INDIVIDUAL EXPECTATIONS AND AGGREGATE BEHAVIOR IN LEARNING-TO-FORECAST EXPERIMENTS

CARS HOMMES

University of Amsterdam

THOMAS LUX

University of Kiel Kiel Institute for the World Economy and Bank of Spain Chair in Computational Economics, University of Castellón

Models with heterogeneous interacting agents explain macro phenomena through interactions at the micro level. We propose genetic algorithms as a model for individual expectations to explain aggregate market phenomena. The model explains all stylized facts observed in aggregate price fluctuations and individual forecasting behaviour in recent learning-to-forecast laboratory experiments with human subjects (Hommes et al. 2007), simultaneously and across different treatments.

Keywords: Learning, Heterogeneous Expectations, Genetic Algorithms, Experimental Economics

1. INTRODUCTION

An important feature of models with heterogeneous, interacting agents is that they can explain macro phenomena through simple interactions at the micro level [e.g., Kirman (1993, 2006), Lux (1995)]. Agent-based models have been particularly successful in explaining the main stylized facts of financial markets, such as fat tails and clustered volatility in asset returns [Arthur et al. (1997), Lux and Marchesi (1999), and Hommes (2002), among others]. Duffy (2006) presents an overview of how recent agent-based models can explain individual behavior and aggregate phenomena in macroeconomics. The main purpose of our paper is to explain aggregate price behavior through interactions of individual learning. In particular, we provide a simple theory of individual learning through genetic algorithms

Financial support from the EU, through POLHIA Grant 225408 and Complex Markets Grant 516446, is gratefully acknowledged. We are also particularly grateful to Simone Alfarano, Jasmina Arifovic, Reiner Franke, Juliette Rouchier, Jan Tuinstra and Frank Westerhoff for helpful comments and discussions. Address correspondence to: Cars Hommes CeNDEF, School of Economics, University of Amsterdam, Valckenierstraat 65-67, 1018 XE Amsterdam, the Netherlands; e-mail: C.H.Hommes@uva.nl.

(GAs) explaining all stylized facts of aggregate price fluctuations in the recent learning-to-forecast laboratory experiments of Hommes et al. (2007).

Laboratory experiments with human subjects have become an important tool in economic analysis, complementing theoretical, computational, and empirical work. A recurring observation from experiments is that individuals often do not behave fully rationally, but tend to use simple heuristics, possibly biased, in making decisions under uncertainty [Tversky and Kahneman (1974)]. An extensive bounded rationality research program is developing [e.g., Sargent (1993)], and laboratory experiments are particularly suited to identify behavioral rules that individuals use in economic decision making out of an ocean of potential alternatives [e.g., Kahneman (2003)].

Individual expectations, their interaction, and the aggregate outcomes they create are at the heart of economics. Duffy (2008), for example, argues that laboratory experiments are important to study the adaptive process by which individuals learn and may or may not enforce convergence to a rational expectations (RE) outcome at the macro level. Recently, a number of learning-to-forecast experiments have been conducted to study individual expectation formation and aggregate outcomes, e.g., in Marimon and Sunder (1994), Hommes et al. (2005), Sutan and Willinger (2005), Adam (2007), and Heemeijer et al. (2009); see Hommes (2011) for an overview. In these experiments, subjects must forecast the price of a good, which is determined by market clearing with feedback from individual expectations. Aggregate demand and supply are computerized, e.g., derived from profit and utility maximization given subjects' individual forecasts. An advantage of this experimental setup is that it provides 'clean data' on expectations, ceteris paribus. These experimental data can therefore be used to test various theories of bounded rationality, individual expectations and learning at the micro level and test how their interaction matches aggregate behavior.

Hommes et al. (2007) conducted learning-to-forecast experiments in what is perhaps the simplest setting, the classical cobweb "hog cycle" model describing a standard commodity market with a production lag. Historically, the cobweb model has served as a simple framework to develop and test various expectations hypotheses. Ezekiel (1938) started with naive expectations, Nerlove (1958) advocated adaptive expectations, Muth's seminal paper (1961) used the cobweb framework to introduce RE, and, more recently, Brock and Hommes (1997) used it to introduce endogenous selection among heterogeneous expectations rules.¹

In their learning-to-forecast experiments, Hommes et al. (2007) considered three different treatments, a stable, an unstable, and a strongly unstable treatment. "Stable" here refers to the stability of the classical cobweb model under naive expectations.² They observed the following three *stylized facts*:

- (1) the sample mean of realized prices was very close to the RE benchmark *in all three treatments*;
- (2) the sample variance of realized prices, however, depended on the treatment:

- (a) it was close to the theoretical variance of the RE benchmark in the stable treatment, whereas
- (b) it was significantly higher than the RE benchmark (excess volatility) in the unstable and strongly unstable treatments;
- (3) in all treatments, realized market prices exhibited no significant linear autocorrelation.

These stylized facts were quite robust over a series of experiments, but they appeared hard to explain by standard learning mechanisms offered by the theoretical literature. Although many adaptive learning rules lead to eventual convergence to RE and some other learning rules may generate unstable dynamics and excess volatility, homogeneous expectations models are *unable* to explain the full set of stylized facts *simultaneously* [Hommes (2009)], suggesting that *heterogeneity* of forecasting rules plays a key role in explaining observed aggregate behavior. Hommes (2009) considers some simple examples with two different forecasting rules (e.g., fundamentalists versus naive expectations) and evolutionary competition between them. Although the results in these simple two-type heterogeneous expectations examples are improved compared to the homogeneous case, they are not capable of explaining *all* stylized facts simultaneously.

In this paper we propose a simple model for micro behavior in order to explain the observed experimental results at the macro level. We model individual learning through GAs.³ As it turns out, GA experiments with a small population of agents match *all* stylized facts simultaneously across different treatments within a market setting that *exactly* corresponds to that of the laboratory experiments. Although it is certainly hard to imagine GAs as an accurate description of human learning in the literal sense, we argue that they may share key properties of the adaptations of human subjects when exposed to a new situation that they cannot penetrate theoretically.

We also investigate the *degree of heterogeneity* in individual forecasting behavior. Heterogeneity in forecasting future asset prices is supported by evidence from stock market survey data, e.g., Shiller (2000) and Vissing-Jorgensen (2003), and inflation expectations survey data, e.g., Mankiw et al. (2003) and Branch (2004). Moreover, in these survey data heterogeneity shows substantial variation through time. Consistent with the findings in the laboratory experiments in our GA learning simulations, heterogeneity decreases over time and disappears in the stable treatment, but heterogeneity persists in the (strongly) unstable treatment.

Using the GAs for individual learning, our paper makes another contribution that goes beyond the limitations of laboratory experiments. Laboratory experiments are costly, because subjects must be paid according to their performance, and typically experimental markets are small because of capacity limitations. After fitting our GA model to individual learning, we can easily investigate price behavior in alternative, more realistic market scenarios through numerical simulations. In particular, we investigate the occurrence of excess volatility when the number of subjects in the market becomes large and/or when the number of rules per individual becomes large. We also investigate how excess volatility depends on a continuum of parameters such as the ratio of marginal supply and demand.

The paper is organized as follows. Section 2 recalls the learning-to-forecast experiments, whereas Section 3 recalls some basic facts of GA learning. Sections 4 and 5 compare the stylized facts of the GA simulations with the laboratory experiments, and Section 6 presents simulations of GA learning in more realistic market scenarios. Finally, Section 7 concludes.

2. THE FORECASTING EXPERIMENT

Hommes et al. (2007) report on a set of cobweb experiments with K = 6 participants per session. The participants were asked to predict the next period's price with very limited information on the structural characteristics of the market. The realized price p_t in the experiments was determined by the (unknown) market equilibrium between demand and supply,

$$D(p_t) = \frac{1}{K} \sum_{i=1}^{K} S(p_{i,t}^e),$$
 (1)

with $p_{i,t}^e$ the price forecast of participant i at time t. We normalize the supply side by dividing by the number of firms, to facilitate comparison of settings with different K. Supply $S(p_{i,t}^e)$ was determined by the nonlinear schedule

$$S\left(p_{i,t}^{e}\right) = \tanh\left[\lambda\left(p_{i,t}^{e} - 6\right)\right] + 1,\tag{2}$$

whereas demand was formalized via a simple linear schedule,

$$D(p_t) = a - dp_t + \eta_t, (3)$$

with η_t a small stochastic shock drawn from a Normal distribution. Both demand and supply can be derived from profit and utility maximization, and are thus consistent with rational behavior. The resulting equilibrium price is obtained as

$$p_t = \frac{a - \frac{1}{K} \sum_{i=1}^K S\left(p_{i,t}^e\right)}{d} + \epsilon_t, \tag{4}$$

where $\epsilon_t = \eta_t/d$. Given the parameters a, d, and λ , the aggregate realized price p_t depends on individual price expectations as well as the realization of the stochastic shocks.

Participants were only informed about the basic principles of the cobwebtype market. They were advisors to producers, whose only job was to accurately forecast the price of the good for 50 subsequent periods. Payoffs were defined as a quadratic function of squared forecasting errors, truncated at 0:⁴

$$E = \text{Max} \left\{ 1300 - 260 \left(p_{i,t}^e - p_t^* \right)^2, \ 0 \right\}.$$
 (5)

Participants were informed that the price would be determined by market clearing and that it would have to be within the range [0, 10]. Furthermore, they knew that there was (negative) feedback from individual price forecasts to realized

market price in the sense that if their forecast increased, the supply would increase and consequently the market price would decrease. Subjects, however, did not know how large these feedback effects would be, as they had no knowledge of the underlying market equilibrium equations. One could say that subjects had *qualitative* information about the market, but no quantitative details.

Participants thus solely had to rely on time series observations and their own behavior vis-à-vis their predictions. Because of the nonlinear aggregation of expectations, the superimposed noise, and the ignorance of agents concerning the structural form and parameters, conscious coordination to some kind of RE equilibrium would be extremely demanding if not impossible. This setting is close to the informational assumptions of various theoretical models in the literature on learning and bounded rationality [e.g., Sargent (1993) and Evans and Honkapohja (2001)] so that the experimental subjects' behavior could be contrasted with various learning rules.

Following the classification of cobweb scenarios under naive expectations, Hommes et al. (2007) distinguished three treatments. Although the parameters of the demand function and the parameters of the noise component remained unchanged across all treatments at a=2.3, d=0.25, and $\epsilon_t=\eta_t/d\sim N(0,0.5)$, the slope parameter of the supply function was varied over a relatively wide range. Treatment 1 had $\lambda=0.22$, which, under naive expectations, would guarantee convergence to the homogeneous RE equilibrium (stable case); treatment 2 had a marginally unstable supply parameter $\lambda=0.5$ (unstable case); and treatment 3 had a strongly unstable supply parameter $\lambda=2$ (strongly unstable case). Both the unstable and the strongly unstable treatment lead to a 2-cycle under naive expectations. In all treatments in Hommes et al. (2007), the number of subjects was K=6, but van de Velden (2001) also ran the same experiments in the strongly unstable treatment with K=12 subjects.

Under RE, all individuals would predict $p_t^e = p^*$; that is, they would predict the price at which demand and supply intersected. Given that all individuals have RE, realized prices will be given by

$$p_t = p^* + \epsilon_t. ag{6}$$

Given the limited market information, one cannot expect that all individuals have RE at the outset, but one can hope that in such a simple, stationary environment individuals would learn to have RE. The *stylized facts* of these cobweb experiments have already been summarized in the Introduction. We briefly recall them here:

- (1) the sample mean of realized prices is close to the RE benchmark p^* in all three treatments;
- (2) the sample variance of realized prices depends on the treatment: it is close to the RE benchmark in the stable treatment, but significantly higher in the unstable and strongly unstable treatments;
- (3) realized market prices do not exhibit significant linear autocorrelations.

Item (3) indicates that even in the unstable and strongly unstable cases, agents did not leave any linear predictability unexploited. Apparently, the interaction of agents' individual forecasting rules washes out linear predictability in aggregate price behavior. Although this points to a certain efficiency of their dispersed effects to predict market prices, market prices did fluctuate "excessively" in the unstable and strongly unstable treatments. In these cases, price fluctuations exceeded those warranted by the exogenous noise component by more than one order of magnitude, so that participants' attempts at learning about the market's behavior did apparently intensify price fluctuations. Although these results were quite robust over a series of experiments, they appeared hard to explain by standard learning mechanisms offered by the theoretical literature.

Our goal here is to model individual learning via GAs, so that the interaction of these rules produces the stylized facts observed in the experiments simultaneously and across treatments.

3. LEARNING THROUGH GENETIC ALGORITHMS

GAs were introduced in the 1970s as a stochastic learning algorithm [Holland (1975)]. To solve complex optimization problems with multiple maxima or minima and possible noncontinuities, this approach mimics evolutionary operations in nature. One typically starts out with a randomly initialized population of candidate solutions. These initial blind trials are typically encoded as *chromosomes* (strings) using a binary alphabet.⁵ After evaluation of the fitness of the members of the initial population (in terms of the objective function), one applies the genetic operations of *reproduction*, *crossover*, and *mutation*. Economic applications have mostly added the *election* operator [Arifovic (1996)] as an additional step in the loop of genetic operations between successive generations of individuals. In the following we provide details of these operators and their implementation in the present setting:

(1) Reproduction: In the transition from one generation to the next, the first step consists in sampling copies of strings from the old generation depending on their fitness. In conformity with the payoff function used in the laboratory experiments, fitness was defined as a negative quadratic function of forecast errors with truncation at zero:

$$f_i(t) = \text{Max}\{1300 - 260 \left(p_{i,t}^e - p_t^*\right)^2, 0\}.$$
 (7)

The most common reproduction operator is reproduction depending on relative fitness; i.e., copies are sampled from the old population with probabilities $f_i/\sum_j f_j$, biasing the population of new agents toward strategies with higher fitness. Other algorithms in the literature are rank-dependent reproduction or tournament selection, in which one repeatedly draws n_1 individuals from the pool with replacement and accepts the $n_2 < n_1$ with the highest fitness from the subsample until the new generation is complete. Throughout the present study we use fitness-based probabilities to mimic the incentives of the human subjects as closely as possible. To be concrete, we select new individuals with probabilities equal to the relative fitness of a strategy

- until the population is complete. Thus, a small difference in fitness would only lead to a similarly small evolutionary advantage of a strategy, whereas rank-based reproduction would be insensitive to the size of fitness differentials.⁶
- (2) Crossover: When the pool of members of a new generation is complete, genetic material is exchanged between them in order to find new (possibly better) candidate solutions by recombination of the old ones. The simplest version is random selection of a pair of parent strings, determining a cut-off value within the string and sweeping part of the genetic material of the parents when creating their off-spring. We follow this approach and take the genetic material of each of both offspring from the left (right)-hand side of their "father" and the right (left)-hand side of their "mother." This operation takes place with a probability $p_{\rm cross}$, whereas with $1-p_{\rm cross}$ the parent strings are transferred unchanged into the new generation. We note that both more involved crossover schemes, as well as versions with more than two parents, can be found in the literature as well.
- (3) *Mutation*: This means that any position (bit) within a chromosome might be flipped into another value (from "0" to "1" or vice versa in the binary alphabet). This happens with a probability p_{mut} once the reproduction and crossover operations are finished.
- (4) Election: In most economic applications, the usual range of genetic operators has been extended by the election algorithm. This compares new chromosomes that have emerged from crossover and mutation with their parents and only admits them to the population if their virtual fitness (measured with respect to the environment in which their parents had to compete) is at least as high as their parents' fitness. This operator serves to prevent agents from adopting clearly inferior strategies. Most new strategies that emerge in a genetic process are far off the mark, and conscious agents would not voluntarily adopt these new strategies if their trial performance ranked them far below the previous ones.

In many applications of GAs, the qualitative outcome is largely independent of the particular version of an operator that one adopts [cf. Lux and Schornstein (2005) for a detailed comparison of various setups within a learning context]. One may even skip one or the other of the operators (e.g., crossover or election) without changing the overall qualitative results. In our simulations, as in various previous economic applications, the results appear to be quite robust under variation of GA parameters and implementations of operators. Unfortunately, one has to rely exclusively on simulations, because theoretical results for GAs within an interactive context seem to be essentially out of reach. In our setting with artificially intelligent agents, we tried to reproduce the design of the experiments as closely as possible. This applies not only to the parameterization of demand and supply functions and the choice of a fitness function identical to the payoff function in the laboratory experiments, but also to the *number* of agents. Hence we report here experiments conducted with K=6 agents using GAs to evolve forecasting strategies.

Economic applications of GAs as a learning device have mostly applied them in the sense of "social learning": the number of agents in these papers equals the number of chromosomes and each agent's chromosome type determines his or her strategic behavior in the market place [e.g., Arifovic (1996); Dawid (1999); Arifovic and Gencay (2000); Lux and Schornstein (2005)]. When the genetic

operations are applied to this pool of trader-chromosomes, information is effectively shared and incorporated into the entire new generation via the evolutionary dynamics. This design is certainly at odds with the setup of the experimental market, in which subjects are separated from each other and are not allowed to actively exchange information. We therefore assumed that each agent in our computer experiment had his or her own pool of strategies or forecasting rules, which underwent genetic evolution independent of the rules of other agents [cf. LeBaron et al. (1999), for a similar approach]. In our experiments reported here, we endowed each agent with M=10 different chromosomes encoding pairs (α_i , β_i) of the first-order autoregressive forecasting rule detailed here. The active rule of each agent, i.e., the rule on which the actual forecast was based, was determined by random draws with probabilities equal to the relative fitness obtained in the last round (which is a monotonic function of the proximity of the forecast to the realized price; cf. equation (7)).

GAs require a functional specification of the forecasting rule, whose fitness-maximizing parameter values would then be searched for via the evolutionary algorithm. The simplest specification of a rule would be a constant-price forecast. A slightly more complex version would use a constant together with a first-order autoregressive component:

$$p_{i,t+1}^e = \alpha_i + \beta_i (p_t - \alpha_i). \tag{8}$$

This first-order autoregressive (AR1) rule seems a natural forecasting scheme, as agents could simply implement it via a linear autoregression using the sample average as their estimate of α_i and the first-order sample autocorrelation as the estimate of β_i . Moreover, the AR1 forecasting rule (8) has a simple *behavioral* interpretation, with α_i representing an anchor or observed average price level around which the market price fluctuates, and β_i representing the observed persistence or anti-persistence of price fluctuations.¹⁰

As discussed by Hommes (2009), a representative agent model where all agents employ the same fixed rule, e.g., the rule (8), or where all agents adopt the same adaptive learning scheme, e.g., sample autocorrelation or least-squares learning, as a uniform learning mechanism for the whole population cannot explain all stylized facts of the experiments simultaneously. A homogenous adaptive learning rule either always enforces convergence to RE (i.e., does not explain the second observed stylized fact, the excess volatility in the strongly unstable case) or, in cases where the adaptive learning rule leads to excess volatility, it generates antipersistent price behavior with significantly negative first-order autocorrelation, violating the third stylized fact in the laboratory experiments. In our GA model, we apply the same functional scheme in a heterogenous agent framework with genetically evolved sets of parameters α_i , β_i that could differ across individuals. The key question then is whether the interaction of individual forecasting rules (8) can explain all stylized facts observed in aggregate price behavior simultaneously.

In our simulations the two parameters α_i and β_i are encoded in one string of length l=40, the first and last 20 bits representing the parameters α_i and β_i , respectively (the number of bits is quite arbitrary and only needs to be large enough for a sufficiently fine-grained structure of the resulting real-valued strategies). α_i is restricted to the interval [0,10] just as in the instructions to participants in the laboratory experiments. The interval for β_i is more arbitrary and had been set symmetrically around zero, $\beta_i \in [-1, 1]$, allowing quite strong serial correlation or anti-correlation, up to the point where individual rules would lead to an unstable dynamics, $|\beta_i| = 1$. We have also tried wider intervals such as [-2, 2] for the autoregressive coefficients. Results were qualitatively similar, but not quantitatively as close to the laboratory experiment as the ones to be reported here. The transition from the binary-coded evolutionary process to the real-valued forecasts requires computation of

$$\alpha_{i,t} = 10 \sum_{j=1}^{20} a_{i,t}^j \frac{2^{j-1}}{2^{20} - 1}, \qquad \beta_{i,t} = -1 + 2 \sum_{j=21}^{40} a_{i,t}^j \frac{2^{j-21}}{2^{20} - 1},$$
 (9)

with $a_{i,t}^j \in \{0, 1\}$ the bits at position j (j = 1, ..., 40) of chromosome i at time t^{-11}

It is well known that short-run GA simulations may be sensitive to the initialization of the GAs. Therefore, in our (short-run) simulations we have chosen an initialization in line with individual forecasts in the first and the second period of the experiment, as will be discussed in more detail.

4. EXPERIMENTS WITH GENETIC ALGORITHMS

In this section we report the results from GA simulations. Unless reported otherwise, each of the six agents will be endowed with M = 10 chromosomes and the crossover probability $p_{\text{cross}} = 0.6$ (but different values yield similar results). Genetic learning would converge to the RE equilibrium if uniformly across the population all $\beta_{i,t}$ tended to zero and the $\alpha_{i,t}$ converged to the RE price p^* . Because the experiments run over a limited number of rounds, an appropriate alignment of our GA simulation with the lab settings is required. Note that in order to start the evaluation of the fitness of agents' strategies, we need two realizations of the market price: the first one serves as the anchor value for the AC strategies in equation (8) and the subsequent realization serves to evaluate the quality of the AC forecast using equation (7). As a consequence, evolutionary strategies could be evaluated for the first time at t = 3. To align the GAs to the lab experiments, we therefore choose forecasts and prices from the experiments for periods 1 and 2, whereas the GA population of each agent is initialized randomly.¹² In this way, the "initial conditions" of the GAs are set equal to those of the lab experiments and our artificial agents initially are subject to the same incentives as the human subjects. As it turns out, this alignment typically guarantees greater similarity than, say, a

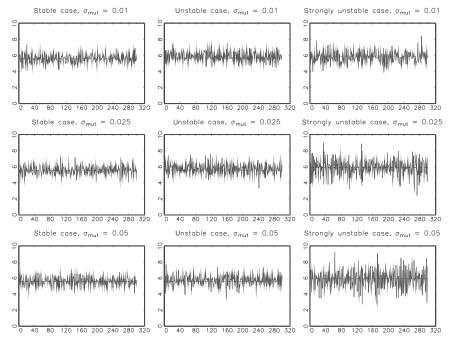


FIGURE 1. Snapshots from simulations of GA learning: realized prices (solid) and RE benchmarks (broken lines) for all three treatments (stable, unstable, and strongly unstable) and three different values of the mutation probability σ_{mut} .

randomized choice of forecasts at t = 1 and t = 2 (although qualitative results are still much the same under different initialization schemes). Obtaining closer proximity by accurate alignment should be seen as an encouraging finding: It is worth emphasizing that this is not a fine tuning of our algorithm but rather an attempt to match the experimental scenario as closely as possible.

In our simulations, consistent with the laboratory experiments, we find that the market price fluctuates around the RE benchmark with a sample mean very close to the RE benchmark, but that the level of volatility depends strongly on the treatment. In the stable case, the sample variance is close to its RE benchmark, but it increases significantly beyond the RE benchmark if we proceed to the "unstable" and "strongly unstable" scenarios. Figure 1 shows snapshots from longer simulation runs and Table 1 summarizes some key statistics, for all three treatments, averaged over 1,000 simulations of 50 periods each. The sample mean of individual forecasts (Mean(p^e)) was obtained by averaging the individual forecasts over all subjects (K = 6) and all experiments (J = 6) for each treatment. The sample variance of individual forecasts [Var(p^e)] was computed as follows. Let $\hat{p}_{t,k}^j$ be the price forecast for time period t, by subject k, in experiment j; then the mean forecast for period t in experiment j is $\mu_t^j = \frac{1}{K} \sum_k \hat{p}_{t,k}^j$, with K = 6

	$Mean(p^e)$	Mean(p)	$\operatorname{Var}(p^e)$	Var(p)
	Stable o	case $(K = 6)$		
RE	5.57	5.57	0.042	0.25
Experiments	5.56	5.64	0.087	0.36
$p_{\rm mut} = 0.01$	5.576	5.565	0.100	0.326
$p_{\rm mut} = 0.025$	5.572	5.569	0.095	0.320
$p_{\rm mut} = 0.05$	5.571	5.568	0.096	0.319
	Unstable	case $(K = 6)$		
RE	5.73	5.73	0.042	0.25
Experiments	5.67	5.85	0.101	0.63
$p_{\rm mut} = 0.01$	5.645	5.817	0.169	0.647
$p_{\rm mut} = 0.025$	5.662	5.791	0.155	0.618
$p_{\rm mut} = 0.05$	5.675	5.773	0.151	0.611
	Strongly unst	table case (K =	= 6)	
RE	5.91	5.91	0.042	0.25
Experiments	5.73	5.93	0.429	2.62
$p_{\rm mut} = 0.01$	5.434	6.200	0.769	2.161
$p_{\rm mut} = 0.025$	5.587	6.027	0.625	2.241
$p_{\rm mut} = 0.05$	5.653	5.914	0.614	2.472
	Strongly unsta	able case (K =	= 12)	
RE	5.91	5.91	0.021	0.25
Experiments	5.781	5.937	0.204	1.783
$p_{\rm mut} = 0.01$	5.515	6.183	0.500	1.571
$p_{\rm mut} = 0.025$	5.637	6.031	0.401	1.576
$p_{\rm mut} = 0.05$	5.695	5.931	0.368	1.643

TABLE 1. Sample means and sample variances of individual expectations and realized market prices

Notes: All parameters have been chosen exactly as in Hommes et al. (2007), i.e., there are K=6 GA agents whose task is to forecast the next period's price. Crossover probability is 0.6 and the election operator is applied. The first and second moments are computed from 1,000 runs of 50 periods each (i.e., using 50,000 observations). The last five rows of the table correspond to the experiments with K=12 in van de Velden (2001) and simulations with K=12 GA agents.

in the experiments. The sample variance of this mean forecast over all rounds (T = 50) of experiment j is given by

$$Var^{j}(p^{e}) = \frac{1}{T-1} \sum_{t} \left(\mu_{t}^{j} - \frac{1}{T} \sum_{t} \mu_{t}^{j} \right)^{2}.$$
 (10)

The sample average of individual forecasts can then be obtained by averaging over all experiments (J = 6) or over all simulations (J = 1,000), respectively, within each treatment:¹³

$$Var(p^e) = \frac{1}{J} \sum_{j} Var^{j}(p^e).$$
 (11)

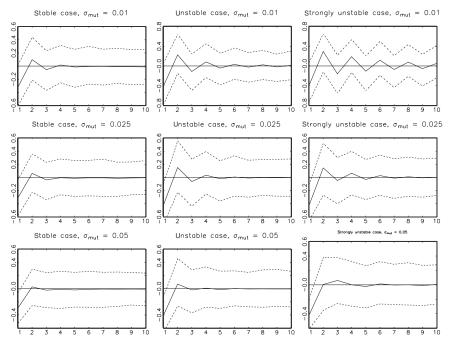


FIGURE 2. Autocorrelations of realized prices under GA learning: the process shows only slight negative correlations over one or two lags (consistent with the laboratory experiments). The plots show the means and 95% confidence intervals from 1,000 GA simulations, each extending over 50 periods.

In a similar vein, the variance of realized prices, Var(p), has been computed according to (11), averaging over J=1,000 simulations. Table 1 shows the statistics for the GA simulations, the laboratory experiments, and the RE benchmark. The table shows that the GA simulations are surprisingly close to the laboratory experiments across all treatments. Besides the three treatments of the laboratory experiments, we also distinguish between different settings for the mutation probability, $p_{\text{mut}}=0.01,\ 0.025,\ \text{and}\ 0.05,\ \text{as}$ this appears to be the more interesting aspect of the GA design. As can be seen, price fluctuations also increase ceteris paribus with higher mutation probability because of the higher rate of new forecasting rules entering the population. As in other applications of GAs [cf. Lux and Schornstein (2005)], varying other parameters as well as choosing different specifications of the operators appears to cause no major changes in the overall outcome.

Figure 2 shows the autocorrelations of prices for the nine scenarios under investigation. All autocorrelations are small, with the first one or two lags exhibiting small negative values, in nice agreement with the laboratory findings [cf. the autocorrelation plots of realized prices in the experiments, Hommes et al. (2007, Figure 5, pp. 21–22)]. The slight increase of the autocorrelation at the first few lags

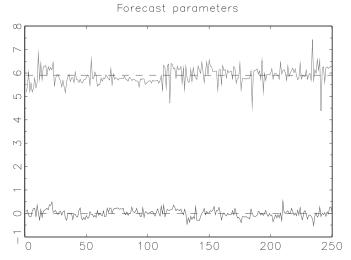


FIGURE 3. Snapshots of the development of average AR1 parameters α_i and β_i , together with their RE benchmarks $\alpha_i = p^*$, $\beta_i = 0$ (broken lines), under GA learning in the "strongly unstable" treatment.

for a higher mutation probability is simply due to the mechanics of a population with a high rate of change, as the random elements invoke a mean reversion tendency toward the average of the population.

Figure 3 shows that even in the strongly unstable scenario, the population mean values of the AR1 parameters α_i and β_i are close to their benchmark values under RE: α_i fluctuates in the vicinity of the RE equilibrium price ($p^* = 5.91$) whereas the average β_i is close to zero. The same applies in the other cases. However, fluctuations around the RE benchmark are stronger for the unstable and strongly unstable cases, which leads to stronger fluctuations and excess volatility of market prices, consistent with the laboratory experiments.

Overall, the GA experiments with the same parameter setting and incentive structure as in the laboratory experiments appear to closely mimic the set of stylized facts discussed in the Introduction. We note that the qualitative outcome was quite robust under various modifications of the GA learning mechanism. For example, we get similar results from dispensing with the election operator. The main difference in this setting is that fluctuations in the "unstable" and "strongly unstable" treatment become more pronounced and that we see somewhat more significant negative autocorrelation in the first few lags: as mentioned previously, this feature can be explained easily by the mean-reverting nature of the dynamics, with more random mutations admitted to the population. On economic grounds we might, however, argue that agents should not allow obviously unsuccessful strategies to enter their set of forecast functions (which is why the election operator had been introduced in economic settings), so that we would not place too much weight on these results.

386

Interestingly, adopting a simpler concept of learning, which dispenses with the autocorrelation parameter β_i and restricts forecast rules to a constant α_i , also leads to results that share some of the stylized facts. Although this scenario leads to similar outcomes for volatility in the three treatments, it is also characterized by antipersistent price behavior and more significant zigzag patterns of autocorrelations in the strongly unstable case. The simplest GA with only constant rules, therefore, seems to inherit at least part of the oscillating dynamics of the benchmark case of homogenous naive or adaptive expectations. A more intelligent type of forecast rules, such as our AR1 rules, taking into account both the average price level and first-order autocorrelation, is needed to remove linear forecastability. Stated differently, individual learning of the mean alone is not consistent with the laboratory experiments, but some more sophisticated form of individual learning taking into account whether prices are persistent or anti-persistent is needed to remove autocorrelations in aggregate prices. The interaction of individual rules, which learn both the price level and the first-order autocorrelation, leads to the correct aggregate price level and washes out all autocorrelations in aggregate price fluctuations.

Why do the GA experiments reproduce the experimental results so well? Our conjecture is that GAs and human subjects share the tendency to "learn by experience" and to shift their strategies toward a specification that would have performed well in the recent past. This is actually the consequence of the built-in genetic operators of GAs. Although this leads to an optimal solution for static problems (at least, if the evolutionary process is allowed to run long enough), with the changing objective functions of an interactive environment it could also lead to repetitive patterns [cf. Lux and Schornstein (2005)]. In the absence of structural knowledge about the underlying mechanisms of a decision problem, humans can also still determine what actions or decisions would have performed well in the past. Quite clearly, the laboratory experiments with their unknown forms of the underlying market functions and added stochasticity could not have been fully penetrated by the experimental subjects. However, they could easily focus on the past success and failure of their forecasts and learn to maintain successful strategies. Exploiting the mean together with short-run autocorrelations seems to be one of the simplest strategies that could be pursued in a rule-of-thumb manner without computing the sample autocorrelation exactly (which would normally not be possible given the time pressure of most experimental settings). These rough computations lead to stochastic fluctuations that are similar to the fluctuations caused by the evolutionary dynamics of the GA. The latter feature distinguishes our heterogenous learning scenario from homogenous learning models [Hommes (2009)], which seem unable to explain the full set of stylized facts. Heterogeneity in individual forecasting thus seems to be a key element in explaining all stylized facts at the aggregate level simultaneously.

In summary, our conjecture is that the orientation at successful performance in the past within a reasonable class of forecasting heuristics together with the heterogeneity of the GA design, explains its proximity to human behaviour in the lab. We may note that such conformity has also been found in a number of

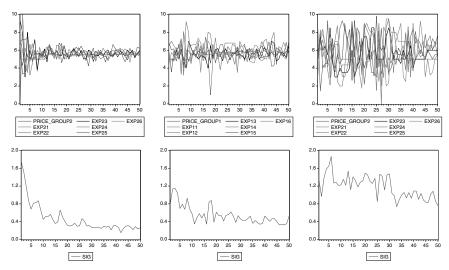


FIGURE 4. Top panel: Six individual forecasts in one group of the laboratory experiments in the stable (left), unstable (middle) and strongly unstable (right) treatments. Bottom panel: Time development of the average degree of heterogeneity, i.e., the standard deviations of individual forecasts (six individuals), averaged over all (six) groups in the stable treatment (left), the unstable treatment (middle), and the strongly unstable treatment (right).

other cases, e.g., in an experimental foreign exchange market [Arifovic (1996)] and in public good experiments [Casari (2004)]. It is also related to the work of Erev and Roth (1999) on reinforcement learning (RL) to explain experiments with repeated games. ¹⁵ Anufriev and Hommes (2009, in press) have recently used another form of RL to explain learning-to-forecast experiments in a different, asset-pricing framework.

5. THE DEGREE OF HETEROGENEITY

In the stable treatment of the laboratory experiments, it seems that prices converge to RE and agents learn to coordinate on the RE forecast. In contrast, in the (strongly) unstable treatment prices do not converge, but exhibit excess volatility. Does forecast heterogeneity disappear in the stable treatment and does persistent forecast heterogeneity explain the observed excess volatility in the (strongly) unstable treatment? Whether or not heterogeneity persists is important for economic theory. If beliefs converge to a common rule, long-run aggregate price behavior can be described by a representative agent model. If, on the other hand, beliefs do not converge, heterogeneous-expectations models become relevant as a description of short run as well as long run aggregate market behavior. See Hommes (2006) for an extensive discussion of heterogeneous-expectations models.

Figure 4 (top panel) shows some typical examples of time series of the six individual forecasts in one group for each of the three treatments. These examples

already suggest that heterogeneity quickly disappears in the stable treatment, whereas heterogeneity is highly persistent in the strongly unstable treatment. Figure 4 (bottom panel) also shows the average degree of heterogeneity, that is, the time development of the standard deviations of individual forecasts (K=6 individuals per group) averaged over all groups in each treatment. More precisely, let $\hat{p}_{t,k}^j$ be the price forecast for time period t, by subject k, in experiment j; then the mean forecast for period t in experiment j is $\mu_t^j = \frac{1}{K} \sum_k \hat{p}_{t,k}^j$. The standard deviation of the mean forecast at date t, over K=6 subjects of experiment j, is

$$\sigma_t^j = \sqrt{\frac{1}{K-1} \sum_k \left(\hat{p}_{t,k}^j - \mu_t^j\right)^2}.$$
 (12)

The average degree of heterogeneity at date t over all experiments (J=6) within a treatment is then defined as the average standard deviation:

$$\sigma_t(p^e) = \frac{1}{J} \sum_i \sigma_t^j. \tag{13}$$

The time development of the average degree of heterogeneity in Figure 4 (bottom panel) exhibits two important features: (1) for all treatments forecast heterogeneity decreases over time, and (2) forecast heterogeneity is persistent in the unstable treatment and highly persistent in the strongly unstable treatment.

Figure 5 shows the time development of the average degree of heterogeneity in GA learning simulations in the first 50 periods, averaged over 1000 runs, in the stable, the unstable, and the strongly unstable treatments. This figure shows that GA learning simulations reproduce the patterns of the average degree of heterogeneity in the laboratory experiments quite nicely: a quick decrease of forecasting heterogeneity in the stable treatment and a much slower decrease in the (strongly) unstable treatment. In fact, both in the experiments and in the GA learning simulations, the unstable and strongly unstable treatments exhibit a nonmonotonic development of forecasting heterogeneity with an increase in heterogeneity in the early stage of the experiment/simulations because of overshooting and a decrease in heterogeneity after periods 5–7 because of learning.

6. BEYOND THE LABORATORY SETTING

In contrast to experiments with human subjects, additional experiments with GAs can be conducted at essentially zero cost. In this section we expand our previous experiments in various directions not covered by the laboratory experiments. Among others, we investigate long-run price behavior, and how price behavior depends on parameter values, in particular the parameter tuning the nonlinearity of the supply curve, and we investigate the consequences

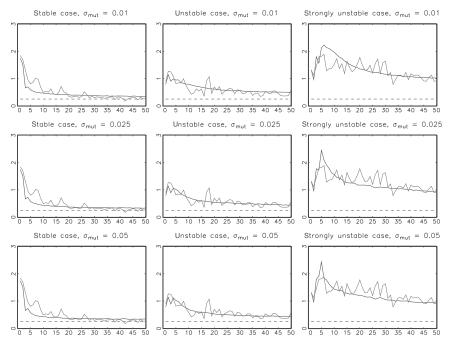


FIGURE 5. Time development of the average degree of heterogeneity, i.e., the standard deviations of the six individual forecasts in GA learning simulations (dark line) averaged over 1,000 runs, in the stable (left), the unstable (middle), and the strongly unstable treatment (right) for different values of the mutation probability p_{mut} . The time series of the average degree of heterogeneity in the corresponding experiments (light line) as well as the RE benchmark (dotted line) are also shown.

of an increase of the number of agents and forecasting strategies in the GA populations.

6.1. Long-Run Behavior

Table 2 summarizes the long-run statistics for all three treatments and three different mutation probabilities, $p_{\text{mut}} = 0.01$, 0.025, and 0.05. As can be seen, in the stable case the long-run average degree of heterogeneity, $\text{Var}(p^e)$, is small and price volatility is quite close to the RE benchmark 0.25. In the unstable treatment price volatility is slightly greater than the RE variance, whereas in the strongly unstable treatment the long-run price variance is significantly higher than the RE benchmark because of a higher average degree of heterogeneity. The strongly unstable treatment thus exhibits persistent heterogeneity and long-run excess price volatility. Moreover, both the average degree of heterogeneity and the excess price volatility increase with the mutation probability. This seems intuitively clear,

	$Mean(p^e)$	Mean(p)	$\operatorname{Var}(p^e)$	Var(p)
	Stable o	case $(K = 6)$		
RE		5.57		0.25
Experiments	5.56	5.64	0.087	0.36
$p_{\rm mut} = 0.01$	5.580	5.567	0.012	0.257
$p_{\rm mut} = 0.025$	5.585	5.564	0.018	0.262
$p_{\mathrm{mut}} = 0.05$	5.589	5.557	0.030	0.274
	Unstable	case $(K = 6)$		
RE		5.73		0.25
Experiments	5.67	5.85	0.101	0.63
$p_{\rm mut} = 0.01$	5.728	5.731	0.009	0.283
$p_{\rm mut} = 0.025$	5.734	5.724	0.016	0.306
$p_{\mathrm{mut}} = 0.05$	5.737	5.708	0.028	0.343
	Strongly unst	table case (K =	= 6)	
RE	_	5.91	_	0.25
Experiments	5.73	5.93	0.429	2.62
$p_{\rm mut} = 0.01$	5.889	5.869	0.012	0.475
$p_{\rm mut} = 0.025$	5.881	5.826	0.050	0.824
$p_{\rm mut} = 0.05$	5.848	5.768	0.173	1.516

TABLE 2. Long-run simulations

Notes: Long-run simulations with K=6 GA agents and different mutation probabilities $p_{\rm mut}$. The first and second moments for market prices, Mean(p^e) and Var(p^e), are computed from simulations over 50,000 time steps after the first 10,000 observations are discarded as a transient sample. Mean(p^e) is the mean over the whole simulation of the average forecast across the 6 "agents" in each period. The average degree of heterogeneity, Var(p^e), has been computed according to equation 10, averaged over T=50,000 periods after a transient of 10,000 periods.

because a higher mutation probability leads to a higher rate of new forecasting rules entering the population.

6.2. Parameter Sensitivity

In the next set of simulations we explore the transition between the "nice" price behavior of the "stable" treatment and the excessive price volatility of the unstable treatments. Recall that the difference between these treatments is the parameter λ tuning the nonlinearity of the supply curve. We ran the same type of GA experiments with 800 different values of the slope parameter λ ranging from 0.005 to 4 (with increments of 0.005). Figure 6 reports the mean values and variances of realized prices over 50,000 rounds, together with their RE benchmark. It turns out that the variance of realized prices is close to its RE benchmark of 0.25 only for very small values of λ with an almost perfectly linear increase with λ thereafter. In contrast, the average price stays close to its RE benchmark over the whole range of our experiments. Although there appears to be a slightly increasing wedge between the average price and the RE solution for increasing λ , the deviation

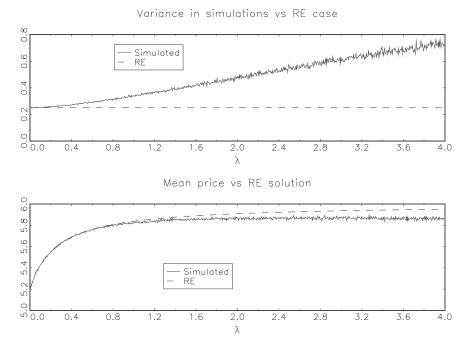


FIGURE 6. Mean prices (bottom panel) and variances (top panel) from GA simulations of markets with λ ranging from 0.005 to 4. Except for the variation of λ , all parameters are the same as before. Results are sample moments over simulations of 50,000 rounds (after a transient period of 10,000 rounds is discarded).

is always very small compared to the difference between the realization of the second moment and its RE benchmark. We conjecture that this increasing wedge might be more an artifact of our simulation design than a true indication of (small) deviations of the mean price from the RE price. Because $p_{\rm RE}$ is slightly higher than the center of the admissible range [0, 10], larger fluctuations would generate some asymmetries in realized prices with a slight dominance of lower rather than higher prices. The slight deviation from RE in the first moment (which remains smaller than 2% in all scenarios) would then be a numerical consequence of the large deviation in the second moment from its RE benchmark.

6.3. Simulations with Many Agents

Another set of Monte Carlo runs investigates what happens if we increase the pool of participants in our forecasting experiments. Although laboratory settings are typically restricted to small numbers of agents for technical reasons, the availability of subjects, and the costs of running large experiments, we can easily extend our previous GA setting to much larger numbers of artificial agents. Because we have normalized supply by dividing through the number of firms in equation (1), the

			3	
	$Mean(p^e)$	Mean(p)	$\operatorname{Var}(p^e)$	Var(p)
		Stable case		
K = 6	5.558	5.581	0.100	0.325
K = 12	5.557	5.584	0.075	0.308
K = 30	5.559	5.584	0.061	0.302
K = 100	5.558	5.583	0.054	0.292
K = 150	5.557	5.580	0.053	0.293
K = 600	5.558	5.583	0.051	0.293
		Unstable case		
K = 6	5.665	5.784	0.159	0.629
K = 12	5.679	5.774	0.085	0.474
K = 30	5.685	5.766	0.059	0.416
K = 100	5.691	5.764	0.047	0.386
K = 150	5.694	5.763	0.044	0.376
K = 600	5.694	5.764	0.043	0.373
	Stro	ongly unstable case		
K = 6	5.605	6.011	0.625	2.297
K = 12	5.623	6.046	0.445	1.716
K = 30	5.643	6.055	0.361	1.429
K = 100	5.660	6.046	0.314	1.264
K = 150	5.659	6.047	0.313	1.260
K = 600	5.663	6.044	0.301	1.235

TABLE 3. Short-run simulations for increasing number of subjects

Notes: Effects of the variation of the number of agents, K. Other parameters are M=10 and $p_{\rm mut}=0.025$. Increasing K leads to convergence toward the RE benchmark in the stable and unstable treatments, but excess volatility persists in the strongly unstable treatment. The first and second moments are computed from 1,000 runs with 50 periods each (i.e., using 50,000 observations).

RE benchmarks for first and second moments remain the same for all population sizes K.

Table 3 compares the results for population numbers $K \in \{6, 12, 30, 100, 150, 600\}$. Initialization of the GA simulation is done based on the first- and second-period individual forecasts in the experiments with K = 6 subjects in Hommes et al. (2007) as well as the experiments with K = 12 subjects in the strongly unstable treatment in van de Velden (2001). For the first period, all experiments (with 6 or 12 subjects and with stable, unstable, and strongly unstable treatments) have been pooled and the resulting distribution has been fitted with a Normal N(5.271, 1.393). Second-period forecasts in the experiments differ between treatments, but are very similar for the 6- and 12-subject cases in the strongly unstable treatment. We therefore pooled the forecasts of period 2 over all experiments of each treatment and fitted Normal distributions N(5.279, 1.698) for the stable treatment (only cases with 6 subjects), N(5.952, 1.266) for the unstable treatment (only cases with 6 subjects), and N(6.885, 1.225) for the strongly unstable treatment (pooled over all experiments with 6 or 12 subjects). The experiments with K = 6 to

K = 600 agents have been initialized by random draws from the pertinent Normal distribution, i.e., the same overall settings in period 1 but the treatment-dependent ones for period 2.

Apparently, larger numbers of agents have a tendency to dampen fluctuations. Although there is not much difference in the experiments with stable slope parameter $\lambda=0.22$, the effect is more pronounced in the unstable and strongly unstable scenarios. The stable case stays close to the RE benchmark for all sizes of the population, with the variance of price fluctuations close to the variance of the random term. In the other cases, the excess fluctuations are clearly reduced when the size of the population increases. In the "unstable" case ($\lambda=0.5$), price volatility decreases from Var(p)=0.629 for K=6 to Var(p)=0.373 for K=600. In the strongly unstable case ($\lambda=2$) price volatility is reduced by about 40% for K=600, but is still significantly higher than the RE benchmark (Var(p)=1.235). In the strongly unstable treatment in the short run, i.e., for the first 50 periods, excess volatility thus persists when the number of agents increases to K=600.

Another striking feature of these GA simulations is that an increase of the number of agents beyond N=30 has little effect upon aggregate behavior. In all treatments, price volatility and the average degree of heterogeneity drop significantly when the number of agents is increased from N=6 to N=30, but hardly drop when the number of agents is further increased from N=30 to N=600. This suggests that it may be possible to study macro phenomena in relatively small laboratory experiments with about 30 subjects, a size that is manageable in most experimental laboratories. See also the discussion of the relevance of laboratory experiments in macro in Duffy (2008).

Table 4 gives an overview of the same statistics in long-run simulations, based on 50,000 periods, after a transient of 10,000 periods. Both the stable and the unstable treatments converge closely to the RE benchmark, with price volatility of Var(p) = 0.256 and Var(p) = 0.271, respectively, for K = 600. Also, the strongly unstable treatment approaches the RE benchmark relatively closely in the long run, although price volatility Var(p) = 0.399 for K = 30 and Var(p) = 0.346 for K = 600, respectively, is still more than 35% higher than the RE benchmark.

The laboratory experiments provide a simple and stylized framework that is stationary for 50 periods. In real markets with fluctuating prices, one would perhaps expect larger exogenous shocks to occur occasionally. From this perspective, what we have called the short run; i.e., the first 50 periods, could be more relevant to real markets than the long run, where the market is stationary for a very long time.

The decrease of volatility with increasing population is probably easy to explain: adding more agents evokes a law of large numbers. Because our GA agents are effectively independent stochastic processes, their individual fluctuations should be averaged out by aggregating over more and more individuals.¹⁷ This is what seems to happen in our experiments. Note, in particular, the strong decrease of the variance of average price *expectations* in all settings. Of course, if price

	$Mean(p^e)$	Mean(p)	$\operatorname{Var}(p^e)$	Var(p)
		Stable case		
K = 6	5.587	5.564	0.019	0.265
K = 12	5.582	5.566	0.014	0.262
K = 30	5.582	5.566	0.011	0.257
K = 100	5.581	5.562	0.009	0.255
K = 150	5.582	5.564	0.010	0.256
K = 600	5.583	5.565	0.010	0.256
		Unstable case		
K = 6	5.733	5.721	0.016	0.307
K = 12	5.732	5.722	0.010	0.285
K = 30	5.734	5.722	0.007	0.277
K = 100	5.732	5.723	0.006	0.273
K = 150	5.733	5.720	0.006	0.270
K = 600	5.732	5.721	0.006	0.271
	Stro	ongly unstable case		
K = 6	5.882	5.834	0.047	0.797
K = 12	5.892	5.868	0.014	0.513
K = 30	5.895	5.876	0.006	0.399
K = 100	5.896	5.883	0.004	0.354
K = 150	5.896	5.882	0.004	0.353
K = 600	5.896	5.882	0.003	0.346

TABLE 4. Long-run simulations for increasing number of subjects

Notes: Long-run statistics when the number of agents, K, increases. Other parameters are M=10 and $p_{\rm mut}=0.025$. Increasing K leads to convergence toward the RE benchmark in all three treatments. Even in the strongly unstable treatment long-run market volatility decreases with K, to a value fairly close to the RE benchmark of 0.25. The first and second moments are computed using 50,000 observations, after the first 10,000 observations are disregarded as transient.

expectations converged to the RE benchmark, realized prices would only fluctuate because of the exogenous random noise component.

6.4. Simulations with Many Rules

Finally, Table 5 reports results of GA-learning simulations where the number of agents has again been fixed to K = 6, whereas the number of rules, M, available to each agent increases from M = 4 to M = 60.

Note that in a GA setting, the rules for an individual need not necessarily be different from each other. In fact, convergence of the GA would imply that the population of rules for an agent becomes fully homogeneous. Increasing M thus does not necessarily mean that an individual has more different rules in each period, but it only increases the potential *sophistication* of the set of rules. We have again performed a comprehensive series of experiments varying the rules available to each individual from a low of M = 4 to a maximum of M = 60. Over the short

TABLE 5. Long-run simulations for increasing number of rules per agent

	$Mean(p^e)$	Mean(p)	$Var(p^e)$	Var(p)
	St	able case $(K = 6)$		
M=4	5.576	5.569	0.034	0.277
M=6	5.585	5.563	0.025	0.269
M = 10	5.579	5.567	0.020	0.266
M = 20	5.586	5.564	0.016	0.261
M = 30	5.582	5.568	0.015	0.261
M = 40	5.579	5.568	0.015	0.264
M = 50	5.576	5.574	0.015	0.260
M = 60	5.575	5.571	0.015	0.266
	Uns	stable case $(K = 6)$		
M=4	5.731	5.714	0.024	0.327
M=6	5.735	5.713	0.018	0.312
M = 10	5.731	5.725	0.016	0.305
M = 20	5.732	5.724	0.014	0.299
M = 30	5.732	5.724	0.013	0.295
M = 40	5.735	5.720	0.014	0.302
M = 50	5.736	5.719	0.013	0.296
M = 60	5.737	5.718	0.013	0.293
	Strongly	unstable case (K	= 6)	
M=4	5.850	5.815	0.063	0.867
M=6	5.870	5.821	0.046	0.783
M = 10	5.881	5.833	0.047	0.798
M = 20	5.874	5.834	0.083	0.962
M = 30	5.871	5.831	0.110	1.070
M = 40	5.862	5.827	0.144	1.194
M = 50	5.863	5.820	0.172	1.299
M = 60	5.850	5.817	0.213	1.433

Notes: Effects of the variation of the number of rules, M, per GA agent. Other parameters are K=6 and $p_{\rm mut}=0.025$. Increasing M seems to leave the results practically unchanged in the stable and unstable cases, but increases the volatility of both predicted prices and realized market prices in the strongly unstable scenario. The moments are extracted from simulations over 50,000 periods after a transient of 10,000 steps.

run, results are completely insensitive to the number of rules. Monte Carlo results along the lines of Table 1 yield practically no differences in first and second moments over this wide range of variation of M (detailed results are available upon request). However, notable differences show up if we look at the long-run results, replicating our forecasting exercise with the GA agents over 50,000 periods, cf. Table 5. As it turns out, at least in the strongly unstable treatment, this higher sophistication leads to an increase of the volatility of realized (as well as expected) prices. With M = 60 rules per agent, price volatility has almost doubled from Var(p) = 0.867 to Var(p) = 1.433. In contrast, variation of the number of rules M seems to leave the results of the stable and unstable treatments

396

almost unchanged. We conjecture that the larger number of chromosomes allows agents to react more easily to price fluctuations around the RE benchmark. With a high λ , under naive expectations, a small deviation from p_{RF} would lead to a stepwise increase or decrease of the price for some time. Autocorrelation detection by some agents could reinforce this tendency, as they would already forestall the direction of the subsequent price changes. With a large number of chromosomes, chances to evolve such momentarily advantageous rules are increasing. If such rules were admitted to the population, they would enhance fluctuations. It might, therefore, be a mixture of "naive" adaptation of some agents (modifications of α_i) and trend chasing of others (adapting α_i and β_i) that generates the higher volatility in this case. Unfortunately, a systematic analysis of the interplay between the number of agents and their behavior in experimental settings is beyond the limit of available laboratory resources. Given the autonomous adaptation of human subjects to different environments, it is not clear whether their learning behavior would remain unchanged in groups of different sizes. Our simulations suggest that, at least in the strongly unstable treatment, an increase of the number of learning rules per agent may be a potentially destabilizing force counterbalancing the stabilizing force of an increase in the number of agents in the market. It therefore seems possible that changes of behavior might compensate for the lawof-large-numbers tendency in larger groups.

7. CONCLUDING REMARKS

GA learning of simple forecasting strategies provides an accurate description of individual expectations at the micro level and, at the same time, the interaction of these individual rules matches observed aggregate price behavior at the macro level surprisingly well. In the simple framework of the classical cobweb model, the interaction of individual GA learning rules is able to reproduce all stylized facts in aggregate prices—correct sample mean, excess volatility depending on demand/supply characteristics, and no linear predictability—observed in recent learning to forecast laboratory experiments with human subjects. In contrast to homogeneous learning rules, the interaction of heterogeneous GA learning rules explains all stylized facts simultaneously and across various treatments. It should be emphasized that these results are robust and not sensitive to the GA specification or the two GA parameters (the mutation probability p_{mut} and the crossover probability p_{cross}). The GAs attempt to learn two parameters—the sample mean and the first-order autocorrelation coefficient—in a simple AR(1) forecasting rule. Evolutionary selection within a simple class of individual forecasting heuristics, which take into account both the observed sample mean and the first-order sample autocorrelation, thus explains aggregate price behavior surprisingly well.

We have also looked at the average degree of heterogeneity of individual forecasting behavior. In all treatments, heterogeneity decreases over time. In the stable treatment, heterogeneity quickly disappears and the price settles down to its RE benchmark. In the (strongly) unstable treatment, heterogeneity decreases somewhat because of learning, but heterogeneity persists, even in the long run. These results suggest that economic theory needs to go beyond representative agent models with homogeneous expectations. The matching of our GA simulation results with laboratory experiments is consistent with a theory of endogenous selection of heterogeneous expectations, for example, as in Evans and Ramey (1992), in Brock and Hommes (1997) and, more recently, in Reis (2006).

Fitting a GA learning model to the laboratory experiments allows one to go beyond experiments and simulate alternative and more realistic market environments. Through GA simulations, we have seen that adding more agents to the market has a stabilizing effect; that is, price volatility decreases as the number of agents increases. However, in the strongly unstable treatment, excess price volatility persists when the number of agents becomes large. On the other hand, increasing the potential sophistication by allowing more strategies per individual has a destabilizing effect and makes price behavior more volatile. Additional laboratory experiments could reveal more information about the number of strategies subjects are using, in order to explore which of these two forces will dominate.

We have also seen that an increase in the number of agents beyond thirty has relatively little impact on aggregate price behavior. This suggests that laboratory experiments with thirty interacting subjects may reveal useful information about macro phenomena. Such larger macro experiments, as well as applying GA's to other laboratory experiments, in particular, other learning-to-forecast experiments, are a challenge for future work and may shed more light on formation of individual expectations, their interaction, and aggregate outcomes in alternative market settings.

NOTES

- 1. The cobweb model has been used in many different applications, ranging from markets for lawyers [Freeman (1975)], engineers [Freeman (1976)], and public school teachers [Zarkin (1985)] to those for oil [Krugman (2001)], cattle [Rosen et al. (1994)], and beef [Chavas (2000)].
- 2. The stability condition states that the ratio between marginal supply and marginal demand at steady state must be smaller than 1 in absolute value [Ezekiel (1938)].
- 3. Arifovic (1994) used GA learning to explain the cobweb laboratory experiments of Wellford (1989), but there are a number of important differences from our approach. Most importantly, subjects assume the role of producers themselves, whereas the subjects of Hommes et al. (2007) have to forecast next period's market price. Besides this major difference in the focus of the experiments, a number of additional differences exist. For example, Wellford used linear demand and supply curves in the experimental setup, implying that the market is either stable or explosive (except for a hairline case). Hommes et al. (2007) use a nonlinear supply curve, so that price dynamics remains bounded whereas price cycles become a generic possibility. Moreover, Arifovic (1994) only tests for differences in volatility between the stable and unstable treatments, whereas we match price volatility under GA learning directly to the experiments. Furthermore, Arifovic (1994), for example, did not look at the third stylized fact, the absence of linear predictability. Finally, we also study the average degree of heterogeneity in individual forecasting and how it varies over time.
- 4. 1300 points corresponded to 0.45 euro, so that maximum earnings were 22.5 euro. Average earnings ranged from about 10 euro in the strongly unstable to about 19 euro in the stable treatment [in about 75 minutes; see Hommes et al. (2007, Table 2)].

- 5. One could as well encode the population as real-coded chromosomes. However, this alternative encounters certain technical problems even if the problem at hand is properly defined for real values [Herrera et al. (1998)].
- 6. We have also experimented with a modification of the "election" operation that replaces its built-in rank-based structure by a fitness-proportional choice among parents and offspring. However, this modification had no remarkable effect on any of our results.
- 7. Crossover seems of fairly negligible influence, as even for extreme choices, $p_{\text{cross}} = 0$ or $p_{\text{cross}} = 1$ results are virtually the same as with any intermediate choice. Similar findings are reported in Lux and Schornstein (2005).
- 8. Vriend (2000) discusses differences between social learning and individual learning in agentbased models. He shows that in the context of a cobweb model, social learning converges to a competitive equilibrium because the Cournot strategy is not stable against deviations, which then disseminate in the population. In contrast, with individual learning, the firms in the artificial cobweb model converge to a Cournot equilibrium, as they only compete against other rules of the same individual and do not interact with those of other firms. Although we agree with Vriend that this difference might extend beyond the confines of the cobweb market structure, his considerations are not applicable to our setting. The reason is the difference in incentive structures: profits in Vriend's case versus payoffs depending on forecast accuracy in our cases. Even though a spite effect would be present for firms, this effect does not carry over to the agents, whose task is to predict aggregate market prices. It is, therefore, separation of the task of forecasting from the production decision that eliminates the tendency toward Cournot equilibria that was identified for individually learning firms in Vriend's (2000) paper. If we conduct our analyses with social learning by forecasters, we still get convergence to the RE equilibrium in means, but higher volatility and more predictability (in the form of zigzag patterns). The reasons are that (i) social learning amounts to an overall reduction of the pool of available rules and (ii) social learning leads to strong correlations of the behavior of agents. If a rule that was successful at time t is taken over by many agents at time t+1, this easily generates a tendendy toward zigzag patterns similar to the case of naive expectations in the textbook version of the cobweb model.
- 9. Genetic programs, in contrast, would allow the evolution of arbitrary functional specifications using a set of basic functional elements [Chen and Wang (2002)]. Because we are able to replicate the experimental stylized facts already with the simpler concept of GAs, we abstain from using the more intricate evolutionary dynamics of genetic programs.
- 10. In similar cobweb-type laboratory experiments, Heemeijer et al. (2009) recently estimated individual forecasting rules, and many individuals actually used forecasting rules of the simple form (8).
- 11. We have also checked the robustness of our results by running the experiments with real-coded GAs. Although it might appear more plausible to encode an initially real-coded problem (such as the present one) with real rather than binary "chromosomes," the latter approach is more popular in the literature. For real coded GAs the formulation of a sensible crossover operation is particularly cumbersome [cf. Herrera et al. (1998)]. With two real-valued parents, say $(\alpha_{1,t}, \beta_{1,t})$ and $(\alpha_{2,t}, \beta_{2,t})$, it seems straightforward to define crossover as random selection from the interval spanned by the two parents. However, this approach would generate a strong mechanical tendency toward the mean of the support and would often lead to a degenerate population. To compensate for this tendency, one would have to extend the interval by a certain factor to the right and left of the parents' strategic values in order to give the offspring a chance to escape from this range. Mutation operators for realvalued GAs typically use random draws from a Normal distribution with small variance to perturb the values inherited from the parents. Although this leads to close proximity of the strategies of parents and offspring, it also implies that the influence exercised by the mutation operator is typically much smaller in real-valued than in binary GAs (where the mutation could be arbitrarily large depending on what bit was modified). With these features in mind, we have replicated our experiments with a real-coded GA with extended range for crossover. Again, results are fairly similar to those reported in the main part of this paper. For initialization, we have used random draws from a Normal distribution with the mean and standard deviation computed from the initial forecasts of the experiments.

- 12. We have also conducted experiments with asymmetric initialization. As it turned out, results were completely insensitive to the initial distribution up to extreme degrees of asymmetry. E.g., results from a binary GA remained practically unchanged even if we fixed the first 16 (out of 20) digits for α_i and β_i to zero or one. For the first 16 digits equal to zero that means that we drew α_i and β_i from the reduced ranges [0, 0.00014] and [-1, -0.99997], respectively. Apparently, the evolutionary forces exerted by the first two realizations (which are taken from the experiments) are strong enough to overcome completely the influence of such a very biased distribution of initial forecast parameters. A bit of an influence of the initial distribution can be seen for even larger numbers of fixed bits. However, it seems perfectly plausible that evolution would need longer to modify an almost completely degenerate set of initial conditions.
- 13. There are other ways of defining the sample mean and sample variance of individual forecasts. For example, one can pool the forecasts for each period t over all individuals i and all experiments j, compute the variance of the pooled forecasts, and then average over all rounds. Alternatively, one can start out with the variance over the individual forecasts for each experiment j and for each period t and then average over all experiments and all rounds. The results for these alternative ways of averaging of individual forecasts are very similar to those reported here. In particular, independent of the details of the averaging method, the GA learning simulations match the laboratory experiments quite nicely.
- 14. For the RE benchmark, $Var(p^e)$ has been computed as the variance of the average of individual forecasts drawn randomly from the RE stochastic process $p^* + \epsilon_t$ in (6), yielding $Var(p^e) = \sigma_{\epsilon_t}^2 / K \approx 0.042$ for K = 6.
- 15. We also investigated a RL algorithm with strategy sets similar to those in our GA setting. Individuals were endowed with AC strategies with parameter space $\alpha_i \in [0, 10]$ and $\beta_i \in [-1, 1]$. Initial parameters were drawn randomly from a uniform distribution and updated with probabilities computed via relative fitness (as in the GA experiments), with fitness defined by the payoff function (5). We distinguished between a myopic RL algorithm, only using the last payoff as a fitness function, and a full-memory RL scheme that computed fitness as the arithmetic average of all previous payoffs. Qualitative results of both settings were not too different, however. The basic outcome of these RL experiments was as follows: (i) Agents never converged to the RE benchmark. In particular, the variance was always above the RE benchmark, even in the "stable" scenario. Mean values were slightly further away from RE prices than under GA learning. (ii) In all cases, realized market prices showed pronounced cyclical patterns, indicating that RL agents were not able to exploit all linear structure. (iii) Results seemed to be entirely insensitive to the number of strategies (we allowed the strategy set of agents to vary from M = 50 over 500 up to 5,000). Detailed results are available upon request.
- 16. A regression of the variance of realized prices on the parameter λ over the second half of our experiments produced a slope parameter 0.12 and a constant 0.25 with R^2 of the regression equal to 0.94. Note that the constant is equal to the variance in RE equilibrium.
- 17. Although there should always be a quasi-deterministic limit for the dynamics of GA populations, this need not necessarily lead to convergence towards some kind of steady state. Lux and Schornstein (2005) provide an example of how adaptive GA agents could converge to perfectly oscillatory dynamics because of their interactions in a large population.

REFERENCES

Adam, K. (2007) Experimental evidence on the persistence of output and inflation. *Economic Journal* 117, 603–636.

Anufriev, M. and C.H. Hommes (2009) Evolutionary Selection of Individual Expectations and Aggregate Outcomes. Cendef working paper 09-09, University of Amsterdam.

Anufriev, M. and C.H. Hommes (in press) Evolution of market heuristics. *Knowledge Engineering*

Arifovic, J. (1994) Genetic algorithm learning and the cobweb model. *Journal of Economic Dynamics and Control* 18, 3–28.

- Arifovic, J. (1996) The behavior of the exchange rate in the genetic algorithm and experimental economies. *Journal of Political Economy* 104, 510–541.
- Arifovic, J. and R. Gencay (2000) Statistical properties of genetic learning in a model of exchange rate. *Journal of Economic Dynamics and Control* 24, 981–1005.
- Arthur, W.B., J.H. Holland, B. LeBaron, R. Palmer, and P. Tayler (1997) Asset pricing under endogenous expectations in an artificial stock market. In W. Arthur, D. Lane, and S. Durlauf (eds.), *The Economy as an Evolving Complex System II*, pp. 15–44. Reading, MA: Addison–Wesley.
- Branch, W.A. (2004) The theory of rationally heterogeneous expectations: Evidence from survey data on inflation expectations. *Economic Journal* 114, 592–621.
- Brock, W.A. and C.H. Hommes (1997) A rational route to randomness. Econometrica 65, 1059-1095.
- Casari, M. (2004) Can genetic algorithms explain experimental anomalies? Computational Economics 24, 257–275.
- Chavas, J.-P. (2000) On information and market dynamics: The case of the U.S. beef market. *Journal of Economic Dynamics and Control* 24, 833–853.
- Chen, S.-H. and P. Wang (2002) Computational Intelligence in Economics and Finance. Berlin: Springer-Verlag.
- Dawid, H. (1999) Adaptive Learning by Genetic Algorithms: Analytical Results and Applications to Economic Models, 2nd ed. Berlin: Springer-Verlag.
- Duffy, J. (2006) Agent-based models and human-subject experiments. In Leigh Tesfatsion and Kenneth L. Judd (eds.), *Handbook of Computational Economics*, 1st ed., vol. 2, chap. 19, pp. 949–1011. Amsterdam: Elsevier.
- Duffy, J. (2008) Experimental macroeconomics. In S. Durlauf and L. Blume (eds.), The New Palgrave Dictionary of Economics, 2nd Ed. New York: Palgrave Macmillan.
- Erev, I. and A.E. Roth (1999) Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria. American Economic Review 88, 848–881.
- Evans, G.W. and S. Honkapohja (2001) *Learning and Expectations in Macroeconomics*. Princeton, NJ: Princeton University Press.
- Evans, G.W. and G. Ramey (1992) Expectation, calculation and macroeconomics dynamics. American Economic Review 82, 207–224.
- Ezekiel, M. (1938) The cobweb theorem. Quarterly Journal of Economics 52, 255–280.
- Freeman, R.B. (1975) Legal "cobwebs:" A recursive model of the market for new lawyers. *Review of Economics and Statistics* 57, 171–179.
- Freeman, R.B. (1976) A cobweb model of the supply and starting salary of new engineers. *Industrial and Labor Relations Review* 29, 236–248.
- Heemeijer, P., C.H. Hommes, J. Sonnemans, and J. Tuinstra (2009) Price stability and volatility in markets with positive and negative expectations feedback: An experimental investigation. *Journal* of Economic Dynamics and Control 33, 1052–1072.
- Herrera, F., M. Lozano, and J. Verdegay (1998) Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artificial Intelligence Review 12, 265–319.
- Holland, J. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.
- Hommes, C.H. (2002) Modeling the stylized facts in finance through simple nonlinear adaptive systems. *Proceedings of the National Academy of Sciences* 99, 7221–7228.
- Hommes, C.H. (2006) Heterogeneous agent models in economics and finance. In L. Tesfatsion and K.J. Judd (eds.), Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics, pp. 1109–1186. Amsterdam: Elsevier.
- Hommes, C. (2009) Bounded rationality and learning in complex markets. In J. Barkley Rosser, Jr. (eds.), *Handbook of Research on Complexity*, pp. 87–123. Cheltenham, UK: Edward Elgar.
- Hommes, C. (2011) The heterogeneous expectations hypothesis: Some evidence from the lab. *Journal of Economic Dynamics and Control* 35, 1–24.
- Hommes, C.H., J. Sonnemans, J. Tuinstra, and H. van de Velden (2005) Coordination of expectations in asset pricing experiments. Review of Financial Studies 18, 955–980.

- Hommes, C., J. Sonnemans, J. Tuinstra, and H. van de Velden (2007) Learning in cobweb experiments. *Macroeconomic Dynamics* 11(S1), 8–33.
- Kahneman, D. (2003) Maps of bounded rationality: Psychology for behavioral economics. American Economic Review 93, 1449–1475.
- Kirman, A. (1993) Ants, rationality and recruitment. Quarterly Journal of Economics 108, 137-156.
- Kirman, A. (2006) Heterogeneity in economics. *Journal of Economic Interaction and Coordination* 1, 89–117.
- Krugman, P.R. (2001) The oil-hog cycle. The New York Times (Nov. 18), p. 14.
- LeBaron, B., B. Arthur, and R. Palmer (1999) The time series properties of an artifical stock market. *Journal of Economic Dynamics and Control* 23, 1487–1516.
- Lux, T. (1995) Herd behavior, bubbles and crashes. Economic Journal 105, 881–896.
- Lux, T. and M. Marchesi (1999) Scaling and criticality in a stochastic multi-agent model of a financial market. *Nature* 397 (Feb.), 498–500.
- Lux, T. and M. Marchesi (2000) Volatility clustering in financial markets: A micro-simulation of interacting agents. *International Journal of Theoretical and Applied Finance* 3, 675–702.
- Lux, T. and S. Schornstein (2005) Genetic learning as an explanation of stylized facts of foreign exchange markets. *Journal of Mathematical Economics* 41, 169–196.
- Mankiw, N.G., R.A.M.R. Reis, and J. Wolfers (2003) Disagreement about Inflation Expectations. NBER working paper W9796.
- Marimon, R. and S. Sunder (1994) Expectations and learning under alternative monetary regimes: An experimental approach. *Economic Theory* 4, 131–162.
- Muth, J.F. (1961) Rational expectations and the theory of price movements. *Econometrica* 29, 315–335. Nerlove, M. (1958) Adaptive expectations and cobweb phenomena. *Quarterly Journal of Economics* 72, 227–240.
- Reis, R. (2006) Inattentive producers. Review of Economic Studies 73, 793-821.
- Rosen, S., K. Murphy, and J. Scheinkman (1994) Cattle cycles. *Journal of Political Economy* 102, 468–492.
- Sargent, T.J. (1993) Bounded Rationality in Macroeconomics. Oxford: Clarendon Press.
- Shiller, R.J. (2000) Measuring bubble expectations and investor confidence. *Journal of Psychology and Financial Markets* 1, 49–60.
- Sutan, A. and M. Willinger (2005) Why Do We Guess Better in Negative Feedback Situations? An Experiment of Beauty Contest Games with Negative Feedback and Interior Equilibria. Working paper, University of Montpellier.
- Tversky, A. and D. Kahneman (1974) Judgment under uncertainty: Heuristics and biases. *Science* 185, 1124–1131.
- van de Velden, H. (2001) An Experimental Approach to Expectation Formation in Dynamic Economic Systems. Ph.D. dissertation, Tinbergen Institute Research Series 268.
- Vissing-Jorgensen, A. (2003) Perspective on behavioral finance: Does "irrationality" disappear with wealth? Evidence from expectations and actions. In M. Gertler and K. Rogoff (eds.), NBER Macroeconomics Annual. Cambridge, MA: MIT Press.
- Vriend, N. (2000) An illustration of the essential difference between individual and social learning and its consequences for computational analyses. *Journal of Economic Dynamics and Control* 24, 1–14.
- Wellford, C.P. (1989) A Laboratory Analysis of Price Dynamics and Expectations in the Cobweb model. Discussion paper 89-15, Department of Economics, University of Arizona.
- Zarkin, G.A. (1985) Occupational choice: An application to the market for public school teachers. *Quarterly Journal of Economics* 100, 409–446.