property 4.1)
Let ¢ = (ht «— B) be a clause. Let us consider two derivation steps Ds; and Ds,
such that the Ds; is a lowering of Ds; by X. The following implication holds:

Dsi = (alK — (K +BE'0')), (1)

Ds; = (ata|(Kzo + X) — (Kt + BE"0" + X)) )

= 36 such that Kty”" = Ku's, BE"YW" = BE WS,
where 0 is a renaming, if 7 is a renaming.

Proof
By definition of derivation step, we have:
var(alK) Nvar((ht «— B)¢&') = &, (3)
var((a|lK)t) Nvar((ht «— B){") = @, 4)
1 = mgu(a,(ht)¢’), p" = mgu(ar, (ht)S"). (5
Let 7 = t/var(alK)P and ¢ = ((&')~1¢")/var((ht «<— B)E'). By (3) it is:
domain(n) N domain(¢) = &, (6a)
(ht «— B)¢'n = (ht «— B)¢' and (a|K)¢ = (a|K). (6b)

3 The notation t/var(a|K) represents t restricted to the variables of a|K.
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As a consequence of (6a), the union (7 U ¢) is a well defined substitution. Then, we
may write that:

a(n U d))#” —(6b) an,u” — ar,u” —0 (ht)f”,u” — (ht)é/(é/)flénﬂ//
= ()" = (h)&'(m U )",

so that (n U ¢)u” is an unifier of a and (ht)&’. Since i/ is an mgu of a and (ht)&’, a
substitution ¢ exists with:

(mU P’ = 's. (7
Then, we have:

Kty =Knp’ =) K(nu )’ =7 Ku's, (8a)

BE'u' = BE(E) e = BE g = BE (U g’ =7 BE . (8b)

Now let us suppose that 7 is a renaming. In this case, facts (3) and (4) become
symmetric at all. As a consequence, by symmetry with respect to (8a) and (8b), a
substitution y exists such that Ky’ = Kty and B&'y' = BE" /"y, Then we have:

(K + BE'W)oy = (K" + BE W)y = Ky + B
It is evident that ¢ is a renaming for Ky’ + By, then the thesis is verified. []

B Appendix

In this Appendix we provide a formal proof of the duplication theorem (Theorem
5.3). Such a proof exploits two lemmas which are given below. Lemma B1 establishes
a condition which allows us to repeat derivations via a specialisation independent
scheduling rule, when we pass from a goal G to a suitable kind of instantiations
of G. Lemma B1 is a correspondent, for p-SLD derivations, of part (ii) of Strong
Lifting Lemma (Gabrielli, Levi and Meo, 1996). Indeed, both part (ii) of the Strong
Lifting Lemma and Lemma B1 can be seen as results about sufficient conditions for
derivation lowering from a goal G to instantiations of G itself. Here a direct proof
of Lemma B1 is given which takes into account technical aspects concerning our
priority value mechanism. Lemma B1 does not relate resolvents, because it is not
important for the purposes of this Appendix.

Lemma B.1
Let S be a specialisation independent scheduling rule, G a p-goal and ¢ a substitu-
tion. The following implication holds:

e — Gop e (1)
Proof

The proof is by induction on the length of X. If #X = 0, the thesis is trivially true.
For #X > 0, let G = a|F, X = ¢|H with ¢ = (ht «— B), and rewrite derivation (1)

as follows:
alF Sty (0 = (F + Bén)y) S o, where yu=0. (2)

Then, let us consider the substitution ¢, = ¢o,, where o, is such that (a|F)0¢, =
GO¢, is ground. Since y is an mgu of a and (ht)¢, we have ay = (ht)¢y, which means
abp, = aypdp, = (ht)lyudp, = (ht)é0¢,. But al¢, is ground, so that we obtain
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the equality (af¢,)0¢, = al¢, = ((ht))0¢,. In other words, ad¢p, and (ht)¢ unify
through the unifier 0¢,. Moreover, the renamed clause ¢ is obviously standardised
apart with respect to the ground p-goal (a|F)0¢,, so that a derivation step like
(a|lF)0¢, <5 e exists. Thus, by completeness of S and Property Al, a derivation
step also exists of the form:

S.cé, ,

(GO, = (alF)0¢py) == (R = (FOp, + BEn')n). 3)
Now, the substitution # is an mgu of al¢, and (ht), so that a substitution 7 exists
with:

0, = . (4)

On the other hand, since S is specialisation independent, step (3) is a congruent
lowering of the first step of (2) by @, i.e.

3p such that Fp = F, Bnp = Br/, (5)

which implies:

Quopg = (F + BEm)ypudepp™" = (Fp + Bémp)0dep~" =1 (F + BEn)0ep~".
But F0¢, is ground, so that (FO¢,)0¢, = FO¢,. As a consequence:
Qudg = (FOpg + Bén)0dgp" = (FOp, + Bén'pmp~! = Rup™".

By inductive hypothesis applied to the tail of (2), we have that (Qu¢, = Rng_l)

i o, which by Lifting Lemma 4.2 implies that R i e. Now, by Property 4.3, the
last obtained derivation can be combined with (3) yielding:

(GO = GOpy) ~> .
By Lifting Lemma 4.2, we conclude (GO¢ L o), so that the inductive step is
completed. []

The following Lemma B2 is a special form of determinism lemma which holds
for preq type stack-queue derivations. Roughly speaking, the lemma states that an
A-preq type derivation, starting from a p-goal of the form A|X, can be replicated
from a p-goal like 424]Y, where 4 is a renaming. Note that no hypothesis is made on
X and Y which can be completely unrelated. The intuitive explication is that only
atoms deriving from A are rewritten so that neither X nor Y have any active role
in the derivations. The formal statement and the proof of Lemma B2 are preceded
by the quite simple Property Bl.

Property B.1
Let SQ be a stack-queue scheduling rule. The following implication holds:

5Q.D
AlX el Q, of A-preq type (1)
AyAlY 28 R, of (Ay4)-preq type, where y is a renaming (2)

= 30,0 such that R/(4y4) = (Q/A)dd, where J is a renaming.
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Proof

By hypothesis, derivations (1) and (2) are of A-preq and (AyA)-preq type respectively,

so that D/A = D/(Ay4) = D. Then, by lifting Lemma 4.2, a derivation exists like:
a3 (3)

By lowering Lemma 4.1, applied to (3) and (1), a renaming o and a shifting « exist
with Q/A = Tog. By lowering Lemma 4.1 applied to (3) and (2), a renaming f# and
a shifting B exist with R/(AyA) = T Bp. Finally, we derive that:

R/(Api) = Togo ' 'pp = (Q/A)a "0 ' . O

Lemma B.2 (preq type determinism)
Let SQ be a stack-queue scheduling rule and V' any finite set of variables. Let A|X
and AJA]Y two p-goals, where A is a renaming. The following implication holds:

AlX oy AS| Xp|A1, of A-preq type, (1)
K0
— 36,6 and D = (A44]Y “25 4565|Y 014955), of (422)-preq type,
where 0 is a renaming and nvar(D)NV = &.

Proof

Let A = a|F. We show Lemma B2 by induction on the length of the template K.
If #K = 0, the assert is evident. If #K > 0, let K = c|H with ¢ = (ht «— M |M,).
Derivation (1) can be rewritten as follows:

alFIX "5 (0 = @ FulXplat) 25 451X |40 (1a)
with a® = M apu and A% = (a°|Fu)’. (1b)

Then, by Property 3.3 with reference to the first step of (1a), a derivation step Ds

exists such that:
SQ.cty

Ds = ((a|F)A4)Y — R), with nvar(Ds)NV = &. (2)
Since the selection rule SQ is stack queue, it must be:

R = Msrsz/lin\YMMq‘czn.
By Property B1 applied to derivation step (2) and the first step of (1a), a renaming
B and a shifting B exist with:

Mtyn|F22n\Mytyn = R/?/(A22) = (Q/"/A)BB = (a’|Fula?) .

Now, by (1b) it is #a’ = #M,tyn, so that the equality Mtyn|Fiin = (a’|Fu)Bp
holds, by Property (3.1-1). Thus, the inductive hypothesis can be applied to the tail of
(1a). As a consequence, a p-SLD derivation D’ exists, which is of (M tyn|F/in)-preq
type and has the following form:

R LT (@) Fupo'd|Y nr|Z =19 456'8'|Y yu|Z), (3)
with nvar(D") N (var((alF)AAY ) U nvar(Ds) U V) = @. (3a)

On the basis of (3a) above, derivation step (2) and derivation (3) can be combined
to yield the derivation D:
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D = (424 5 4568 | nr|Z), 4

where D is of (AA4)-preq type. The thesis is now proven. Indeed, by Property
B1 applied to derivations (1) and (4), a renaming 6 and a shifting ¢ exist with
A%'8'|1Z = (A°)A9)68, so that by Property (3.1-i) we have A4%3'8’ = A°65 and
Z = A169. The fact that nvar(D) NV = @ follows from (2) and (3a). [

Theorem B.1 (Theorem 5.3 — duplication theorem)
Let SQ be a stack-queue scheduling rule. Given two p-goals of the form A|B|C|D
and A|B|C|Bz|D, the following implication holds:

4B|cp *E5 ) (1)

SQ.Y.P
— 3Y such that (4|B|C|Bz|D 25" R)

with X <; Y and #0 < #R.

Proof

Let A(SQ, n) denote the subset of A(SQ), such that for any derivation Dr in A(SQ, n)
it is #Dr < n, where #Dr denotes the length of Dr. We show the thesis by induction
on n, i.e. we show that the thesis holds when derivation (1) belongs to A(SQ,n), for
any n > 0. The fact is obvious for A(SQ,0). In order to prove the inductive step
from A(SQ,n — 1) to A(SQ,n), for n > 0, let us consider a derivation like:

(A1BICID Y 0) € A, n), (1a)

and show that (4|B|C|Bx|D ety R) exists with X <; Y and #Q < #R. Actually,

the proof of the inductive step will be organised in two phases:

o first, the inductive step is shown in the case that the initial p-goal A|B|C|D is
ground,
o then, the validity of the inductive step is extended to generic initial p-goals.

Let us recall that the sketch of Section 5.3 was given in the simplifying hypothesis
that: every clause body introduces no new variable and initial p-goals are ground.
In this sense, we may say that the first phase removes the first restriction, while the
second one is retained. In the second phase, also the restriction on the groundness
of initial goals is overcome.

First phase (the initial p-goal A|B|C|D is ground).

With reference to (la), the following three possible situations must be taken into
account. Then, we start with Case 3, which is the most significant one.

1. derivation (1a) is of (4|B|C)-preq type,
2. derivation (la) is of (A4|B|C|D)-preq type, and not of (4|B|C)-preq type,

3. derivation (1a) is not of (4|B|C|D)-preq type.
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Case 3.

Derivation (1a) has the following form:
A|B|C|D 2L B|c|p|4¢ £ ¢|pjagiBe L
D|49B1|CY > 49|B4|CY|DI > 0, 2

where HIK|M|N|T = X.

In fact, since 4|B|C|D is ground, in each of the four initial segments of (2) only
standardisation apart variables, introduced in the same segment, can be instantiated.
In particular, var(A9) are not instantiated in the second segment, var(A%|B?) are not
in the third segment, and var(A49|B4|C?) are not in the fourth one. It is evident,
as a consequence, that the p-goal 49|B?|C4|D4 consists of four subgoals without
common variables. Now, since also Bx is ground, a derivation can be constructed
through five successive applications of Lemma B2, as depicted below:

50, 50,
A|B|C|Bx|D *25 B|C|Bx|D|A%0a 225
C|Bx|D| A%z BIBp > Bx|D|A%az|BIBICYyy (3)

D| 49| BI B CYy7|BIbp > (Z = Au| BUBBICIyy|BI$ | D150)
where o, 8, y, ¢ and J are renamings.

At each application of Lemma B2, a segment of derivation (3) is obtained on the
basis of a corresponding segment of derivation (2). Moreover, Lemma B2 assures
that each new segment can be freely standardised apart, so that each segment can
be readily added to the sequence of its predecessors in (3). Note that the second
segment of (2) is considered twice, in order to generate both the second and the
fourth segment of (3). In analogy with derivation (2), the final p-goal Z of derivation
(3) consists of five subgoals without common variables. As a consequence, the five
renamings o', B!, 97!, ¢~ and 6! have disjoint domains, so that they can be
joined in order to form a unique substitution

E=(tuptuytuegtus. (4a)
Then, let us consider the p-goal A9|BY|C%|Bi%'|D4, where =’ is a suitable shifting.
By (4a) and Property 3.2, we have that:

AY|BY|C1|BIx| DY =) (41| B1|C1y|Bg|DIo)g =40

(A% BIBB|Clyy|B1dp@|DI65)Ca = Z a. (4b)
By construction of (2) the derivation (49|B?|C4|D4 IR Q) belongs to A(SQ, m), with
m < n. By inductive hypothesis, a derivation exists of the form:

(Z g = A9|BY|CY| Bz | D7) 25" R, (5)

with T =p Y’ and #Q < #R’. (5a)

By (5) and Lifting Lemma 4.2 a derivation exists like:

7%, (6)

>
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By Property 4.3, derivations (3) and (6) can be combined to yield a derivation of

the form:

A|B|C|Bg|p *ELKINE 5 SOVLE o (7)
where, by lowering Lemma 4.1 applied to (5) and the tail of (7), it is #R = #R’.
Finally:

X =H|K|M|N|T g(LS“) (HIK|M|K|N|Y') and #Q <09 #R’ = #R.
Case 2.

Derivation (1a) has the following form:

H|K|M|N .
ABIC|D =" D$|49|B4|CY|DY, with H|K|M|N = X.

Analogously to preceding case (3), through Lemma B2 a derivation can be con-

structed like:
SQ(H|K|MIK|N).P

AIBICIBxlD " S D3 5| 40| BB B Cyy| B p bl D65,
Case 1.
Derivation (1a) has the form:

A|BIC|D — (A|BIC)|D|(A|BIC)".

Through Lemma B2, a derivation can be constructed like:

50X
(A|B|C)|Bn|D — (A|B|C)*yy|Bx|D|(A|B|C)1yy.

Second phase (the initial p-goal A|B|C|D is generic).

In the preceding first phase of this proof, the inductive step is verified in the
hypothesis that the initial p-goal A|B|C|D is ground. Now consider a generic p-goal
of the form A|B|C|D. With reference to (1a), let ¢, be a grounding substitution for
(A|B|C|D)0. By Lemma B1, a derivation exists such that:

X
((A|BIC|D)0ds — Q') € A(SQ,n), (8)
where, by lowering Lemma 4.1 applied to (1a) and (8), we have:
#0' = #0. (8a)

Since the inductive hypothesis is already proven for ground initial goals, by (8) a
derivation exists:

(4B|C|Bx|D)0g, "5 R, 9)

with X =, Y and #Q' < #R’. (9a)
Then, by lifting Lemma 4.2 a derivation exists:

A|B|IC|Bx|D “25" R, (10)

where, by lowering Lemma 4.1 applied to (9) and (10), we have
X E(L%) Y and #0 —(8a) #Ql 5(9a) 4 —(Lem4.1) #R.

As a consequence, the induction step is completely verified. []

https://doi.org/10.1017/51471068401001235 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068401001235

590 F. Ferrucci, M. 1. Sessa and G. Pacini

References

Apt, K. R. (1990) Logic Programming. In: van Leeuwen, J. (ed.), Handbook of Theoretical
Computer Science, Vol. B, pp. 493-574. Elsevier.

Apt, K. R. (1998) From Logic Programming to Prolog. Prentice-Hall.

Apt, K. R., Bol, R. N. and Klop, J. W. (1989) On the Safe Termination of Prolog Programs. In:
G. Levi and M. Martelli (eds.), Proc. Sixth Int. Conf. on Logic Programming, pp. 353-368.
MIT Press.

Apt, K. R. and Pedreschi, D. (1993) Reasoning about Termination of Pure Prolog Programs
Information and Computation, 106, 109—157.

Bol, R. N. (1992) Generalising Completeness Results for Loop Checks in Logic Programming
Theoretical Computer Science, 104, 3-28.

Bol, R. N, Apt, K. R. and Klop, J. W. (1991) An Analysis of Loop Checking Mechanisms for
Logic Programs Theoretical Computer Science, 86, 35-79 .

Bol, R. N. and Degersted, L. (1998) Tabulated Resolution for the well-founded Semantics
Journal of Logic Programming, 34, 67-109 .

De Schreye, D. and S. Decorte, S. (1994) Termination of Logic Programs: the never-ending
story Journal of Logic Programming, 19/20, 199-260.

Dietrich, S. W. (1987) Extension Tables: Memo Relations in Logic Programming. Proc. of
Symp. on Logic Programming, pp. 264-273. IEEE Press.

Ferrucci, F., Pacini, G. and Sessa, M. 1. (1995) Redundancy Elimination and Loop Checks for
Logic Programs Information and Computation, 119, 137-153.

Gabbrielli, M., Levi, G. and Meo, M. C. (1996) Resultants Semantics for Prolog Journal of
Logic Computation, 6, 491-521.

Joyner, W. H. Jr. (1976) Resolution Strategies as Decision Procedures Journal of the Association
for Computing Machinery, 23, 398—417.

Knuth, D. E. (1997) The Art of Computer Programming Vol. 1. Addison-Wesley.

Kowalski, R. (1979) Algorithm=Logic+Control Comm. ACM, 22, 424-435.

Lloyd, J. W. (1987) Foundations of Logic Programming. Springer Verlag.

Pacini, G. & Sessa, M. 1. (2000) Loop Checking in SLD-derivations by Well-Quasi-Ordering
of Goals, Theoretical Computer Science, 238, 221-246.

Ramakrishnan, I. V., Rao, P, Sagonas, K., Swift T. and Warren, D. S. (1999) Efficient Access
Mechanisms for Tabled Logic Programs, Journal of Logic Programming, 38, 31-54.

Smith, D. E., Genesereth, M. R. and Ginsberg, M. L. (1986) Controlling Recursive Inference
Artificial Intelligence, 30, 343-389.

Tamaki, T. and T. Sato (1986) OLD Resolution with Tabulation. In: Shapiro, E. (ed.), Proc.
Third Int. Conf. on Logic Programming: Lecture Notes in Computer Science 225, pp. 84-98.
Springer-Verlag.

Van Gelder, A. (1987) Efficient Loop Detection in PROLOG using the Tortoise-and-Hare
Technique Journal of Logic Programming, 4, 23-31.

Vieille, L. (1989) Recursive Query Processing: The Power of Logic, Theoretical Computer
Science, 69, 1-53.

https://doi.org/10.1017/51471068401001235 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068401001235

