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The aim of this paper is to study the asymptotic behaviour of the solutions of the
linearized elasticity system, posed on thin reticulated structures involving several
small parameters. We show that this behaviour depends on the relative size of the
parameters. In each case, we obtain a limit system where the microstructure and
macrostructure appear simultaneously. From it, we get a suitable approximation
in L? of the displacements and the linearized strain tensor.

1. Introduction

In a previous paper (see [11]), we introduced a new method to study the asymptotic
behaviour of the solutions of partial differential problems posed on thin reticulated
structures, (2., depending on several small parameters. The method is an original
adaptation of the Arbogast—Douglas—Hornung method in homogenization presented
in [4] (see also [8] and [9] for other extensions). It is closely related to the two-scale
convergence of Nguetseng and Allaire [1, 2, 20, 23]. The idea is to introduce an
adequate change of variables that transforms (2. in a fixed domain, depending on
both the microscopic and the macroscopic variables. In [11], we studied the case
of diffusion problems. In the present paper we consider the elasticity system. A
simplified problem in dimension two has been considered in [10]. Here, we deal with
two particular structures. The first one is shaped by the union of orthogonal beams,
with thickness ed., disposed periodically, along all the directions, with period ¢ (see
figures 1 and 2 for the two-dimensional case and figure 3 for the three-dimensional
one). The second structure is obtained by taking the previous one in dimension two
and adding oblique parallel bars (see figure 5) with cross-section ed.. Here, ¢ and
d. are two positive parameters that tend to zero. As in [21], the method applies to
more general situations (bars not completely crossing the structure, plates instead of
beams, tall structures, gridworks, etc.), but we prefer to consider the two reticulated
structures mentioned above to simplify the exposition.
On both structures (2., we pose the elasticity problem

—div(Ace(us) — H.) = F,  in (2,
ue =0 on I, (1.1)
(Ace(us) — Ho)ve =0 on 902\ I,
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where I is the outside boundary of 2. (see §2) and v, is the unit outward normal
to £2.. The exact hypotheses on A., H. and F. are given in §5. They allow us to
consider materials that are non-homogeneous in microstructure and macrostructure
(see remark 2.4) in each beam, both in the direction of its axis and in the transverse
direction to it. For example, we can assume that the different bars that shape 2. are
made up of a core of a material surrounded by a different one. To our knowledge,
other methods that deal with thin reticulated structures (see, for example, [5,7,
17,30]) do not allow us to consider this type of heterogeneity. Moreover, contrary
to other related works, we do not assume any isotropy hypotheses on the elastic
material that composes the structure. In particular, we do not suppose that it is
orthotropic. In fact, the only assumption we make for the symmetry of the elasticity
tensor A, is that it transforms the space of symmetric matrices onto itself. For a
unique bar, these general hypotheses on A, were considered in [22].

In this paper we show that the asymptotic behaviour of the solutions u. of (1.1)
is different according to the limit, ¢, of €/d.. There are three different situations,
depending on whether ¢ is zero, a positive number or infinity. Our method allows
us to study all the cases simultaneously. In particular, when ¥ = 400, we prove
that the deformations and the linearized strain tensor tend to infinity. Since the
linearized elasticity model assumes small deformations, this shows that it can fail in
this situation. In theorems 2.5 and 3.1, we give, for each value of 1, a strong approx-
imation in L?(§2.) of u. and e(u.) (corrector result). As in the classical two-scale
convergence (see [1,23]), these approximations are obtained by solving a partial
differential system that contains all the scales together (see (2.12) and (3.2)). Con-
trary to other approaches, this result does not suppose any additional smoothness
for the solutions of this system. Assuming them, we get, in fact, an asymptotic
development z. of u. such that

a2 1 2

In order to prove these results, we first obtain a compactness theorem, which cor-
responds to the compactness theorem in the usual two-scale theory. It also applies
to nonlinear problems, although, for the sake of simplicity, we prefer to remain in
the linear case.

For the first structure considered in this paper (figures 1-3), assuming stronger
homogeneity and isotropy hypotheses on the structure, it has been shown (see [5,
17]), by another method that passes to the limit first in £ and then in d. (which
assumes that ¢ is much smaller than d.), that the limit problem of (1.1) is degener-
ate. This property of the limit problem seems to be the reason why the asymptotic
behaviour of the solutions depends on the limit ¢ of €/d.. However, we emphasize
that the homogenization result for the second structure (figure 5) also depends on
the value 9, although, in this case, passing to the limit first in € and then in d.,
it was proved in [12] that (1.1) has a limit problem that is non-degenerate. Our
results also give this non-degenerate limit problem if 19 = 0, but, in the other cases,
we prove that the limit problem is still degenerate (see remark 3.5).

We finish this introduction with some bibliographic notes. For the study of the
elasticity system in thin domains, we refer, for example, to [13,14,19,22,27], where
the structures considered are composed of a small number of elements. In the case of
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thin reticulated structures involving several small parameters, the classical method,
to our knowledge, for dealing with this problem consists of passing to the limit first
in one parameter, then in another one, and so on (see [5,12,15-18, 25, 26]). For
diffusion equations, this approach provides, as in our case, the first three terms of
the asymptotic development of the solutions of the corresponding problem, together
with a corrector result (see [5]). However, as far as we know, this has not been
carried out for the elasticity problem. In fact, the above-mentioned papers do not
give a result, proving that the solution u. of (1.1) is close, in some sense, to the
solution of the problem obtained by passing to the limit successively in the different
parameters (i.e. it is not clear if the iterated limit is really a double limit). As we
pointed out above, the limit behaviour depends on the ratio of € to d.. However,
passing to the limit successively in the parameters we are assuming that one of
them is much smaller than the other ones. We mention that the fact that the
limit problem depends on the chosen order in the parameters was first proved
in [18].

Another approach used to study this type of problem is based on the two-scale
method with respect to measures (see [6,7,28-30]). This method allows us to deal
with very general structures. However, when it has been applied to the elasticity
system, it has only given partial results. So, in [7], the unique case considered is
¥ = 0, whereas in [28] the cases studied are ¢ = 0 and ¥ = 4o00. In this last work, an
additional term is introduced to the equation, and thus the problem under study
is not exactly the elasticity system; this additional term simplifies the problem
because it avoids the estimation of the Korn constant in 2. and the possibility
of unbounded displacements. We also remark that these articles do not provide
an asymptotic development z. of u. such that (1.2) holds. In fact, they only give
the two-scale limit of the solutions u. of (1.1) and not of e(u.), and, unlike our
result (1.2), they do not provide any estimation of the error in an usual norm, such
as the L? or H! norms. Both in [28] and [7], the case when the limit ¥ of £/d. is
arbitrary is explicitly mentioned as an open problem.

2. A model structure: homogenization result

This section is devoted to the asymptotic analysis of the solutions of the linearized
elasticity system (1.1) posed on a model sequence of reticulated structures in RY,
N > 2. These structures are shaped by orthogonal thin bars disposed periodically
along all the directions of the space. We assume that the bars are made of an
anisotropic non-homogeneous elastic material. Both the size of the period and the
ratio of the thickness of the bars over the period tend to zero. Mathematically, the
problem can be formulated as follows.

We denote by {ei,...,en} the usual basis in RY. For i € {1,...,N} and
¢=(¢,...,¢n) € RN, we write

C; = Z Cmema

so ( = (ie; + (/. We also denote by (! a generic point in RY such that its ith
coordinate is zero. Confusion is avoided by the context.
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For € > 0, let d. € (0,1) be a sequence that tends to zero as € goes to zero. For
i€{l,...,N}, ki €ZN and e > 0, LY is the unbounded beam given by

LM = {2 e RN 1 |2} — ekl|oo < sed.}.

Then we define the open reticulated structure V., € > 0 (see figures 1 and 2 for
N = 2 and figure 3 for N = 3), as

N
i . i i,k; .
V.=JV withV/= [J L™ Vie{l,...,N} Ve>o0.
1=1 kjezN

The intersection of the sets V, i € {1,...,N}, is denoted by w.. For a smooth
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bounded open set §2 C RV we define 2. (see figure 4), 2! and I'. by
R.=0NV., =00V, Vie{l,...,N},

I.=02.NndN Ye>0.
We denote by Hp, (£2.) the functional space

Hp (2.)={ue H' () :u=0o0nI.}, &>0.

1045

We suppose that the elements of H}E (£2.) are defined on all V; by extending them

by zero outside (2..
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Denote by Sy the space of N-dimensional symmetric matrices and by £L(Sn,Sn)
the space of linear maps of Sy into itself.

Let G be an open set of RY and let ¢ : G — R be sufficiently smooth. We
denote by e(¢) : G — Sy the symmetrized gradient (linearized strain tensor) of ¢,
ie.

We denote by v the unit outward normal to 042 and by v., € > 0, the unit outward
normal to 02..

We consider H. € L?(§2.;Sn), F. € L*(92.)N and A. € L>(§2.; L(Sy,Sn)) such
that there exist a, 3 > 0 with (the exact hypotheses on F., H. and A. are given
below)

Ac(z)IM: M = alM]?, |Ac(z)M| < BIM| YM €Sy ae € 2. VYe>O.
(2.1)

In the reticulated domain (2, let us consider the elasticity problem (1.1). It is
well known that this problem has an unique solution u. in Hp, (£2.)V (see, for
example, [14]). Our aim in this section is to describe the asymptotic behaviour of
the solution u. and to give a corrector result for e(u.) as € tends to zero. The result
exhibits three different regimes, depending on whether ¥ = lim._,¢(¢/d.) is zero, a
positive number or infinity. In order to solve the homogenization problem and to
express the result, we introduce some notations and definitions.

We set Y = (—3,2). For i € {1,...,N}, we decompose YV as YN = Ji 4+ 5,
where

J = {yie; 1y € Y}, Sti={yeYV .y, =0} ={y, e YN}

Note that we can consider J and S* as subsets of R and RY 1, respectively, iden-
tifying J* with Y and S* with YN—1.

For ¢ > 0 and k € Z", we define C¥ as the cube with centre ek and sides of
length ¢ parallel to the coordinate axes, i.e. C¥ = ¢(k + YV). We also define P*
as the cube with centre ek and sides of length ed. parallel to the coordinate axes.
Thus P¥ = C* Nwe. Fori € {1,...,N}, we write Bv¥ = C* N V. We remark that
Pk = Bik 0 BI* for every k € ZN, every € > 0 and every i,j € {1,...,N}.

We define k : RY — ZN by k(z) € ZY and z € Cf(r) for a.e. z € RY. Then
we set C.(z) = C5*/9) and P.(z) = PF®/®) ae. 2 € RN, £ > 0. We remark that =
belongs to C.(z) for every € > 0 and a.e. € RY.

We now introduce suitable changes of variables, which transform each V!, i €
{1,..., N}, in a fixed domain, which depends on the microstructure and macrostruc-
ture. For ¢ > 0 and i € {1,..., N}, we define 3% : VZ — YV by

A . [a——pls .
yi(z) = vi — ehi(z/e) e; + zi —eni(w/e) a.e. v €V, (2.2)
€ ed,

We point out that, for fixed k € ZV, y! ., transforms Bk onto YV, for every

e>0andeveryie{l,...,N}. e
For a sequence of measurable functions u. : V. — RN and i € {1,..., N}, we

define 4 : RN x YV — RY by
ol (2,9) = ue <E:‘£<x> +eyie; + 5d€y§>, e>0. (2.3)
€
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REMARK 2.1. We will use the functions 4! to study the behaviour of u. in V..
Observe that, in Cf xYN kezVN, >0, 4% (x,y) does not depend on the macro-
scopic variable x, and, as a function of the microscopic variable y, it is obtained
from u. by the change of variables (2.2). So the variable x determines k € Z" such
that z belongs to CF (i.e. k = x(z/¢)), and then the variable y acts as a microscope,
zooming the small beam BX* onto the fixed set Y. Therefore, the behaviour of
u. in the small beam B%* can be deduced from the behaviour of 4 with respect
to the variable y € Y.

The following definition will be useful when dealing with the change of vari-
ables (2.2). For ¢ > 0, i € {1,...,N} and © € L2 (RY; H}(YV))V, we define
el(9) € L2(RYN x YN:Sy) by

in 1 . i 1 N 1 . .
er(0)y = g(?yivi, 2eL(0)im = g(?yivm + Jaymvi Vm # 1,
) 1
2eL(0)mn = > (Oy, O + Oy, 0n) Ym,n e {1,...,N}\ {i}.
€

Note that el (at) gives the strain tensor e(u.) expressed in the variables y = y(z).
For a sufficiently smooth function ¢ = ¢(x,y) defined on RN x YV we write

ey(¢)z’j = %(8%@5] + 8%(;52) VZ,] c {1, .. .,N}.
Fori € {1,..., N}, we define the functional space E* = E} x Ei x E} x E}, with
Bl = {af € L*(2) : 0,4 € L*(2), a{v; =0 on 02},
Bl = {0} € L*(2; HY(YM)N - 4} is y;-periodic,
U (2,2) =0 ace. (z,2) € 2 x 5,

ey(ﬂi)in = ey(ﬁi)mn =0

Ym,n € {1,...,N}\ {i}},
Ei = {ag € L2 (2 x YNV vah ;€ LP(2 x J5 HY (SY)),
ﬁé,m e L2(2; HY (YY), ﬁéym is y;-periodic,
/, by dy; = 0in L2(2 x J*), €y(015)nm =0
Ym,n € {1,...,N}\{i}},
Ej ={a5 € L*(2 x J5HY(S)N a5, =0}

In these expressions, ﬁﬁ’m, ﬁé’m and ﬂéﬁm denote the mth component of 4%, a5
and @}, respectively. The superscript ‘i’ means that these functional spaces will be
used to describe the asymptotic behaviour of the solutions of (1.1) in §2¢. These
conventions will be used throughout the paper.

REMARK 2.2. The function @} belongs to Ei if and only if there exist

ai € LAQHN(JY), b, € D HXTY), m#i,
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such that a’, b, 8,,b’, are yi—periodic, bi (z,0) = 0 for a.e. z € 2 and they satisfy
i (zy) = a'(z, ) = > 0y, (2, Y)Y,
n#i
U (2,Y) = by (w,3)  Ym # i
ae. (z,y) € 2x YN,
REMARK 2.3. The function % belongs to B} if and only if a ;i belongs to L2(02 x

J4 Hl(Sl)) and, for every m,n € {1,. N}\{z} there exists g¢, € L2(2; HY(J%))

such that g¢¢ . is y;-periodic, g%, = —g’,, and

umey ngnxyzyn Vm#i ae. (z,y) € 2x YV,
n#i

For (G}, 4%, ab,4%) € B, we define e} (aj, 4, b, a%) € L2(RN x YN:Sy) b
ep (tig, @y, Uy, 03)is = Ou, iy + €y (4] i,
eé(ﬂé,ai,ﬂé,aé)m = ey(ﬂé)im (2.4)
ep(tg, @y, Uy, U3)mn = €y (Us)mn
Vm,n € {1,...,N}\ {i}. 4
We also introduce £ as the subspace of E* defined by

£ = {(uh, il ib, i) € B ity € C(R2), a4y € Cg2(2;C=(Y V)N
iy ; € C3° (02 x J;,C(SY)),
by € C(2;C®(YN)) VYm # 4,
il € O3 (02 x J5 0 (SH)N
and 36 > 0 such that 4} = a5 = a5 =0
if Jyi| < L6}

Let us now introduce the exact hypotheses that we are going to consider on Fy,
H. and A.. For every i € {1,..., N}, we suppose that there exist

Fl:QxyN 5 RY, H:QxYN 58y, A ecL®2xYYN,L(Sn,SN)),
fi,ht € L2(YN) and p' € C°([0, +o0)) with p?(0) = 0 such that

Fi(-,y), H(-,y) are continuous in 2 a.e. yec Y, (2.5)
File, ) < fiy), [Hi@my)| <) Yeef aeyeY™,  (26)
|A¥ (2, y) — AN(z,y)| < p'(jlz —Z]) Vr,z€2 ae yecY?V, (2.7)
Az, y )y M: M= alM]? YMeSy Vrxe N aeycYV (2.8)

and

Ac(w) = Az, yl(x),  He(w)=H'(z,yi(2)),  Fe(o) = F'(z,yi(z)) (2.9)
a.e. © € 2!\ w.. We also suppose that

1
li 2 H.|?dz = 2.1
tim gy 1R = \m/' 2dz =0, (2.10)
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REMARK 2.4. The assumptions on A, allow us to consider non-homogeneous elastic
materials in macrostructure and microstructure (i.e. the elastic coefficients depend
on the variables z and y), which may be different for every Q¢ i€ {1,...,N}.
They can also be arbitrarily anisotropic. For instance, we can model structures
that, along every direction, are shaped by composite beams, which are built with a
core of a material surrounded by a different one. It is enough to take, for example,

Az, y) = AIX(yl e <ri} T ASX (I osriy Vi€ {L,..., N},

with 7% € (0, ) and A}, A} € L(Sn, Sy) for every i € {1,..., N}. Furthermore, our
hypotheses on F, and H,. allow us to consider forces that depend on the microstruc-
ture. Observe that in (2.9) we do not make any assumption on the structure of A,
F. and H. in w,.. The measure of w, is very small with respect to the measure of {2,
and the limit behaviour of the solutions u. of (1.1) does not depend on how A., F.
and H, are in this set.

The main result of this paper is the following one (the proof of which is given
in §4).

THEOREM 2.5. Let u. be the sequence of solutions of (1.1) and set y. = d./(e+d.).
We suppose that there exists lim._,0v. = v (this always holds for a subsequence).
Then the sequences 4, i € {1,..., N}, defined by (2.3) satisfy

yeel(al) — ef(uh, i, ab,as) in LA(RN x YV;8n), (2.11)
where (44,4}, 0%, 4%) € E%, i € {1,...,N}, is a solution of the variational problem
N
/ (Al (b, 0, 4) — yHY) : eb(0], 0}, 54, 0F) dy d
i—1 7 2xY

N
(v S FR+1-9)> Fm;m) dy dz
j=1 m#i
V(04,0 0%,05) € BY Vie{l,...,N}.
(2.12)

Moreover, the sequences g and G*, defined by

7 1 ~1
00 =25 [ b
. ] (2.13)
7 ) — ~m & ot i, d . -
)= o [ [0+ Lt ()] do v
and
i 1 Q(piomd i ai i
G = v [ eblih i ) 0L 0) (214)
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give the following approximations to u. and e(u;):

2
. Ve
1 :
£30 1021] U

2

1
dx

Uei(T) — igéz(@

+%Z/

m#i
v

REMARK 2.6. If (@}, at,ad,4%) are strongly continuous in x € RY, then (2.15) is
equivalent to

2

1
dx

usm - gs m(x)
Ve

e(ue)(x) — —G (x)

2
dx} =0 Vie{l,...,N}
Ve

(2.15)

1 2
6~>0|QZ|/1<UEZ _iuo(x)
1 € . ) 2
92 X)) + 5t )] ) do=0,
) Ve d.
m#£i
~2 1. , 2
sh—>0 ‘le| e(uE)(m) - geé(%,ﬁﬁ,%,ﬁg)(ac,yz(x)) dz =0
In fact, if (ﬁb,ﬁi,ﬂg,ﬁg), i € {1,...,N}, are smooth enough, then, on defining
(2L RN
i L i i
ze; = — |y +eiq (- y2)
I
e (h,0t) = S (0n, 6+ 01,00 )
—&? Z aﬂ%‘ai,n(" y;)y;,n] )
(2.16)
7 1 ~m 7 ~7 7
Zem = |: Ug + diul m( 7y5) + 5“2,m('7ys)
I
e (th0t) = 0,05 )
B )yg,n] Vim # i,
n#i
we have
. B 2 2 _iy2 _
€_>0 |_Ql| / (|u€ 7 5 1| + ’76 Z |’LI/5 m Za,m| + |€(’U,g Zs)| ) d!E 0 (217>

m#i

REMARK 2.7. Problem (2.12) is decoupled in N independent problems, one for
every direction, i.e. one for every value of i € {1,..., N}. In fact, for i € {1,..., N},
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(ad, a8, a5, a5) € E is a solution of the variational problem
Qi(pi iosi s NI SRV RN
/ N(A e (dg, iy, Uy, ag) — yH") = e (0o, 07, 03, 05) dy da
2xY

N
Ff)v (1—+~ Flﬁ’m}dyda:
S (E )00 Z R
V(UOavzlaﬁéaﬁé) € Ei'
(2.18)

An easy application of the Lax—Milgram theorem (in suitable quotient spaces) shows
that, for every ¢« € {1,..., N}, problem (2.18) admits a solution. Although this
solution is not unique, the functions @, ﬂﬁ,m, with m # i, and €} (G, 44, %, 45) are
defined univocally. Observe that these are precisely the terms that appear in the
definition of the corrector for both u. and e(u.).

Fori € {1,..., N}, we can derive the problem that @}, satisfies by eliminating ¢,
4% and 4% from (2.12). As an example, let us consider the case of an homogeneous
isotropic elastic material. A simple but tedious calculus shows the following.

ProPOSITION 2.8. We suppose that there exists A > 0 and p > 0 such that
A M = Atrace(M)Z +2uM VM e Sy Ve>0 (2.19)

(by T we mean the N -dimensional identity matriz). We also suppose that there exist
FeO' ()N and H € CO(Q SN) such that F. = F' and H. = H, for every e > 0.
Let (4, a%,a%,4%) € E%, i€ {1,...,N}, be a solution of (2.12). Then 4}y satisfies

Ay $
2 ~q .
f/laxi JUg = N’YFz‘ - 'Yaleu + m ~ &HHM m Q, (220)

where
2u(AN + 2pu)

A:MN—U+m'

(2.21)

The other terms satisfy the relations

i 1-
Oy iy ; = —77(6%'2 —6[y;[ +1) Zijj,
Jj#i
W = P21 = ga)? Vim £
,m 2/1 7 )

%(ayﬂ@ m +0 mﬁZQ,i) = %Hlm vm 7é ia

gl

$(8y, 0y + Oy, 0 ;) = @Hjm Vime {1,...,N}\ {i}, j#m,
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N
~d o -A ~i 1-— Y 2 .
ot = Sy (P~ 7l + DY Fin
N —2) + 20) X
Hmm - Hr'r‘
2u(A(N —1) +2p) 2u(A(N = 1) +2pu) T;m
Ym # i.

REMARK 2.9. For H =0, N =3 and v =1 (i.e. lim._,¢(¢/d.) = 0), equation (2.20)
coincides with the one obtained in [17] (as it was to be expected), where a problem
strongly related to (1.1) (in the isotropic case) was studied. That problem consisted
of fixing d. = d and passing to the limit first in ¢ and then in d (clearly, this
procedure assumes that € is much smaller than d.). Nevertheless, to our knowledge,
the results in [17] do not provide any convergence result for problem (1.1) where €
and d. are two arbitrary sequences tending to zero simultaneously.

REMARK 2.10. Iflim._,¢(c/d.) =0 (i.e. v = 1) and G = (4}, ..., 4}’) is sufficiently
smooth (otherwise, we have to consider mean values on C¥ as in (2.13)), theorem 2.5
gives

1 2
i — dr =0
o Lo, |ue(x) — g (z)|* dz = 0,

which shows that @ is the ‘limit’ of w, in the strong topology of L?. The situation

is different if lim._,¢(e/d:) € (0,+00) (i.e. v € (0,1)). For the displacements along
the direction of the bars, we still have that

2
lim —— de=0 Vie{l,...,N}.

50 |QZ| s u&i(x) - *ﬁ%)(x)

v

However, for the transverse displacements, what we have is (assuming sufficient

smoothness)

1 1 11—~ 2
lim —— Uem () — =08 () — —5—1 m(T,ye)| dz =0
e=0 [ S : ) v 0 2 0

Vi,me{l,...,N}, m#i.

Therefore, if we want a ‘strong limit’ of u. in L?, we have to consider functions
depending not only on z, but also on the microscopic variable g. In order to obtain
a limit depending only on the macroscopic variable, we think it is more appropriate
to look for a ‘weak limit’ w of w., which can be defined by means of (see, for
example, [7,30], where this type of limit is considered)

gl_l’)r(l)|9|/u5 dx—|Q|/ r)dz Ve e ()N
Using theorem 2.5, we immediately obtain that, for v € (0,1), this function w is
given by
1
U(JU)Z;A WZZ/ uljxydye] a.e. x € £2. (2.22)
J=1m#j
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Figure 5.

So u is a linear combination of 4y and the mean values with respect to y of the
functions 47";. Finally, if lim.0(e/d:) = +oo (i.e. v = 0), ue is not bounded and
then it does not have a limit. What we get is that the sequence y2u. converges in
the sense stated above to

N
1
. H 2 _ E :z : ~m ]
'LU(IZ’) 7&11_%%75'”6 - N - ¢LN u17j(x,y)dyej a.e. x € (2.
J=1m#j

Observe that w does not depend on dyo; it only depends on the functions a7";.

3. A reinforced structure: homogenization result

For the structure considered in the previous section, the homogenized fourth-order
tensor associated to the problem satisfied by g = (@3, . - ., %)) ) is not strongly ellip-
tic (see (2.20) for the case of an homogeneous isotropic material); in fact, we only
have that 0,4} is in L2(£2), i € {1,..., N}, and not Vi € L%(£2)V*¥. To obtain
an elliptic problem, some authors (see [5,12]) propose the introduction of additional
bars in the structures (reinforced structures). Passing to the limit first in € and then
in d. (which implies that ¢ < d., or, equivalently, lim._,o(¢/d.) = 0), they obtain
a non-degenerate elliptic problem for the limit 4g of wu..

We see in this section that our method can also be applied to these structures
with additional bars, which results in the limit behaviour still depending on the
limit of £/d.. Thus, although we prove that the corresponding function g that we
obtain in this case satisfies an elliptic problem, we emphasize (see remark 2.10) that
this function g is not, in general, the limit of u. (it gives the limit only when £/d.
tends to zero). In fact, we will show that, even adding additional bars, the problem
satisfied by the limit of u. (or yeue if 7. tends to zero) is degenerate when e/d.
does not converge to zero.

To simplify the exposition, we just consider a structure in dimension two. It is
composed by the structure studied in § 2 with N = 2, and additional parallel oblique
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bars of cross-section ed., disposed periodically with period e (see figure 5). This
structure has been considered in [12] in the case of an isotropic elastic material.

We associate the superscript ‘4 = 1’ with the horizontal bars, ‘4 = 2’ with the
vertical bars and ‘¢ = 3’ with the oblique bars. For i € {1,2}, we keep the notation
of the preceding sections (i.e. V2, V2, 21 02 4l 42 FEl E? etc.). This notation
refers to the horizontal and vertical bars that have been studied previously. For
i = 3 (oblique bars), we need some extra notation.

Let {7,(} be the orthogonal basis in R? given by

€1+ ez —e1 + e

T = ol ¢= NG

We remark that, for y € R2, y7, y( are the components of y in the basis {7, (}.
Analogously, for a symmetric tensor M, Mr7, M71(, M{( are the components of
M with respect to the basis {7, (}. Thus it is that in the notation given below the
vectors and tensors appear usually multiplied by 7 and/or (.

Let V23 be the set

Va3 — U{aqel 4+ 517 + s2( : 51 € R, —%Eda < 89 < %Edg} Ve > 0.
g€z

Then we define the reticulated structure V. (see figure 5), € > 0, by
V. =VIuviuvg,
We denote by w. the set w. = V2NVZN V2.
For a fixed smooth bounded open set 2 in R?, we define
Z=0nV3 0.=02u2uR and I.=02.Nn00.

We set D! = D% = Y2 and ©? = J? + 3, where J? = (v2Y)7, S% = Y (.
Analogously to y?, y2, we define a change of variables y2 : V3 — D3 for the
oblique bars by
(x —ek)T (x — k)¢

yi(z) = P ¢ ae xc€ek+el®4ed.S® VkelZ?

which, for every k € Z?2, transforms the oblique bar ek + £J + £d.S® onto D3.
For a sequence u. : Vo — R? of measurable functions, we define 42 : R2x D3 — R?
by

a3z, y) = ue (m(g +e(yr)T + sds(yC)C> ae. (z,y) ERZx D3, (3.1)

We will use the function 42 to describe the behaviour of u. on the oblique bars V3.
For e > 0 and 9 € L?(R?* H'(D?))?, we define e2(9) € L*(R? x D3;S,) by the

equalities
e2(o)yrr = gvy(UT)T,
€2(5)7¢ = 2V, (007 + 2V, (07)C,
1
e2(9)6¢ = -V (90)¢
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Observe that, for u. : V. — R? e2(a2) gives the strain tensor e(u.) expressed in
the variables y = y2(z).
By E3 we denote the functional space E® = E§ x E} x E3 x E3, where (v is the
unit outward normal vector to 02)
Eg ={aj € L*(N) : Vgt € L*(N), 43(v7) = 0 on 812},
= {a} € L*(2: H'(D%))? : af(w, 5V2r + 2) = @} (2, —3 V27 + 2)
a.e. (z,2) € 2 x S?,
a3(z,2)¢ =0 ae. (r,2) € 2 x S,
ey (47)7¢ = ¢ ()¢ = 0},
= {43 € L*(2 x J*; H'(5%))* : 43¢ = 0},
B3 = {03 € L2(2 x J* H'(S*)?: a3t = 0}.
For (43, 43,43, 43) € E3, we define e (a3, 43, 43, 43) € L?(R? x D3;8,) b
68(@8,1}?,’1)3,@%)7’7’ = (V )T+V (UIT)
63(’&%, ﬁ?a ﬁgv ﬁg)TC = Vy(UZC)Tv
ep (i, 47, 43, U3)CC = Vy (@3C)C.
We are interested in the asymptotic behaviour of (1.1) for the current choice of
2. and I.. We assume that hypotheses (2.1)—(2.9) are satisfied for ¢ € {1,2,3}
(when i = 3, Y2 must be replaced by ©?). The following theorem (whose proof

we give in §4.4) describes the asymptotic behaviour of u. and provides a corrector
result for both u. and e(uy).

THEOREM 3.1. Let u. be the sequence of solutions of (1.1) and set v. = d./(e+d;).
We suppose there exists lim. g7 = (this always holds for a subsequence). Then
the sequences U, i € {1,2,3}, defined by (2.3) and (3.1) satisfy

Yeel(Ql) — ef(ag, 0y, . a%)  in L*(R* x D% 8s),
where (4,4}, 0%, 4%) € EY, i € {1,2,3}, with 43 = doT, 4o = (4, 03), is a solution
of the variational problem

3
3 / (Al (), @, 6, %) — vH) - €l (8f, 01, 64, 05) dy da
NIxD

=1
=~ Z / Floo dy da

NxD

+(1—7) (/ Fy o1 5 dyde + / FPo7, dyda
N2xD N2xD2

w0t )

v(05, 01,03,03) € B', i€ {1,2,3},
such that 93 = dot, 09 = (04, 7).

(3-2)
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Moreover, the sequences gt : 20 — R? and G. : 2! — Sy, i € {1,2,3}, defined
by (2.13)-(2.14) and

1 )
()= [ dolo)rdp
1 € .3 3 (3.3)
200 = 5 [ i)+ i) an
€ Cs() €
1
G =% [ ebad it it i) o020 d
e? Je.()
satisfy (2.15) and
2 1 2 1 2
lim —= /ung——Sx dx—|—€2/ ue(2)¢ — —g2 5 ()| dz
Hﬂgg[@ = 22| e 32 [ Joea)d oo
2
+/ e(u) () — —G3(2) dm] =0.
23 e
(3.4)

REMARK 3.2. As in remark 2.6, if (4}, 4}, 4%, 4%) are sufficiently smooth, then the-
orem 3.1 provides an asymptotic development of u. such that (2.17) holds.

REMARK 3.3. The main difference between (2.12) and (3.2) is due to the conditions
a3 = 1o, U = (0, 43), which means that the limit system (3.2) is not decoupled,
i.e. we cannot decompose (3.2) into three independent problems, one for every
direction given by the index ¢ € {1, 2, 3}.

By the definition of E§, i € {1,2}, we have that 0,,4$ = e(@");1 and 0,,43 =
e(9)22 belong to L?(£2). Since 43 € E§, we also have that (Va3)T belongs to L?(2),
and taking into account 4§ = 4o, this gives

2 (e(fo)11 + 2e(tio) 12 + €(ti0)22) = 5 (T, Ul + Oy U + Oy U + D, U3)
= (Vid)r € 17(2),
which shows that e(dig)12 is also in L?(£2). Thus e(ig) belongs to L?(£2;S,). Since
fip is also in L?(£2)? and vanishes on 9£2, we conclude that i belongs to H}(2)2.
Thus it is that we can now prove that g is a solution of an elliptic problem, as we
will see in proposition 3.4, where we consider the case of an homogeneous isotropic
elastic material.

Similarly to proposition 2.8, it is easy to prove the following result.

PrOPOSITION 3.4. We suppose that there exists X\ = 0 and p > 0 such that A, is
defined by (2.19). We also suppose F. = F and H. = H for every ¢ > 0, with
F € C%$2) and H € C°($2;8s) fized. Let (4,0}, 0%, 4%) € EY, i € {1,2,3}, be
a solution of (3.2). Then iy = (a},43) € HL(2)? is the unique solution of the
variational problem

/ [Ae(tg) — vH] : e(tg) daz = (2 + \@)7/ Fogdx Wiy € Hy(02)?, (3.5)
17} 17
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where A is the fourth-order tensor defined by
Allll = A(l + %\@)7 AQQQQ = A(l + i\/§), Aijkl = %A\/i in the other cases,

with A given by (2.21), N =2, and H € C°(£2;S,) defined by

A Hyy +2Hyo + Hao A ( H11—2H12+H22)
11 11 W) Nrop \ 2 W)

B Hyy +2H12 + Hoo A < H11—2H12+H22)

Hsyy = Hoo + - Hy + )
22 = H2 22 A+2u 212

fro,oHut2H+Hypy A Hn—2Hp 4+ Hy
" 212 X+ 2u 212 '

REMARK 3.5. As expected, when H = 0 and v = 1 (i.e. lim._,o(e/d:) = 0), equa-
tion (3.5) is the same problem obtained in [12], where problem (1.1) (in the isotropic
case) is studied by passing to the limit first in € and then in d..

Contrary to the structure considered in the previous section, we now see that g
satisfies a non-degenerate elliptic problem in Hg(£2)2, but we recall that g is the
limit of ue only if v = 1 (see remark 2.10). For v € (0,1), analogously to (2.22), we
have

u(x) = ;1_1)% Ue

1/\ l_ry |:/ i
= —tg(z) + —— iy o(x,y)dye
5 fol) (1+v2)7? o1 12(m:9) dyes

+ /@ W@ y)dyer + /@ \ a?(x,y)cdyc]

1 1
= —dg(z) + ww(x) a.e.x € 12,
S (2) .~ (2)

with w = BF', where B is the matrix

I C ) 1O VA
-2 3@2v2+1))

30(2 +v2)A
Then w is the solution of the degenerate problem B~'w = F (in fact, it is not a
partial differential problem), and therefore u does not satisfy an elliptic problem.
For v = 0, we can prove that

lim v2u, = w.
s—>07€ ©

In conclusion, when 7 # 1, the limit problem for the macrostructure is degenerate
even with the extra oblique bars.

4. Proof of the results

This section demonstrates the homogenization results stated in the previous sections
(i.e. theorems 2.5 and 3.1). In order to prove theorem 2.5, we begin, in §4.1, by
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proving estimates of Korn type for functions in H}E (02.)N. Afterwards, in §4.2, we
consider a sequence u. in H}E (£2.)N, which satisfies

1
W/Q le(us)?dz < C Ve > 0.
€ €

Using the change of variables 3%, i € {1,..., N}, given by (2.2), we transform u.
into new sequences of functions 4%, i € {1,..., N}, (see (2.3)), which are defined on
a fixed domain (independent of €). Then we prove a compactness result for the new
sequences of functions. We emphasize that, in the compactness result, we do not
use ue as a solution of (1.1); we only assume that u. satisfies the above inequality.
Finally, in §4.3, by means of the compactness result, we pass to the limit in (1.1).
In §4.4, we prove theorem 3.1, following the same lines of theorem 2.5.

Throughout this section, C' denotes a generic positive constant that can change
from one line to another one and does not depend on ¢; by O, we denote a generic
real sequence that can change from one line to another one and converges to zero
as € tends to zero.

4.1. A priori estimates

We obtain some inequalities of Korn type for the model structure introduced
in §2. We use the following version of Korn’s inequality.

LEMMA 4.1. Let G be a bounded connected Lipschitz open set of RY. Then there
exists C' > 0 such that

J

for every uw € HY(G)N.

2

O, Um () — ﬁ/(;aznum(z) dz

dx<C/|e(u)|2dx Vm,n € {1,...,N},
G
(4.1)

Proof. Given v € H'(G)Y, by Korn’s inequality, there exist C' > 0, independent
of u, and an N-dimensional skew-symmetric matrix P = (P,,,) such that

/\@num(x)—Pmanng/ le(w)|*dz  Vm,n € {1,...,N}. (4.2)
e a
Using
[ forim(@) ~ - [ (as] a i [ [0s,um(z) s d
2 U (T) — 7 2, Um (2) dz| do = min 2 U (T) — 8|“ dx
G G| Ja s€R Jao

Ym,n € {1,...,N},
we obtain (4.1). O

The main result of this subsection is theorem 4.3. To prove it, we use the following
lemma.

LEMMA 4.2. For a € (0, é) and € > 0, we take

L.(a) = {z € YN : |2]|o0 < 3ea}
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and
Li(a) ={z € Lc(a) : |21 — %(—1)q€| < %aa}, q € {1,2}.

Then there exists C' > 0, which does not depend on a, such that, for every u €
HY(L:(a))N and every m # 1, we have

1
0, um2d2<0</ dz—i—— / qudz) 4.3
I 7 el Zw\ | (43)

Proof. Tt is enough to prove the result for € = 1; the general case then follows using
the change of variables y = ez, which transforms L. (a) in Ly (a) and Li(a) in Li(a),
q€{1,2}.
We write
L(a) = Li(a), L9(a)=Li(a), qe€{1,2}.
For u = (u1,...,uy) € H'(L(a))V, we define w = (wy,...,wy) € HY(YN)N by
wi(y) =wyier +ay)), wm(y) = aum(yrer +ayi) Vme{2,...,N}.

For m > 1, inequality (4.1) applied to w,, gives

/L(a)

1 2
az Um — */ 82 Um, dr| dz
' IL(a)] Jo@y

N-3
=a / Oyr Wi —/ Oy, Wiy, ds
YN YN

<CaN_3/ le(w)]? dy
YN

C/ 9
< = e(u)|”dz.
7 )l

2
dy

Thus we deduce

/ 02, um |* dz
L(a)
2
< % e(u)|2dz+N_l)/ Uy d27 —/ Uy, A2
a® Jr(a) a {21=1/2} {21=—1/2}

Taking into account the estimates

‘/ U, A2 — / Uy d2]
{z1=1/2} {z1=-1/2}

< 2gN-1 (/ g2 2] +/ um|2dz;)
{z1=1/2} {z1=-1/2}

/ [t |? d2) < é/ |ty |? dz + a/ 10, um|? dz Vg € {1,2},
{z1=(-1)7/2} @ JLa(a) Li(a)

: (4.4)

2

and
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we derive, from (4.4),

/ |0, U |? dz
L(a) )
< % u)|? dz +Z( / |um|2dz+4a/ |3Zlum|2dz>,
a L(a) N JLa(a) L(a)

for every u € H'(L(a))". Since a < %, we conclude that (4.3) holds fore =1. O

THEOREM 4.3. There exists C' > 0 such that, for every u € H}E(QE)N and every
e >0, we have

2 de < dE/Q le(uw)[2 dz, (4.5)
/v|ui|2dz§ 0/ le(u)|*dz Vie{l,...,N}, (4.6)

: 2.
/QE |u|2dx<C<1+ C;)/ le(w)|? dz, (4.7)
/m 100,52 dz < C(; 4 ;2)/ e(w)2dz ¥i,je{l,....N}.  (48)

Proof. Estimates (4.5) and (4.6) follow immediately from the Poincaré inequalities
/ lug|? do < Ced. / 10,ui*de Vi€ {1,...,N},
Pk Lot

/ik/ |ui|2dx<0/ik, |0, ;] da vie{l,...,N},
Lot Lot

for every k € ZV, every € > 0 and every u € H}E(Qs)N.

Since the constant that appears in lemma 4.2 is invariant by translations and
rotations, for every i € {1,...,N}, m € {1...,N}\ {i} and € > 0 (small enough),
we get

1
s <0 [ e(w)? da unf?d).
/B;’k‘f'!;‘ei/? e - A2 Jpitice /o d PrUPIte "

for every u € H}E (£2.)N. Adding these inequalities in k € ZV, we obtain

1
/‘ |0, U |* do < C(d2/ v le(u)|? do dx)
c e J 2

Vu € Hp (2:)N Ve>0. (4.9)
Then, by (4.5), we deduce (4.8).
Finally, in order to demonstrate (4.7), we use the fact that, for ¢, m as above and
e > 0, we have

1
/ |t |? da < C( / |0, U |> dw + — |y, |2 dx).
i, Bg d Pk

1
e2d,
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Adding in k € Z" and using (4.5) and (4.8), we conclude that

2
/ [ty |? dzz < C(l + ;) / le(u)[? d,
2 € 0.

which implies that (4.7). O

i
€

REMARK 4.4. In theorem 4.3, we consider homogeneous Dirichlet boundary condi-
tions everywhere on the outer boundary. However, the same proof shows that the
result holds true if we suppose, for every i € {1,..., N}, that u. ; = 0 on 02. N V.

4.2. Compactness result

In this subsection we consider a sequence u. that satisfies

1
42|

/ le(u)2dz < C Ve >0, (4.10)
2

with (2. the model structure defined in §2, and we obtain a compactness result
(theorem 4.7) for the sequences 4%, i € {1,..., N}, defined by (2.3). This result will
be applied later to the sequence of solutions of (1.1). We start with the following
lemma.

LEMMA 4.5. Let u be a sequence in Hp, (£2.)N such that (4.10) holds and define
e : RN = RV by

. (w) = ﬁ [ wlnan (4.11)
Then, for everyi € {1,..., N}, there exists 4}, € E} such that, up to a subsequence,
we have
Uey — U in L*(RY),
Ue (- +ee;) — uei(+)

— Oy, in L2(RY).
e

Proof. Taking into account that @, is constant on each cube C’f, k € ZV, and using
Holder’s inequality, we obtain

/RN ()P dz = (eNldg\fj/ck /P; ue (1) dn

kezZN
Using (4.5) and (4.10), we deduce that . is bounded in L?(R™)¥, and then, for
every i € {1,..., N}, there exists 4} in L?(R") such that, up to a subsequence, i, ;
converges to 4} in the weak topology of L?(R™). On the other hand, the sequence
Ve, defined by

2

1
dz < oy /wa ue (2)|? de.

Ve = el +€€€i) - ua’i(.), ie{l,...,N}, &>0,
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satisfies
/ e dr= 3 / 5.2 da
RH wezn Y CE
N 2
€ / ue i (1 4 €e;) — uc (1)
S ’ AU/ (4.12)
ErEP :
By (4.10), the estimate
2 e 2
[ twstrvzen = uestan) < | [ [ ot +ten)|dnds
Pk 0 Jpk
2
2 52 ]
s /B;'vagmi 19z e 4 ()] d
SOV [ s dn
BikuplFte

and (4.12), we derive

_ C
102l Z2mvy < —v=5 [ 10zuci(n)? dn < C.
da 2t

Then there exists o € L?(R™)Y such that, up to a subsequence, v, converges weakly
to v in L2(RM)N.
Now, for ¢ € C§°(RY), we have

/RN vi(x)p(x)dr = /RN Uei(z)p(x) dz + O.

- / e (a) 2B ) Z 6@ 4o,
RN e

:—/ b (2)0z,0(x)dr + O, Vi€ {l,...,N}.
RN

This implies that v; = 9,4}, for every i € {1,..., N}. Furthermore, since @ = 0 in
{z € RN : dist(x, 2) > ev/N} and 2 is smooth, we conclude that 4} belongs to Fj
for every i € {1,...,N}. O

REMARK 4.6. The definition (4.11) of 4. is closely related to the operator P con-
sidered in [3].

THEOREM 4.7. We assume that there exists

e—0 e

lim <d€> =4 € [0, +00]

(this always holds for a subsequence). Let ue be a sequence in H}, (£2:)N that satis-
fies (4.10) and define at, i € {1,...,N}, by (2.3). Then, for everyi € {1,...,N},
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there exists a subsequence of €, still denoted by €, and (4}, 44,44, 4%) € E* such that

al, —ay in L2(2 xYN), (4.13)
L, — g if ¥ =0,
gy = U+ 00y if 0 € (0,400) in L2 X YY) WmEL Ly qy)
%a;m =4, if ¥ = +oo,
et(al) — eh(ab, al,ab,as) in L2(2 x YN;Sn), (4.15)

where e (4,0l 4, a%) is defined by (2.4).
Proof. We fix i € {1,..., N} and we proceed in several steps.

STEP 1. Using the change of variables (2.2) and the fact that, for every k € ZV,
@’ (z,y) does not depend on z in C* x YV, we obtain

/ |te,m (z |d1:—Z/ [t m (z )2 dx

kezN

—a [ it ek dy
kezN

=dN- 1Z/k/YN Em:z:y)\Qdydac
kezZN

:dév’l/RN - |ﬂé7m(a:,y)|2dydx Yme{1,...,N}.
X

Then, from (4.6), (4.7) and (4.10), we derive

/]RNXYN
2

/RNXyN |ﬂi,m(a¢,y)\2 dyde < C(l + d2) Vm e {1,...,N}\ {i}. (4.17)

iz i(z,y)|* dydz < C, (4.16)

Reasoning analogously with 0y, uc m, m # ¢, and e(u. ), and taking into account (4.8)
and (4.10), we deduce that

. 2
/ 10y, 8 1 (2, y)* dy da < C<1 + d2) Vm # i (4.18)
RN xY N
and
/ lel(al)|* dy dx < C. (4.19)
RN xY N
From (4.18) and (4.19), it immediately follows that
/ 10y, i i (2, y) [P dy de < O(e® +d2)  Ym # 1. (4.20)
RN xY N
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Taking into account

1

R ag (- y) dy = uei (), (4.21)
e Jlyil<dc/2

with 4. ; defined by (4.11), and using (4.19) and (4.20), we obtain

~ 1

llae,; — ﬂ67i||%2(RN><YN) < C||Vyﬁ§,¢||%2(RNxYN)N <O+ d?) Ve > 0.

Then, from lemma 4.5, we deduce that there exists @} € Ej such that, up to a
subsequence, equation (4.13) holds.

From (4.19), we derive that there exists a subsequence of &, still denoted by ¢,
such that e’ (al) converges weakly in L2(RY x YV:Sy). The following steps of the
proof are devoted to characterizing this limit.

STEP 2. We define ! : RN x YV — RN by

wz,z(x?y)

1/, 1

- (ug,xx,y) [ atenan= X [ ot o) dnyn)

€ de Jyni<d. /2 oy
ﬁé,m(ﬂs,y)

d d. /2

SIJ y / :L' 171614-:[/1 dnl / y‘L sm(xan) dnyl 9
S ), /2

m £ i,
for every ¢ > 0 and a.e. (z,y) € RY x YN. By (4.19), e,(w!);; is bounded in

L2RYN x YN) and ey (%), €y (), converge strongly to zero in L2(RY x YV)
for every m,n € {1,..., N} \ {¢}. Since

/ aymzi)é Jzyn)dn = / ayuﬁi m(@,n)dn=0 ae. z¢€ RY
YN ’ YN ’
vm e {1,...,N}\ {i},

lemma 4.1 implies that, for every m # i, (’9ym1212’i and ayiw;m are bounded in
L*(RY x YN). Moreover, since

/ ﬁ);l(x, n)dn=0 ae zcRY (4.22)
il <de/2
and
/2 ,
/ @ (zmie; +y))dn; =0 Vm#£i ae. (z,y)) € RN x 57, (4.23)
—d./2

the Poincaré—Wirtinger inequality gives

/N |1I)é7i(x,77)|2d77 < C’/N \Vyw;i(x,n)|2dn ae. reRY
Yy Y
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and

/ @2, (2, miei + y;)|* dn; < C'/ |0y, WL, (2, mici + ;)| dn;
Y Y

Vm #i ae. (z,y)) € RN x S
Integrating these inequalities, we derive that @! is bounded in L?(RY x YM)N "and,
as e, (1?) is also bounded in L?(RN x Y; Sy), from Korn’s inequality, we conclude

that ! is really bounded in L*(RY; H! (YN ). Thus there exist a subsequence
of ¢, still denoted by &, and @' € L2(RY; H*(YN))N such that

Wl — ' in L2RYN; HY (Y)Y

€

Clearly,
ey(0")in = ey(0")n = 0 for every m,n € {1,..., N} \ {i}.

Furthermore, by (4.23), W (z,y.) = 0, for every m # i and a.e. (z,y.) € RY x S'.
By the definition of 4%, we have that

ﬁ;j(ereei, )= ﬁ;j(x, -+e€;) in LQ({yi = f%}) vje{l,...,N} ae xc¢€ RY.
(4.24)
From (4.24) with j = 4, it follows that, for a.e. y € {y; = f%} and a.e. x € RV,

wé,i(l‘v Y+ ei) - w;l(l' + €e;, y)
1

ede Jin,\<d. /2

2 Z/ Ot iz + cem) — Oy di y(w.m) Ay, (4.25)

(0 ;(x + ees,m) — L ;(z,m)) dn

From (4.21) and lemma 4.5, we obtain

1

— (0 ;(x + ees,m) — 4L ;(z,m))dn = 8, ah in L*(RY).
ede Jipi<a.p2 ’

We now consider ¢ € C°(RY) and n € {1,..., N} \ {i}. By (4.20), we have

/RN /YN e i (€ +€€4,1) = 3yn,ﬁ§,¢($,77))dnga(x)dx

=[] owitawma an P == =20 g, 0, ~ 0.,
RN JYN

3

Thus the second term on the right-hand side of (4.25) tends to zero in the sense of
the distributions. So, passing to the limit in (4.25), we get

Wiz, + ;) — wi(w,) = Oy tih(z) in L*({yi=—3}) ae zeRY.
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On the other hand, using (4.24) for j =m € {1,...,N}\ {i}, we deduce that, for
a.e.y € {y; = —%} and a.e. z € RV,

wé,m(‘rv Y + ei) - w;’m(f + €e;, y)

1 de/2
- 7/d /2( 2 o (@ + £€4, i3 + Y1) — U (@ mies + 7)) g
€ d )
_ 2—2 N(ayz ( + 561777) + 6%“5 m(x 77)) dn. (4.26)

We study the two terms on the right-hand side of (4.26). To calculate the limit in
D' (RN x S%) of the first term, we take p € C°(RY x S?). We have

a./2
/ / / UL (T 4 €5y mies + ;) — U (2, miei + 7)) dnip(x, y;) dy; d
RN Jgi de /2
de /2 ) —ce; N _ /
/ / / U (2 mieq + yl) A2 ple — eeiys) — o(@,y:) dy; dz.
RN Jsi J—d./2 € ( )
4.27

An easy calculation shows that

de /2 ;
*/ l‘ y i€ +yz) dn;
de /2
d./2
i/ ugm( ( )—i—sd i+ e(deym)em + ede Z ynen) dn;
de/2 n#£i,m
1/2
:/ ,&m (.’E Ti€q +d€ymem + Z ynen> dTn
~1/2

n#i,m

for every m # i and a.e. (z,y]) € RN x S% Taking into account (4.21) and the
corresponding estimates to (4.19) and (4.20) for 4", we derive

Lo Ll

Thus, up to a subsequence, we have

2
dy; dz < C||Vyal", || L2(oxy vy~

de/2

, @f:,m(% niei + y;)dn;
—d./2

< O(e* + d2).

de /2 .
7/ Smieit)dn; — 4l in L2(2x S Vm e {1,...,N}\{i}. (4.28)
dg/z

So, from (4.27) and (4.28), we get

1 [de/2 .
7/ (AZ ( +€elvnlel+yz) sm(x 77131"‘91))(1771‘ _>0 in DI(RN X SZ)
—d./2
(4.29)
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For the second term on the right-hand side of (4.26), we take ¢ € C5°(RY), and,
using the change of variables (2.2) and the estimates (4.8) and (4.10), we get

d,;- ~7 ~7
de / / (Bt (& + ce5,17) + By (,)) dipp()
28 RN JYN ’ ’

de 1
frd ? Z ENdé\/'f]_ /Bé,k Eaxiu€7m(p)L

kezZN

(p(x —ce;) + p(x)) dzdp

N [—=

k
=

de
-5 3 [ o) ap 0.

€ kezZN

d.
= N—1 /iawius,m(P)<P(P) dp + O;
d.

5 [ e 00r0(0) dp 4 O, (430)

By (4.7) and (4.10), we have

2 2

d. &2
<Oy [ lemp)fdo < O 4 ).

dN—1

/Q_ Ue,m (), 0(p) dp

So (4.30) gives

de

% (O, 4L, (x +cen) + %ﬁ;m(x, n))dn — 0 in D'(]RN). (4.31)
YN

yi Ue,
Using (4.29) and (4.31), we can pass to the limit in (4.26) to conclude that
Wby (z, +e;) =0l (z,)) in LP({y;i=—1}) ae zeRY vm#i
Hence the function
iy (2, y) = @' (2,y) — Oz, g (2)yiei,  (v,y) € RN x YT,
belongs to E¢ and satisfies
eL(l)y; — 0,1 + 0y, 0f; in LA(RY x YN).

In order to prove (4.14), we distinguish between two cases, depending on the ratio
of € to d.. First, we suppose that ¢ € [0, +00). From (4.28), the definition of @ ,,
and its convergence to @} ,, in the weak topology of L*(RY x YN) m # i, we have

i am i € i :
ue,m(x7y) — U (CL’) _/N ayi“s,m(x»ﬂ) d77 Yi — Iul,m(xa y) -0 in Lz(RN X YN)
Y €
(4.32)
By (4.18), we also have that 8,4l ,,, m # i, is bounded in L*(RY x YV). We

consider ¢ in C$°(RY). Using the change of variables (2.2) and the estimates (4.7)
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and (4.10), we obtain

[ owit e dnpta)de] = | = [ duemzlel2)as] +0.
RN JYN dz Qi
= 1\(;:71 / Ue,m (2) 0z, p(2) d2| + O
ds [9J3
2 1/2
< Ce (1 + d§> + Og
< Ce+ O,
= O, (4.33)
which, joined to (4.18), implies that
/ By, 0 () dny; — 0 in L2(RY x YN) Vm #i.
Hence, from (4.32), we derive
ALy = g +90%, in L*RY x YY) Vm#£i if 9 € [0,400). (4.34)

Let us now suppose that ¥ = lim.,(e/d.) = +o0. In this case, from (4.28) and

the definition of @ ,,,, m # i, we obtain

de

e,y —*/ Al (z,n) dny; — @i, (z,y) = 0

in L2(RY x YY) Vm #i. (4.35)

By virtue of (4.18), (d/€)d,, @t ,, is bounded in L*(£2 x Y) and, reasoning as

n (4.33), we get

d. ¢
€ /]RN/YN Y W ETern)dn(p(z)dx -

zF /Q;' Ue i (2)0z,0(2) dz| + O

2 1/2
< Cde<1+d§) + 0.

= 0. Yy CPRY),

which, together with (4.35), implies
de . .
—=al, —at, in PRY xYN) vm#i if 9= +oo.
E ? ’

This completes the proof of (4.14).

STEP 3. Let us now characterize the weak limit of €L (@), in LERY xYN), m # .

We start by extending 4% to RY x (Re; + S%) by taking

ﬂi(m,y)—us(en( )—l—eylez—i—adgyz) Vie{l,...,N} Ve>0.
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In this way, 4% belongs to L2(RY; H(Re; + S%))"V and satisfies
0l (v, y) = A(z +nee;, (yi —n)e; +yl) Yne€Z, ie€{l,....,N}, &>0. (4.36)
Using this extension, we construct a regularization @’ : RN x YV — RN of 4l by
» 1 d /2 N ,
B =5 [ et dn, >0,
de J_a./2
Then d,, 4. belongs to L2(RN HY(YN))N for every € > 0.
Wetakes as 8L, =al,/(ede), 8L, = uL,,/cif m #i. Using
8§nym§2 i = Oy, ey(s )m + 0y, ey(8 ) - ayiey(gi)nm
Ym,n e {l,...,N}\{i}, >0,

and the fact that, for every m,n € {1 SN\ {3}, 0y, ey(5 )m’ 8yney(8 Yim and
Oy, ey(38)mn belong to L2(RYN x J4 H (S’)) we get

V(0 5 ) (@, yiei +-) € HH(SHN for ae. (z,y;) € RY x Y.

Ym e,

Then, by a known result (see, for instance, [24]), aym§;i(x,yiei + ) belongs to
L?(S?%) and satisfies

2
‘ 8ymss z(x ylel / aymgs z(x Yi€q + 777,) dnz
L2(S%)
CZ [10y,,,€4( 82 )in (1, yies + ')H?{*l(si)
n#i

+ 110y, ey (32)im (2, yier + )i (s0))

JFOZ”ayley Jmn (T, yie; + ')Hil—l(si)
n#i

for every m € {1...,N}\ {i}, every ¢ > 0 and a.e. (z,y;) € RV x Y. Integrating
this inequality in (z,1;) € RN x Y, we get

‘ ym sz / aym 57.d777,

CZ 10y, €y(5 m||L2 RN x Ji;H-1(57)) T 10y, ey(5 )zm”L? RN x Ji; 71(51)))

L2(RN xYN)

n#i
+C Y 110y, ey (3 )mnllF 2 @ s sicm—1 ()
n#i
<OY eyl Tamyxyny +C Y 10y ey BDmallts vy ny- (4.37)
n#i n#i

Now we use

Lo (i ’
ey (5 )mHm(RNXyN):/ d—/ e (Ul )in (@, (yi +mi)es +y;) dn;| dydx
RNxYN|Ue J_d./2

< ClleL (@)1 72 @y xy (4.38)
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and
||8yiey(§é)mn||2L2(RN XY N) = / |6é(ﬂ;)mn(xv (yi + %de)ei + i)
RN xY N )
—¢€ (u )mn(z (yz - %de)ei + y;)|2 dy dz
< C”e;(ﬁ;)”LZ(RN XYNY: (4.39)

So, from (4.37)-(4.39) and (4.19) and the definition of 5. ;, we deduce that

( o / oy, ) <C Vm#i. (4.40)
ed. L2(RN xYN)
From (4.19) and (4.40), it easily follows that
1 _ _ 2
- <6yiﬂ;m - / Oy, Uz, d7{> <C VYm#i. (4.41)
€ Si L2(RN xYN)

We define ¢ : RY x YN — RY by

= 1/ ~i
€ i

Z(/ By, L :17y167+7')d7’>yn)

n#i

1/ .. »
o) = 2 (o) = [ @ nlomes 4
Y

f/ u m(T yie; + 1) dr! +/ ﬁim(:c,T)dT>
K3 YN ’

if m # 4.
From (4.40) and (4.41), we obtain
||aymfé,i”L2(RN><YN) <C, ||3y7:t~§,m||L2(RN xyny < C (4.42)
for every € > 0 and every i,m € {1,..., N} with m # i. Moreover, since
/S’_ t(xyiei +mj)dn; =0 ae. (z,1:) €ERY x Y (4.43)
and
/YtZ (z,mie; +y))dni =0 ae. (z,9) € RN x §' Vm #1, (4.44)

the Poincaré-Wirtinger inequality gives

|t€ z(x y161+nz |2d771 CZ/ | ym 51 CE yzez+77@)‘2d77§

m#i N
a.e. (x,y;) ERY xY
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and

/Y B (@ mies + o) dm < © /Y 10y, (2 mies + o) o,
a.e. (z,y)) € RN x §°.

So TZZ and & ., m # i, are, respectively, bounded in
L*RY x J5 HY(SY) and L*(RYN x S% H'(JY)).
Extracting a subsequence of ¢ if necessary, we deduce that there exists
fim @)
such that
tt, =1t in L*(RN x J HY(SY)),
o, =t in L*(RY x SY HY(JY) Vm # .
We remark that

. de/2 o
VBl = [ . (ezm;)mn(x, (s + mi)es + )

—/ L (UL ) mn (, (T3 + 15 €5 +y§)d7'i> dn;,
%

. 1 d5/2 .
VBt = 7 [ . (ezwz)im(x, s+ 15)es + 9
€ —Ce

—/ et (ig)im (2, (Z/i+77¢)€i+T{)dT{) dn,
Si
for every m, n € {1,..., N} \ {i} and a.e. (z,y) € RV x YV. So, by (4.19), we can

now pass to the limit in € to deduce

ey({)mn =0 Vm,ne{1,...,N}\ {i}, (4.45)
ey i a.) = ) = [ e £ )] Vi € {1 N (),
where we denote by fi;,, the weak limit in L*(RY x Y™) of eL(al)im, m # i.
We define 0y = (i 1, . ..,y x) by
i () = i) + 23 [ s + 1) drly,

r#i
iy g (2, y) = b (2,y)  Ym #1i.

Then @f,; belongs to L*(RYN x J% H(S%)), 4, belongs to L*(RY x S H'(J*))
for m # i and

eé(aé)im - /3’:77, = ey(a;)im in Lz(RN X YN)~

From the definition of 5 ,,, and (4.45), d} satisfies

/ ﬁgm(a:, yie; +nl)dni =0 ae. (z,y) €RY xY (4.46)
S'i
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and

ey () mn =0 VYm,n € {1,...,N}\ {i}. (4.47)

We prove that, for every m # i, ﬁg’m is periodic in the variable y;. For this pur-
pose, we remark that, since @j ,, belongs to L?(RN x % H'(J')), equations (4.46)
and (4.47) imply that, for every m, n # i, there exists g’ , € L?(RY; H'(J?)) such

that g¢ = —gi  and ﬁéym satisfies
Wy (,0) =Y Gl (@, )y Ym £ i ae. (z,y) € RV x YV
n#i

In particular, this shows that @j ,, € L*(RN; H'(Y'N)) for every m # i. Moreover,
in order to prove that 43 ,, is periodic in y;, it suffices to prove this property for
the functions g¢?,,,, m,n € {1,..., N} \ {i}. Now

i

= lim 12/ (@, yies + ) dnj  in L*(RY; H'Y(JY)).
Si

e—0
From the definition of f;m and the equality

UL (v 4 c€4,7) = ULy (z,-+€;) in L2({y; = —3}) ae zeRY,

e,m 2
we derive
g;nn(‘r? %) - ginn(xv 7%)

.12 " g .
= lim — / N(uam(x +eei,n) — Uz (z,m))Npdn  in L*(RY). (4.48)
Y

e—=0 €

For ¢ € C§°(RY), we have
1 ~i 5
] e = o) () do
g JrN JyN

:/ / @l (2, m)n, dnw(xigei) — @) 4y
RN JynN

e

L ot SD T — 5@1‘ — Sp x
— / / (Ts,m(xa 77) + u57m($, n;))nn d77 ( ) ( ) dz,
RN JYN E

where we denote

/F;,m(xay) :ﬂé,m(wvy)_/

Sz

G yies + 7)) drl — @ (2,4 + / @, (e, ) drl.

S’L

From 7, (z,y;) = 0, a.e. (x,y]) € RN x S%, 9,7 = ed,,t.,,, equation (4.42)
and the inequality

[ s ) = 7 )P
Y

< C/ 10y, 7 o (@, mie; +y))[Pdn; ace. (2,y]) € RN x 57,
1%
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we deduce that

/ / 7 ey Ay EE=E) =D 4 0y (4.49)
RN Jy~N €

On the other hand, by the definition of @t
have

and the change of variables (2.2), we

, M

de /2 )
/ sm(m 771 Tn d77 - 7/ / Em ZE y i€ +771)77n dnl dnz
YN g d./2

Zn — €kn(z/€)
— o (2) 2 ) g
/m ()2 0

d=/2
@ / / (2, Mmem + M) A1 A,
m J_d, /2

for a.e. x € 2. Then

/ / (@, 1) dn plz —cei) = p(@) dz
RN JYN 13
de/2 o) —
/ / ( / al,, (T, nmem + 1) dnm> T ple —eei) = olw) dn; da.
RN m de /2 13

Due to the fact that 4, converges weakly in L%(RY x YV) to 47, equation (4.19)
(with 4 replaced by m) and the inequality

fole

2

1 fde/2
dy

al’ (T, y) — d i ’[L?}m(% Nmem + y;n) dnm,

<C / 1By, (2, )| dy,
YN

we derive

/RN /YN UL (2, 105) 10 dn? pla _561‘) — () e

//nndnuo x)0z, () dx + O, = O,
RN JyN

which, together with (4.48) and (4.49), gives that g% . is y;-periodic, for every m,
n e {1,...7N}\{z'}.
STEP 4. We define 2! : RV x YN — RV as z6 ;(z,y) =0 and

1 v v
() = (uz,m@c,y) — [ ity o) o
£ Q
72/ yn em I’ y261+7-z,) de(yTL)a

n#i

for every m # i, every € > 0 and a.e. (z,y) € 2 x YV,

https://doi.org/10.1017/50308210500003620 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500003620

1074 J. Casado-Diaz and M. Luna-Laynez

For every m,n € {1,...,N}\ {i}, lemma 4.1 and (4.19) imply that ay”z
is bounded in L?(RN x Y). Pomcare Wirtinger’s inequality also gives Z , is
bounded in L?(RN x YN). So 2. is bounded in L?(RN x J%; H(S?)). Then there
exists 2}, € L*(£2 x J* H'(S")) such that, for a subsequence, 2, converges weakly
to 2 in L?(2 x J%; H'(S")). Moreover, since

ey (2 mn = €L (AL )mn — / e () dr! Vm,n € {1,...,N}\ {i} Ve>0,

we deduce that

6t (@) = ey (B mn (2, y) + / ot (x,yie; +7)dr, Vm,n € {1,...,N}\ {i}

and a.e. (x,y) € 2 x YV, where 6¢, » denotes the weak limit in L2(RN x YN) of
eL(UL)mn. Defining then 4§ = (45 ,, ..., 4% y) € ES as 45 ; = 0 and
" Vm#i ae. (z,y) € 2x YV,

we have

e (Ul )n — €y (W) mn  in L2(RY x YY) ¥myne {1,... N}\ {i}.

O
The following result gives a converse of theorem 4.7.
PROPOSITION 4.8. Let (4§, 4}, 0%, 4%) be in £, i € {1,...,N}. Then there exists a
sequence u. € H}E (2)N such that 4t, i € {1,..., N}, defined by (2.3), satisfy
al; — ah in L2 (RN x YV, (4.50)
— disagm -0 in LXRY x YN) Ym#£d, (4.51)
el(al) — ef(uh,at,ab,al)  in L2(RY x YV, Sy). (4.52)
Proof. We consider 0. € C! (R) such that
0 (t) < vVt e R,
0c(t) = if [t] < e,
0.(t) = if [t > 11/d.,
‘Cft \/% vt e R.

Then, for 3! given by (2.2), we define u. : 2. — RY by
Ue i|0i = @ + 573111(7%)

T ed, (a;,i«,yz) 0.0 S0 +ama3>y;',n)

n#i

- 52 Z 8%1]%7”(-, yé)?ﬁi,n’
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R £ N .
Ue,m|0i = u(r)n + d*ull,m('a y;)
€

et )+ (8000 = 02062.0 3 0, 0,
- 52 Z aﬂfnﬂi,m('v y;)y;,n vm 7é i.
Then u. belongs to H}, (£2:)" and it is easy to see that af, i € {1,..., N}, defined
by (2.3), satisfy (4.50), (4.51) and (4.52). O

REMARK 4.9. It is easy to prove that proposition 4.8 holds for (4§, 4%, 4%, 4%) € EY,
i € {1,...,N}. Thus theorem 4.7 is optimal. We do not prove this general result
because we will not use it in the following (see [21] for a proof).

Using proposition 4.8, we can now prove the following corrector result for a
sequence u, in H}E (£2.)N such that the convergence in (4.15) is strong.

THEOREM 4.10. Let uc be in Hp (2:)N, define 4%, i € {L...,N}, by (2.8) and
take v. = d./(e + dc). Let us suppose that, for every i € {1,...,N}, there exists
(uo, at,ah,0%) € B such that (4.52) holds. Then the sequences gt € L*(R™M)N and
Gl e L*(RN;8n), i € {1,...,N}, defined by

) 1N .
gii()=1 / () dp,
Cs()

€
) (4.53)
A _ ~Mm iA -
)= [ |0+ i) an v
and
i 1 Qi i s e i
GE() - °N eO(UOaulau27u3)(pays(')) dpa (454)
satisfy
1
lim—./ Ue i(2 g“ 2dm+7 / Ue,m (T ggm 2dz
tmy | ], toese) g0 >, @I
+/_ le(us)(z) — GL(z)|*dz| =0
Vie{l,...,N}.
(4.55)

7,M

Proof. Fori € {1,...,N}, let (apo LoV ob™ 5™ be a sequence in £ such that

lim go = in L?(02), (4.56)
n—oo
lim np =ai, in L2(2 x YY) Vm # i,
n—00 ’
(4.57)

Lim eq(og”, " 0" ey") = ep(ap, 4, a5, 45)  in LP(2 x YN Sy).  (4.58)
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From proposition 4.8, for every n € N, there exists wl € H}E(QE)N, € > 0, which

satisfies
Wh = oy in L2(RY x YN), (4.59)
B — o ,di;p;j;n%o in L2(RY x YN) Vm #1,
(4.60)

62( ) _>€0(()00 7901171)902 7()03 ) in L2<RN ><YVN;SN)- (461)
Using the change of variables (2.2) and the estimate (4.6), we get

A Azn

lag,; — (]RNXYN) = —x—gllte: — w?,i”%Z(Q;')
€

C

< —x—lle(ue — w?)”i?(n;;sm
€

= Cllet(iz — 0" T2 @vxyvisyy YREN, €>0.
Passing to the limit first in € and then in n, by (4.61) and (4.58), we conclude that

lim hmsup ||u€ i — we FlLz@y xy vy =0, (4.62)
n— 00

which, by (4.59) and (4.56), implies that
al, — 4y in L2(RY x YN, (4.63)
On the other hand, since ﬂg(x,y) does not depend on z in Cf, EeZN, e >0,
the change of variables (2.2) gives
1 i
TN o tg(p) dp

1 2
i) o= g 3 e
2

kezZN
dy

& Z ol

kezZN

</’
RN xYN

By (4.63), we deduce that the first term in (4.55) tends to zero.
Using (4.7), and reasoning similarly as we did to deduce (4.62), we get

2
dx

(@2 ;(p,y) — tg(p)) dp

ﬂi,i(p, y) — G (p)|* dy dp.

hm lim sup'y5||u - wz”;nHLz(RNXyN) =0 VYm#1.
—00 240 ’

The inequality

« € .
— UG = ] gy
€

Ve ||Ue,m

=8

L2(RN xYN)

~1 AT,
< 7€||us,m - ws,m||L2(RN><YN) + Ye||We
L2(RN xYN)

+7e

€ .
m,n 7M. ~m
©0 +d*<P1m—uo g Wm
e € L2(RN xYN)
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and equations (4.60), (4.56) and (4.57) then give

ul) —0 in L*RY x YY) vm #14,

o

~1 ~m
Ve (us,m — Uy —

which, as above, implies that the second term in (4.55) tends to zero.
The convergence to zero of the third term in (4.55) is easily deduced using the
change of variables (2.2) and (4.52). O

4.3. Homogenization result

We already have the suitable tools to prove the homogenization result for (1.1)
in the case of the model structure defined in § 2.

Proof of theorem 2.5. Taking v2u. as a test function in (1.1) and using (4.7), we
deduce that

1
W/ﬂ le(yeue)|?dz < Ve > 0.
€ €

Then, by theorem 4.7 applied to the sequence 7. u., for every i € {1,..., N}, there
exists (G}, 4, b, 4%) € E' such that, up to a subsequence, equations (4.13), (4.14)
and (4.15) hold with 4% replaced by ~.al. For (9, 9%, 0%, 9%) in €4 i € {1,...,N},
we consider the sequence v. in H}E(QE)N given by proposition 4.8 applied to
(08,04, 05,08), i € {1,...,N}. Taking v.v. as a test function in (1.1) and using
the continuity with respect to x of F?, H* and A, we get

N
Z/ Alel (o) : €l (00) dy dz + O
i—1 RN xY N

1

= ﬁ/ Ace(veue) : e(ve) da
5 e
Ve

— N / (Feve + He : e(v.)) do
£

=

N
S [ H ) dyde 0.
=1

NxyN

Passing to the limit, we deduce that (@, a},a%,4%), i € {1,..., N}, satisfies
N
S [ e ) — v H) s €01, 0. 08) dy da
i—1 /RN XYW

N N
SO 0) NN €O OY.L FRCEEID S X R
i=1 X

j=1 m#£i
N AN AN A ) i
v(11071}17’02”03) SEAS

By density, we conclude that (a4, a},ad,4%), i € {1,..., N}, is a solution of (2.12).
To conclude the proof of theorem 2.5, thanks to theorem 4.10, it is enough to
prove (2.11). For every i € {1,..., N}, the monotonicity properties (2.1) and (2.8)
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of A, give

@ (Il (veal") — g (@, g, @5 A5) Xl > de /23 [ T2 v ey i)

AR Y AN )

+ 0‘”62(%ﬁi) - 60(U07U17U2,U3)H%2(RN XY N:Sn)

1
< aN- 1/ Ace(veue) : e(veue ) dz
+Q/RN/ |<d /2 ee(yeiiz) — eo (i, i, iy, 13)|* dy da
3| <de

+Z [ A — )
|y
(ej (Vsu]) - ef)(uf), ujlau27u3)) dy dz. (464)

Using equations (4.13), (4.14) and (4.15), taking y2u. as a test function in (1.1)
and (43, 4], 1}, 43), j € {1,...,N}, as a test function in (2.12), we get

N
Z/ / Alel(yeal) : el(veal) dy da
=1 /RN Jy;|>d: /2

1
+ ﬁ/ Ace(veue) : e(veue) da + O
We

€

1
= N_1 /-(2 Ace(yeue) : e(Yeue) do

€

= %/ (FE’YEUE + H, : e(’ygug)) dydx

e (o

N
Jj=1 YN

N
<VZF;’@ZO v Y FLad,, +vH
=1

Jj=1 m#j
e (), uf, ud, ﬂé)) dydx + O,
N
= Z/RN o Al el (), 0, i, 4d) - el (ad, 4], 0, 4)) dy dz + O. (4.65)
j=1 x

Due to (4.15), we also have

e—0

lim inf/ / Aled (yoad) el (yetd) dy da
RN Jly;|>d. /2

>/N _Aei(ab, ], i, ad) : b, @], ad, ) dyde Vi e {1,..., N},
RN XY
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Then, from (4.65), we deduce that

lim 2 / Ace(u) : e(u)dz = 0 (4.66)

and
1 Jpd 57N - pd 7J
9 /. /|yj|>da/zA (i) : el (y.id) dy da
= Z/wayw Al (ad, o, ad,ad) - e (ad), ol 0l 4d) dy dz.  (4.67)
By (4.66) and (2.1), we also have

2
i i e
L] e ayde = G5 [ e

e /wg Ace(ue) @ e(us) dx

~ —
adév 1

= 0.. (4.68)

From (4.66) and (4.68), we easily deduce that the first and second terms on the
right-hand side of (4.64) tend to zero, while, using (4.67) and (4.15), we deduce
that

N
S [ A - . )
j=1 Yj|>de

(el (o) — ef iy . i, i) dy da
N
-> /. /| o, et el dy da
j=1 Yj|>de
>/ o A eHOe) (65, 84, ) dy do
j=1 Yj|>de/2
[ W) el dy
j=1 Yj|>de

N
i (5d a3 53 SIY el (nd o3 pd 5 —
+E / / Al el (@), g, 0y, 43) « e)(Gy, 4, Uh, Ug) dy do = O..
j=1 RN Jy;|>dc /2

So, passing to the limit in (4.64), we deduce, in particular, that
gg}% ||e;(78r&’é) - e%(%a ﬁlla aéaﬁé)”LQ(RNXYN;SN) =0 Vie {la cey N}

This proves (2.11). O
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4.4. Reinforced structure

‘We now turn our attention to the proof of theorem 3.1, which gives the asymptotic
behaviour of the elasticity problem (1.1) posed on the reinforced structure defined
in §3. The proof follows along the same lines of the proof of theorem 2.5 (a priori
estimates, compactness result and passage to the limit in (1.1)). We briefly sketch
these steps.

First, we obtain a Korn inequality for functions in H 11“5 (£2.)2.

THEOREM 4.11. There exists C > 0 such that, for every u € H}E (2.)? and every
e >0, we have

1 1
/Qg |V (u¢)7]?dz < 0(62 + dg) /QE le(w)|? de, (4.69)

2
/ luf? dz < c(1+ ;)/ le(u)[? dz. (4.70)
2 € 2

€

Proof. Taking into account the fact that the constant in (4.3) is invariant by trans-
lations and rotations and using Poincaré’s inequality, the same reasoning that
gives (4.9) provides

1 1
2 4. < L 2 2 .
/Qg IV (uc)7] dx\0<d§ /Q efu)?do + - /w uc| da:)

Since w. C 21 N 022 and 2! U 22 C 2. (we remark that 2} U 022 is the same struc-
ture that was considered in the previous subsections with N = 2), from (4.5), we
deduce that

¢l de < / luc|? dz < da/ le(u)[2 dz < ds/ le(u)[2 dz.
we nNinge? niun? 0.

Reasoning as in theorem 4.3, these inequalities (which are similar to (4.9) and (4.5))
easily give (4.69) and (4.70). O

The next compactness result is analogous to theorem 4.7.

THEOREM 4.12. We assume that there exists lim._,o(e/d:) = ¢ € [0,400] (this
always holds for a subsequence). Let u. be a sequence in H}, (£2:)* that satis-
fies (4.10), and define 4%, i € {1,2,3}, by (2.8) and (3.1). Then there exist a subse-
quence of g, still denoted by €, (4,08, 4%, 4%) € B, i € {1,2,3}, such that (4.13)-
(4.15) hold for i € {1,2}, and for i =3, defining o = (4}, 43), we have

3 0

/&O = ’EL T,
W3 — T in L*(02 x D), (4.71)
Q3¢ = ¢ if 9 =0,
43¢ — o + 93¢ if 9 € (0,+00) in L*(02 x D3), (4.72)
%agc — 4 if ¥ = 400,
e3(ad) — ed(ad, ad,a3,03) in L*(02 x D3;8S,). (4.73)
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Proof. From (4.10), using the change of variables y¢, i € {1,2,3}, we deduce that
4% and el (al) are bounded in L?(R? x ©%)? and L?(R? x D% Sy), respectively. On
the one hand, applying theorem 4.7 to

uE'ngu(zg
(which satisfies the hypothesis of that theorem), we deduce that there exists
(g, 1y, 05, U3) € ', i € {1,2},
such that (4.13)—(4.15) hold. On the other hand, taking into account the equality

) = v, (i) LV, (@) + Y, (@20)7)
o %(vy(ﬂgT)g + Vy(ﬁi’C)T) Vy(ﬁi’C)C

working with the components 437, 43¢ of 42 with respect to the basis {7,(} and
following the same reasoning as that in the proof of theorem 4.7 (in fact, because
we are in dimension two, the reasoning is simpler (see [10])), we obtain there exists
(43, 43,43, 43) € E® that satisfies, up to a subsequence, equations (4.71)—(4.73) with
iip = (G}, 42). In order to obtain this result, it is necessary to prove that 43 = dig7.
Defining C.(x) as in the previous section and P.(z) = Cc(z) Nwe, a.e. x € {2, this
follows from the following simple application of the Poincaré—Wirtinger inequality:
1

3 . ~3
Gy(x) = lim ————— a2 (x,y)T dy
0 =0 |y3 (P ()] y3(P-(z)) ‘

)

ue(2)7dz
=0 |P-(2)| Jp.(z)

1 1
)| Jp.(2) (\/ius’l(z) - \/§UE’2(z)> 1
1

= lim { al (x,y) dy
=0 [ V2|y (P-(2))| Jyr(poay)

1 / B
+ = a2 5 (2,y) dy]
V2(y2(P=(x))| Jy2(pP. ()
1

1
d — lim d
\/78—>06d dy2 xy) y+f —>0€d /dy2 (my) Y

=%z)r ae z e

:5—>0 |P

Proof of theorem 3.1. Taking u. as a test function in (1.1) and using (4.70), we
prove that

1
o /Q le(veue )| dz < C Ve > 0.
€ €

So we can apply theorem 4.12 to the sequence y.u. and then deduce that, up to
a subsequence, there exist (i, ai, ih, @5) € E', i € {1,2,3}, which satisfy (4.13)~
(4.15), for ¢ € {1,2}, and (4.71)—(4.73), with @ replaced by 7.4’
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Let (9, 0%, 05, 0%) be in B, i € {1,2,3}, with 93 = 9o7, 99 = (0%,92) (indeed, we
can assume that (6,0, 05,04) is sufficiently smooth and that it is in a dense set
of E?%). Reasoning analogously as in proposition 4.8 (see also remark 4.9), we can
prove that there exists v, € H}ﬂs(.QE)2 such that the corresponding sequences o,
i € {1,2,3}, satisfy

oL, — B in L?(R? x @),
G diﬁjm =0 in L2(R? x D), me {1,2}\ {i},

el (01) — eb (0,08, 05,08)  in L*(R? x D% Sy),

for i € {1,2}, and

03T — Dot in L*(R? x ©3),
93¢ — B¢ — diﬁlg =0 in L3(R? x D%,
e2(03) — ed (5,03, 05,03) in L*(R? x ©%,8s).

Using 7.v. as test functions in (1.1), we deduce that (4,4, 4, a%), i € {1,2,3},
is a solution of (3.2). As in the proof of theorem 2.5, we can also prove that the
convergence of e(y.4t) is strong in L?(2 x D% 8,), and this allows us to obtain
(2.15) and (3.4). O
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