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We continue the study of the boundedness of the operator

Saf(t) =
∫ ∞

0
a(s)f(st) ds

on the set of decreasing functions in Lp(w). This operator was first introduced by
Braverman and Lai and also studied by Andersen, and although the weighted
weak-type estimate Sa : Lp

dec(w) → Lp,∞(w) was completely solved, the
characterization of the weights w such that Sa : Lp

dec(w) → Lp(w) is bounded is still
open for the case in which p > 1. The solution of this problem will have applications
in the study of the boundedness on weighted Lorentz spaces of important operators
in harmonic analysis.
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1. Introduction and motivation

Let L0(µ) be the set of µ-measurable functions on M and similarly for L0(ν),
where (M, µ) and (N , ν) are two σ-finite measure spaces, and let us consider such
operators T that satisfy the inequality

(Tf)∗
ν(t) � C

∫ ∞

0
a(s)f∗

µ(st) ds (1.1)

for a certain positive and locally integrable function a and some positive constant
C independent of t. We recall that f∗

µ is the decreasing rearrangement of f with
respect to the measure µ [5],

f∗
µ(t) = inf{s > 0; µ({x ∈ M; |f(x)| > s}) � t},
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and similarly for (Tf)∗
ν . Let w be a positive and locally integrable function (that

we call a weight) in (0,∞) and set

Lp
dec(w) = {f ∈ Lp(w) : f is positive and decreasing}

with

‖f‖Lp
dec(w) =

( ∫ ∞

0
f(t)pw(t) dt

)1/p

.

Let us also consider the weighted Lorentz space defined by [11,12]:

Λp
µ(w) =

{
f ∈ L0(µ) : ‖f‖Λp

µ(w) =
( ∫ ∞

0
(f∗

µ(t))pw(t) dt

)1/p

< ∞
}

.

These spaces include as particular cases the weighted Lebesgue spaces Lp(u) and
the classical Lorentz spaces Λp(w) and are a unified framework to study weighted
inequalities for many important operators in harmonic analysis (see, for example,
[3, 7, 18] and references therein).

If not otherwise indicated, throughout this paper 0 < p < ∞.
Now, if we define

Saf(t) =
∫ ∞

0
a(s)f(st) ds,

where a is a positive and locally integrable function, we clearly have the following
result.

Lemma 1.1. If T satisfies (1.1) and

Sa : Lp
dec(w) → Lp(w)

is bounded, then so is
T : Λp

µ(w) → Λp
ν(w).

Important examples of operators T as above are the following.

(I) The Hardy–Littlewood maximal operator

Mf(x) = sup
r>0

1
|B(0, r)|

∫
B(0,r)

|f(y)| dy

satisfies (1.1) for a(s) = χ(0,1)(s) whenever dµ = dν = u dx with u a weight in the
Muckenhoupt class A1 [4, 15]. In this case, the corresponding operator Sa is the
Hardy operator whose boundedness on Lp

dec(w) has been extensively studied and
the characterization is the class of weights Bp [3]:

rp

∫ ∞

r

w(t)
tp

dt � C

∫ r

0
w(t) dt

for some C > 0 independent of r > 0. For several properties concerning this class of
weights we refer the reader to [19]. In particular, we shall use the characterization

w ∈ Bp ⇐⇒ ∃ε > 0; W̄ (t) � Ctp−ε ∀t > 1,
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where

W̄ (t) = sup
s>0

W (ts)
W (s)

.

(II) If T = H is the Hilbert transform

Hf(x) = P. V.

∫
R

f(x − y)
y

dy,

then it is known (see [4]) that, if u ∈ A1,

(Tf)∗
u(t) � 1

t

∫ t

0
f∗

u(s) ds +
∫ ∞

t

f∗
u(s)

ds

s
=

∫ ∞

0
min

(
1,

1
u

)
f∗(tu) du, (1.2)

and hence T satisfies (1.1) for a(u) = min(1, 1/u). In this case, Sa is the so-called
Calderón operator [5, ch. 3, pp. 141–142].

In fact, all operators T that are of joint weak type (1, 1; ∞,∞) with respect to
the measures µ and ν (see [5, ch. 3, p. 143]) satisfy (1.2). In particular, if µ and ν
are the Lebesgue measure, examples of such operators are the Riesz transform and
some singular integral operators.

Now, if a(t) = (1/t)χ(1,∞), then

Saf(t) =
∫ ∞

t

f(s)
ds

s

is the conjugate Hardy operator and it is known [16] that, in this case, the strong
boundedness of Sa on Lp

dec(w) is characterized (for every p > 0) by the condition
that w ∈ B∗

∞; that is,

sup
r>0

1
W (r)

∫ r

0

W (s)
s

ds < ∞.

It follows that the boundedness of the Calderón operator is characterized by
w ∈ Bp ∩ B∗

∞ [16, 18].

(III) Let

Tϕf(x) = sup
h>0

1
h

∫ h

0
ϕ

(
t

h

)
|f(x − t)| dt,

where ϕ is a positive and integrable function with compact support in (0, 1). Then,
as was proved in [8], we have that

(Tϕf)∗(s) � C

∫ 1

0
ϕ∗(t)f∗(ts) dt, s ∈ (0,∞).

For example, for every 0 < α � 1, the operators

M+
α f(x) = sup

r>x

1
(r − x)α

∫ r

x

|f(s)|
(r − s)1−α

ds

and

M−
α f(x) = sup

r<x

1
(x − r)α

∫ x

r

|f(s)|
(s − r)1−α

ds

are of this kind. These operators were studied in [8, 13, 17] in connection with the
Cα summability criterion for the Lebesgue differentiation theorem.
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(IV) Also, if we have a sublinear operator T that is bounded in L∞ and satisfies a
restricted weak-type inequality

T : Lp,1(µ) → Lp,∞(ν),

then standard techniques show that, for any t ∈ (0,∞),

(Tf)∗
ν(t) �

∫ 1

0
s1/p−1f∗

µ(st) ds.

(V) Given 1 � p, q � ∞,the Lorentz maximal operator defined as

Mp,qf(x) = sup
x∈Q

‖fχQ‖Lp,q

|Q|1/p

was considered in [10] and it was proved that, for any t ∈ (0,∞),

((Mp,qf)∗(t))q �
∫ 1

0
f∗

(
st

3n

)q

sq/p−1 ds.

(VI) More generally, given a rearrangement invariant space X on R
n, the Hardy–

Littlewood maximal operator MX associated with the space X was considered
in [14]:

MXf(x) = sup
x∈Q

‖f‖X,Q,

where ‖f‖X,Q = ‖τl(Q)(fχQ)‖X with l(Q) the side length of the cube Q and
τδf(x) = f(δx) is the dilation operator. It was also proved that

(MXf)∗(t) �
∫ 1

0
f∗

(
st

3n

)
dϕX(s), t ∈ (0,∞),

ϕX being the fundamental function of X. Using this inequality, Mastylo and Pérez
prove that, under certain submultiplicity hypotheses on ϕX , MX is bounded on Lp.

All these examples provide motivation to continue the investigation of the bound-
edness property of Sa on the cone of decreasing functions. This operator was first
introduced by Braverman [6] and Lai [9] and was also studied by Andersen [2]. In
particular, we mention that if Lp,∞

dec (w) is the set of measurable decreasing functions
such that

‖f‖Lp,∞(w) = sup
t>0

f(t)W (t)1/p < ∞

and

Lp,1
dec(w) =

{
f↓; ‖f‖Lp,1

dec(w) =
∫ ∞

0
f(t)W (t)1/p−1w(t) dt < ∞

}
,

then it is very easy to see that

Sa : Lp,∞
dec (w) → Lp,∞(w) (1.3)

is bounded if and only if

sup
t>0

W 1/p(t)
∫ ∞

0
a(s)

1
W 1/p(st)

ds < ∞, (1.4)
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and
Sa : Lp,1

dec(w) → Lp,1(w) (1.5)

is bounded if and only if

sup
r>0

1
W 1/p(r)

∫ ∞

0
a(s)W 1/p

(
r

s

)
ds < ∞. (1.6)

To see this, just observe that in the first case it is enough to have that

‖SaW−1/p‖Lp,∞(w) < ∞,

while in the second case it is enough to check that Sa is bounded on characteristic
decreasing functions; that is,

sup
r>0

‖Saχ(0,r)‖Lp,1(w)

‖χ(0,r)‖Lp,1(w)
< ∞.

Also, the complete characterization of the weights for which

Sa : Lp
dec(w) → Lp,∞(w)

is bounded is known (see theorem 2.3), but the complete characterization of the
weights w such that

Sa : Lp
dec(w) → Lp(w) (1.7)

is bounded is still an open problem for the case in which p > 1; the continued
investigation of this open case is the main goal of this paper.

From now on,

A(t) =
∫ t

0
a(s) ds, W (t) =

∫ t

0
w(s) ds

and, in general, U(t) =
∫ t

0 u(s) ds for any function u. We shall write simply ‖Sa‖
to indicate the norm of the operator in (1.7); that is, ‖Sa‖Lp

dec(w)→Lp(w).
Also, C will denote a constant independent of the parameters involved and, as

usual, the symbol � denotes that an inequality � holds up to some constant C and,
similarly, ≈ means that both � and � hold.

2. Previously known results

In the study of (1.7), the following class of weights has a fundamental role (see
theorems 2.4–2.6).

Definition 2.1. We say that a weight w in (0,∞) is in Ba
p if

‖w‖p
Ba

p
= sup

r>0

1
W (r)

∫ ∞

0
Ap

(
r

t

)
w(t) dt < ∞. (2.1)

First of all, we observe that since∫ ∞

0
Ap

(
r

t

)
w(t) dt �

∫ r

0
Ap

(
r

t

)
w(t) dt � Ap(1)W (r)
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we have that, if A(1) �= 0, w ∈ Ba
p if and only if

∫ ∞

0
Ap

(
r

t

)
w(t) dt ≈ W (r). (2.2)

In fact, if A(1) = 0 but W satisfies the ∆2-condition, that is,

W (2t) � W (t) ∀t > 0, (2.3)

then one can also see that w ∈ Ba
p if and only if (2.2) holds. Moreover, if w satisfies

the doubling property, we can assume, without loss of generality, that A(1) �= 0,
since if A(1) = 0, we can consider a(s)+χ(1/2,1)(s) and the boundedness on Lp

dec(w)
of this new operator is the same as that of the original one. Let us also mention,
for the sake of completeness and to answer a question from the referee, that, for an
arbitrary a, we do not know how (1.4), (1.6) and (2.1) relate to each other.

Finally, we have to mention that, in general, w ∈ Ba
p does not imply that W satis-

fies the ∆2-condition (2.3) since there are weights in the class B∗
∞ whose primitives

are not doubling, as the example w(t) = et shows.
However, the following result proves that, in many other cases, we do have the

following property.

Proposition 2.2. Let us assume that there exists r0 < 1 such that A(r0) �= 0.
Then, if w ∈ Ba

p , we have that W satisfies the doubling property.

Proof. We have that, for every r > 0,

Ap(r0)W
(

r

r0

)
�

∫ r/r0

0
Ap

(
r

t

)
w(t) dt �

∫ ∞

0
Ap

(
r

t

)
w(t) dt � W (r),

and since 1/r0 > 1 the result follows.

Also, observe that if w ∈ Ba
p ∩ L1, we have that, for every r > 0,

∫ ∞

0

( ∫ r/t

0
a(s) ds

)p

w(t) dt �
∫ ∞

0
w(t) dt,

and hence it follows by the monotone convergence theorem that

∫ ∞

0
a(s) ds < ∞.

Consequently,

Ba
p ∩ L1 �= ∅ =⇒ a ∈ L1.

The following result gives the complete characterization of the weak-type bound-
edness.
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Theorem 2.3 (Andersen [2]).

(i) If 0 < p � 1,
Sa : Lp

dec(w) → Lp,∞(w) (2.4)

is bounded if and only if, for every 0 < s, r < ∞,

Ap

(
s

r

)
W (r) � W (s).

(ii) If p > 1, (2.4) holds if and only if

sup
r>0

W 1/p(r)
( ∫ ∞

0
Ap′

(
s

r

)
W−p′

(s)w(s) ds

)1/p′

< ∞, (2.5)

or, equivalently,

sup
r>0

W 1/p(r)
( ∫ ∞

0
Ap′−1(s)W 1−p′

(sr)a(s) ds

)1/p′

< ∞.

With respect to (1.7), the following results are already known.

Theorem 2.4 (Lai [9]). If 0 < p < ∞ and (1.7) holds, then w ∈ Ba
p and ‖w‖Ba

p
�

‖Sa‖.

Proof. It is enough to apply the hypothesis to the case f = χ(0,r).

Theorem 2.5 (Lai [9]). For every 0 < p � 1, (1.7) holds if and only if w ∈ Ba
p .

Theorem 2.6 (Lai [9]). Let p > 1 and let a be such that A is quasi-submultiplica-
tive in (0, 1) and in (1,∞); that is, there exists c > 0, such that, for every 0 <
r, s � 1 or 1 � r, s < ∞,

A(rs) � cA(r)A(s).

Then (1.7) holds if and only if w ∈ Ba
p .

Remark 2.7. Let p > 1. Then, clearly

1 ∈ Ba
p ⇐⇒

∫ ∞

0
Ap(s)

ds

s2 < ∞, (2.6)

while by theorem 2.3 we have that if w = 1, Sa : Lp
dec → Lp,∞ is bounded if and

only if ∫ ∞

0
Ap′

(s)
1

sp′ ds < ∞. (2.7)

Therefore, it is clear that if p = 2, then condition (2.6) matches condition (2.7).
But given p �= 2, we can find a function a satisfying one and only one of these
two conditions; that is, in general w ∈ Ba

p and (2.4) are independent. This has two
important consequences:

(i) the weak-type boundedness (2.4) does not imply (1.7) in the case p > 1;

(ii) in general, w ∈ Ba
p is not sufficient to have (1.7).
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Another way of proving this last observation is the following: if w ∈ Ba
p , we

have that g(t) = A(1/t) ∈ Lp(w), and hence if (1.7) holds, we would have that
Sag(t) < ∞ for every t > 0, which implies that

∫ ∞

0
a(s)A

(
1
s

)
ds < ∞. (2.8)

Now let us take, for α > 1,

a(s) =
s1/p−1

(1 + | log s|)α/p
.

One can then see that A(s) ≈ s1/p/(1 + | log s|)α/p and, by (2.6), we obtain that
1 ∈ Ba

p but (2.8) does not hold if p � 2α.

Corollary 2.8. If Sa satisfies (1.7) and p > 1, then

sup
r>0

( ∫ ∞

0
Ap

(
r

t

)
w(t) dt

)1/p( ∫ ∞

0
Ap′

(
s

r

)
W−p′

(s)w(s) ds

)1/p′

< ∞.

Proof. The proof follows immediately by writing the conditions w ∈ Ba
p and (2.5).

Before going on, for the sake of completeness let us now state some other impor-
tant examples, which can also be found in [2, 9].

(i) If a(t) = e−t ∈ L1(R), we obtain that

Saf(x) =
∫ ∞

0
e−tf(xt) dt =

1
x

Lf

(
1
x

)
, (2.9)

where L is the Laplace transform. In this case A(t) = 1 − e−t.

(ii) If a(t) = (1 − t)αχ(0,1)(t) with α > −1, we obtain the Riemann–Liouville
operator

Rαf(x) =
∫ 1

0
(1 − s)αf(xs) ds =

1
xα+1

∫ x

0
(x − t)αf(t) dt. (2.10)

In this case,

A(t) =
∫ t

0
(1 − s)αχ(0,1)(s) ds =

∫ min(t,1)

0
(1 − s)α ds ≈ (1 − t)α+1

+ − 1.

3. The Ba
p class of weights

Henceforth, we shall assume that p > 1.

Theorem 3.1. w ∈ Ba
p if and only if

Sa : Lp,1
dec(w) → Lp(w)

is bounded.
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Proof. To obtain the sufficient condition, it is enough to apply the boundedness
hypothesis to f = χ(0,r). Conversely, writing Saf in terms of the distribution func-
tion λf (y) = |{x; |f(x)| > y}|, we have that

Saf(t) =
∫ ∞

0
A

(
λf (y)

t

)
dy (3.1)

and using Minkowski’s inequalities we have that

‖Saf‖Lp(w) =
( ∫ ∞

0
Saf(t)pw(t) dt

)1/p

=
( ∫ ∞

0

( ∫ ∞

0
A

(
λf (y)

t

)
dy

)p

w(t) dt

)1/p

�
∫ ∞

0

( ∫ ∞

0
A

(
λf (y)

t

)p

w(t) dt

)1/p

dy

�
∫ ∞

0
W (λf (y))1/p dy

≈ ‖f‖Lp,1(w),

and the result follows.

Proposition 3.2. If w ∈ Ba
p satisfies (2.2), then, for every decreasing function,

‖f‖Lp(w) � ‖Saf‖Lp(w).

Proof. If w ∈ Ba
p , then

∫ ∞
0 Ap(r/t)w(t) dt � W (r), and hence

∫ ∞

0
Ap

(
r

t

)
w(t) dt < ∞.

Now, by (2.2),

W (r) �
∫ r

0
Ap

(
r

t

)
w(t) dt =

∫ ∞

0

( ∫ r

0
Ap−1

(
s

t

)
a

(
s

t

)
ds

t

)
w(t) dt

=
∫ r

0

( ∫ ∞

0
Ap−1

(
s

t

)
a

(
s

t

)
w(t)

dt

t

)
ds,

and thus, for every decreasing function f ,∫ ∞

0
fp(s)w(s) ds �

∫ ∞

0

( ∫ ∞

0
fp(s)Ap−1

(
s

t

)
a

(
s

t

)
ds

t

)
w(t) dt.

Now, in the inner expression, if we write ht(y) = f(ty), we obtain that∫ ∞

0
fp(s)Ap−1

(
s

t

)
a

(
s

t

)
ds

t
≈

∫ ∞

0
yp−1Ap(λht(y)) dy �

( ∫ ∞

0
A(λht(y)) dy

)p

=
( ∫ ∞

0
a(y)ht(y) ds

)p

= Saf(t)p

and the result follows.
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As a consequence, if (1.7) and (2.2) hold, then

‖Saf‖Lp(w) ≈ ‖f‖Lp(w).

Proposition 3.3. If w ∈ Ba
p , then

sup
t>0

Ap

(
1
t

)
W̄ (t) < ∞,

and in fact

W̄ 1/p(t) � 1
sups[A(s/t)A(1/s)]

. (3.2)

Proof. We have that, for every s > 0,

Ap

(
r

s

)
W (s) = Ap

(
r

s

) ∫ s

0
w(t) dt �

∫ ∞

0
Ap

(
r

t

)
w(t) dt � W (r),

and hence
W (s)
W (r)

� 1
Ap(r/s)

.

Therefore, for every t > 0,

W̄ (1/t) = sup
r>0

W (r/t)
W (r)

� 1
Ap(t)

. (3.3)

Now, since W̄ is submultiplicative, i.e. W̄ (uv) � W̄ (u)W̄ (v), we obtain that

W̄ (t) � W̄

(
t

s

)
W̄ (s) � 1

Ap(s/t)Ap(1/s)

and the result follows by taking the infimum in s > 0.

Corollary 3.4. If a /∈ L1, then

Ba
p ⊂ B∗

∞.

Proof. We have that A(∞) = ∞, and hence (3.2) implies that W̄ (0+) = 0, which
is equivalent (see [1]) to w ∈ B∗

∞.

Remark 3.5. If a ∈ L1, it is immediate to see that the Ba
p condition reads

∫ ∞

r

Ap

(
r

t

)
w(t) dt � W (r). (3.4)

Moreover, in this case, if we write

Saf(t) =
∫ ∞

0
a(s)f(st) ds =

∫ 1

0
a(s)f(st) ds +

∫ ∞

1
a(s)f(st) ds,

we have that ∫ ∞

1
a(s)f(st) ds � f(t)

∫ ∞

1
a(s) ds,
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and hence we only have to study the first part of the operator; that is,

S̃af(t) =
∫ 1

0
a(s)f(st) ds.

Proposition 3.6. If (1.7) holds for some w �= 0, then

inf
t>0

A(t)A
(

1
t

)
= 0

and

sup
t>0

A(t)A
(

1
t

)
< ∞.

In particular, A cannot be quasi-submultiplicative in (0,∞).

Proof. Let us assume that inft>0 A(t)A(1/t) = C > 0. Then, since w ∈ Ba
p , using

(2.8), ∫ ∞

0
a(s)

1
A(s)

ds � 1
C

∫ ∞

0
a(s)A

(
1
s

)
ds < ∞,

which is a contradiction since the integral on the left is clearly not finite.
To prove the second part, we observe that if supt>0 A(t)A(1/t) = ∞, then nec-

essarily limt→0 A(t)A(1/t) = ∞ and we arrive at the same contradiction.

Remark 3.7. By (3.4), it follows that if a ∈ L1 and there exists α > 0 such that
A(x) ≈ xα for every x ∈ (0, 1), then Ba

p = Bpα.

In particular (see also [9]), the following hold.

(1) If aL = e−t is the function associated with the Laplace transform as in (2.9),
we have that, for every p > 0, BaL = Bp.

(2) If aRL is the function associated with the Riemann–Liouville operator (2.10),
we have that, for every p > 0, BaRL = Bp.

4. Sufficient conditions

Proposition 4.1. If ∫ ∞

0
a(s)W̄ 1/p

(
1
s

)
ds < +∞, (4.1)

then Sa is bounded from Lp
dec(w) to Lp(w).

Proof. We have that

‖Saf‖Lp(w) =
∥∥∥∥

∫ ∞

0
a(s)f(st) dt

∥∥∥∥
Lp(w)

�
∫ ∞

0
a(s)‖f(s·)‖Lp

dec(w) ds

� ‖f‖Lp
dec(w)

∫ ∞

0
a(s)‖D1/s‖Lp(w) ds,
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where

‖D1/s‖Lp(w) = sup
f↓

(
∫ ∞
0 f(st)pw(t) dt)1/p

(
∫ ∞
0 f(t)pw(t) dt)1/p

= sup
f↓

(
∫ ∞
0 f(y)pw(y/s)(dy/s))1/p

(
∫ ∞
0 f(t)pw(t) dt)1/p

= sup
r>0

(
∫ r

0 w(y/s)(dy/s))1/p

(
∫ r

0 w(t) dt)1/p

=
[

sup
r>0

W (r/s)
W (r)

]1/p

= W̄

(
1
s

)1/p

,

and the result follows.

Remark 4.2. If (4.1) holds, then

sup
t>0

W 1/p(t)
∫ ∞

0
a(s)

1
W 1/p(st)

ds �
∫ ∞

0
a(s)W̄ 1/p

(
1
s

)
ds < +∞

and similarly

sup
r>0

1
W 1/p(r)

∫ ∞

0
a(s)W 1/p

(
r

s

)
ds �

∫ ∞

0
a(s)W̄ 1/p

(
1
s

)
ds < +∞,

and thus, by (1.4) and (1.6), we have that Sa satisfies both (1.3) and (1.5).

Proposition 4.3. If

∫ ∞

0

( ∫ ∞

0
A

(
s

t

)p′

W (s)−p′
w(s) ds

)p/p′

w(t) dt < +∞, (4.2)

then Saf is bounded from Lp
dec(w) to Lp(w).

Proof. We have that

‖Saf‖p
Lp(w) =

∫ ∞

0

( ∫ ∞

0
a(s)f(st) ds

)p

w(t) dt � ‖f‖p
Lp(w)

∫ ∞

0
H(t)pw(t) dt,

where

H(t) = sup
f↓

∫ ∞
0 a(s)f(st) ds

(
∫ ∞
0 f(s)pw(s) ds)1/p

= sup
f↓

∫ ∞
0 (1/t)a(s/t)f(s) ds

(
∫ ∞
0 f(s)pw(s) ds)1/p

,

and the result follows using Sawyer’s formula [18].

By considering the case of the Hardy operator and w = 1, we see that (4.2) is
not a necessary condition for the boundedness of Sa from Lp

dec(w) to Lp(w).
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Remark 4.4. Another expression equivalent to (4.2) (see [18]) is

∫ ∞

0

[ ∫ ∞

0

( ∫ ∞

y

a(s)
W (st)

ds

)p′/p

a(y) dy

]p/p′

w(t) dt < ∞.

Proposition 4.5.

(a) If a ∈ L1 and there exists ε > 0 such that w ∈ Ba
p−ε, then Sa satisfies (1.7).

(b) If a /∈ L1, supp a ⊂ (r, +∞) for some r > 0 and, for every t > 1 and some
α > 1,

W̄ 1/p

(
1
t

)
� 1

A(t)(1 + log+ A(t))α
, (4.3)

then Sa satisfies (1.7). In particular, this is the case if there exists ε > 0 such
that w ∈ Ba

p+ε.

Proof. (a) By (3.3), we have that

W̄ 1/p

(
1
t

)
� 1

A(t)(p−ε)/p
.

Hence,

∫ 1

0
a(s)W̄

(
1
s

)1/p

ds �
∫ 1

0
a(s)A(ε−p)/p(s) ds ≈ Aε/p(1) < ∞.

On the other hand, since a ∈ L1,

∫ ∞

1
a(s)W̄

(
1
s

)1/p

ds � W̄ (1)1/p

∫ ∞

1
a(s) ds < ∞,

and hence (4.1) holds and the result follows.

Similarly, to prove (b) we observe that in this case, if N is such that A(N) �= 0,

∫ ∞

0
a(s)W̄

(
1
s

)1/p

ds =
∫ ∞

r

a(s)W̄
(

1
s

)1/p

ds

� 1 +
∫ ∞

N

a(s)
A(s)(1 + log+ A(s))α

ds < ∞

and the result follows.

5. Self-improving properties of Ba
p

A well-known fact of the Bp class is the so-called p − ε property that says that, for
every w ∈ Bp, there exists ε > 0 such that w ∈ Bp−ε. Since Bp−ε ⊂ Bp, we say
that the weights in the class Bp satisfy a self-improving property.

In this section, we study conditions on the function a such that the class Ba
p

satisfies certain self-improving properties. Before that, we mention that in the proof
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of theorem 2.6, Lai decomposes the operator Sa into two parts that are treated
separately, namely,

Saf(t) =
∫ 1

0
a(s)f(st) ds +

∫ ∞

1
a(s)f(st) ds := S1

af(t) + S2
af(t).

In fact, what is proved in [2, 9] is the following result. We shall present in this
paper a new proof of it.

Theorem 5.1.

(a) If A is quasi-submultiplicative in (0, 1), then S1
a is bounded from Lp

dec(w) to
Lp(w) if and only if w ∈ Ba

p .

(b) If A is quasi-submultiplicative in (1,∞), then S2
a is bounded from Lp

dec(w) to
Lp(w) if and only if w ∈ Ba

p .

Our proof will be an immediate consequence of proposition 4.5 and the following
and more general result. But first we need to recall an easy lemma concerning
submultiplicative functions [1].

Lemma 5.2.

(i) If ϕ : (0, 1] → [0, 1] is an increasing submultiplicative function, then

ϕ(λ) < 1 for some λ ∈ (0, 1)

if and only if

ϕ(x) � 1
(1 + log(1/x))α

∀α > 0, 0 < x < 1.

(ii) For every submultiplicative increasing function ϕ defined in [1,∞),

ϕ(λ) < λ for some λ > 1 ⇐⇒ ∃γ < 1: ϕ(x) � xγ ∀x > 1.

Proposition 5.3.

(a) If a is supported in (0, 1) and A is quasi-submultiplicative in (0, 1), then Ba
p

satisfies the p − ε property; that is,

∀w ∈ Ba
p ∃ε > 0: w ∈ Ba

p−ε.

(b) If a is supported in (1,∞) and A is quasi-submultiplicative in (1,∞), then,
for every t > 1, Ba

p satisfies (4.3).

Proof. First of all, we can assume without lost of generality (just by changing A
to cA) that A is submultiplicative in (0, 1) or (1,∞) and also that A is strictly
increasing.
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(a) In this case, we can assume that

A : [0, 1] → [0, ‖a‖1]

is bijective. Then one can easily see that 1/A−1 is also submultiplicative and by (3.3)
we obtain that, for every y > 1,

W̄ 1/p

(
1

A−1(1/y)

)
� y.

We then observe that there are two options: either, for every y > 1,

y < W̄ 1/p

(
1

A−1(1/y)

)
,

and hence, for every t < 1,

W̄ 1/p

(
1
t

)
≈ 1

A(t)
, (5.1)

or there exists y > 1 such that

W̄ 1/p

(
1

A−1(1/y)

)
< y.

In this last case, by lemma 5.2(ii), we obtain that there exists γ < 1 such that

W̄ 1/p

(
1

A−1(1/y)

)
� yγ ,

or equivalently, for every t < 1,

W̄

(
1
t

)
� 1

A(t)γp
,

from which the result follows by (4.1).
Finally, if (5.1) holds, then one can easily check that A(x) ≈ xα for some α and

every x ∈ (0, 1), and hence by remark 3.7 we obtain that w ∈ Bpα. Consequently,
w ∈ Bpα−ε for some ε, which implies that

W̄

(
1
t

)
� 1

tpα−ε
,

and this contradicts (5.1).

(b) To prove this part, we consider

A : [1, +∞) → [0, +∞)

to be bijective. Then, as before, we have that 1/A−1 is submultiplicative and
by (3.2), for every y > 0,

W̄ 1/p

(
1

A−1(1/y)

)
� y.
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Then, since A−1(0) = 1, there exists y > 1 such that

1
y
W̄ 1/p

(
1

A−1(1/y)

)
< 1.

In this case, by lemma 5.2(i), we obtain, for example, that

W̄ 1/p

(
1

A−1(1/y)

)
� y

(1 + log(1/y))2
,

or equivalently, for every t > 1,

W̄ 1/p

(
1
t

)
� 1

A(t)(1 + log+ A(t))2
,

and the result follows.

Proof of theorem 5.1. The proof is an immediate consequence of propositions 5.3
and 4.5.

Remark 5.4. If
A(x) = x1/p 1

log x
χ(0,1/2)(x),

we have that ∫ 1

0
Ap(x)

dx

x2 =
∫ 1/2

0

dx

x logp x
< ∞,

and hence 1 ∈ Ba
p but 1 /∈ Ba

q for any q < p. Hence, in general, property p − ε does
not hold.

For the case in which A /∈ L∞ we also have the following result.

Theorem 5.5. If A /∈ L∞ and (1.7) holds, then there exists δ > 0 such that

Saδ
: Lp

dec(w) → Lp(w)

is bounded, where

aδ(s) =
1

s1−δ

∫ s

0
a(y)

dy

yδ
.

Proof. By proposition 3.4, w ∈ B∗
∞, and hence, if Qf(t) =

∫ ∞
t

f(s)(ds/s), we have
that, for every h decreasing,

‖Qh‖Lp(w) � ‖h‖Lp(w),

and hence, in particular,

‖QSaf‖Lp(w) � ‖Saf‖Lp(w) � ‖f‖Lp(w).

Now,

QSaf(t) =
∫ ∞

t

Saf(s)
ds

s
=

∫ ∞

t

∫ ∞

0
a(y)f(sy) dy

ds

s
=

∫ ∞

0
f(st)

A(s)
s

ds,
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and hence we obtain that Sb1 is bounded on Lp(w) with constant less than or equal
to K = ‖Sa‖‖Q‖, where b1(s) = A(s)/s. If we repeat the argument, we obtain that
Sbn

is bounded with constant less than or equal to Kn, where

bn(s) =
Bn−1(s)

s
= · · · =

1
(n − 1)!s

∫ s

0
a(y)

(
log+ s

y

)n−1

dy.

Now, if we take B > K, we construct the operator
∞∑

n=1

1
Bn

Sbnf(t) =
∫ ∞

0

1
s

( ∫ s

0

(
s

y

)1/B

a(y) dy

)
f(st) ds,

and the result follows taking δ = 1/B.

6. Iterative operators

In this section we consider the iteration operators

S(n)
a f(t) = Sa(S(n−1)

a f)(t)

and we assume, for simplicity, that

A(1) = 1.

Lemma 6.1. For every n ∈ N, it holds that S
(n)
a f(t) = Sanf(t), where

An(t) =
∫ ∞

0
a(s)An−1

(
t

s

)
ds (6.1)

with A1 = A.

Proof. For n = 2,

Sa(Saf)(t) =
∫ ∞

0
a(s)Saf(st) ds

=
∫ ∞

0
a(s)

∫ ∞

0
a(y)f(sty) dy ds

=
∫ ∞

0
f(zt)

∫ ∞

0
a(s)a

(
z

s

)
ds

s
dz

=
∫ ∞

0
a2(z)f(zt) dz

and

A2(z) =
∫ z

0
a2(u) du =

∫ ∞

0
a(s)A

(
z

s

)
ds.

The result then follows by induction since, by (3.1),

Sa(San−1f)(t) =
∫ ∞

0
a(s)

( ∫ ∞

0
An−1

(
λf (y)

st

)
dy

)
ds

=
∫ ∞

0
An

(
λf (y)

t

)
dy.

https://doi.org/10.1017/S0308210515000098 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000098


742 M. J. Carro and C. Ortiz-Caraballo

From here it follows that, for every t > 0 and every n ∈ N,

An(t) � An−1(t) � A(t).

Therefore,
Ban

p ⊂ Ban−1
p ⊂ · · · ⊂ Ba

p

and we also have the following proposition.

Proposition 6.2. For every n ∈ N,

Sa : Lp
dec(w) → Lp(w) ⇐⇒ San : Lp

dec(w) → Lp(w).

Corollary 6.3. If (1.7) holds, then, for every n ∈ N, w ∈ Ban
p , and in fact

‖w‖Ban
p

� ‖Sa‖n.

As in proposition 3.6, we obtain the following proposition.

Proposition 6.4. If a satisfies that, for some n ∈ N,

inf
t>0

A(t)An

(
1
t

)
> 0

or

sup
t>0

A(t)An

(
1
t

)
= +∞,

then there is no weight w �= 0 such that Sa is bounded from Lp
dec(w) to Lp(w).

Theorem 6.5. Let us assume that Sa satisfies (1.7). Then, for every λ > ‖Sa‖,
there exists a locally integrable function in (0,∞), a∞,λ, such that

A(t) +
1
λ

∫ ∞

0
a(s)A∞,λ

(
t

s

)
ds = A∞,λ(t), t > 0, (6.2)

and
Sa∞,λ

: Lp
dec(w) → Lp(w)

is bounded.

Proof. Set a∞,λ such that

A∞,λ(t) =
∞∑

n=0

An(t)
λn

. (6.3)

Using lemma 6.1 we obtain that

Sa∞,λ
f(t) =

∞∑
n=0

S
(n)
a f(t)
λn

,

and hence, since λ > ‖Sa‖, the result follows immediately. Finally, (6.2) follows
easily from (6.1) and the definition of A∞,λ.
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We observe that, for every n ∈ N,

B
a∞,λ
p ⊂ Ban

p ⊂ Ba
p .

Corollary 6.6. If (1.7) holds, then, for every λ > ‖Sa‖:

(i) w ∈ B
a∞,λ
p ;

(ii) sup
r>0

W 1/p(r)
( ∫ ∞

0
Ap′

∞,λ

(
s

r

)
W−p′

(s)w(s) ds

)1/p′

< ∞.

Equivalently (in the same way as in corollary 2.8),

sup
r>0

( ∫ ∞

0
Ap

∞,λ

(
r

t

)
w(t) dt

)1/p( ∫ ∞

0
Ap′

∞,λ

(
s

r

)
W−p′

(s)w(s) ds

)1/p′

< ∞. (6.4)

Remark 6.7. If a(s) = χ(0,1), then one can see (solving the corresponding differ-
ential equation) that the solution to (6.2) is given by

A∞,λ(t) =

⎧⎪⎪⎨
⎪⎪⎩

λ

λ − 1
t1−1/λ if 0 < t < 1,

λ

λ − 1
if t � 1.

Moreover, one can also check that the condition w ∈ B
a∞,λ
p corresponds to the

p − ε property of the Bp weights.

Remark 6.8. We make the final remark that, from corollary 2.8 and proposi-
tion 6.2, (1.7) implies that the quantity

K = sup
r,n

( ∫ ∞

0
Ap

n

(
r

t

)
w(t) dt

)1/np( ∫ ∞

0
Ap′

n

(
s

r

)
W−p′

(s)w(s) ds

)1/np′

is finite, and thus one can easily see that we can define A∞,λ for every λ > K as
in (6.3) and we have that w ∈ B

a∞,λ
p and both (6.2) and (6.4) hold.

A final question: is (6.4) sufficient to have (1.7) whenever λ > K?
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