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FINDING THE LIMIT OF INCOMPLETENESS I

YONG CHENG

Abstract. In this paper,we examine the limit of applicability ofGödel’s first incompleteness

theorem (G1 for short). We first define the notion “G1 holds for the theory T”. This paper

is motivated by the following question: can we find a theory with a minimal degree of

interpretation for which G1 holds. To approach this question, we first examine the following

question: is there a theory T such that Robinson’s R interprets T but T does not interpret R

(i.e., T is weaker than R w.r.t. interpretation) and G1 holds for T? In this paper, we show that

there are many such theories based on Jeřábek’s work using some model theory. We prove

that for each recursively inseparable pair 〈A,B〉, we can construct a r.e. theory U〈A,B〉 such

that U〈A,B〉 is weaker than R w.r.t. interpretation and G1 holds for U〈A,B〉. As a corollary,

we answer a question from Albert Visser. Moreover, we prove that for any Turing degree

0 < d < 0′, there is a theory T with Turing degree d such that G1 holds for T and T is

weaker than R w.r.t. Turing reducibility. As a corollary, based on Shoenfield’s work using

some recursion theory, we show that there is no theory with a minimal degree of Turing

reducibility for which G1 holds.

§1. Introduction. Gödel’s incompleteness theorem is one of the most
remarkable results in the foundation of mathematics and has had great
influence in logic, philosophy, mathematics, physics, and computer science,
as discussed in [25] and [31]. Gödel proved his incompleteness theorems in
[12] for a certain formal system P related to Russell–Whitehead’s Principia
Mathematica and based on the simple theory of types over the natural
number series and the Dedekind–Peano axioms (see [1], p. 3). The following
theorem is a modern reformulation of Gödel’s first incompleteness theorem
(where PA refers to the first-order theory commonly known as Peano
Arithmetic).

Theorem 1.1 (Gödel–Rosser, first incompleteness theorem (G1).) If T is
a recursively axiomatized consistent extension of PA, then T is incomplete.

The following is a well known open question about G1.

Question 1.2. Exactly how much arithmetical information from PA is
needed for the proof of G1?

The notion of interpretation provides us a method to compare different
theories in different languages (for the definition of interpretation, see

Received October 29, 2019.
2020 Mathematics Subject Classification. 03F40, 03F30, 03D35.
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Section 2). Given theories S and T, S✂T denotes that S is interpretable in
T (or T interprets S), and S ✁T denotes that S is interpretable in T but
T is not interpretable in S. We say that the theory S and T are mutually
interpretable if S✂T and T ✂S. In this paper, we equate a set of sentences
Γ in the language of arithmetic with the set of Gödel’s numbers of sentences
in Γ (see Section 2 for more details about Gödel’s number). Given two
arithmetic theories U and V, U ≤T V denotes that the theory U as a set
of natural numbers is Turing reducible to the theory V as a set of natural
numbers, and U<T V denotes that U ≤T V but V �T U .
Note that G1 can be generalized via interpretability: there exists a weak
recursively axiomatizable consistent subtheoryT (e.g., RobinsonArithmetic
Q) of PA such that for each recursively axiomatizable consistent theory S,
if T is interpretable in S, then S is incomplete (see [35]). To generalize this
fact, in the following, we propose a general new notion “G1 holds for the
theory T”.

Definition 1.3.

(1) Let T be a recursively axiomatizable consistent theory. We say that
G1 holds for T if for any recursively axiomatizable consistent theory
S, if T is interpretable in S, then S is incomplete.

(2) We say the theory S has a minimal degree of interpretation if there is
no theory T such that T ✁S.

(3) We say the theory S has aminimal degree of Turing reducibility if there
is no theory V such that V<T S.

(4) In this paper, whenever we say that the theory S is weaker than the
theory T w.r.t. interpretation , this means that S✁T .

(5) In this paper, whenever we say that the theory S is weaker than the
theory V w.r.t. Turing reducibility , this means that S <T V .

Toward Question 1.2, in this project, we want to examine the following
question:

Question 1.4. Can we find a theory S such that G1 holds for S and S has
a minimal degree of interpretation?

It is well known that G1 holds for Robinson Arithmetic Q (see [35]).
From [35], G1 also holds for Robinson’s theory R (for definitions of Q and
R, we refer to Section 2). In Section 2, we review some theories mutually
interpretable with Q for which G1 holds, and some theories mutually
interpretable with R for which G1 holds. As the first step toward Question
1.4, we propose the following question:

Question 1.5. Can we find a theory S such thatG1 holds for S and S✁R?

We find that Jeřábek essentially answered this question in [21]. In this
paper, we show that there are many examples of such a theory S: for each
recursively inseparable pair 〈A,B〉, we can construct a r.e. theoryU〈A,B〉 such
that G1 holds forU〈A,B〉 andU〈A,B〉✁R based on Jeřábek’s work using some
model theory. As a corollary, we answer a question from Albert Visser. For
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Question 1.4, if we consider the degree of Turing reducibility instead of the
degree of interpretation, the answer becomes easier. We show that for any
Turing degree 0< d< 0′, there is a theory S such thatG1 holds for S, S<T R
and S has Turing degree d based on Shoenfield’s work using some recursion
theory. As a corollary, there is no theory with a minimal degree of Turing
reducibility for which G1 holds.
The structure of this paper is as follows. In Section 1, we introduce our
research questions and main results of this paper. In Section 2, we list some
basic notions and facts we use in this paper, and give a review of theories
weaker thanPAw.r.t. interpretation from the literature forwhichG1holds. In
Section 3, we examine the limit of applicability ofG1w.r.t. interpretation.We
prove Theorem 3.12, and answer a question from Albert Visser. In Section
4, we examine the limit of applicability of G1 w.r.t. Turing reducibility, and
prove Theorem 4.5 and Corollary 4.6.

§2. Preliminaries. In this section, we review some basic notions and facts
used in this paper. Our notations are standard. For books on Gödel’s
incompleteness theorem, we refer to [8], [25], [24], [31], [2] and [4]. For
survey papers on Gödel’s incompleteness theorem, we refer to [1], [23], [32],
[41], [5] and [6]. For meta-mathematics of subsystems of PA, we refer to
[18].
In this paper, a language consists of an arbitrary number of relation and
function symbols of arbitrary finite arity.1 For a given theory T, we use
L(T ) to denote the language of T, and often equate L(T ) with the list of
nonlogical symbols of the language. For a formula φ in L(T ), let T ⊢ φ
denote that φ is provable in T (i.e., there is a finite sequence of formulas
〈φ0, . . . ,φn〉 such that φn = φ, and for any 0≤ i ≤ n, either φi is an axiom of
T or φi follows from some φj (j < i) by using one inference rule). Theory T
is consistent if no contradiction is provable in T. A formula φ is independent
of T if T 0 φ and T 0 ¬φ. A theory T is incomplete if there is a sentence φ
in L(T ) such that φ is independent of T ; otherwise, T is complete (i.e., for
any sentence φ in L(T ), either T ⊢ φ or T ⊢ ¬φ).
In this paper, we understand that each theory T comes with a fixed
arithmetization. Let T be a recursively axiomatizable theory. Under this
fixed arithmetization, we could establish the one-to-one correspondence
between formulas ofL(T ) and natural numbers.Under this correspondence,
we can translate metamathematical statements about the formal theory
T into statements about natural numbers. Furthermore, fundamental
metamathematical relations can be translated in this way into certain
recursive relations, hence into relations representable in the theory T.
Consequently, one can speak about a formal system of arithmetic and about
its properties as a theory in the system itself (see [25])! This is the essence
of Gödel’s idea of arithmetization. Under arithmetization, any formula or
finite sequence of formulas can be coded by a natural number (this code

1We may view nullary functions as constants and nullary relations as propositional
variables.
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is called a Gödel number). In this paper, we use pφq to denote the Gödel
number of φ. For details of arithmetization, we refer to [25].
Given a set of sentences Σ, we say Σ is recursive if the set of Gödel
numbers of sentences in Σ is recursive. A theory T is decidable if the set
of sentences provable in T is recursive; otherwise it is undecidable. A theory
T is recursively axiomatizable if it has a recursive set of axioms (i.e., the set
of Gödel numbers of axioms of T is recursive), and it is finitely axiomatized
if it has a finite set of axioms. A theory T is recursively enumerable (r.e.)
if it has a recursively enumerable set of axioms. A theory T is essentially
undecidable if any recursively axiomatizable consistent extension of T in the
same language is undecidable. A theory T is essentially incomplete if any
recursively axiomatizable consistent extension of T in the same language is
incomplete. The theory of completeness/incompleteness is closely related to
the theory of decidability/undecidability. A theory T is minimal essentially
undecidable if T is essentially undecidable, and if deleting any axiom of T,
the remaining theory is no longer essentially undecidable. A theory T is
locally finitely satisfiable if every finitely axiomatized subtheory of T has a
finite model.
A n-ary relation R(x1, . . . ,xn) on Nn is representable in T iff there is a
formula φ(x1, . . . ,xn) such thatT ⊢ φ(m1, . . . ,mn) ifR(m1, . . . ,mn) holds (for
n ∈ N, we denote by n the corresponding numeral for n in L(PA)), and T ⊢
¬φ(m1, . . . ,mn) ifR(m1, . . . ,mn) does not hold.We say that a partial function
f(x1, . . . ,xn) onNn is representable in T iff there is a formula ϕ(x1, . . . ,xn,y)
such that T ⊢ ∀y(ϕ(a1, . . . ,an,y)↔ y = m) whenever a1, . . . ,an,m ∈ N are
such that f(a1, . . . ,an) =m.
For the definitions of translation and interpretation, we follow [21]. Let T
be a theory in a language L(T ), and S a theory in a language L(S). In its
most simple form, a translation I of language L(T ) into language L(S) is
specified by:

(1) an L(S)-formula äI (x) denoting the domain of I ;
(2) for each relation symbol R of L(T ), an L(S)-formulaRI of the same
arity;

(3) for each function symbol F of L(T ) of arity k, an L(S)-formula FI
of arity k+1.

If φ is an L(T )-formula, its I-translation φI is an L(S)-formula
constructed as follows: we reformulate the formula in an equivalent way
so that function symbols only occur in atomic subformulas of the form
F (x) = y where xi,y are variables; thenwe replace each such atomic formula
with FI (x,y), we replace each atomic formula of the formR(x) withRI (x),
and we restrict all quantifiers and free variables to objects satisfying äI .
Moreover, we rename bound variables to avoid variable clashes during the
process (see [21]).
A translation I of L(T ) into L(S) is an interpretation of T in S if S
proves:
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(1) for each function symbol F of L(T ) of arity k, the formula express-
ing that FI is total on äI : ∀x0, . . .∀xk–1(äI (x0)∧ ·· · ∧ äI (xk–1) →
∃y(äI (y)∧FI (x0, . . . ,xk–1,y)));

(2) the I-translations of all theorems of T, and axioms of equality.

The simplified picture of translations and interpretations above actually
describes only one-dimensional, parameter-free, and one-piece translations
(see [21]). For the precise and technical definitions of a multidimensional
interpretation, an interpretation with parameters, and a piece-wise interpre-
tation, we refer to [40], [38] and [39] for the details.
A theory T is interpretable in a theory S if there exists an interpretation of
T in S. If T is interpretable in S, then all sentences provable (refutable)
in T are mapped, by the interpretation function, to sentences provable
(refutable) in S. Interpretability can be accepted as a measure of strength
of different theories. If S ✁T , then S can be considered weaker than T
w.r.t. interpretation; if S and T are mutually interpretable, then T and S
are equally strong w.r.t. interpretation. The theory U weakly interprets the
theory V (or V is weakly interpretable in U) if V is interpretable in some
consistent extension of U in the same language (or equivalently, for some
interpretation ô, the theory U +V ô is consistent).
A general method for establishing the undecidability of theories is devel-
oped in [35]. The following theorem provides us two methods to prove the
essentially undecidability of a theory via interpretation and representability.

Theorem 2.1.

(1) ([35, Theorem 7, p. 22]) Let T1 and T2 be two theories such that T1
is consistent, and T2 is interpretable in T1. We then have: if T2 is
essentially undecidable, then T1 is also essentially undecidable.

(2) ([35, Corollary 2, p. 49]) If T is a consistent theory in which all recursive
functions are representable, then T is essentially undecidable.

In Section 3, we will show thatG1 holds for the theoryT iffT is essentially
undecidable. In the following, we review some theories from the literature
which are weaker than PA w.r.t. interpretation, and which are essentially
undecidable (i.e., G1 holds for them).
Robinson Arithmetic Q was introduced in [35] by Tarski et al. as a base
axiomatic theory for investigating incompleteness and undecidability.

Definition 2.2. Robinson Arithmetic Q is defined in the language
{0,S,+ ,·} with the following axioms:

Q1: ∀x∀y(Sx = Sy→ x = y);
Q2: ∀x(Sx 6= 0);
Q3: ∀x(x 6= 0→∃y(x = Sy));
Q4: ∀x(x+0= x);
Q5: ∀x∀y(x+Sy = S(x+y));
Q6: ∀x(x ·0= 0);
Q7: ∀x∀y(x ·Sy = x ·y+x).
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Robinson Arithmetic Q is very weak and inadequate to formalize
arithmetic: for instance, Q does not even prove that addition is associative.
Robinson showed that any consistent theory that interpretsQ is undecidable,
and hence Q is essentially undecidable (see [35]). The fact that Q is
essentially undecidable is very useful, and can be used to prove the
essentially undecidability of other theories via Theorem 2.1. Since Q is
finitely axiomatized, it follows that any theory that weakly interprets Q is
undecidable. In fact, Q is minimal essentially undecidable in the sense that
if deleting any axiom of Q, then the remaining theory is not essentially
undecidable, and has a complete decidable extension (see [35, Theorem 11,
p. 62]). Nelson [26] embarked on a program of investigating how much
mathematics can be interpreted in Robinson Arithmetic Q: what can be
interpreted in Q, but also what cannot be interpreted in Q. In fact, Q
represents a rich degree of interpretability since a lot of stronger theories
are interpretable in it as it can be shown (e.g., using Solovay’s method of
shortening cuts (see [15]), one can show that Q interprets fairly strong
theories like I∆0+Ω1 on a definable cut). The Lindenbaum algebras of all
recursively enumerable theories that interpret Q are recursively isomorphic
(see Pour-El and Kripke [27]).
The theory PA consists of axioms Q1–Q2, Q4–Q7 in Definition 2.2 and
the following axiom scheme of induction: (φ(0)∧∀x(φ(x)→ φ(Sx)))→
∀xφ(x), where φ is a formula with at least one free variable x.
Now we first discuss some prominent fragments of PA extending Q from
the literature.
We define the arithmetic hierarchy IΣn and BΣn in the language of PA.
An L(PA)-formula is bounded (or ∆0 formula) if all quantifiers occurring
in it are bounded, that is, in the form (∃x ≤ y)φ and (∀x ≤ y)φ. For the
definitions of Σn,Πn, and ∆n formulas (n ≥ 1), we refer to [25]. Collection
for Σn+1 formulas is the following principle:

(∀x < u)(∃y)ϕ(x,y)→ (∃v)(∀x < u)(∃y < v)ϕ(x,y),

whereϕ(x,y) is a Σn+1 formula possibly containing parameters distinct from
u,v.
The theory IΣn isQ plus induction for Σn formulas and BΣn+1 is IΣ0 plus
collection for Σn+1 formulas. It is well known that the following theories
form a strictly increasing hierarchy:

IΣ0, BΣ1, IΣ1, BΣ2, . . . IΣn, BΣn+1, . . . ,PA.

Define ù1(x) = x|x| and ùn+1(x) = 2ùn(|x|), where |x| is the length of
the binary expression of x. Note that the graphs of these functions can
be defined in our language with the recursive defining equation provable
(see [18]). Let Ωn denote the statement ∀x∃y(ùn(x) = y) which says that
ùn(x) is total. There is a bounded formula Exp(x, y, z) such that IΣ0 proves
that Exp(x, 0, z) ↔ z = 1 and Exp(x, Sy, z) ↔ ∃t(Exp(x, y, t)∧ z = t · x)
(see [10, Proposition 2, p. 299]). However, IΣ0 cannot prove the totality
of Exp(x, y, z). Let exp denote the statement postulating the totality of the
exponential function ∀x∀y∃zExp(x, y, z).
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Theorem 2.3 ([17], [10].)

(1) For any n ≥ 1, IΣ0+Ωn is interpretable in Q (see [10, Theorem 3, p.
304]).

(2) IΣ0+ exp is not interpretable in Q.
2

(3) IΣ1 is not interpretable in IΣ0+ exp (see [17, Theorem 1.1, p. 186]).
(4) IΣn+1 is not interpretable in BΣn+1 (see [17, Theorem 1.2, p. 186]).
(5) BΣ1+exp is interpretable in IΣ0+exp (see [17, Theorem 2.4, p. 188]).
(6) For each n≥ 1,BΣ1+Ωn is interpretable in IΣ0+Ωn (see [17, Theorem
2.5, p. 189]).

(7) For each n ≥ 0, BΣn+1 is interpretable in IΣn (see [17, Theorem 2.6,
p. 189]).

As a corollary, we have:

(1) The theories Q,IΣ0,IΣ0 +Ω1, . . . ,IΣ0 +Ωn, . . . ,BΣ1,BΣ1 +Ω1, . . . ,
BΣ1+Ωn, . . . are all mutually interpretable;

(2) IΣ0+ exp and BΣ1+ exp are mutually interpretable;
(3) For n ≥ 1, IΣn and BΣn+1 are mutually interpretable;
(4) Q✁ IΣ0+ exp✁ IΣ1✁ IΣ2✁ · · ·✁ IΣn✁ · · ·✁PA.

Nowwe discuss someweak theories from the literature which aremutually
interpretable with Q.
It is interesting to compareQ with its bigger brother PA–. The theory PA–

is the theory of commutative, discretely ordered semirings with a minimal
element plus the subtraction axiom.The theoryPA– has the following axioms
with L(PA–) =L(PA)∪{≤}: (1) x+0= x; (2) x+y = y+x; (3) (x+y)+
z = x+(y+ z); (4) x ·1 = x; (5) x ·y = y ·x; (6) (x ·y) · z = x · (y · z); (7)
x ·(y+z) = x ·y+x ·z; (8) x ≤ y∨y ≤ x; (9) (x ≤ y∧y ≤ z)→ x ≤ z; (10)
x+1 � x; (11) x ≤ y → (x = y ∨x+1 ≤ y); (12) x ≤ y → x+ z ≤ y+ z;
(13) x ≤ y → x · z ≤ y · z; (14) x ≤ y → ∃z(x+ z = y). From [40], PA– is
interpretable in Q, and hence PA– is mutually interpretable with Q.
Let Q+ be the extension of Q with the following extra axioms ( L(Q+) =
L(Q)∪{≤}):

Q8: (x+y)+z = x+(y+z);
Q9: x · (y+z) = x ·y+x · z;
Q10: (x ·y) · z = x · (y · z);
Q11: x+y = y+x;
Q12: x ·y = y ·x;
Q13: x ≤ y↔∃z(x+z = y).

The theory Q+ is interpretable in Q (see [10, Theorem 1, p. 296]), and
hence Q+ is mutually interpretable with Q.
Andrzej Grzegorczyk considered a theory Q– in which addition and
multiplication do satisfy natural reformulations of axioms of Q but are
possibly nontotal functions. More exactly, the language ofQ– is {0,S,A,M}

2See [10, Theorem 6, p. 313]. Solovay proved that IΣ0+¬exp is interpretable in Q (see
[10, Theorem 7, p. 314]).
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where A andM are ternary relations, and the axioms of Q– are the axioms
Q1– Q3 of Q plus the following six axioms about A andM:

A: ∀x∀y∀z1∀z2(A(x,y,z1)∧A(x,y,z2)→ z1 = z2);
M: ∀x∀y∀z1∀z2(M (x,y,z1)∧M (x,y,z2)→ z1 = z2);
G4: ∀xA(x,0,x);
G5: ∀x∀y∀z(∃u(A(x,y,u)∧ z = S(u))→ A(x,S(y),z));
G6: ∀xM (x,0,0);
G7: ∀x∀y∀z(∃u(M (x,y,u)∧A(u,x,z))→M (x,S(y),z)).

Andrzej Grzegorczyk asked whether Q– is essentially undecidable. Petr
Hájek considered a somewhat stronger theory with axioms

H5: ∀x∀y∀z(∃u(A(x,y,u)∧ z = S(u))⇔ A(x,S(y),z)) and
H7: ∀x∀y∀z(∃u(M (x,y,u)∧A(u,x,z))↔M (x,S(y),z))

instead of G5 and G7. He showed that this stronger variant of Q– is
essentially undecidable (see [16]). Vı́tězslav Švejdar provided a positive
answer to Grzegorczyk’s original question in [33], and proved that Q is
interpretable inQ– using the Solovay’smethod of shortening cuts (and hence
Q– is essentially undecidable). Thus, Q– is mutually interpretable with Q.
AndrzejGrzegorczykproposed the theory of concatenation (TC) in [13] as
a possible alternative theory for studying incompleteness and undecidability.
Unlike Robinson (or Peano) Arithmetic, where the individuals are numbers
that can be added or multiplied, in TC one has strings (or texts) that can be
concatenated. We refer to [13] for Grzegorczyk’s philosophical motivations
to study TC.
The theory TC has the language {⌢ ,α,â, =} with a binary function
symbol and two constants, and the following axioms:

TC1: ∀x∀y∀z(x⌢ (y⌢ z) = (x⌢ y)⌢ z);
TC2: ∀x∀y∀u∀v(x ⌢ y = u ⌢ v → ((x = u ∧ y = v)∨∃w((u = x ⌢
w ∧w⌢ v = y)∨ (x = u⌢w ∧w⌢ y = v))));
TC3: ∀x∀y(α 6= x⌢ y);
TC4: ∀x∀y(â 6= x⌢ y);
TC5: α 6= â .

Grzegorczyk [13] proved (mere) undecidability of the theory TC.
Grzegorczyk and Zdanowski [14] proved that TC is essentially undecidable.
However, [14] leaves an interesting unanswered question: are TC and Q
mutually interpretable? Švejdar [34] showed that Q– is interpretable in TC,
and henceQ is interpretable in TC sinceQ is interpretable inQ–. Ganea [11]
gave a different proof of the interpretability of Q in TC, but he also used
the detour viaQ–. Visser [37] gave a proof of the interpretability ofQ in TC
not usingQ–. Note that TC is easily interpretable in the bounded arithmetic
IΣ0. Thus, TC is mutually interpretable with Q.
Adjunctive Set Theory (AS) is the following theory in the language with
only one binary relation symbol ∈.

AS1: ∃x∀y(y /∈ x);
AS2: ∀x∀y∃z∀u(u ∈ z↔ (u = x∨u = y)).

https://doi.org/10.1017/bsl.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2020.9


276 YONG CHENG

The theoryAS interpretsRobinson’sArithmeticQ, andhence is essentially
undecidable. Nelson [26] showed that AS is interpretable in Q. Thus, AS is
mutually interpretable with Q.
The theory S12 is a finitely axiomatizable weak arithmetic introduced by
Buss in [3] to study polynomial time computability. The theory S12 gives us
what we need to formalize the proof of the second incompleteness theorem
in a natural and effortless way. In fact, it is easier to do it in S12 than in PA,
since the restrictions present in S12 prevent one from making wrong turns
and inefficient choices (see [40]). From [10], IΣ0 is interpretable in S12, and
S12 is interpretable in Q. Thus, S

1
2 is mutually interpretable with Q.

Now, we introduce Robinson’s theoryR introduced by Tarski et al. in [35],
and some variants of R.

Definition 2.4. Let R be the theory consisting of schemes Ax1– Ax5 with
L(R) = {0,S,+ , · , ≤} where ≤ is a primitive binary relation symbol, and
n = Sn0 for n ∈ N:

Ax1: m+n =m+n;
Ax2: m ·n =m ·n;
Ax3: m 6= n, if m 6= n;
Ax4: ∀x(x ≤ n→ x = 0∨·· ·∨x = n);
Ax5: ∀x(x ≤ n∨n ≤ x).

The axiom schemes of R contain all key properties of arithmetic for the
proof ofG1. The theoryR is not finitely axiomatizable. Note thatR✁Q since
Q is not interpretable in R: if Q is interpretable in R, then it is interpretable
in some finite fragment of R; however, R is locally finitely satisfiable but any
model ofQ is infinite. Visser [39] proved the following universal property of
R which provides a unique characterization of R.

Theorem 2.5 (Visser, Theorem 6, [39].) For any r.e. theory T, T is locally
finitely satisfiable iff T is interpretable in R.3

We say a specific class Φ of sentences has the finite model property if every
satisfiable sentence of Φ has a finite model. Since relational Σ2 sentences in
a finite relational language have the finite model property (see Chapter 5 in
[7]), by Theorem 2.5, any consistent theory axiomatized by a recursive set
of Σ2 sentences in a finite relational language is interpretable in R. Since all
recursive functions are representable in R (see [35, Theorem 6, p. 56]), from
Theorem 2.1(2), R is essentially undecidable. Cobham showed that R has a
stronger property than essentially undecidability.

Theorem 2.6 (Cobham, [36].) Any r.e. theory that weakly interprets R is
undecidable.4

Now, we discuss some variants ofR. If not explicitly mentioned otherwise,
we assume that the base language is the same as L(R) = {0,S,+ , · , ≤} with

3In fact, if T is locally finitely satisfiable, then T is interpretable in R via a one-piece
one-dimensional parameter-free interpretation.
4Vaught [36] gave a proof of Cobham’s theorem via existential interpretation.
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≤ as a primitive binary relation symbol. Let R0 be the theory consisting
of schemes Ax1,Ax2,Ax3, and Ax4. The theory R0 is no longer essentially
undecidable: the theory R0 has a decidable complete extension given by
the theory of real closed fields with ≤ as the empty relation on reals.
In fact, whether R0 is essentially undecidable depends on the language
of R0. If L(R0) = {0,S, + ,·} with ≤ defined in terms of +, then R0 is
essentially undecidable: Cobham first observed that R is interpretable in R0,
and hence R0 is essentially undecidable (see [36] and [22]). Let R1 be the
theory consisting of schemes Ax1,Ax2,Ax3, and Ax4′, where Ax4′ is defined
as follows:

∀x(x ≤ n↔ x = 0∨· · ·∨x = n).

The theory R1 is essentially undecidable since R is interpretable in R1 (see
[22], p. 62). However, R1 is not minimal essentially undecidable. Let R2
be the system consisting of schemes Ax2,Ax3, and Ax4′. From [22], R is
interpretable in R2, and hence R2 is essentially undecidable.5 The theory R2
is minimal essentially undecidable in the sense that if we delete any axiom
scheme ofR2, then the remaining theory is not essentially undecidable: if we
delete Ax2, then the theory of natural numbers with x ·y defined as x+y is
a complete decidable extension; if we delete Ax3, then the theory of models
with only one element is a complete decidable extension; if we delete Ax4′,
then the theory of real closed fields is a complete decidable extension. By
essentially the same argument as the proof of Theorem 2.6 in [40], we can
show that any r.e. theory that weakly interprets R2 is undecidable.
Kojiro Higuchi and Yoshihiro Horihata introduced the theory of
concatenationWTC–å , which is a weak subtheory of Grzegorczyk’s theory
TC, and showed thatWTC–å is minimal essentially undecidable andWTC–å

is mutually interpretable with R (see [19]).
ElementaryArithmetic (EA) is I∆0+exp.We refer to [18] for the definition
of PrimitiveRecursiveArithmetic (PRA). In summary,we have the following
pictures.

(1) Theories PA–,Q+,Q,Q–,TC,AS, and S12 are mutually interpretable
and are all essentially undecidable.

(2) Theories R,R1,R2, andWTC
–å are mutually interpretable and are all

essentially undecidable.
(3) R✁Q✁EA✁PRA✁PA.

Now, a natural question is: among finitely axiomatized theories for which
G1 holds, does Q have the least degree of interpretation? The following
theorem tells us that the answer is no.

Theorem 2.7 (Visser, Theorem 2, [40].) SupposeR⊆A, where A is finitely
axiomatized and consistent. Then, there is a finitely axiomatized B such that

R⊆ B ⊆ A and B✁A.

5Another way to show that R2 is essentially undecidable is to prove that all recursive
functions are representable in R2.
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Theorem 2.7 shows that the structure 〈{S : R✂S ✁Q},✁〉 is not well
founded w.r.t. finitely axiomatized theories.

Theorem 2.8 (Visser, Theorem 12, [40].) Suppose A and B are finitely
axiomatized theories that interpret S12. Then there are finitely axiomatized

theories A ⊇ A and B ⊇ B such that A and B are incomparable (i.e., A5 B
and B 5A).

Theorem 2.8 shows that there are many pairs of incomparable theories
extending Q.

§3. Finding the limit of applicability of G1 w.r.t. interpretation. In this
section, we examine the limit of applicability of G1 w.r.t. interpretation, and
show that we can find many theories weaker than R w.r.t. interpretation for
which G1 holds based on Jeřábek’s work using some model theory. First of
all, we give some equivalent characterizations of the notion “G1 holds for
the theory T”.

Proposition 3.1. Let T be a recursively axiomatizable consistent theory.

The following are equivalent:

(1) G1 holds for T.
(2) T is essentially incomplete.
(3) T is essentially undecidable.

Proof. (1)⇒ (2) is trivial.
(2)⇔ (3): It is well known that every consistent recursively axiomatizable
complete theory is decidable; and every incomplete decidable theory has a
consistent, decidable complete extension in the same language (seeCorollary
3.1.8 and Theorem 3.1.9 in [25], pp. 214–215). From these two facts, T is
essentially undecidable iff T is essentially incomplete.
(2)⇒ (1): Follows from Theorem 2.1 and (2)⇔ (3). ⊣

As a corollary of Section 2, we have:

(1) G1 holds for the following theories, and they are mutually inter-
pretable: Q,IΣ0,IΣ0+Ωn(n ≥ 1),BΣ1,BΣ1+Ωn(n ≥ 1),TC,Q

–,Q+,
PA–,S12.

(2) G1 holds for the following theories, and they are mutually inter-
pretable: R,R1,R2, andWTC

–å .

Up to now, we do not have any example of an essentially undecidable
theory S such that S✁R and G1 holds for S. We find that Jeřábek’s work
in [21] essentially provides such an example of theory S. The motivating
question of [21] is: if a theory represents all partial recursive functions,
does it interpret Robinson’s theory R? Jeřábek [21] negatively answered
this question, and showed that there exists a theory T in which all partial
recursive functions are representable, yet T does not interpret R. Jeřábek’s
proof uses tools frommodel theory: investigatingmodel-theoretic properties
of the model completion of the empty theory in a language with function
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symbols (see [21]).6 Now we introduce Jeřábek’s theory Rep
PRF
. Let PRF

denote the set of all partial recursive functions. The language L(Rep
PRF
)

consists of constant symbols n for each n ∈ N, and function symbols f of
appropriate arity for each partial recursive function f. The theory Rep

PRF
is

axiomatized by:

(1) n 6=m for n 6=m ∈ N;
(2) f(n0, . . . ,nk–1) = m for each k-ary partial recursive function f such
that f(n0, . . . ,nk–1) =m, where n0, . . . ,nk–1,m ∈ N.

Corollary 3.2. G1 holds for Rep
PRF
, and Rep

PRF
✁R.

Proof. The theory Rep
PRF
is essentially undecidable since all recursive

functions are representable in it. Since Rep
PRF
is locally finitely satisfiable,

by Theorem 2.5,Rep
PRF

✂R. Jeřábek [21] showed thatR is not interpretable
in Rep

PRF
. Thus, G1 holds for Rep

PRF
, and Rep

PRF
✁R. ⊣

Jeřábek’s [21] is not written in the spirit of answering Question 1.5, and
the potential of the method in [21] is not yet fully explored. Now, we give
more examples of a theory S such that G1 holds for S and S✁R based on
Jeřábek’s work in [21].

Definition 3.3. We say 〈S,T 〉 is a recursively inseparable pair if S and T
are disjoint r.e. subsets of N, and there is no recursive set X ⊆ N such that
S ⊆ X and X ∩T = ∅.

Definition 3.4. Let 〈A,B〉 be a recursively inseparable pair. Consider the
following r.e. theory U〈A,B〉 with L(U〈A,B〉) = {0,S,P} where P is a unary
relation symbol, and n = Sn0 for n ∈ N:

(1) m 6= n if m 6= n;
(2) P(n) if n ∈ A;
(3) ¬P(n) if n ∈ B .

In the following, let 〈A,B〉 be an arbitrary recursively inseparable pair.

Lemma 3.5. G1 holds for U〈A,B〉.

Proof. By Proposition 3.1, it suffices to show that U〈A,B〉 is essentially
incomplete. Let S be a recursively axiomatizable consistent extension of
U〈A,B〉. Let X = {n : S ⊢ P(n)} and Y = {n : S ⊢ ¬P(n)}. Then A⊆ X and
B ⊆ Y . Since S is recursively axiomatizable and consistent, X and Y are
disjoint recursive enumerable sets. Since 〈A,B〉 is recursively inseparable,
X ∪Y 6= N. Take n /∈ X ∪Y . Then S 0 P(n) and S 0 ¬P(n). Hence S is
incomplete. ⊣

Fact 3.6 (Theorem 2, p. 43, [24].). Let A and B be disjoint r.e. subsets of
N and T be a consistent r.e. extension ofQ. Then there is a Σ1 formula φ(x)
such that for any n, we have:

6By the empty theory, we mean the theory with no extra logical axioms.
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(1) n ∈ A iff T ⊢ φ(n);
(2) n ∈ B iff T ⊢ ¬φ(n).

Lemma 3.7. The theory U〈A,B〉 is interpretable in R.

Proof. ByFact 3.6, there exists a formula φ(x) with one free variable such
thatR ⊢ φ(n) iff n ∈A, andR ⊢¬φ(n) iff n ∈B .7 ThusU〈A,B〉 is interpretable

in R via interpreting P(x) as φ(x).
Here is another proof of Lemma 3.7: since U〈A,B〉 is a locally finitely
satisfiable r.e. theory, by Theorem 2.5, U〈A,B〉 is interpretable in R. ⊣

Based on Jeřábek’s work in [21], our strategy to prove thatU〈A,B〉 does not
interpret R is to consistently extend the interpreting theory to a theory with
quantifier elimination, using the fact that the empty theory in an arbitrary
language L has a model completion which we denote by ECL, the theory
of existentially closed L-structures. The theory ECL admits the elimination
of quantifiers (see [21]). The two key tools we use to show that U〈A,B〉 does
not interpret R are Theorem 3.8 and Theorem 3.9 which essentially use
properties of ECL. We say a relation R ⊆ X 2 is asymmetric if there are no
a,b ∈ X such that R(a,b) and R(b,a).

Theorem 3.8 (Jeřábek, Theorem 5.1, [21].) For any first-order language
L and formula φ(z,x,y) with lh(x) = lh(y), there is a constant n with
the following property. Let M |= ECL and u ∈ M be such that M |=
∃x0, . . . ,∃xn–1

∧
i<j<n φ(u,xi,xj). Then for every m ∈ N and an asymmetric

relation R on {0, . . . ,m – 1},M |= ∃x0, . . . ,∃xm–1
∧

〈i,j〉∈Rφ(u,xi,xj).

Theorem 3.9 (Jeřábek, Theorem 4.5, [21].) For aΣ2-axiomatized theory T,
T is interpretable in a consistent existential theory iff T is weakly interpretable

in ECL for some language L.

Especially, Jeřábek [21] showed that: (1) if a theory is interpretable in a
consistent quantifier-free or existential theory, it is weakly interpretable in
ECL for some language L, and the interpretation can be taken quantifier-
free; (2) if a Σ2 theory is weakly interpretable in ECL, it is interpretable in a
quantifier-free theory.

Definition 3.10. Consider the following theory T in the language
〈∈〉 axiomatized by the sentences ∃z,x0, . . . ,xn–1(

∧
i<j<n xi 6= xj

∧
∀y(y ∈

z↔
∨
i<n y = xi)) for all n ∈ N.

Proposition 3.11.

(1) T is not weakly interpretable in ECL for any language L.
(2) R is not weakly interpretable in ECL for any language L.
(3) If R is interpretable in U〈A,B〉, then R is weakly interpretable in ECL
for some language L.

7The proof of Fact 3.6 in [24, Theorem 2, p. 43] uses the fixed point theorem for the base
theory T. Since the fixed point theorem holds for R, Fact 3.6 also applies to R.
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Proof. (1): Suppose this does not hold.ApplyTheorem3.8 to the formula
which interprets

∧
i<j<n xi 6= xj

∧
∀y(y ∈ z↔

∨
i<n y = xi), and R a chain

longer than n to get a contradiction.
(2): Note that T is interpretable in R. Since T is not weakly interpretable
in ECL for any language L, R is not weakly interpretable in ECL for any
language L.
(3): This follows from Theorem 3.9 since U〈A,B〉 is a consistent r.e. theory.

⊣

Theorem 3.12. For any recursively inseparable pair 〈A,B〉, there is a r.e.
theory U〈A,B〉 such that G1 holds for U〈A,B〉, and U〈A,B〉✁R.

8

Proof. By Proposition 3.11(2) and (3), R is not interpretable in U〈A,B〉.
FromLemma 3.5 and Lemma 3.7, we haveG1 holds forU〈A,B〉, andU〈A,B〉✁

R. ⊣

Corollary 3.13. Let S be a consistent existential theory. Then the following

are equivalent:

(1) G1 holds for S, and S✁R (i.e., S is a solution for Question 1.5);
(2) S is essentially undecidable and locally finitely satisfiable.

Proof. As a corollary of Theorem 3.9 and Proposition 3.11(2), any
consistent existential theory does not interpret R. Thus, from this,
Proposition 3.1 and Theorem 2.5, we have the equivalence. ⊣

From Theorem 2.5, R has the universality property: every locally finitely
satisfiable r.e. theory is interpretable in it. Albert Visser asked the following
question:

Question 3.14 (Visser). Would S with S ✂R such that G1 holds for S
share the universality property of R that every locally finitely satisfiable r.e.
theory is interpretable in it.

As a corollary of Theorem 3.12, the answer for this question is negative.
We have shown that for any recursively inseparable pair 〈A,B〉, there is a
theoryU〈A,B〉 such that G1 holds forU〈A,B〉, andU〈A,B〉✁R. The theory R is
locally finitely satisfiable, but R is not interpretable in U〈A,B〉. Take another
example: the theory T as in Definition 3.10 is locally finitely satisfiable, but
T is not interpretable in U〈A,B〉 (if T is interpretable in U〈A,B〉, by Theorem
3.9, T is weakly interpretable in ECL for some language Lwhich contradicts
Proposition 3.11(1)). Thus, for any recursively inseparable pair 〈A,B〉, the
theory U〈A,B〉 is a counterexample for Visser’s Question. This shows the
speciality of R: Theorem 2.5 provides a unique characterization of R.
Define D = {S : S ✁R and G1 holds for the theory S}. We have shown
that we could find many witnesses for D. We could naturally examine the

8However, Theorem 3.12 does not tell us more information about the theory U〈S,T〉 and
U〈U,V 〉 for different recursively inseparable pairs 〈S,T 〉 and 〈U,V 〉: for example, whether
U〈S,T〉 and U〈U,V 〉 have the same degree of interpretation or the same degree of Turing
reducibility.
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structure of 〈D,✁〉. A natural question is: whether the similar results as
in Theorem 2.7 and Theorem 2.8 apply to the structure 〈D,✁〉. About the
structure of 〈D,✁〉, we could naturally ask:

Question 3.15.

(1) Is 〈D,✁〉 well founded (or is it that for any S ∈D, there is T ∈D such
that T ✁S)?

(2) Are any two elements of 〈D,✁〉 comparable (i.e., is it that for any
S,T ∈ D, we have either S✂T or T ✂S)?

(3) Could we find a theory S with aminimal degree of interpretation such
that G1 holds for S?

In the rest of this paper, we will show that if we consider the Turing degree
structure instead of the interpretation degree structure ofD, we have definite
answers for Question 3.15.

§4. The limit of applicability of G1 w.r.t. Turing reducibility. In this
section, we examine the limit of applicability of G1w.r.t. Turing reducibility,
and show that there is no theory with aminimal degree of Turing reducibility
for which G1 holds based on Shoenfield’s work using some recursion theory.
Let R be the structure of the r.e. degrees with the ordering ≤T induced
by Turing reducibility with the least element 0 and the greatest element 0′.
DefineD= {S : S<T R, and G1 holds for the theory S}. A natural question
is to examine the structure of 〈D, <T 〉. Now, we will show that the structure
〈D, <T 〉 is much simpler than 〈D,✁〉, and we have answers to Question 3.15
for the structure 〈D, <T 〉 based on Shoenfield’s work using some recursion
theory.

Theorem 4.1 (Shoenfield, Theorem 1, [30].) If A is recursively enumerable
and not recursive, there is a recursively inseparable pair 〈B,C 〉 such that A, B
and C have the same Turing degree.

Now, we will show that for any Turing degree 0 < d < 0′, there is a
theory U such that G1 holds for U, U <T R, and U has Turing degree d
(c.f. Theorem 4.5). The following theorem of Shoenfield is essential for the
proof of Theorem 4.5. To make the reader have a better sense of how the
theory U in Theorem 4.5 is constructed, we provide details of the proof
of Theorem 4.2. Feferman [9] also proved that for any r.e. Turing degree
one can design a formal theory whose corresponding decision problem is
of the same degree (however, it is not clear whether such a formal theory is
essentially undecidable).

Theorem 4.2 (Shoenfield, Theorem 2, [30].) Let A be recursively enumer-
able and not recursive. Then there is a consistent axiomatizable theoryT having

one nonlogical symbol which is essentially undecidable and has the sameTuring

degree as A.

Proof. By Theorem 4.1, pick a recursively inseparable pair 〈B,C 〉 such
that A, B, and C have the same Turing degree. Now we define the theory T
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with L(T ) = {R}, where R is a binary relation symbol. Theory T contains
axioms asserting that R is an equivalence relation. Let Φn be the statement
that there is an equivalence class of R consisting of n elements. Then, as
axioms of T, we adopt Φn for all n ∈ B, and ¬Φn for all n ∈ C . Finally, for
each n, we adopt an axiom asserting there is at most one equivalence class
of R having n elements. Clearly, T is consistent and axiomatizable. Using
models, we see Φn is provable iff n ∈B , and ¬Φn is provable iff n ∈C . Hence
B and C are recursive in T.
Disjunctions of conjunctions whose terms are Φn or ¬Φn for some n ∈N,
are called a disjunctive normal form of 〈Φn : n ∈ N〉.

Lemma 4.3 (Janiczak, Lemma 2 in [20].) Any sentence φ of the theory T
is equivalent to a disjunctive normal form of 〈Φn : n ∈ N〉, and this disjunctive
normal form can be found explicitly once φ is explicitly given.9

By Lemma 4.3, every sentence φ of T is equivalent to a disjunctive normal
form of 〈Φn : n ∈ N〉, and this disjunctive normal form can be calculated
from φ. It follows that T is recursive in B and C. Hence T has the same
Turing degree as A.
Finally, we show that T is essentially undecidable. Suppose T has a
consistent decidable extension S. Let D be the set of n such that Φn is
provable in S. ThenD is recursive, B ⊆D, and C ∩D = ∅ which contradicts
the fact that 〈B,C 〉 is a recursively inseparable pair. ⊣

Theorem 4.4 (Sacks.)

(1) (Embedding theorem, [28]) Every countable partial ordering can be
embedded intoR.

(2) (Density theorem, [29]) For every pair of nonrecursive r.e. degrees a<T
b, there is one c such that a<T c<T b.

Theorem 4.5. For any Turing degree 0 < d < 0′, there is a theory U such
that G1 holds for U, U<T R, and U has Turing degree d.

Proof. From Theorem 4.2, for each Turing degree 0 < d < 0′, there is a
theory U such that G1 holds for Uand U has Turing degree d. It is a well
known fact that R has Turing degree 0′. ⊣

We could ask the similar question as Question 3.15 for the structure
〈D, <T 〉:

• Is 〈D, <T 〉 well founded?
• Are any two elements of 〈D, <T 〉 comparable?
• Could we find a theory S with a minimal degree of Turing reducibility
such that G1 holds for S?

FromTheorem 4.5 and Theorem 4.4, we have answers for these questions:

9This is a reformulation of Janiczak’s Lemma 2 in [20] in the context of the theory T.
Janiczak’s Lemma is proved by means of a method known as the elimination of quantifiers.
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Corollary 4.6.

(1) The structure 〈D, <T 〉 is not well founded (i.e., for any S ∈ D, there is

U ∈ D such that U<T S);
(2) The structure 〈D, <T 〉 has incomparable elements (i.e., there areU,V ∈

D such that U �T V and V �T U );
(3) There is no theory with aminimal degree of Turing reducibility for which

G1 holds.

In fact, we can improve Theorem 4.5 by making that the theory U is
interpretable in R.

Theorem 4.7. For any Turing degree 0 < d < 0′, there is a theory U such
that G1 holds for U, U ✂R and U has Turing degree d.

Proof. Let d be a Turing degree with 0< d< 0′. By Theorem 4.2, pick an
essentially undecidable theory S with Turing degree d.
Consider the product theory S⊗R defined as follows. The theory S⊗R
has the following axioms: P → X if X is a S-axiom; ¬P → Y if Y is a
R-axiom, where P is a 0-ary predicate symbol.
Now, we show that S ⊗R is essentially undecidable (i.e., G1 holds for
S⊗R) and interpretable in R.

Lemma 4.8. S⊗R is essentially undecidable.

Proof. Suppose U is a consistent decidable extension of S ⊗R. Define
X = {〈pφq,pøq〉 : U ⊢ P→ φ or U ⊢ ¬P→ ø}. Since U is decidable, X is
recursive. Note that S ⊆ (X )0 and R ⊆ (X )1. We claim that at least one of
(X )0 and (X )1 is consistent. If both (X )0 and (X )1 are inconsistent, then
U ⊢ (P →⊥) and U ⊢ (¬P →⊥). Thus, U ⊢⊥ which contradicts that U
is consistent. WLOG, we assume that (X )0 is consistent. Then (X )0 is a
consistent decidable extension of S, which contradicts that S is essentially
undecidable. ⊣

It is easy to show that S ⊗R is interpretable in R (i.e., S ⊗R✂R): take
the identity interpretation on the R side and interpret P as ⊥.
Since S has Turing degree d and R has Turing degree 0′, S⊗R has Turing
degree d. ⊣

However, from the proof of Theorem 4.7, we cannot get that S⊗R✁R

(i.e., R is not interpretable in S ⊗R). An interesting question is: could we
improve Theorem 4.7, and show that for any Turing degree 0< d< 0′, there
is a theory U such that G1 holds for U, U ✁R and U has Turing degree d.
As far as we know, Question 3.15 is open. We make the conjecture that
there is no theory with a minimal degree of interpretation for which G1
holds, 〈D,✁〉 is not well founded and 〈D,✁〉 has incomparable elements.
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[6] ———, On the depth of Gödel’s incompleteness theorem, this Journal, submitted.

arXiv:2008.13142v1
[7] H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Springer Monographs in

Mathematics, Springer, New York, 1999.
[8] H. B. Enderton, A Mathematical Introduction to Logic, second ed., Academic Press,

Boston, MA, 2001.
[9] S. Feferman, Degrees of unsolvability associated with classes of formalized theories.

Journal of Symbolic Logic, vol. 22 (1957), no. 2, pp. 161–175.
[10] F. Ferreira andG. Ferreira, Interpretability in Robinson’s Q, this Journal, vol. 19

(2013), no. 3, pp. 289–317.
[11] M. Ganea, Arithmetic on semigroups. Journal of Symbolic Logic, vol. 74 (2009), no.

1, pp. 265–278.
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[31] P. Smith, An Introduction to Gödel’s Theorems, Cambridge University Press,

Cambridge, 2007.
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Disjunction: The Scope and Limits of Mathematical Knowledge (L. Horsten and P. Welch,
editors), Oxford University Press, Oxford, 2016.

SCHOOL OF PHILOSOPHY

WUHAN UNIVERSITY

WUHAN 430072, HUBEI

PEOPLE’S REPUBLIC OF CHINA

E-mail: world-cyr@hotmail.com

https://doi.org/10.1017/bsl.2020.9 Published online by Cambridge University Press

mailto:world-cyr@hotmail.com
https://doi.org/10.1017/bsl.2020.9

	1 Introduction
	2 Preliminaries
	3 Finding the limit of applicability of G1 w.r.t. interpretation
	4 The limit of applicability of G1 w.r.t. Turing reducibility

