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Oscillation and related results are given for the problem

¡(py 0 ) 0 + qy = ¶ ry on [a0 ; a1 ] = I

under separated end conditions, assuming 1=p, q and r 2 L1(I). Attention focuses on
the two cases (i) p > 0 with r inde¯nite, and (ii) p inde¯nite with r > 0.

1. Introduction

In this paper we shall discuss oscillation theory and related results for the regular
Sturm{Liouville equation

¡ (py0)0 + qy = ¶ ry a.e. on [a0; a1] = I; (1.1)

given
(cos ¬ j)y(aj) = (sin ¬ j)(py0)(aj); j = 0; 1; (1.2)

assuming that p(x) 6= 0 a.e. and 1=p; q; r 2 L1(I), where ¡ 1 6 a0 < a1 6 1.
Thus the problem is `regular’ in the sense of Zettl [17, x 4]. Our primary purpose
is to compare the two basic cases where one of p and r is inde nite, i.e. takes both
signs on sets of positive measure, and the other is de nite, i.e. either positive a.e.
or negative a.e.

For the `right-de nite case’ where p and r are both de nite, `oscillation the-
ory’ goes back to Sturm (with more restricted coe¯ cients). The theory under the
L1 conditions here can be found in Atkinson’s book [2, x 8.4] (in fact, some semi-
de niteness is permitted there). For such problems, there is a sequence of real
eigenvalues ¶ n (n = 0; 1; 2; : : : ), accumulating at either ¡ 1 or +1, and with oscil-
lation count (i.e. number of zeros of a corresponding eigenfunction yn in ]a0; a1[)
equal to n. We remark that the case where both p and r are inde nite admits
examples of quite di¬erent nature where the spectrum is the whole complex plane
(cf. [4,9]).
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There has been recent interest in the case where p is inde nite but r > 0. Atkin-
son and Mingarelli [4] give asymptotics, and Weidmann [16, p. 280] analyses speci c
examples (regular and singular) where p changes sign  nitely often. General indef-
inite p is discussed by Moeller [14], who essentially shows that the minimal oper-
ator corresponding to 1=r times the left-hand side of (1.1) is not semi-bounded.
Zettl [17, theorem 4.12(b)] states that

(A) the eigenvalues of (1.1), (1.2) can be listed, ¢ ¢ ¢ < ¶ ¡2 < ¶ ¡1 < ¶ 0 < ¶ 1 <
¶ 2 < : : : , where ¶ n ! §1 as n ! §1.

Zettl cites [14], and the rest follows from [15, pp. 66, 90]. It should be noted that
the cited operator theory approach does not give any special meaning to the sub-
scripts of ¶ n, in contrast with our labelling below. Fleige [10] discusses various
notions of completeness of the corresponding eigenfunctions for the Dirichlet prob-
lem ( ¬ 0 = ¬ 1 = 0) in the case q = 0, r = 1. Earlier, Allegretto and Mingarelli [1]
established (A) for the Neumann problem ( ¬ 0 = ¬ 1 = 1

2 º ) in the case q = 0,
0 < 1=r 2 L 1 . The cited results from [1] and [10] were obtained via the reciprocal
transformation to a special `left-de nite’ problem, and we shall discuss this below.

Continuing with the case that p is inde nite and r > 0, we interpret (1.1) in the
sense of Carath́eodory, so py0 is absolutely continuous, but when p is discontinuous,
y0 can be also, and, moreover, the zeros of y and py0 need not interlace each other.
Thus the de nition of `oscillation count’ is no longer clear. One possibility, examined
in x 2, is to use the absolutely continuous Pr�ufer angle ³ = ³ (¢; ¶ ), de ned by
³ (a0) = ¬ 0 and

³ 0 =
1

p
cos2 ³ + ( ¶ r ¡ q) sin2 ³ a.e. on I: (1.3)

It is well known that cot ³ = py0=y, so the eigenvalues ¶ of (1.1), (1.2) are the
solutions of ³ (a1; ¶ ) = nº + ¬ 1 for integers n. We shall prove that

(B) for each integer n (regardless of sign), there exists precisely one eigenvalue ¶ n

for which ³ (a1; ¶ n) = nº + ¬ 1.

In x 3 we shall connect these ideas with the zeros of the eigenfunctions yn, and
the associated py0

n, corresponding to ¶ n of (B). It turns out that both yn and py0
n

can have in nitely many zeros, despite (B). Nevertheless, we do have the following
result.

(C) If, for some ¶ + > 0,
¶ + r ¡ q > 0 a.e.; (1.4)

then py0
n has exactly n zeros in ]a0; a1[ for all ¶ n > ¶ + ,

provided ¬ j are chosen in the appropriate ranges at the outset. This result can fail
if (1.4) does not hold. There is an analogous result if ¶ ¡r ¡ q 6 0 for some ¶ ¡ 6 0.
In particular, we have the following.

(D) If §q 6 0, then py0
n has exactly jnj zeros in ]a0; a1[ for all § ¶ n > 0, respec-

tively.

As indicated, there are various negative results, and we mention speci cally that
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(E) there exists 1=p 2 L1 so that, for any q; r 2 L1 with r > 0, all Dirichlet
eigenfunctions for (1.1) have in nitely many zeros in ]a0; a1[.

This may be contrasted with (D) in the case q = 0. Then the usual oscillation
theorem holds for each py0

n but fails for each yn.
Cases with p > 0 and r inde nite were discussed for continuous coe¯ cients early

this century (see [12, x x 10.6, 10.7] and the references therein). For integrable coe¯ -
cients, the results are probably well known to experts, but although speci c results
are available we have not seen a complete theory in the published literature. In x 4
we present such a theory, partly to give an elementary approach independent of
operator theory and completeness of eigenfunctions and partly to show the simi-
larities and di¬erences between this case and that of xx 2 and 3. Speci cally, (A)
remains unchanged (for the real eigenvalues), while (B) is replaced by

(B0) for some integer k, there are exactly two eigenvalues ¶ for which ³ (1; ¶ ) =
nº + ¬ 1 whenever n > k.

Analogously, (C) may be replaced by

(C0) an eigenfunction y belonging to an eigenvalue ¶ satisfying ³ (1; ¶ ) = nº + ¬ 1

has exactly n zeros in ]a0; a1[,

again provided that the ¬ j are chosen in appropriate ranges. The case k = 0 may
be realized by

(D0) if q > 0 and 0 6 ¬ 0 < 1
2 º < ¬ 1 6 º , then, for every n = 0; 1; 2; : : : , there is

exactly one positive eigenvalue ¶ +
n and one negative eigenvalue ¶ ¡

n for which
³ (1; ¶ ) = nº + ¬ 1. Moreover, ¶ +

n < ¶ +
n + 1 and ¶ ¡

n > ¶ ¡
n + 1.

This is (essentially) the so-called `left-de nite’ case. Finally, in the case q = 0, we
may apply the `reciprocal transformation’ (cf. [5]). Speci cally, with q = 0 and
r 6= 0 a.e., equation (1.1) transforms to

³
1

r
z0

0́
=

¶

p
z; (1.5)

where z = py0. The Neumann problem for (1.1) transforms to the Dirichlet problem
for (1.5) and vice versa, and this is the basis for the methods of [10, x 3] and [1, x 4]
cited earlier. The example in (E) (with q = 0) transforms to

(E0) there exists r 2 L1 so that (for q = 0 < p with 1=p 2 L1), for all Neumann
eigenfunctions for (1.1), py0 has in nitely many zeros in ]a0; a1[.

We remark that boundary conditions not of Dirichlet or Neumann type transform
to ¶ -dependent boundary conditions, as noted by Fleige [10, p. 31]. The oscillation
theory for such problems can be obtained from [7].

2. PrÄufer angle

In xx 2 and 3 we assume that r > 0. First we reduce the problem to the simpler-
looking one, where r = 1, a0 = 0 and a1 = 1. This may be accomplished by writing

t(x) = c¡1

Z x

a0

r; c =

Z a1

a0

r: (2.1)
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Then (1.1) becomes

¡ d

dt

³
c¡2rp

dy

dt

´
+ r¡1qy = ¶ y on [0; 1];

where the coe¯ cients (c¡2rp)¡1, r¡1q and 1 are all integrable over [0; 1] as functions
of t.

In the sequel, we shall assume the above transformation to have been carried out
initially, i.e. we assume r = 1 and [a0; a1] = [0; 1] = I. Our main tool for analysing
³ of (1.3) as j ¶ j ! 1 is the following result for a generalization of (1.3).

Theorem 2.1. Let f; g; h; k 2 L1(I), with g > 0, h > 0 a.e. and f > 0 on a set of
positive measure. For every ¶ > 0, let u = u(x; ¶ ) be a solution of

u0 = f ¡ ¶ ¡1g + ( ¶ h + k) sin2 u

such that u(0; ¶ ) is bounded as ¶ ! +1. Then u(1; ¶ ) ! +1 as ¶ ! +1.

Proof. It is easy to see that it is enough to consider the case that u(0; ¶ ) is constant
and then we may assume u(0; ¶ ) = 0. From a standard di¬erential inequality [13,
theorem 1.10.2], u(x; ¶ ) is non-decreasing in ¶ for each  xed x 2 I, so we can de ne

v(x) = lim
¶ ! 1

u(x; ¶ ) 2 ]¡ 1; 1]:

For any c < d 2 I, we have

u(d; ¶ ) ¡ u(c; ¶ ) =

Z d

c

(f ¡ ¶ ¡1g + ( ¶ h + k) sin2 u)

> ¡
Z d

c

(jf j + g + jkj);

provided ¶ > 1. It follows that

v(d) > v(c) ¡
Z d

c

(jf j + g + jkj);

so
lim sup

s ! x¡
v(s) 6 v(x) 6 lim inf

t! x +
v(t) for all x 2 [0; 1]: (2.2)

Now suppose that
u(1; ¶ ) is bounded as ¶ ! 1: (2.3)

Then v is a bounded function and

¶ ¡1u(1; ¶ ) = ¶ ¡1

Z 1

0

(f ¡ ¶ ¡1g + k sin2 u) +

Z 1

0

h sin2 u;

so letting ¶ ! 1 and using Lebesgue’s dominated convergence theorem, we obtainR 1

0
h sin2 v = 0. Since h > 0 a.e., it follows that v(x) is a multiple of º a.e. Note

that v is lower semicontinuous because it is the limit of a non-decreasing sequence
of continuous functions. Together with (2.2), this implies that v is left-continuous.
Hence

v(x) is a multiple of º for every x 2 [0; 1]. (2.4)
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Appealing to (2.2) again, we now see that v is locally non-decreasing, i.e. for every
x 2 I , there is ¯ > 0 such that v(s) 6 v(x) 6 v(t) whenever s; t 2 I , x ¡ ¯ < s <
x < t < x + ¯ . A standard compactness argument yields that v is non-decreasing
and so v is piecewise constant on I. Choose an interval [c; d] with c < d so thatR d

c
f > 0, which is possible because f is positive on a set of positive measure. Since v

is piecewise constant, we can  nd such an interval on which v is constant. Moreover,

u(d; ¶ ) ¡ u(c; ¶ ) >
Z d

c

(f ¡ ¶ ¡1g + k sin2 u);

so letting ¶ ! 1 and using (2.4) and Lebesgue’s dominated convergence theorem
again, we obtain

0 = v(d) ¡ v(c) >
Z d

c

f > 0;

a contradiction. It follows that (2.3) must fail.

Although we shall use the following constructions sparingly, it will be convenient
to have the notation available. We write D for the set of y 2 AC(I) such that
py0 2 AC(I) and the boundary conditions (1.2) are satis ed. Then A : D ! L1(I)
is de ned by

Ay = ¡ (py0)0 + qy: (2.5)

We also introduce two bilinear forms on D2, denoted by

(y; z) =

Z 1

0

y·z and a(y; z) =

Z 1

0

(Ay)·z: (2.6)

Integration by parts and (1.2) yield

a(y; z) = y(0)·z(0) cot¤ ¬ 0 ¡ y(1)·z(1) cot¤ ¬ 1 +

Z 1

0

(py0·z 0 + qy·z); (2.7)

where cot¤  = cot  if sin  6= 0 and cot¤  = 0 if sin  = 0.
We are now ready to prove (A) of x 1.

Theorem 2.2. Let p be inde¯nite. The eigenvalues of (1.1), (1.2) are all real and
may be indexed in increasing order as ¶ n, n any integer, where ³ (1; ¶ n) = nº + ¬ 1.
We have ¶ n ! +1 as n ! +1 and ¶ n ! ¡ 1 as n ! ¡ 1.

Proof. Multiplying (1.1) by ·y and integrating, we obtain a(y; y) = ¶ (y; y), so
¶ = (y; y)¡1a(y; y) is real by (2.6), (2.7).

Setting f = 1=p, g = 0, h = 1 and k = ¡ q ¡ 1=p, we see from (1.3) and theorem 2.1
that ³ (1; ¶ ) ! +1 as ¶ ! +1. Similar analysis with ³ , ¶ , p and q multiplied by
¡ 1 shows that ³ (1; ¶ ) ! ¡ 1 as ¶ ! ¡ 1. Since ³ (1; ¶ ) is continuous and strictly
increasing in ¶ , by the standard theory of dependence of (1.3) on the parameter ¶ ,
the results follow directly.

3. Oscillation theory when r > 0

We continue to assume r = 1 via the transformation (2.1) and we write Î = ]0; 1[.
Following theorem 2.2, we shall consider only real eigenfunctions. We start with
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some instructive examples that will make use of the following inequality for solutions
of equations of the form (1.3).

Lemma 3.1. Let Á be a real solution of the di® erential equation

Á0 = g(x) + h(x) sin2 Á;

where g; h 2 L1(I). If Á(x0) = 0, then
Á(x) ¡

Z x

x0

g

6 He2HG(x)2

for x > x0, where

H =

Z 1

0

jhj; G(x) = max
t 2 [x0 ;x]


Z t

x0

g

:

Proof. We have

Á(x) =

Z x

x0

g +

Z x

x0

h sin2 Á: (3.1)

Since sin2 Á 6 j sin Áj 6 jÁj, we obtain

jÁ(x)j 6 G(x) +

Z x

x0

jhjjÁj:

The function G(x) is monotonically non-decreasing. Hence, by Gronwall’s inequal-
ity,

jÁ(x)j 6 eHG(x):

From (3.1) we now  nd
Á(x) ¡

Z x

x0

g

6
Z x

x0

jhjÁ2 6 He2HG(x)2:

Theorem 3.2. Let
1

p(x)
= 2x cos

1

x
+ sin

1

x

and ¬ 0 = 0. Then, for any q 2 L1(I), every eigenfunction of (1.1), (1.2) has
in¯nitely many zeros in Î , accumulating at 0.

Proof. For  xed ¶ , we write (1.3) in the form

³ 0 =
1

p
+ h sin2 ³ ;

where h = ¶ ¡ q ¡ 1=p 2 L1(I). It follows from lemma 3.1 that
³ (x) ¡ x2 cos

1

x

6 He2Hx4; (3.2)

https://doi.org/10.1017/S0308210500001232 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500001232


Oscillation theory 995

with H =
R 1

0
jhj. For xm = (mº )¡1, where m is any positive integer, we obtain

j ³ (xm) ¡ ( ¡ 1)m(mº )¡2j 6 He2H(mº )¡4:

Thus, if (mº )2 > He2H , ( ¡ 1)m ³ (xm) > 0. It follows that for any ¶ , ³ has in nitely
many zeros, accumulating at 0, and thus the same is true for any eigenfunction.

We remark that the above example works equally well for any r 2 L1. It is a
development of the remark in [4] that the function f : x !

R x

0 1=p can have in nitely
many zeros.

Further examples can be built from theorem 3.2, as the following shows.

Corollary 3.3. Let 1=p 2 L1(I) and

¡ q(x) = 2x cos
1

x
+ sin

1

x
:

Then, for appropriate ¬ j, (1.1), (1.2) has eigenvalue 0 and if y is the corresponding
eigenfunction, then py0 has in¯nitely many zeros in Î .

Proof. From (1.3), ³ 0 = ¶ ¡ q + (1=p + q ¡ ¶ ) cos2 ³ , so if ¿ = ³ ¡ 1
2 º and ¶ = 0,

then

¿ 0 = ¶ ¡ q +

³
1

p
+ q ¡ ¶

´
sin2 ¿ (3.3)

= ¡ q +

³
1

p
+ q

´
sin2 ¿ : (3.4)

Since this is of the same form as (3.1), ¿ (and hence py0) has in nitely many zeros
in Î if ¿ (0) = 0, i.e. ¬ 0 = 1

2
º .

We may combine the above results as follows. Let

1

p(x)
= ¡ q(x) = 

³
2x cos

1

x
+ sin

1

x

´
on [0; 1

2 ];

with ¶ = 0 and ¬ 0 = 1
2
º . Then (3.4) shows that ¿ (x) =  x2 cos(1=x) and we now

choose  so that ¿ ( 1
2
) = ¡ 1

4
º . Continuing p and q over ] 1

2
; 1] by their even extensions

about x = 1
2 , we see that ³ ( 1

2) = 1
4 º , and so ³ (1) = 0 since ¿ (x; 0) is odd about

1
2 . Thus, if we choose ¬ 1 = 0, then we obtain an eigenfunction y for which both y
and py0 have in nitely many zeros. Although these examples make the prospect for
oscillation theory look bleak, we do have the following positive result.

Theorem 3.4. Suppose ¡ 1
2
º < ¬ j < 1

2
º , j = 0; 1, and that yn is an eigenfunction

of (1.1), (1.2) corresponding to ¶ n of theorem 2.2.

(i) For each integer n, py0
n has at least jnj zeros in Î .

(ii) If q < ¶ n+ a.e. for some n + , then py0
n has exactly n zeros in Î for each

n > n + .

(iii) If q > ¶ n ¡ a.e. for some n¡, then py0
n has exactly ¡ n zeros in Î for each

n 6 n¡.
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Proof. (i) Since ³ (x; ¶ n) moves continuously from ¬ 0 to nº + ¬ 1 as x moves from 0
to 1, ³ must take each value jº + 1

2 º (0 6 j < n) at least once if n > 0. The
argument for n < 0 is similar.

(ii) Suppose ¶ > ¶ n+
, so g = ¶ ¡ q > 0 a.e. We claim that

³ = ³ (¢; ¶ ) increases through odd multiples of 1
2
º (3.5)

in the sense that ³ (x0) = (k + 1
2) º implies ³ (x) > ³ (x0) (less than ³ (x0)) in a right

(left) neighbourhood of x0. This is similar to [2, theorem 8.4.1], but for complete-
ness we give a proof. We set ¿ = ³ ¡ (k + 1

2) º . Then, applying lemma 3.1 to (3.3)
(together with a corresponding inequality to the left of x0), we obtain

¿ (x) ¡
Z x

x0

g

6 He2H

³Z x

x0

g
2́

for all x 2 I, where

H =

Z 1

0


1

p
¡ ¶ + q

:

This establishes (3.5).
Thus the argument of (i) holds with `at least’ replaced by `precisely’, for any

¶ n > ¶ n+
. (iii) is proved similarly.

Remark 3.5. If ¬ 0 = ¡ 1
2 º < ¬ 1 < 1

2 º , then the oscillation count remains un-
changed for n > 0, but for n < 0 in (i) and (iii), jnj and ¡ n should be replaced by
¡ 1 ¡ n. Similarly, if ¬ 1 = ¡ 1

2 º < ¬ 0 < 1
2 º , then the count for n > 0 in (i) and (iii)

is n ¡ 1 instead. Finally, for the Neumann problem ¬ 0 = ¡ 1
2
º = ¬ 1, the count must

be changed for all n 6= 0 to jn ¡ 1j in (i), n ¡ 1 in (ii) and 1 ¡ n in (iii). See [1, the-
orem 4.1] for the special case q = 0, n = §1. Moreover, the situation for n = 0
is somewhat special, since py0 can be identically zero (this occurs when q is the
constant function ¶ 0).

Corollary 3.6. If q 2 L 1 (I), then theorem 3.4 (amended if necessary as in
remark 3.5) applies whenever ¶ n+ > kqk1 and ¶ n ¡ < ¡ kqk 1 .

We note that this result applies to the example in corollary 3.3, where kqk 1 6 3.
Thus the oscillation counts for py0

n are quite regular for j¶ nj > 3, despite the
irregularity at the eigenvalue 0.

The  nal example of this section shows what can happen when the conditions
on q in theorem 3.4 (ii) are removed.

Example 3.7. Let q in corollary 3.3 be replaced by

q(x) = 1
2x¡1=2 cos x¡1=4 + 1

4 x¡3=4 sin x¡1=4:

If ¬ 0 = 1
2 º again, then py0 has in nitely many zeros in Î for any eigenfunction y.

To see this, we apply lemma 3.1 to (3.3) and obtain

j ¿ (x) ¡ ¶ x + x1=2 cos x¡1=4j 6 He2H (j¶ jx + x1=2)2;

where

H =

Z 1

0


1

p
+ q ¡ ¶

;
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as the analogue of (3.2). If we now pick xm = (mº )¡4, then we can  nd m( ¶ ) so
that ( ¡ 1)m ¿ (xm) > 0 for all m > m( ¶ ). Thus ¿ , and hence py0, has in nitely many
zeros in Î for any ¶ .

4. Sturm theory for p > 0

In this case, we can make a substitution, as in x 2, to ensure p = 1. Indeed,

t(x) =

³Z a1

a0

1

p

¡́1 Z x

a0

1

p

su¯ ces. We remark that substitutions of this type, and the reciprocal transforma-
tion mentioned in x 1, are far from new (cf. [5]). From now on, we assume p = 1,
[a0; a1] = [0; 1] = I and that r is inde nite.

Reality of the eigenvalues is no longer guaranteed, and so extra preparation is
needed. We  rst look at the behaviour of the Pr�ufer angle ³ (1; ¶ ) as ¶ ! §1.

Lemma 4.1. We have ³ (1; ¶ ) ! +1 as ¶ ! +1 and as ¶ ! ¡ 1.

Proof. Suppose ¶ > 0. We introduce a modi ed Pr�ufer angle Á = Á(x; ¶ ) by

cos ³ = » cos Á; ¶ sin ³ = » sin Á; j³ (0; ¶ ) ¡ Á(0; ¶ )j < 1
2 º ; (4.1)

and set À = Á ¡ 1
2 º . We claim À (1; ¶ ) ! +1 as ¶ ! +1, and since j³ ¡ À j < º ,

this will give ³ (1; ¶ ) ! +1. A simple calculation gives

À 0 = ¶ sin2 À + (r ¡ ¶ ¡1q) cos2 À ;

so by the di¬erential inequality theory [13, theorem 1.10.2], it su¯ ces to prove the
claim with q cos2 À replaced by jqj. But this follows from theorem 2.1 with f = r,
g = jqj, h = 1 and k = ¡ r. If we replace ¶ by ¡ ¶ and r by ¡ r, we obtain the
statement for ¶ ! ¡ 1.

Lemma 4.2. Eigenfunctions of (1.1), (1.2) corresponding to ¯nitely many distinct
eigenvalues are linearly independent.

Proof. Lemma 4.1 shows that there is a real number ½ that is not an eigenvalue
of (1.1), (1.2). Therefore, replacing A by A ¡ ½ r and ¶ by ¶ ¡ ½ , we assume that

Ay = 0 ) y = 0; (4.2)

without loss of generality. Now suppose ( ¶ j ; yj) are eigenpairs of (1.1), (1.2), with
the ¶ j distinct for j = 1; : : : ; `, so

Ayj = ¶ jryj ; (4.3)

and (4.2) shows that each ¶ j 6= 0.
Suppose ` is minimal, so that y1; : : : ; y` are linearly dependent. Then

y` =

`¡1X

j = 1

cjyj
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for some cj not all zero. Now, from (4.3),

`¡1X

j = 1

cj ¶ ¡1
j Ayj = ry` = ¶ ¡1

` Ay` =

`¡1X

j = 1

cj ¶ ¡1
` Ayj;

so

A

`¡1X

j = 1

cj( ¶ ¡1
j ¡ ¶ ¡1

` )yj = 0:

Thus (4.2) gives
`¡1X

j = 1

cj( ¶ ¡1
j ¡ ¶ ¡1

` )yj = 0;

contradicting the minimality of `.

The following lemma on quadratic forms will be needed to prove theorem 4.4
below.

Lemma 4.3. Let g 2 L1(I) be real valued and c; d 2 R. De¯ne, for f 2 C1(I),

G(f) = cjf (0)j2 + djf (1)j2 +

Z 1

0

jf 0j2 +

Z 1

0

gjf j2:

For every in¯nite-dimensional linear subspace V of C1(I), there is a function h 2 V
such that G(h) > 0.

Proof. Let f 2 C1(I) and ° > 0. Then

jf (x)j2 6 jf (t)j2 + 2


Z x

t

ff 0
6 jf(t)j2 + ° ¡1

Z 1

0

jf j2 + °

Z 1

0

jf 0j2:

Integrating with respect to t, we obtain

jf(x)j2 6 ( ° ¡1 + 1)

Z 1

0

jf j2 + °

Z 1

0

jf 0j2: (4.4)

Hence Z 1

0

gjf j2 > ¡
Z 1

0

jgj
³

( ° ¡1 + 1)

Z 1

0

jf j2 + °

Z 1

0

jf 0j2
´

;

and with this and (4.4) again we have

G(f) > 1

2

Z 1

0

jf 0j2 ¡ K

Z 1

0

jf j2; (4.5)

where K > 0 is a constant independent of f . The proof of the lemma is now by
contradiction. If the lemma is not true, there is an in nite sequence fn 2 C1(I),
n = 1; 2; 3; : : : , such that Z 1

0

fm
·fn = ¯ mn

https://doi.org/10.1017/S0308210500001232 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500001232


Oscillation theory 999

and G(fn) 6 0 for all n. By (4.5),
Z 1

0

jf 0
nj2 6 2K

and so, for t < x,

jfn(x) ¡ fn(t)j 6
Z x

t

jf 0
nj 6

p
2K

p
x ¡ t:

This shows that the sequence ffng is uniformly equicontinuous. By (4.4), the
sequence is also uniformly bounded. By the theorem of Arzela and Ascoli, there
is a subsequence of ffng, which we may again denote be ffng, such that fn con-
verges uniformly to a function f . Then

0 = lim
n! 1

Z 1

0

fn
·fn+ 1 =

Z 1

0

jf j2 = lim
n ! 1

Z 1

0

jfnj2 = 1;

which is the desired contradiction.

The next result, which is well known for more restricted coe¯ cients, has several
implications for what follows.

Theorem 4.4. For at most ¯nitely many (complex) eigenvalues ¶ of (1.1), (1.2),
the corresponding eigenfunctions y satisfy

¶

Z 1

0

rjyj2 6 0:

Proof. Let ( ¶ j ; yj), j 2 J , be the set of eigenpairs of (1.1), (1.2) for which

¶ j

Z 1

0

rjyjj2 6 0:

From (4.3), we obtain, in a well-known way,

a(yj; y`) = 0 for j; ` 2 J; j 6= `

and

a(yj; yj) = ¶ j

Z 1

0

rjyjj2 6 0 for j 2 J: (4.6)

Hence the quadratic form a(f; f ) is non-positive on the linear span V of the eigen-
vectors yj with j 2 J . By (2.7), a(f; f ) is of the form considered in lemma 4.3.
Hence we conclude that V is  nite dimensional. By lemma 4.2, we  nd that J is a
 nite set.

Corollary 4.5. At most ¯nitely many eigenvalues of (1.1), (1.2) are non-real.

Proof. Standard manipulations (cf. (4.6)) give

a(y; y) = ¶

Z 1

0

rjyj2 = 0

for any eigenpair ( ¶ ; y) with ¶ 62 R. Now apply theorem 4.4.
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We turn now to oscillation theory for real eigenvalues. Example 3.7, which holds
regardless of the sign of p, shows that we cannot count zeros of py0 in general.
Hence, for a real eigenpair ( ¶ ; y) of (1.1), (1.2), we shall de ne the oscillation count
!( ¶ ) as the number of zeros of y in Î. We claim that this number is  nite. We
choose the angle ¬ 0 in the range [0; º [ and ¬ 1 in the range ]0; º ]. If ¶ is a real
eigenvalue of (1.1), (1.2), then there is an integer n such that ³ (1; ¶ ) = nº + ¬ 1.
Now an application of lemma 3.1 to (1.3) shows that, for  xed ¶ , ³ (x; ¶ ) increases
through multiples of º . By the choice of ¬ 0, ¬ 1, we see that n = !( ¶ ), justifying
our claim. In particular, n is non-negative.

Theorem 4.6.

(i) The real eigenvalues can be listed,

¢ ¢ ¢ < ¶ ¡
2 < ¶ ¡

1 < ¶ ¡
0 < 0 6 ¶ +

0 < ¶ +
1 < ¶ +

2 : : : ;

where ¶ §
n ! §1 as n ! 1.

(ii) Let M be the minimal oscillation count of the eigenvalues of (1.1), (1.2). For
every integer n > M , at least two eigenvalues ¶ exist with !( ¶ ) = n.

Proof. (i) Lemma 4.1 establishes the existence of an in nite sequence of eigenvalues
accumulating at both §1. The discreteness of the spectrum follows from analyticity
of ³ (1; ¶ ).

(ii) Continuity and the asymptotics of ³ (1; ¶ ) from lemma 4.1 show that ³ (1; ¶ )
attains a minimum value, say ³ (1; ¶ 0). The result follows because M is the smallest
integer satisfying Mº + ¬ 1 > ³ (1; ¶ 0).

Since ³ (1; ¶ ) can be non-monotonic on the intervals ] ¡ 1; ¶ 0[ and ]¶ 0; 1[, there
is no obvious analogue of theorem 2.2 via Pr�ufer methods. It is possible, however,
to give an analogue for large enough eigenvalues via theorem 4.4.

Theorem 4.7. There exist n§ so that !( ¶ +
n + 1) = !( ¶ +

n ) + 1 whenever n > n + and

!( ¶ ¡
n + 1) = !( ¶ ¡

n ) + 1 whenever n > n¡.

Proof. It su¯ ces to consider n + . We  rst compute the derivative ³ ¶ of the func-
tion ³ with respect to ¶ . Let y(x) = y(x; ¶ ) be the solution of (1.1), (1.2), with
y(0) = sin ¬ 0, y0(0) = cos ¬ 0. Then (sec2 ³ ) ³ ¶ = (y0)¡2d, where d = y0y ¶ ¡ yy0

¶ , so

³ ¶ = (y2 + y02)¡1d: (4.7)

Now ¡ y00
¶ = ( ¶ r ¡ q)y¶ + ry, so with (1.1) we obtain

d0 = y00y¶ ¡ yy00
¶ = ry2:

Since y¶ (0) = y0
¶ (0) = 0, d(0) = 0, so

d(1) =

Z 1

0

ry2

and (4.7) gives

³ ¶ (1) = (y(1)2 + y0(1)2)¡1

Z 1

0

ry2: (4.8)
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Thus, by theorem 4.4, all but  nitely many ³ ¶ (1; ¶ +
n ) are positive, which implies

the desired result.

In the `left de nite’ case, one can take n¡ = n + = 0.

Corollary 4.8. Suppose q > 0 and 0 6 ¬ 0 6 1
2
º 6 ¬ 1 6 º . Then !( ¶ +

n ) = n.
In the èxceptional case’, q = 0 and ¬ 0 = 1

2 º = ¬ 1, !( ¶ ¡
n ) = n + 1; otherwise,

!( ¶ ¡
n ) = n.

Proof. For an eigenpair ( ¶ ; y) of (1.1), (1.2), we have

a(y; y) = ¶

Z 1

0

ry2 (4.9)

(cf. (4.6)). From (2.7), we obtain a(y; y) > 0, with equality precisely in the excep-
tional case when ¶ = 0 and y is a constant. Thus, by (4.8), ¶ ³ ¶ (1) > 0, provided
¶ 6= 0. This proves that n¡ = n + = 0. In the exceptional case, ¶ +

0 = 0 and
!( ¶ +

0 ) = 0. In the other case, we set ¶ = 0, which is not an eigenvalue by (4.9).
By equation (1.3), ³ 0 6 cos2 ³ . Since ¬ 0 2 [0; 1

2 º ], this implies ³ (1; 0) 6 1
2 º , with

equality only if q = 0 and ¬ 0 = 1
2 º . Hence ³ (1; 0) < ¬ 1, and therefore the minimal

oscillation count M is zero. In each case, then, ! increases by one for each successive
eigenvalue away from 0.

4.1. Remarks

(i) Most of the results of this section are well known under additional condi-
tions. For continuous coe¯ cients, see Haupt [11] and the papers of Richardson
(1910{1918) cited in [8]. For r 2 L 1 , two-parameter eigencurve methods in
L2 su¯ ce [6]. If r is a.e. non-zero, then one can use an appropriate restriction
of r¡1A (cf. [9]). See [1] for lemma 4.2 when r is a.e. non-zero on an open set.

(ii) In special cases, theorem 4.4 has been proved using the minimum{maximum
principle, or some other means based on the completeness of eigenfunctions of
the operator A. For example, Haupt [11] uses Green’s function for Ay = · y.
Our proof based on lemma 4.3 is more elementary.

(iii) For the conditions used here, theorem 4.6 follows from the asymptotics of [4],
which is a sophisticated analysis of an equation like (1.3). Our method is
simpler, but we obtain no asymptotics.

(iv) Equation (4.8) can be found in [3]. It would be interesting to prove theo-
rems 4.4 and 4.7 entirely by Pr�ufer angle techniques. Such a proof is possible
(via Á of (4.1)) for corollary 4.8 (cf. [7]).

(vi) An alternative proof of theorem 4.7 can be derived via eigencurves of the
two-parameter equation

Ay = ¶ ry ¡ · y; (4.10)

to which theorem 2.2 applies for each real ¶ . Let · n( ¶ ), yn( ¶ ) be a real eigen-
pair for (4.10) with !( · n( ¶ )) = n. By a standard result (see [8, eqn (2.5)]),

· 0
n( ¶ ) =

Z 1

0

ryn( ¶ )2

¿Z 1

0

yn( ¶ )2: (4.11)
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Thus, by theorem 4.4, all but  nitely many · 0
n( ¶ +

n ) are positive, so all but
 nitely many eigenvalue functions · n have precisely one zero (i.e. ¶ +

n ). The
result now follows because !( · n+ 1( ¶ )) = !( · n( ¶ )) + 1.
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