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The aim of this paper is to study the asymptotic behaviour of the solutions of the
linearized elasticity system, posed on thin reticulated structures involving several
small parameters. We show that this behaviour depends on the relative size of the
parameters. In each case, we obtain a limit system where the microstructure and
macrostructure appear simultaneously. From it, we get a suitable approximation
in L2 of the displacements and the linearized strain tensor.

1. Introduction

In a previous paper (see [11]), we introduced a new method to study the asymptotic
behaviour of the solutions of partial differential problems posed on thin reticulated
structures, Ωε, depending on several small parameters. The method is an original
adaptation of the Arbogast–Douglas–Hornung method in homogenization presented
in [4] (see also [8] and [9] for other extensions). It is closely related to the two-scale
convergence of Nguetseng and Allaire [1, 2, 20, 23]. The idea is to introduce an
adequate change of variables that transforms Ωε in a fixed domain, depending on
both the microscopic and the macroscopic variables. In [11], we studied the case
of diffusion problems. In the present paper we consider the elasticity system. A
simplified problem in dimension two has been considered in [10]. Here, we deal with
two particular structures. The first one is shaped by the union of orthogonal beams,
with thickness εdε, disposed periodically, along all the directions, with period ε (see
figures 1 and 2 for the two-dimensional case and figure 3 for the three-dimensional
one). The second structure is obtained by taking the previous one in dimension two
and adding oblique parallel bars (see figure 5) with cross-section εdε. Here, ε and
dε are two positive parameters that tend to zero. As in [21], the method applies to
more general situations (bars not completely crossing the structure, plates instead of
beams, tall structures, gridworks, etc.), but we prefer to consider the two reticulated
structures mentioned above to simplify the exposition.

On both structures Ωε, we pose the elasticity problem

− div(Aεe(uε) − Hε) = Fε in Ωε,

uε = 0 on Γε,

(Aεe(uε) − Hε)νε = 0 on ∂Ωε \ Γε,

⎫⎪⎬
⎪⎭ (1.1)
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where Γε is the outside boundary of Ωε (see § 2) and νε is the unit outward normal
to Ωε. The exact hypotheses on Aε, Hε and Fε are given in § 5. They allow us to
consider materials that are non-homogeneous in microstructure and macrostructure
(see remark 2.4) in each beam, both in the direction of its axis and in the transverse
direction to it. For example, we can assume that the different bars that shape Ωε are
made up of a core of a material surrounded by a different one. To our knowledge,
other methods that deal with thin reticulated structures (see, for example, [5, 7,
17, 30]) do not allow us to consider this type of heterogeneity. Moreover, contrary
to other related works, we do not assume any isotropy hypotheses on the elastic
material that composes the structure. In particular, we do not suppose that it is
orthotropic. In fact, the only assumption we make for the symmetry of the elasticity
tensor Aε is that it transforms the space of symmetric matrices onto itself. For a
unique bar, these general hypotheses on Aε were considered in [22].

In this paper we show that the asymptotic behaviour of the solutions uε of (1.1)
is different according to the limit, ϑ, of ε/dε. There are three different situations,
depending on whether ϑ is zero, a positive number or infinity. Our method allows
us to study all the cases simultaneously. In particular, when ϑ = +∞, we prove
that the deformations and the linearized strain tensor tend to infinity. Since the
linearized elasticity model assumes small deformations, this shows that it can fail in
this situation. In theorems 2.5 and 3.1, we give, for each value of ϑ, a strong approx-
imation in L2(Ωε) of uε and e(uε) (corrector result). As in the classical two-scale
convergence (see [1, 23]), these approximations are obtained by solving a partial
differential system that contains all the scales together (see (2.12) and (3.2)). Con-
trary to other approaches, this result does not suppose any additional smoothness
for the solutions of this system. Assuming them, we get, in fact, an asymptotic
development zε of uε such that

d2
ε

(ε + dε)2
1

|Ωε|

∫
Ωε

|e(uε − zε)|2 dx → 0. (1.2)

In order to prove these results, we first obtain a compactness theorem, which cor-
responds to the compactness theorem in the usual two-scale theory. It also applies
to nonlinear problems, although, for the sake of simplicity, we prefer to remain in
the linear case.

For the first structure considered in this paper (figures 1–3), assuming stronger
homogeneity and isotropy hypotheses on the structure, it has been shown (see [5,
17]), by another method that passes to the limit first in ε and then in dε (which
assumes that ε is much smaller than dε), that the limit problem of (1.1) is degener-
ate. This property of the limit problem seems to be the reason why the asymptotic
behaviour of the solutions depends on the limit ϑ of ε/dε. However, we emphasize
that the homogenization result for the second structure (figure 5) also depends on
the value ϑ, although, in this case, passing to the limit first in ε and then in dε,
it was proved in [12] that (1.1) has a limit problem that is non-degenerate. Our
results also give this non-degenerate limit problem if ϑ = 0, but, in the other cases,
we prove that the limit problem is still degenerate (see remark 3.5).

We finish this introduction with some bibliographic notes. For the study of the
elasticity system in thin domains, we refer, for example, to [13,14,19,22,27], where
the structures considered are composed of a small number of elements. In the case of
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thin reticulated structures involving several small parameters, the classical method,
to our knowledge, for dealing with this problem consists of passing to the limit first
in one parameter, then in another one, and so on (see [5, 12, 15–18, 25, 26]). For
diffusion equations, this approach provides, as in our case, the first three terms of
the asymptotic development of the solutions of the corresponding problem, together
with a corrector result (see [5]). However, as far as we know, this has not been
carried out for the elasticity problem. In fact, the above-mentioned papers do not
give a result, proving that the solution uε of (1.1) is close, in some sense, to the
solution of the problem obtained by passing to the limit successively in the different
parameters (i.e. it is not clear if the iterated limit is really a double limit). As we
pointed out above, the limit behaviour depends on the ratio of ε to dε. However,
passing to the limit successively in the parameters we are assuming that one of
them is much smaller than the other ones. We mention that the fact that the
limit problem depends on the chosen order in the parameters was first proved
in [18].

Another approach used to study this type of problem is based on the two-scale
method with respect to measures (see [6, 7, 28–30]). This method allows us to deal
with very general structures. However, when it has been applied to the elasticity
system, it has only given partial results. So, in [7], the unique case considered is
ϑ = 0, whereas in [28] the cases studied are ϑ = 0 and ϑ = +∞. In this last work, an
additional term is introduced to the equation, and thus the problem under study
is not exactly the elasticity system; this additional term simplifies the problem
because it avoids the estimation of the Korn constant in Ωε and the possibility
of unbounded displacements. We also remark that these articles do not provide
an asymptotic development zε of uε such that (1.2) holds. In fact, they only give
the two-scale limit of the solutions uε of (1.1) and not of e(uε), and, unlike our
result (1.2), they do not provide any estimation of the error in an usual norm, such
as the L2 or H1 norms. Both in [28] and [7], the case when the limit ϑ of ε/dε is
arbitrary is explicitly mentioned as an open problem.

2. A model structure: homogenization result

This section is devoted to the asymptotic analysis of the solutions of the linearized
elasticity system (1.1) posed on a model sequence of reticulated structures in R

N ,
N � 2. These structures are shaped by orthogonal thin bars disposed periodically
along all the directions of the space. We assume that the bars are made of an
anisotropic non-homogeneous elastic material. Both the size of the period and the
ratio of the thickness of the bars over the period tend to zero. Mathematically, the
problem can be formulated as follows.

We denote by {e1, . . . , eN} the usual basis in R
N . For i ∈ {1, . . . , N} and

ζ = (ζ1, . . . , ζN ) ∈ R
N , we write

ζ ′
i =

∑
m�=i

ζmem,

so ζ = ζiei + ζ ′
i. We also denote by ζ ′

i a generic point in R
N such that its ith

coordinate is zero. Confusion is avoided by the context.
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Figure 1.

ε 

ε d ε 

Figure 2.

For ε > 0, let dε ∈ (0, 1) be a sequence that tends to zero as ε goes to zero. For
i ∈ {1, . . . , N}, k′

i ∈ Z
N and ε > 0, L

i,k′
i

ε is the unbounded beam given by

L
i,k′

i
ε = {x ∈ R

N : |x′
i − εk′

i|∞ < 1
2εdε}.

Then we define the open reticulated structure Vε, ε > 0 (see figures 1 and 2 for
N = 2 and figure 3 for N = 3), as

Vε =
N⋃

i=1

V i
ε with V i

ε =
⋃

k′
i∈ZN

L
i,k′

i
ε ∀i ∈ {1, . . . , N} ∀ε > 0.

The intersection of the sets V i
ε , i ∈ {1, . . . , N}, is denoted by ωε. For a smooth
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Figure 3.

Ω ε 

Vε 

Ω 

Figure 4.

bounded open set Ω ⊂ R
N , we define Ωε (see figure 4), Ωi

ε and Γε by

Ωε = Ω ∩ Vε, Ωi
ε = Ω ∩ V i

ε ∀i ∈ {1, . . . , N},

Γε = Ω̄ε ∩ ∂Ω ∀ε > 0.

We denote by H1
Γε

(Ωε) the functional space

H1
Γε

(Ωε) = {u ∈ H1(Ωε) : u = 0 on Γε}, ε > 0.

We suppose that the elements of H1
Γε

(Ωε) are defined on all Vε by extending them
by zero outside Ωε.
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Denote by SN the space of N -dimensional symmetric matrices and by L(SN ,SN )
the space of linear maps of SN into itself.

Let G be an open set of R
N and let φ : G → R

N be sufficiently smooth. We
denote by e(φ) : G → SN the symmetrized gradient (linearized strain tensor) of φ,
i.e.

e(φ)ij = 1
2 (∂xi

φj + ∂xj
φi) ∀i, j ∈ {1, . . . , N}.

We denote by ν the unit outward normal to ∂Ω and by νε, ε > 0, the unit outward
normal to ∂Ωε.

We consider Hε ∈ L2(Ωε; SN ), Fε ∈ L2(Ωε)N and Aε ∈ L∞(Ωε; L(SN ,SN )) such
that there exist α, β > 0 with (the exact hypotheses on Fε, Hε and Aε are given
below)

Aε(x)M : M � α|M|2, |Aε(x)M| � β|M| ∀M ∈ SN a.e. x ∈ Ωε ∀ε > 0.
(2.1)

In the reticulated domain Ωε, let us consider the elasticity problem (1.1). It is
well known that this problem has an unique solution uε in H1

Γε
(Ωε)N (see, for

example, [14]). Our aim in this section is to describe the asymptotic behaviour of
the solution uε and to give a corrector result for e(uε) as ε tends to zero. The result
exhibits three different regimes, depending on whether ϑ = limε→0(ε/dε) is zero, a
positive number or infinity. In order to solve the homogenization problem and to
express the result, we introduce some notations and definitions.

We set Y = (− 1
2 , 1

2 ). For i ∈ {1, . . . , N}, we decompose Y N as Y N = J i + Si,
where

J i = {yiei : yi ∈ Y }, Si = {y ∈ Y N : yi = 0} = {y′
i ∈ Y N}.

Note that we can consider J i and Si as subsets of R and R
N−1, respectively, iden-

tifying J i with Y and Si with Y N−1.
For ε > 0 and k ∈ Z

N , we define Ck
ε as the cube with centre εk and sides of

length ε parallel to the coordinate axes, i.e. Ck
ε = ε(k + Y N ). We also define P k

ε

as the cube with centre εk and sides of length εdε parallel to the coordinate axes.
Thus P k

ε = Ck
ε ∩ ωε. For i ∈ {1, . . . , N}, we write Bi,k

ε = Ck
ε ∩ V i

ε . We remark that
P k

ε = Bi,k
ε ∩ Bj,k

ε for every k ∈ Z
N , every ε > 0 and every i, j ∈ {1, . . . , N}.

We define κ : R
N → Z

N by κ(x) ∈ Z
N and x ∈ C

κ(x)
1 for a.e. x ∈ R

N . Then
we set Cε(x) = C

κ(x/ε)
ε and Pε(x) = P

κ(x/ε)
ε a.e. x ∈ R

N , ε > 0. We remark that x
belongs to Cε(x) for every ε > 0 and a.e. x ∈ R

N .
We now introduce suitable changes of variables, which transform each V i

ε , i ∈
{1, . . . , N}, in a fixed domain, which depends on the microstructure and macrostruc-
ture. For ε > 0 and i ∈ {1, . . . , N}, we define yi

ε : V i
ε → Y N by

yi
ε(x) =

xi − εκi(x/ε)
ε

ei +
x′

i − εκ′
i(x/ε)

εdε
a.e. x ∈ V i

ε . (2.2)

We point out that, for fixed k ∈ Z
N , yi

ε
|Bi,k

ε

transforms Bi,k
ε onto Y N , for every

ε > 0 and every i ∈ {1, . . . , N}.
For a sequence of measurable functions uε : Vε → R

N and i ∈ {1, . . . , N}, we
define ûi

ε : R
N × Y N → R

N by

ûi
ε(x, y) = uε

(
εκ

(
x

ε

)
+ εyiei + εdεy

′
i

)
, ε > 0. (2.3)
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Remark 2.1. We will use the functions ûi
ε to study the behaviour of uε in V i

ε .
Observe that, in Ck

ε × Y N , k ∈ Z
N , ε > 0, ûi

ε(x, y) does not depend on the macro-
scopic variable x, and, as a function of the microscopic variable y, it is obtained
from uε by the change of variables (2.2). So the variable x determines k ∈ Z

N such
that x belongs to Ck

ε (i.e. k = κ(x/ε)), and then the variable y acts as a microscope,
zooming the small beam Bi,k

ε onto the fixed set Y N . Therefore, the behaviour of
uε in the small beam Bi,k

ε can be deduced from the behaviour of ûi
ε with respect

to the variable y ∈ Y N .

The following definition will be useful when dealing with the change of vari-
ables (2.2). For ε > 0, i ∈ {1, . . . , N} and v̂ ∈ L2(RN ; H1(Y N ))N , we define
ei
ε(v̂) ∈ L2(RN × Y N ; SN ) by

ei
ε(v̂)ii =

1
ε
∂yi

v̂i, 2ei
ε(v̂)im =

1
ε
∂yi

v̂m +
1

εdε
∂ym

v̂i ∀m �= i,

2ei
ε(v̂)mn =

1
εdε

(∂yn v̂m + ∂ym v̂n) ∀m, n ∈ {1, . . . , N} \ {i}.

Note that ei
ε(û

i
ε) gives the strain tensor e(uε) expressed in the variables y = yi

ε(x).
For a sufficiently smooth function φ = φ(x, y) defined on R

N × Y N , we write

ey(φ)ij = 1
2 (∂yiφj + ∂yj φi) ∀i, j ∈ {1, . . . , N}.

For i ∈ {1, . . . , N}, we define the functional space Ei = Ei
0 × Ei

1 × Ei
2 × Ei

3, with

Ei
0 = {ûi

0 ∈ L2(Ω) : ∂xi
ûi

0 ∈ L2(Ω), ûi
0νi = 0 on ∂Ω},

Ei
1 = {ûi

1 ∈ L2(Ω; H1(Y N ))N : ûi
1 is yi-periodic,

ûi
1,m(x, z) = 0 a.e. (x, z) ∈ Ω × Si,

ey(ûi
1)in = ey(ûi

1)mn = 0
∀m, n ∈ {1, . . . , N} \ {i}},

Ei
2 =

{
ûi

2 ∈ L2(Ω × Y N )N : ûi
2,i ∈ L2(Ω × J i; H1(Si)),

ûi
2,m ∈ L2(Ω; H1(Y N )), ûi

2,m is yi-periodic,∫
Si

ûi
2,m dy′

i = 0 in L2(Ω × J i), ey(ûi
2)nm = 0

∀m, n ∈ {1, . . . , N} \ {i}
}

,

Ei
3 = {ûi

3 ∈ L2(Ω × J i; H1(Si))N : ûi
3,i = 0}.

In these expressions, ûi
1,m, ûi

2,m and ûi
3,m denote the mth component of ûi

1, ûi
2

and ûi
3, respectively. The superscript ‘i’ means that these functional spaces will be

used to describe the asymptotic behaviour of the solutions of (1.1) in Ωi
ε. These

conventions will be used throughout the paper.

Remark 2.2. The function ûi
1 belongs to Ei

1 if and only if there exist

ai ∈ L2(Ω; H1(J i)), bi
m ∈ L2(Ω; H2(J i)), m �= i,
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such that ai, bi
m, ∂yib

i
m are yi-periodic, bi

m(x, 0) = 0 for a.e. x ∈ Ω and they satisfy

ûi
1,i(x, y) = ai(x, yi) −

∑
n �=i

∂yib
i
n(x, yi)yn,

ûi
1,m(x, y) = bi

m(x, yi) ∀m �= i

a.e. (x, y) ∈ Ω × Y N .

Remark 2.3. The function ûi
2 belongs to Ei

2 if and only if ûi
2,i belongs to L2(Ω ×

J i; H1(Si)) and, for every m, n ∈ {1, . . . , N}\{i}, there exists gi
mn ∈ L2(Ω; H1(J i))

such that gi
mn is yi-periodic, gi

mn = −gi
nm and

ûi
2,m(x, y) =

∑
n �=i

gi
mn(x, yi)yn ∀m �= i a.e. (x, y) ∈ Ω × Y N .

For (ûi
0, û

i
1, û

i
2, û

i
3) ∈ Ei, we define ei

0(û
i
0, û

i
1, û

i
2, û

i
3) ∈ L2(RN × Y N ; SN ) by

ei
0(û

i
0, û

i
1, û

i
2, û

i
3)ii = ∂xi

ûi
0 + ey(ûi

1)ii,

ei
0(û

i
0, û

i
1, û

i
2, û

i
3)in = ey(ûi

2)in,

ei
0(û

i
0, û

i
1, û

i
2, û

i
3)mn = ey(ûi

3)mn

⎫⎪⎬
⎪⎭ (2.4)

∀m, n ∈ {1, . . . , N} \ {i}.
We also introduce E i as the subspace of Ei defined by

E i = {(ûi
0, û

i
1, û

i
2, û

i
3) ∈ Ei : ûi

0 ∈ C∞
0 (Ω), ûi

1 ∈ C∞
0 (Ω; C∞(Y N ))N ,

ûi
2,i ∈ C∞

0 (Ω × J i; C∞(Si)),

ûi
2,m ∈ C∞

0 (Ω; C∞(Y N )) ∀m �= i,

ûi
3 ∈ C∞

0 (Ω × J i; C∞(Si))N

and ∃δ > 0 such that ûi
1 = ûi

2 = ûi
3 = 0

if |yi| < 1
2δ}.

Let us now introduce the exact hypotheses that we are going to consider on Fε,
Hε and Aε. For every i ∈ {1, . . . , N}, we suppose that there exist

F i : Ω × Y N → R
N , Hi : Ω × Y N → SN , Ai ∈ L∞(Ω × Y N ; L(SN ,SN )),

f i, hi ∈ L2(Y N ) and ρi ∈ C0([0, +∞)) with ρi(0) = 0 such that

F i(·, y), Hi(·, y) are continuous in Ω a.e. y ∈ Y N , (2.5)

|F i(x, y)| � f i(y), |Hi(x, y)| � hi(y) ∀x ∈ Ω a.e. y ∈ Y N , (2.6)

|Ai(x, y) − Ai(x̄, y)| � ρi(|x − x̄|) ∀x, x̄ ∈ Ω a.e. y ∈ Y N , (2.7)

Ai(x, y)M : M � α|M|2 ∀M ∈ SN ∀x ∈ Ω a.e. y ∈ Y N (2.8)

and

Aε(x) = Ai(x, yi
ε(x)), Hε(x) = Hi(x, yi

ε(x)), Fε(x) = F i(x, yi
ε(x)) (2.9)

a.e. x ∈ Ωi
ε \ ωε. We also suppose that

lim
ε→0

1
|Ωε|

∫
ωε

|Fε|2 dx = lim
ε→0

1
|Ωε|

∫
ωε

|Hε|2 dx = 0. (2.10)
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Remark 2.4. The assumptions on Aε allow us to consider non-homogeneous elastic
materials in macrostructure and microstructure (i.e. the elastic coefficients depend
on the variables x and y), which may be different for every Ωi

ε, i ∈ {1, . . . , N}.
They can also be arbitrarily anisotropic. For instance, we can model structures
that, along every direction, are shaped by composite beams, which are built with a
core of a material surrounded by a different one. It is enough to take, for example,

Ai(x, y) = Ai
1χ{‖y′

i‖∞<ri} + Ai
2χ{‖y′

i‖∞>ri} ∀i ∈ {1, . . . , N},

with ri ∈ (0, 1
2 ) and Ai

1, A
i
2 ∈ L(SN ,SN ) for every i ∈ {1, . . . , N}. Furthermore, our

hypotheses on Fε and Hε allow us to consider forces that depend on the microstruc-
ture. Observe that in (2.9) we do not make any assumption on the structure of Aε,
Fε and Hε in ωε. The measure of ωε is very small with respect to the measure of Ωε,
and the limit behaviour of the solutions uε of (1.1) does not depend on how Aε, Fε

and Hε are in this set.

The main result of this paper is the following one (the proof of which is given
in § 4).

Theorem 2.5. Let uε be the sequence of solutions of (1.1) and set γε = dε/(ε+dε).
We suppose that there exists limε→0 γε = γ (this always holds for a subsequence).
Then the sequences ûi

ε, i ∈ {1, . . . , N}, defined by (2.3) satisfy

γεe
i
ε(û

i
ε) → ei

0(û
i
0, û

i
1, û

i
2, û

i
3) in L2(RN × Y N ; SN ), (2.11)

where (ûi
0, û

i
1, û

i
2, û

i
3) ∈ Ei, i ∈ {1, . . . , N}, is a solution of the variational problem

N∑
i=1

∫
Ω×Y N

(Aiei
0(û

i
0, û

i
1, û

i
2, û

i
3) − γHi) : ei

0(v̂
i
0, v̂

i
1, v̂

i
2, v̂

i
3) dy dx

=
N∑

i=1

∫
Ω×Y N

(
γ

N∑
j=1

F i
j v̂

j
0 + (1 − γ)

∑
m�=i

F i
mv̂i

1,m

)
dy dx

∀(v̂i
0, v̂

i
1, v̂

i
2, v̂

i
3) ∈ Ei ∀i ∈ {1, . . . , N}.

(2.12)

Moreover, the sequences gi
ε and Gi

ε, defined by

gi
ε,i(·) =

1
εN

∫
Cε(·)

ûi
0(ρ) dρ,

gi
ε,m(·) =

1
εN

∫
Cε(·)

[
ûm

0 (ρ) +
ε

dε
ûi

1,m(ρ, yi
ε(·))

]
dρ ∀m �= i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

and

Gi
ε(·) =

1
εN

∫
Cε(·)

ei
0(û

i
0, û

i
1, û

i
2, û

i
3)(ρ, yi

ε(·)) dρ, (2.14)
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give the following approximations to uε and e(uε):

lim
ε→0

γ2
ε

|Ωi
ε|

[∫
Ωi

ε

∣∣∣∣uε,i(x) − 1
γε

gi
ε,i(x)

∣∣∣∣
2

dx

+ γ2
ε

∑
m�=i

∫
Ωi

ε

∣∣∣∣uε,m(x) − 1
γε

gi
ε,m(x)

∣∣∣∣
2

dx

+
∫

Ωi
ε

∣∣∣∣e(uε)(x) − 1
γε

Gi
ε(x)

∣∣∣∣
2

dx

]
= 0 ∀i ∈ {1, . . . , N}.

(2.15)

Remark 2.6. If (ûi
0, û

i
1, û

i
2, û

i
3) are strongly continuous in x ∈ R

N , then (2.15) is
equivalent to

lim
ε→0

γ2
ε

|Ωi
ε|

∫
Ωi

ε

(∣∣∣∣uε,i(x) − 1
γε

ûi
0(x)

∣∣∣∣
2

+ γ2
ε

∑
m�=i

∣∣∣∣uε,m(x) − 1
γε

(ûm
0 (x) +

ε

dε
ûi

1,m(x, yi
ε(x)))

∣∣∣∣
2 )

dx = 0,

lim
ε→0

γ2
ε

|Ωi
ε|

∫
Ωi

ε

∣∣∣∣e(uε)(x) − 1
γε

ei
0(û

i
0, û

i
1, û

i
2, û

i
3)(x, yi

ε(x))
∣∣∣∣
2

dx = 0.

In fact, if (ûi
0, û

i
1, û

i
2, û

i
3), i ∈ {1, . . . , N}, are smooth enough, then, on defining

zi
ε : Ωi

ε → R
N as

zi
ε,i =

1
γε

[
ûi

0 + εûi
1,i(·, yi

ε)

+ εdε

(
ûi

2,i(·, yi
ε) −

∑
n �=i

(∂xn
ûi

0 + ∂xi
ûn

0 )yi
ε,n

)

− ε2
∑
n �=i

∂xi
ûi

1,n(·, yi
ε)y

i
ε,n

]
,

zi
ε,m =

1
γε

[
ûm

0 +
ε

dε
ûi

1,m(·, yi
ε) + εûi

2,m(·, yi
ε)

+ εdε

(
ûi

3,m(·, yi
ε) −

∑
n �=i

∂xn
ûm

0 yi
ε,n

)

− ε2
∑
n �=i

∂xn
ûi

1,m(·, yi
ε)y

i
ε,n

]
∀m �= i,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

we have

lim
ε→0

γ2
ε

|Ωi
ε|

∫
Ωi

ε

(
|uε,i − zi

ε,i|2 + γ2
ε

∑
m�=i

|uε,m − zi
ε,m|2 + |e(uε − zi

ε)|2
)

dx = 0. (2.17)

Remark 2.7. Problem (2.12) is decoupled in N independent problems, one for
every direction, i.e. one for every value of i ∈ {1, . . . , N}. In fact, for i ∈ {1, . . . , N},
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(ûi
0, û

i
1, û

i
2, û

i
3) ∈ Ei is a solution of the variational problem∫

Ω×Y N

(Aiei
0(û

i
0, û

i
1, û

i
2, û

i
3) − γHi) : ei

0(v̂
i
0, v̂

i
1, v̂

i
2, v̂

i
3) dy dx

=
∫

Ω×Y N

[
γ

( N∑
j=1

F j
i

)
v̂i
0 + (1 − γ)

∑
m�=i

F i
mv̂i

1,m

]
dy dx

∀(v̂i
0, v̂

i
1, v̂

i
2, v̂

i
3) ∈ Ei.

(2.18)

An easy application of the Lax–Milgram theorem (in suitable quotient spaces) shows
that, for every i ∈ {1, . . . , N}, problem (2.18) admits a solution. Although this
solution is not unique, the functions ûi

0, ûi
1,m, with m �= i, and ei

0(û
i
0, û

i
1, û

i
2, û

i
3) are

defined univocally. Observe that these are precisely the terms that appear in the
definition of the corrector for both uε and e(uε).

For i ∈ {1, . . . , N}, we can derive the problem that ûi
0 satisfies by eliminating ûi

1,
ûi

2 and ûi
3 from (2.12). As an example, let us consider the case of an homogeneous

isotropic elastic material. A simple but tedious calculus shows the following.

Proposition 2.8. We suppose that there exists λ � 0 and µ > 0 such that

AεM = λ trace(M)I + 2µM ∀M ∈ SN ∀ε > 0 (2.19)

(by I we mean the N -dimensional identity matrix). We also suppose that there exist
F ∈ C0(Ω̄)N and H ∈ C0(Ω̄; SN ) such that Fε = F and Hε = H, for every ε > 0.
Let (ûi

0, û
i
1, û

i
2, û

i
3) ∈ Ei, i ∈ {1, . . . , N}, be a solution of (2.12). Then ûi

0 satisfies

−Λ∂2
xixi

ûi
0 = NγFi − γ∂xiHii +

λγ

λ(N − 1) + 2µ

∑
j �=i

∂xiHjj in Ω, (2.20)

where

Λ =
2µ(λN + 2µ)
λ(N − 1) + 2µ

. (2.21)

The other terms satisfy the relations

∂yi û
i
1,i = −1 − γ

Λ
(6y2

i − 6|yi| + 1)
∑
j �=i

Fjyj ,

ûi
1,m =

1 − γ

2Λ
Fmy2

i (1 − |yi|)2 ∀m �= i,

1
2 (∂yi û

i
2,m + ∂ym ûi

2,i) =
γ

2µ
Him ∀m �= i,

1
2 (∂yj û

i
3,m + ∂ym ûi

3,j) =
γ

2µ
Hjm ∀j, m ∈ {1, . . . , N} \ {i}, j �= m,
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∂ym ûi
3,m =

−λ

λ(N − 1) + 2µ

(
∂xi û

i
0 − 1 − γ

Λ
(6y2

i − 6|yi| + 1)
N∑

l=1

Flyl

)

+
γ(λ(N − 2) + 2µ)
2µ(λ(N − 1) + 2µ)

Hmm − λγ

2µ(λ(N − 1) + 2µ)

∑
r �=i,m

Hrr

∀m �= i.

Remark 2.9. For H = 0, N = 3 and γ = 1 (i.e. limε→0(ε/dε) = 0), equation (2.20)
coincides with the one obtained in [17] (as it was to be expected), where a problem
strongly related to (1.1) (in the isotropic case) was studied. That problem consisted
of fixing dε = d and passing to the limit first in ε and then in d (clearly, this
procedure assumes that ε is much smaller than dε). Nevertheless, to our knowledge,
the results in [17] do not provide any convergence result for problem (1.1) where ε
and dε are two arbitrary sequences tending to zero simultaneously.

Remark 2.10. If limε→0(ε/dε) = 0 (i.e. γ = 1) and û0 = (û1
0, . . . , û

N
0 ) is sufficiently

smooth (otherwise, we have to consider mean values on Ck
ε as in (2.13)), theorem 2.5

gives

lim
ε→0

1
|Ωε|

∫
Ωε

|uε(x) − û0(x)|2 dx = 0,

which shows that û0 is the ‘limit’ of uε in the strong topology of L2. The situation
is different if limε→0(ε/dε) ∈ (0, +∞) (i.e. γ ∈ (0, 1)). For the displacements along
the direction of the bars, we still have that

lim
ε→0

1
|Ωi

ε|

∫
Ωi

ε

∣∣∣∣uε,i(x) − 1
γ

ûi
0(x)

∣∣∣∣
2

dx = 0 ∀i ∈ {1, . . . , N}.

However, for the transverse displacements, what we have is (assuming sufficient
smoothness)

lim
ε→0

1
|Ωi

ε|

∫
Ωi

ε

∣∣∣∣uε,m(x) − 1
γ

ûm
0 (x) − 1 − γ

γ2 ûi
1,m(x, yi

ε)
∣∣∣∣
2

dx = 0

∀i, m ∈ {1, . . . , N}, m �= i.

Therefore, if we want a ‘strong limit’ of uε in L2, we have to consider functions
depending not only on x, but also on the microscopic variable y. In order to obtain
a limit depending only on the macroscopic variable, we think it is more appropriate
to look for a ‘weak limit’ u of uε, which can be defined by means of (see, for
example, [7, 30], where this type of limit is considered)

lim
ε→0

1
|Ωε|

∫
Ωε

uε(x)ϕ(x) dx =
1

|Ω|

∫
Ω

u(x)ϕ(x) dx ∀ϕ ∈ C∞
0 (Ω)N .

Using theorem 2.5, we immediately obtain that, for γ ∈ (0, 1), this function u is
given by

u(x) =
1
γ

û0(x) +
1 − γ

Nγ2

N∑
j=1

∑
m�=j

∫
Y N

ûm
1,j(x, y) dy ej a.e. x ∈ Ω. (2.22)
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Figure 5.

So u is a linear combination of û0 and the mean values with respect to y of the
functions ûm

1,j . Finally, if limε→0(ε/dε) = +∞ (i.e. γ = 0), uε is not bounded and
then it does not have a limit. What we get is that the sequence γ2

εuε converges in
the sense stated above to

w(x) = lim
ε→0

γ2
εuε =

1
N

N∑
j=1

∑
m�=j

∫
Y N

ûm
1,j(x, y) dy ej a.e. x ∈ Ω.

Observe that w does not depend on û0; it only depends on the functions ûm
1,j .

3. A reinforced structure: homogenization result

For the structure considered in the previous section, the homogenized fourth-order
tensor associated to the problem satisfied by û0 = (û1

0, . . . , û
N
0 ) is not strongly ellip-

tic (see (2.20) for the case of an homogeneous isotropic material); in fact, we only
have that ∂xi

ûi
0 is in L2(Ω), i ∈ {1, . . . , N}, and not ∇û0 ∈ L2(Ω)N×N . To obtain

an elliptic problem, some authors (see [5,12]) propose the introduction of additional
bars in the structures (reinforced structures). Passing to the limit first in ε and then
in dε (which implies that ε 
 dε, or, equivalently, limε→0(ε/dε) = 0), they obtain
a non-degenerate elliptic problem for the limit û0 of uε.

We see in this section that our method can also be applied to these structures
with additional bars, which results in the limit behaviour still depending on the
limit of ε/dε. Thus, although we prove that the corresponding function û0 that we
obtain in this case satisfies an elliptic problem, we emphasize (see remark 2.10) that
this function û0 is not, in general, the limit of uε (it gives the limit only when ε/dε

tends to zero). In fact, we will show that, even adding additional bars, the problem
satisfied by the limit of uε (or γεuε if γε tends to zero) is degenerate when ε/dε

does not converge to zero.
To simplify the exposition, we just consider a structure in dimension two. It is

composed by the structure studied in § 2 with N = 2, and additional parallel oblique
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bars of cross-section εdε, disposed periodically with period ε (see figure 5). This
structure has been considered in [12] in the case of an isotropic elastic material.

We associate the superscript ‘i = 1’ with the horizontal bars, ‘i = 2’ with the
vertical bars and ‘i = 3’ with the oblique bars. For i ∈ {1, 2}, we keep the notation
of the preceding sections (i.e. V 1

ε , V 2
ε , Ω1

ε , Ω2
ε , y1

ε , y2
ε , E1, E2, etc.). This notation

refers to the horizontal and vertical bars that have been studied previously. For
i = 3 (oblique bars), we need some extra notation.

Let {τ, ζ} be the orthogonal basis in R
2 given by

τ =
e1 + e2√

2
, ζ =

−e1 + e2√
2

.

We remark that, for y ∈ R
2, yτ , yζ are the components of y in the basis {τ, ζ}.

Analogously, for a symmetric tensor M, Mττ , Mτζ, Mζζ are the components of
M with respect to the basis {τ, ζ}. Thus it is that in the notation given below the
vectors and tensors appear usually multiplied by τ and/or ζ.

Let V 3
ε be the set

V 3
ε =

⋃
q∈Z

{εqe1 + s1τ + s2ζ : s1 ∈ R, − 1
2εdε < s2 < 1

2εdε} ∀ε > 0.

Then we define the reticulated structure Vε (see figure 5), ε > 0, by

Vε = V 1
ε ∪ V 2

ε ∪ V 3
ε .

We denote by ωε the set ωε = V 1
ε ∩ V 2

ε ∩ V 3
ε .

For a fixed smooth bounded open set Ω in R
2, we define

Ω3
ε = Ω ∩ V 3

ε , Ωε = Ω1
ε ∪ Ω2

ε ∪ Ω3
ε and Γε = Ω̄ε ∩ ∂Ω.

We set D1 = D2 = Y 2 and D3 = J3 + S3, where J3 = (
√

2Y )τ , S3 = Y ζ.
Analogously to y1

ε , y2
ε , we define a change of variables y3

ε : V 3
ε → D3 for the

oblique bars by

y3
ε(x) =

(x − εk)τ
ε

τ +
(x − εk)ζ

εdε
ζ a.e. x ∈ εk + εJ3 + εdεS

3 ∀k ∈ Z
2,

which, for every k ∈ Z
2, transforms the oblique bar εk + εJ3 + εdεS

3 onto D3.
For a sequence uε : Vε → R

2 of measurable functions, we define û3
ε : R

2×D3 → R
2

by

û3
ε(x, y) = uε

(
εκ

(
x

ε

)
+ ε(yτ)τ + εdε(yζ)ζ

)
a.e. (x, y) ∈ R

2 × D
3. (3.1)

We will use the function û3
ε to describe the behaviour of uε on the oblique bars V 3

ε .
For ε > 0 and v̂ ∈ L2(R2; H1(D3))2, we define e3

ε(v̂) ∈ L2(R2 × D3; S2) by the
equalities

e3
ε(v̂)ττ =

1
ε
∇y(v̂τ)τ,

e3
ε(v̂)τζ =

1
ε
∇y(v̂ζ)τ +

1
εdε

∇y(v̂τ)ζ,

e3
ε(v̂)ζζ =

1
εdε

∇y(v̂ζ)ζ.
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Observe that, for uε : Vε → R
2, e3

ε(û
3
ε) gives the strain tensor e(uε) expressed in

the variables y = y3
ε(x).

By E3 we denote the functional space E3 = E3
0 × E3

1 × E3
2 × E3

3 , where (ν is the
unit outward normal vector to ∂Ω)

E3
0 = {û3

0 ∈ L2(Ω) : ∇û3
0τ ∈ L2(Ω), û3

0(ντ) = 0 on ∂Ω},

E3
1 = {û3

1 ∈ L2(Ω; H1(D3))2 : û3
1(x, 1

2

√
2τ + z) = û3

1(x,− 1
2

√
2τ + z)

a.e. (x, z) ∈ Ω × S3,

û3
1(x, z)ζ = 0 a.e. (x, z) ∈ Ω × S3,

ey(û3
1)τζ = ey(û3

1)ζζ = 0},

E3
2 = {û3

2 ∈ L2(Ω × J3; H1(S3))2 : û3
2ζ = 0},

E3
3 = {û3

3 ∈ L2(Ω × J3; H1(S3))2 : û3
3τ = 0}.

For (û3
0, û

3
1, û

3
2, û

3
3) ∈ E3, we define e3

0(û
3
0, û

3
1, û

3
2, û

3
3) ∈ L2(R2 × D3; S2) by

e3
0(û

3
0, û

3
1, û

3
2, û

3
3)ττ = (∇û3

0)τ + ∇y(û3
1τ)τ,

e3
0(û

3
0, û

3
1, û

3
2, û

3
3)τζ = ∇y(û3

2ζ)τ,

e3
0(û

3
0, û

3
1, û

3
2, û

3
3)ζζ = ∇y(û3

3ζ)ζ.

We are interested in the asymptotic behaviour of (1.1) for the current choice of
Ωε and Γε. We assume that hypotheses (2.1)–(2.9) are satisfied for i ∈ {1, 2, 3}
(when i = 3, Y 2 must be replaced by D3). The following theorem (whose proof
we give in § 4.4) describes the asymptotic behaviour of uε and provides a corrector
result for both uε and e(uε).

Theorem 3.1. Let uε be the sequence of solutions of (1.1) and set γε = dε/(ε+dε).
We suppose there exists limε→0γε = γ (this always holds for a subsequence). Then
the sequences ûi

ε, i ∈ {1, 2, 3}, defined by (2.3) and (3.1) satisfy

γεe
i
ε(û

i
ε) → ei

0(û
i
0, û

i
1, û

i
2, û

i
3) in L2(R2 × D

i; S2),

where (ûi
0, û

i
1, û

i
2, û

i
3) ∈ Ei, i ∈ {1, 2, 3}, with û3

0 = û0τ , û0 = (û1
0, û

2
0), is a solution

of the variational problem
3∑

i=1

∫
Ω×Di

(Aiei
0(û

i
0, û

i
1, û

i
2, û

i
3) − γHi) : ei

0(v̂
i
0, v̂

i
1, v̂

i
2, v̂

i
3) dy dx

= γ

3∑
i=1

∫
Ω×Di

F iv̂0 dy dx

+ (1 − γ)
(∫

Ω×D1
F 1

2 v̂1
1,2 dy dx +

∫
Ω×D2

F 2
1 v̂2

1,1 dy dx

+
∫

Ω×D3
(F 3ζ)(v̂3

1ζ) dy dx

)

∀(v̂i
0, v̂

i
1, v̂

i
2, v̂

i
3) ∈ Ei, i ∈ {1, 2, 3},

such that v̂3
0 = v̂0τ, v̂0 = (v̂1

0 , v̂2
0).

(3.2)
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Moreover, the sequences gi
ε : Ωi

ε → R
2 and Gi

ε : Ωi
ε → S2, i ∈ {1, 2, 3}, defined

by (2.13)–(2.14) and

g3
ε,1(·) =

1
ε2

∫
Cε(·)

û0(ρ)τ dρ,

g3
ε,2(·) =

1
ε2

∫
Cε(·)

[
û0(ρ)ζ +

ε

dε
û3

1(ρ, y3
ε(·))ζ

]
dρ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

G3
ε(·) =

1
ε2

∫
Cε(·)

e3
0(û

3
0, û

3
1, û

3
2, û

3
3)(ρ, y3

ε(·)) dρ,

satisfy (2.15) and

lim
ε→0

γ2
ε

|Ω3
ε |

[∫
Ω3

ε

∣∣∣∣uε(x)τ − 1
γε

g3
ε,1(x)

∣∣∣∣
2

dx + γ2
ε

∫
Ω3

ε

∣∣∣∣uε(x)ζ − 1
γε

g3
ε,2(x)

∣∣∣∣
2

dx

+
∫

Ω3
ε

∣∣∣∣e(uε)(x)− 1
γε

G3
ε(x)

∣∣∣∣
2

dx

]
= 0.

(3.4)

Remark 3.2. As in remark 2.6, if (ûi
0, û

i
1, û

i
2, û

i
3) are sufficiently smooth, then the-

orem 3.1 provides an asymptotic development of uε such that (2.17) holds.

Remark 3.3. The main difference between (2.12) and (3.2) is due to the conditions
û3

0 = û0τ , û0 = (û1
0, û

2
0), which means that the limit system (3.2) is not decoupled,

i.e. we cannot decompose (3.2) into three independent problems, one for every
direction given by the index i ∈ {1, 2, 3}.

By the definition of Ei
0, i ∈ {1, 2}, we have that ∂x1 û

1
0 = e(û0)11 and ∂x2 û

2
0 =

e(û0)22 belong to L2(Ω). Since û3
0 ∈ E3

0 , we also have that (∇û3
0)τ belongs to L2(Ω),

and taking into account û3
0 = û0τ , this gives

1
2 (e(û0)11 + 2e(û0)12 + e(û0)22) = 1

2 (∂x1 û
1
0 + ∂x1 û

2
0 + ∂x2 û

1
0 + ∂x2 û

2
0)

= (∇û3
0)τ ∈ L2(Ω),

which shows that e(û0)12 is also in L2(Ω). Thus e(û0) belongs to L2(Ω; S2). Since
û0 is also in L2(Ω)2 and vanishes on ∂Ω, we conclude that û0 belongs to H1

0 (Ω)2.
Thus it is that we can now prove that û0 is a solution of an elliptic problem, as we
will see in proposition 3.4, where we consider the case of an homogeneous isotropic
elastic material.

Similarly to proposition 2.8, it is easy to prove the following result.

Proposition 3.4. We suppose that there exists λ � 0 and µ > 0 such that Aε is
defined by (2.19). We also suppose Fε = F and Hε = H for every ε > 0, with
F ∈ C0(Ω̄) and H ∈ C0(Ω̄; S2) fixed. Let (ûi

0, û
i
1, û

i
2, û

i
3) ∈ Ei, i ∈ {1, 2, 3}, be

a solution of (3.2). Then û0 = (û1
0, û

2
0) ∈ H1

0 (Ω)2 is the unique solution of the
variational problem∫

Ω

[Âe(û0) − γĤ] : e(v̂0) dx = (2 +
√

2)γ
∫

Ω

F v̂0 dx ∀v̂0 ∈ H1
0 (Ω)2, (3.5)
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where Â is the fourth-order tensor defined by

Â1111 = Λ(1 + 1
4

√
2), Â2222 = Λ(1 + 1

4

√
2), Âijkl = 1

4Λ
√

2 in the other cases,

with Λ given by (2.21), N = 2, and Ĥ ∈ C0(Ω̄; S2) defined by

Ĥ11 = H11 +
H11 + 2H12 + H22

2
√

2
− λ

λ + 2µ

(
H22 +

H11 − 2H12 + H22

2
√

2

)
,

Ĥ22 = H22 +
H11 + 2H12 + H22

2
√

2
− λ

λ + 2µ

(
H11 +

H11 − 2H12 + H22

2
√

2

)
,

Ĥ12 =
H11 + 2H12 + H22

2
√

2
− λ

λ + 2µ

H11 − 2H12 + H22

2
√

2
.

Remark 3.5. As expected, when H = 0 and γ = 1 (i.e. limε→0(ε/dε) = 0), equa-
tion (3.5) is the same problem obtained in [12], where problem (1.1) (in the isotropic
case) is studied by passing to the limit first in ε and then in dε.

Contrary to the structure considered in the previous section, we now see that û0
satisfies a non-degenerate elliptic problem in H1

0 (Ω)2, but we recall that û0 is the
limit of uε only if γ = 1 (see remark 2.10). For γ ∈ (0, 1), analogously to (2.22), we
have

u(x) = lim
ε→0

uε

=
1
γ

û0(x) +
1 − γ

(1 +
√

2)γ2

[∫
D1

û1
1,2(x, y) dy e2

+
∫

D2
û2

1,1(x, y) dy e1 +
∫

D3
û3

1(x, y)ζ dy ζ

]

=
1
γ

û0(x) +
1
γ2 w(x) a.e. x ∈ Ω,

with w = BF , where B is the matrix

B =
(1 − γ)2

30(2 +
√

2)Λ

(
1
2 (2

√
2 + 1) −

√
2

−
√

2 1
2 (2

√
2 + 1)

)
.

Then w is the solution of the degenerate problem B−1w = F (in fact, it is not a
partial differential problem), and therefore u does not satisfy an elliptic problem.
For γ = 0, we can prove that

lim
ε→0

γ2
εuε = w.

In conclusion, when γ �= 1, the limit problem for the macrostructure is degenerate
even with the extra oblique bars.

4. Proof of the results

This section demonstrates the homogenization results stated in the previous sections
(i.e. theorems 2.5 and 3.1). In order to prove theorem 2.5, we begin, in § 4.1, by
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proving estimates of Korn type for functions in H1
Γε

(Ωε)N . Afterwards, in § 4.2, we
consider a sequence uε in H1

Γε
(Ωε)N , which satisfies

1
|Ωε|

∫
Ωε

|e(uε)|2 dx � C ∀ε > 0.

Using the change of variables yi
ε, i ∈ {1, . . . , N}, given by (2.2), we transform uε

into new sequences of functions ûi
ε, i ∈ {1, . . . , N}, (see (2.3)), which are defined on

a fixed domain (independent of ε). Then we prove a compactness result for the new
sequences of functions. We emphasize that, in the compactness result, we do not
use uε as a solution of (1.1); we only assume that uε satisfies the above inequality.
Finally, in § 4.3, by means of the compactness result, we pass to the limit in (1.1).
In § 4.4, we prove theorem 3.1, following the same lines of theorem 2.5.

Throughout this section, C denotes a generic positive constant that can change
from one line to another one and does not depend on ε; by Oε we denote a generic
real sequence that can change from one line to another one and converges to zero
as ε tends to zero.

4.1. A priori estimates

We obtain some inequalities of Korn type for the model structure introduced
in § 2. We use the following version of Korn’s inequality.

Lemma 4.1. Let G be a bounded connected Lipschitz open set of R
N . Then there

exists C > 0 such that∫
G

∣∣∣∣∂xn
um(x) − 1

|G|

∫
G

∂xn
um(z) dz

∣∣∣∣
2

dx � C

∫
G

|e(u)|2 dx ∀m, n ∈ {1, . . . , N},

(4.1)
for every u ∈ H1(G)N .

Proof. Given u ∈ H1(G)N , by Korn’s inequality, there exist C > 0, independent
of u, and an N -dimensional skew-symmetric matrix P = (Pmn) such that∫

G

|∂xnum(x) − Pmn|2 dx � C

∫
G

|e(u)|2 dx ∀m, n ∈ {1, . . . , N}. (4.2)

Using

∫
G

∣∣∣∣∂xnum(x) − 1
|G|

∫
G

∂xnum(z) dz

∣∣∣∣
2

dx = min
s∈R

∫
G

|∂xnum(x) − s|2 dx

∀m, n ∈ {1, . . . , N},

we obtain (4.1).

The main result of this subsection is theorem 4.3. To prove it, we use the following
lemma.

Lemma 4.2. For a ∈ (0, 1
8 ) and ε > 0, we take

Lε(a) = {z ∈ εY N : |z′
1|∞ < 1

2εa}
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and
Lq

ε(a) = {z ∈ Lε(a) : |z1 − 1
2 (−1)qε| < 1

2εa}, q ∈ {1, 2}.

Then there exists C > 0, which does not depend on a, such that, for every u ∈
H1(Lε(a))N and every m �= 1, we have

∫
Lε(a)

|∂z1um|2 dz � C

(
1
a2

∫
Lε(a)

|e(u)|2 dz +
1

ε2a

2∑
q=1

∫
Lq

ε(a)
|um|2 dz

)
. (4.3)

Proof. It is enough to prove the result for ε = 1; the general case then follows using
the change of variables y = εz, which transforms Lε(a) in L1(a) and Lq

ε(a) in Lq
1(a),

q ∈ {1, 2}.
We write

L(a) = L1(a), Lq(a) = Lq
1(a), q ∈ {1, 2}.

For u = (u1, . . . , uN ) ∈ H1(L(a))N , we define w = (w1, . . . , wN ) ∈ H1(Y N )N by

w1(y) = u1(y1e1 + ay′
1), wm(y) = aum(y1e1 + ay′

1) ∀m ∈ {2, . . . , N}.

For m > 1, inequality (4.1) applied to wm gives
∫

L(a)

∣∣∣∣∂z1um − 1
|L(a)|

∫
L(a)

∂z1um dr

∣∣∣∣
2

dz

= aN−3
∫

Y N

∣∣∣∣∂y1wm −
∫

Y N

∂y1wm ds

∣∣∣∣
2

dy

� CaN−3
∫

Y N

|e(w)|2 dy

� C

a2

∫
L(a)

|e(u)|2 dz.

Thus we deduce∫
L(a)

|∂z1um|2 dz

� C

a2

∫
L(a)

|e(u)|2 dz +
2

aN−1

∣∣∣∣
∫

{z1=1/2}
um dz′

1 −
∫

{z1=−1/2}
um dz′

1

∣∣∣∣
2

. (4.4)

Taking into account the estimates

∣∣∣∣
∫

{z1=1/2}
um dz′

1 −
∫

{z1=−1/2}
um dz′

1

∣∣∣∣
2

� 2aN−1
(∫

{z1=1/2}
|um|2 dz′

1 +
∫

{z1=−1/2}
|um|2 dz′

1

)

and∫
{z1=(−1)q/2}

|um|2 dz′
1 � 4

a

∫
Lq(a)

|um|2 dz + a

∫
Lq(a)

|∂z1um|2 dz ∀q ∈ {1, 2},
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we derive, from (4.4),∫
L(a)

|∂z1um|2 dz

� C

a2

∫
L(a)

|e(u)|2 dz +
2∑

q=1

(
C

a

∫
Lq(a)

|um|2 dz + 4a

∫
Lq(a)

|∂z1um|2 dz

)
,

for every u ∈ H1(L(a))N . Since a < 1
8 , we conclude that (4.3) holds for ε = 1.

Theorem 4.3. There exists C > 0 such that, for every u ∈ H1
Γε

(Ωε)N and every
ε > 0, we have∫

ωε

|u|2 dx � dε

∫
Ωε

|e(u)|2 dx, (4.5)∫
Ωi

ε

|ui|2 dx � C

∫
Ωε

|e(u)|2 dx ∀i ∈ {1, . . . , N}, (4.6)

∫
Ωε

|u|2 dx � C

(
1 +

ε2

d2
ε

) ∫
Ωε

|e(u)|2 dx, (4.7)
∫

Ωi
ε

|∂xiuj |2 dx � C

(
1
ε2 +

1
d2

ε

) ∫
Ωε

|e(u)|2 dx ∀i, j ∈ {1, . . . , N}. (4.8)

Proof. Estimates (4.5) and (4.6) follow immediately from the Poincaré inequalities∫
P k

ε

|ui|2 dx � Cεdε

∫
L

i,k′
i

ε

|∂xiui|2 dx ∀i ∈ {1, . . . , N},

∫
L

i,k′
i

ε

|ui|2 dx � C

∫
L

i,k′
i

ε

|∂xi
ui|2 dx ∀i ∈ {1, . . . , N},

for every k ∈ Z
N , every ε > 0 and every u ∈ H1

Γε
(Ωε)N .

Since the constant that appears in lemma 4.2 is invariant by translations and
rotations, for every i ∈ {1, . . . , N}, m ∈ {1 . . . , N} \ {i} and ε > 0 (small enough),
we get∫

Bi,k
ε +εei/2

|∂xium|2 dx � C

(
1
d2

ε

∫
Bi,k

ε +εei/2
|e(u)|2 dx +

1
ε2dε

∫
P k

ε ∪P
k+ei
ε

|um|2 dx

)
,

for every u ∈ H1
Γε

(Ωε)N . Adding these inequalities in k ∈ Z
N , we obtain

∫
Ωi

ε

|∂xium|2 dx � C

(
1
d2

ε

∫
Ωi

ε

|e(u)|2 dx +
1

ε2dε

∫
ωε

|um|2 dx

)

∀u ∈ H1
Γε

(Ωε)N ∀ε > 0. (4.9)

Then, by (4.5), we deduce (4.8).
Finally, in order to demonstrate (4.7), we use the fact that, for i, m as above and

ε > 0, we have∫
Bi,k

ε

|um|2 dx � C

(
ε2

∫
Bi,k

ε

|∂xium|2 dx +
1
dε

∫
P k

ε

|um|2 dx

)
.
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Adding in k ∈ Z
N and using (4.5) and (4.8), we conclude that

∫
Ωi

ε

|um|2 dx � C

(
1 +

ε2

d2
ε

) ∫
Ωε

|e(u)|2 dx,

which implies that (4.7).

Remark 4.4. In theorem 4.3, we consider homogeneous Dirichlet boundary condi-
tions everywhere on the outer boundary. However, the same proof shows that the
result holds true if we suppose, for every i ∈ {1, . . . , N}, that uε,i = 0 on ∂Ωε ∩V i

ε .

4.2. Compactness result

In this subsection we consider a sequence uε that satisfies

1
|Ωε|

∫
Ωε

|e(uε)|2 dx � C ∀ε > 0, (4.10)

with Ωε the model structure defined in § 2, and we obtain a compactness result
(theorem 4.7) for the sequences ûi

ε, i ∈ {1, . . . , N}, defined by (2.3). This result will
be applied later to the sequence of solutions of (1.1). We start with the following
lemma.

Lemma 4.5. Let uε be a sequence in H1
Γε

(Ωε)N such that (4.10) holds and define
ūε : R

N → R
N by

ūε(x) =
1

|Pε(x)|

∫
Pε(x)

uε(η) dη. (4.11)

Then, for every i ∈ {1, . . . , N}, there exists ûi
0 ∈ Ei

0 such that, up to a subsequence,
we have

ūε,i ⇀ ûi
0 in L2(RN ),

ūε,i(· + εei) − ūε,i(·)
ε

⇀ ∂xi û
i
0 in L2(RN ).

Proof. Taking into account that ūε is constant on each cube Ck
ε , k ∈ Z

N , and using
Hölder’s inequality, we obtain

∫
RN

|ūε(x)|2 dx =
∑

k∈ZN

(
1

εNdN
ε

)2 ∫
Ck

ε

∣∣∣∣
∫

P k
ε

uε(η) dη

∣∣∣∣
2

dx � 1
dN

ε

∫
ωε

|uε(x)|2 dx.

Using (4.5) and (4.10), we deduce that ūε is bounded in L2(RN )N , and then, for
every i ∈ {1, . . . , N}, there exists ûi

0 in L2(RN ) such that, up to a subsequence, ūε,i

converges to ûi
0 in the weak topology of L2(RN ). On the other hand, the sequence

v̄ε, defined by

v̄ε,i =
ūε,i(· + εei) − ūε,i(·)

ε
, i ∈ {1, . . . , N}, ε > 0,
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satisfies∫
RN

|v̄ε,i|2 dx =
∑

k∈ZN

∫
Ck

ε

|v̄ε,i|2 dx

=
εN

(εNdN
ε )2

∑
k∈ZN

∣∣∣∣
∫

P k
ε

uε,i(η + εei) − uε,i(η)
ε

dη

∣∣∣∣
2

. (4.12)

By (4.10), the estimate

∣∣∣∣
∫

P k
ε

[uε,i(η + εei) − uε,i(η)] dη

∣∣∣∣
2

�
∣∣∣∣
∫ ε

0

∫
P k

ε

|∂xiuε,i(η + tei)| dη dt

∣∣∣∣
2

� ε2d2
ε

∣∣∣∣
∫

Bi,k
ε ∪B

i,k+ei
ε

|∂xiuε,i(η)| dη

∣∣∣∣
2

� C(εdε)2εNdN−1
ε

∫
Bi,k

ε ∪B
i,k+ei
ε

|∂xiuε,i(η)|2 dη

and (4.12), we derive

‖v̄ε,i‖2
L2(RN ) � C

dN−1
ε

∫
Ωi

ε

|∂xiuε,i(η)|2 dη � C.

Then there exists v̄ ∈ L2(RN )N such that, up to a subsequence, v̄ε converges weakly
to v̄ in L2(RN )N .

Now, for ϕ ∈ C∞
0 (RN ), we have∫

RN

v̄i(x)ϕ(x) dx =
∫

RN

v̄ε,i(x)ϕ(x) dx + Oε

=
∫

RN

ūε,i(x)
ϕ(x − εei) − ϕ(x)

ε
dx + Oε

= −
∫

RN

ûi
0(x)∂xi

ϕ(x) dx + Oε ∀i ∈ {1, . . . , N}.

This implies that v̄i = ∂xi û
i
0 for every i ∈ {1, . . . , N}. Furthermore, since ūε = 0 in

{x ∈ R
N : dist(x, Ω) > ε

√
N} and Ω is smooth, we conclude that ûi

0 belongs to Ei
0

for every i ∈ {1, . . . , N}.

Remark 4.6. The definition (4.11) of ūε is closely related to the operator Pε con-
sidered in [3].

Theorem 4.7. We assume that there exists

lim
ε→0

(
ε

dε

)
= ϑ ∈ [0, +∞]

(this always holds for a subsequence). Let uε be a sequence in H1
Γε

(Ωε)N that satis-
fies (4.10) and define ûi

ε, i ∈ {1, . . . , N}, by (2.3). Then, for every i ∈ {1, . . . , N},
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there exists a subsequence of ε, still denoted by ε, and (ûi
0, û

i
1, û

i
2, û

i
3) ∈ Ei such that

ûi
ε,i ⇀ ûi

0 in L2(Ω × Y N ), (4.13)

ûi
ε,m ⇀ ûm

0 if ϑ = 0,

ûi
ε,m ⇀ ûm

0 + ϑûi
1,m if ϑ ∈ (0, +∞) in L2(Ω × Y N ) ∀m �= i,

dε

ε
ûi

ε,m ⇀ ûi
1,m if ϑ = +∞,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.14)

ei
ε(û

i
ε) ⇀ ei

0(û
i
0, û

i
1, û

i
2, û

i
3) in L2(Ω × Y N ; SN ), (4.15)

where ei
0(û

i
0, û

i
1, û

i
2, û

i
3) is defined by (2.4).

Proof. We fix i ∈ {1, . . . , N} and we proceed in several steps.

Step 1. Using the change of variables (2.2) and the fact that, for every k ∈ Z
N ,

ûi
ε(x, y) does not depend on x in Ck

ε × Y N , we obtain∫
Ωi

ε

|uε,m(x)|2 dx =
∑

k∈ZN

∫
Bi,k

ε

|uε,m(x)|2 dx

= dN−1
ε

∑
k∈ZN

εN

∫
Y N

|ûi
ε,m(εk, y)|2 dy

= dN−1
ε

∑
k∈ZN

∫
Ck

ε

∫
Y N

|ûi
ε,m(x, y)|2 dy dx

= dN−1
ε

∫
RN ×Y N

|ûi
ε,m(x, y)|2 dy dx ∀m ∈ {1, . . . , N}.

Then, from (4.6), (4.7) and (4.10), we derive∫
RN ×Y N

|ûi
ε,i(x, y)|2 dy dx � C, (4.16)

∫
RN ×Y N

|ûi
ε,m(x, y)|2 dy dx � C

(
1 +

ε2

d2
ε

)
∀m ∈ {1, . . . , N} \ {i}. (4.17)

Reasoning analogously with ∂xi
uε,m, m �= i, and e(uε), and taking into account (4.8)

and (4.10), we deduce that∫
RN ×Y N

|∂yi û
i
ε,m(x, y)|2 dy dx � C

(
1 +

ε2

d2
ε

)
∀m �= i (4.18)

and ∫
RN ×Y N

|ei
ε(û

i
ε)|2 dy dx � C. (4.19)

From (4.18) and (4.19), it immediately follows that∫
RN ×Y N

|∂ym ûi
ε,i(x, y)|2 dy dx � C(ε2 + d2

ε) ∀m �= i. (4.20)
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Taking into account

1
dε

∫
|yi|<dε/2

ûi
ε,i(·, y) dy = ūε,i(·), (4.21)

with ūε,i defined by (4.11), and using (4.19) and (4.20), we obtain

‖ûi
ε,i − ūε,i‖2

L2(RN ×Y N ) � C‖∇yûi
ε,i‖2

L2(RN ×Y N )N � C(ε2 + d2
ε) ∀ε > 0.

Then, from lemma 4.5, we deduce that there exists ûi
0 ∈ Ei

0 such that, up to a
subsequence, equation (4.13) holds.

From (4.19), we derive that there exists a subsequence of ε, still denoted by ε,
such that ei

ε(û
i
ε) converges weakly in L2(RN × Y N ; SN ). The following steps of the

proof are devoted to characterizing this limit.

Step 2. We define ŵi
ε : R

N × Y N → R
N by

ŵi
ε,i(x, y)

=
1
ε

(
ûi

ε,i(x, y) − 1
dε

∫
|ηi|<dε/2

ûi
ε,i(x, η) dη −

∑
n �=i

∫
Y N

∂yn
ûi

ε,i(x, η) dη yn

)
,

ŵi
ε,m(x, y)

=
dε

ε

(
ûi

ε,m(x, y) − 1
dε

∫ dε/2

−dε/2
ûi

ε,m(x, ηiei + y′
i) dηi −

∫
Y N

∂yi û
i
ε,m(x, η) dη yi

)
,

m �= i,

for every ε > 0 and a.e. (x, y) ∈ R
N × Y N . By (4.19), ey(ŵi

ε)ii is bounded in
L2(RN × Y N ) and ey(ŵi

ε)in, ey(ŵi
ε)mn converge strongly to zero in L2(RN × Y N )

for every m, n ∈ {1, . . . , N} \ {i}. Since

∫
Y N

∂ym
ŵi

ε,i(x, η) dη =
∫

Y N

∂yi
ŵi

ε,m(x, η) dη = 0 a.e. x ∈ R
N

∀m ∈ {1, . . . , N} \ {i},

lemma 4.1 implies that, for every m �= i, ∂ym
ŵi

ε,i and ∂yi
ŵi

ε,m are bounded in
L2(RN × Y N ). Moreover, since∫

|ηi|<dε/2
ŵi

ε,i(x, η) dη = 0 a.e. x ∈ R
N (4.22)

and ∫ dε/2

−dε/2
ŵi

ε,m(x, ηiei + y′
i) dηi = 0 ∀m �= i a.e. (x, y′

i) ∈ R
N × Si, (4.23)

the Poincaré–Wirtinger inequality gives∫
Y N

|ŵi
ε,i(x, η)|2 dη � C

∫
Y N

|∇yŵi
ε,i(x, η)|2 dη a.e. x ∈ R

N
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and∫
Y

|ŵi
ε,m(x, ηiei + y′

i)|2 dηi � C

∫
Y

|∂yi
ŵi

ε,m(x, ηiei + y′
i)|2 dηi

∀m �= i a.e. (x, y′
i) ∈ R

N × Si.

Integrating these inequalities, we derive that ŵi
ε is bounded in L2(RN ×Y N )N , and,

as ey(ŵi
ε) is also bounded in L2(RN ×Y N ; SN ), from Korn’s inequality, we conclude

that ŵi
ε is really bounded in L2(RN ; H1(Y N ))N . Thus there exist a subsequence

of ε, still denoted by ε, and ŵi ∈ L2(RN ; H1(Y N ))N such that

ŵi
ε ⇀ ŵi in L2(RN ; H1(Y N ))N .

Clearly,

ey(ŵi)in = ey(ŵi)mn = 0 for every m, n ∈ {1, . . . , N} \ {i}.

Furthermore, by (4.23), ŵi
m(x, y′

i) = 0, for every m �= i and a.e. (x, y′
i) ∈ R

N × Si.
By the definition of ûi

ε, we have that

ûi
ε,j(x + εei, ·) = ûi

ε,j(x, · + ei) in L2({yi = − 1
2}) ∀j ∈ {1, . . . , N} a.e. x ∈ R

N .
(4.24)

From (4.24) with j = i, it follows that, for a.e. y ∈ {yi = − 1
2} and a.e. x ∈ R

N ,

ŵi
ε,i(x, y + ei) − ŵi

ε,i(x + εei, y)

=
1

εdε

∫
|ηi|<dε/2

(ûi
ε,i(x + εei, η) − ûi

ε,i(x, η)) dη

+
1
ε

∑
n �=i

∫
Y N

(∂yn
ûi

ε,i(x + εei, η) − ∂yn
ûi

ε,i(x, η)) dη yn. (4.25)

From (4.21) and lemma 4.5, we obtain

1
εdε

∫
|ηi|<dε/2

(ûi
ε,i(x + εei, η) − ûi

ε,i(x, η)) dη ⇀ ∂xi û
i
0 in L2(RN ).

We now consider ϕ ∈ C∞
0 (RN ) and n ∈ {1, . . . , N} \ {i}. By (4.20), we have

1
ε

∫
RN

∫
Y N

(∂yn
ûi

ε,i(x + εei, η) − ∂yn
ûi

ε,i(x, η)) dηϕ(x) dx

=
∫

RN

∫
Y N

∂yn ûi
ε,i(x, η) dη

ϕ(x − εei) − ϕ(x)
ε

dx + Oε = Oε.

Thus the second term on the right-hand side of (4.25) tends to zero in the sense of
the distributions. So, passing to the limit in (4.25), we get

ŵi
i(x, · + ei) − ŵi

i(x, ·) = ∂xi û
i
0(x) in L2({yi = − 1

2}) a.e. x ∈ R
N .
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On the other hand, using (4.24) for j = m ∈ {1, . . . , N} \ {i}, we deduce that, for
a.e. y ∈ {yi = − 1

2} and a.e. x ∈ R
N ,

ŵi
ε,m(x, y + ei) − ŵi

ε,m(x + εei, y)

=
1
ε

∫ dε/2

−dε/2
(ûi

ε,m(x + εei, ηiei + y′
i) − ûi

ε,m(x, ηiei + y′
i)) dηi

− dε

2ε

∫
Y N

(∂yi û
i
ε,m(x + εei, η) + ∂yi û

i
ε,m(x, η)) dη. (4.26)

We study the two terms on the right-hand side of (4.26). To calculate the limit in
D′(RN × Si) of the first term, we take ϕ ∈ C∞

0 (RN × Si). We have

∫
RN

∫
Si

1
ε

∫ dε/2

−dε/2
(ûi

ε,m(x + εei, ηiei + y′
i) − ûi

ε,m(x, ηiei + y′
i)) dηiϕ(x, y′

i) dy′
i dx

=
∫

RN

∫
Si

∫ dε/2

−dε/2
ûi

ε,m(x, ηiei + y′
i) dηi

ϕ(x − εei, y
′
i) − ϕ(x, y′

i)
ε

dy′
i dx.

(4.27)

An easy calculation shows that

1
dε

∫ dε/2

−dε/2
ûi

ε,m(x, ηiei + y′
i) dηi

=
1
dε

∫ dε/2

−dε/2
uε,m

(
εκ

(
x

ε

)
+ εdε

ηi

dε
ei + ε(dεym)em + εdε

∑
n �=i,m

ynen

)
dηi

=
∫ 1/2

−1/2
ûm

ε,m

(
x, τiei + dεymem +

∑
n �=i,m

ynen

)
dτi,

for every m �= i and a.e. (x, y′
i) ∈ R

N × Si. Taking into account (4.21) and the
corresponding estimates to (4.19) and (4.20) for ûm

ε , we derive

∫
Ω

∫
Si

∣∣∣∣ūε,m(x) − 1
dε

∫ dε/2

−dε/2
ûi

ε,m(x, ηiei + y′
i)dηi

∣∣∣∣
2

dy′
i dx � C‖∇yûm

ε,m‖L2(Ω×Y N )N

� C(ε2 + d2
ε).

Thus, up to a subsequence, we have

1
dε

∫ dε/2

−dε/2
ûi

ε,m(·, ηiei+·) dηi ⇀ ûm
0 in L2(Ω×Si) ∀m ∈ {1, . . . , N}\{i}. (4.28)

So, from (4.27) and (4.28), we get

1
ε

∫ dε/2

−dε/2
(ûi

ε,m(x + εei, ηiei + y′
i) − ûi

ε,m(x, ηiei + y′
i)) dηi → 0 in D′(RN × Si).

(4.29)
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For the second term on the right-hand side of (4.26), we take ϕ ∈ C∞
0 (RN ), and,

using the change of variables (2.2) and the estimates (4.8) and (4.10), we get

dε

2ε

∫
RN

∫
Y N

(∂yi
ûi

ε,m(x + εei, η) + ∂yi
ûi

ε,m(x, η)) dηϕ(x) dx

=
dε

ε

∑
k∈ZN

1
εNdN−1

ε

∫
Bi,k

ε

ε∂xi
uε,m(ρ)

∫
Ck

ε

1
2 (ϕ(x − εei) + ϕ(x)) dxdρ

=
dε

dN−1
ε

∑
k∈ZN

∫
Bi,k

ε

∂xi
uε,m(ρ)ϕ(ρ) dρ + Oε

=
dε

dN−1
ε

∫
Ωi

ε

∂xiuε,m(ρ)ϕ(ρ) dρ + Oε

= − dε

dN−1
ε

∫
Ωi

ε

uε,m(ρ)∂xiϕ(ρ) dρ + Oε. (4.30)

By (4.7) and (4.10), we have

∣∣∣∣ dε

dN−1
ε

∫
Ωi

ε

uε,m(ρ)∂xi
ϕ(ρ) dρ

∣∣∣∣
2

� C
d2

ε

dN−1
ε

∫
Ωi

ε

|uε,m(ρ)|2 dρ � C(ε2 + d2
ε).

So (4.30) gives

dε

2ε

∫
Y N

(∂yi
ûi

ε,m(x + εei, η) + ∂yi
ûi

ε,m(x, η)) dη → 0 in D′(RN ). (4.31)

Using (4.29) and (4.31), we can pass to the limit in (4.26) to conclude that

ŵi
m(x, · + ei) = ŵi

m(x, ·) in L2({yi = − 1
2}) a.e. x ∈ R

N ∀m �= i.

Hence the function

ûi
1(x, y) = ŵi(x, y) − ∂xi

ûi
0(x)yiei, (x, y) ∈ R

N × Y N ,

belongs to Ei
1 and satisfies

ei
ε(û

i
ε)ii ⇀ ∂xi û

i
0 + ∂yi û

i
1,i in L2(RN × Y N ).

In order to prove (4.14), we distinguish between two cases, depending on the ratio
of ε to dε. First, we suppose that ϑ ∈ [0, +∞). From (4.28), the definition of ŵi

ε,m

and its convergence to ûi
1,m in the weak topology of L2(RN × Y N ), m �= i, we have

ûi
ε,m(x, y)− ûm

0 (x)−
∫

Y N

∂yi û
i
ε,m(x, η) dη yi − ε

dε
ûi

1,m(x, y) ⇀ 0 in L2(RN ×Y N ).

(4.32)
By (4.18), we also have that ∂yi û

i
ε,m, m �= i, is bounded in L2(RN × Y N ). We

consider ϕ in C∞
0 (RN ). Using the change of variables (2.2) and the estimates (4.7)
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and (4.10), we obtain∣∣∣∣
∫

RN

∫
Y N

∂yi û
i
ε,m(x, η) dηϕ(x) dx

∣∣∣∣ =
∣∣∣∣ ε

dN−1
ε

∫
Ωi

ε

∂xiuε,m(z)ϕ(z) dz

∣∣∣∣ + Oε

=
∣∣∣∣ ε

dN−1
ε

∫
Ωi

ε

uε,m(z)∂xiϕ(z) dz

∣∣∣∣ + Oε

� Cε

(
1 +

ε2

d2
ε

)1/2

+ Oε

� Cε + Oε

= Oε, (4.33)

which, joined to (4.18), implies that∫
Y N

∂yi û
i
ε,m(x, η) dη yi ⇀ 0 in L2(RN × Y N ) ∀m �= i.

Hence, from (4.32), we derive

ûi
ε,m ⇀ ûm

0 + ϑûi
1,m in L2(RN × Y N ) ∀m �= i if ϑ ∈ [0, +∞). (4.34)

Let us now suppose that ϑ = limε→0(ε/dε) = +∞. In this case, from (4.28) and
the definition of ŵi

ε,m, m �= i, we obtain

dε

ε
ûi

ε,m(x, y) − dε

ε

∫
Y N

∂yi û
i
ε,m(x, η) dη yi − ûi

1,m(x, y) ⇀ 0

in L2(RN × Y N ) ∀m �= i. (4.35)

By virtue of (4.18), (dε/ε)∂yi
ûi

ε,m is bounded in L2(Ω × Y N ) and, reasoning as
in (4.33), we get∣∣∣∣dε

ε

∫
RN

∫
Y N

∂yi û
i
ε,m(x, η) dηϕ(x) dx

∣∣∣∣ =
∣∣∣∣dε

ε

ε

dN−1
ε

∫
Ωi

ε

uε,m(z)∂xiϕ(z) dz

∣∣∣∣ + Oε

� Cdε

(
1 +

ε2

d2
ε

)1/2

+ Oε

= Oε ∀ϕ ∈ C∞
0 (RN ),

which, together with (4.35), implies

dε

ε
ûi

ε,m ⇀ ûi
1,m in L2(RN × Y N ) ∀m �= i if ϑ = +∞.

This completes the proof of (4.14).

Step 3. Let us now characterize the weak limit of ei
ε(û

i
ε)im in L2(RN ×Y N ), m �= i.

We start by extending ûi
ε to R

N × (Rei + Si) by taking

ûi
ε(x, y) = uε

(
εκ

(
x

ε

)
+ εyiei + εdεy

′
i

)
∀i ∈ {1, . . . , N} ∀ε > 0.

https://doi.org/10.1017/S0308210500003620 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003620


The elasticity system in thin reticulated structures 1069

In this way, ûi
ε belongs to L2(RN ; H1(Rei + Si))N and satisfies

ûi
ε(x, y) = ûi

ε(x + nεei, (yi − n)ei + y′
i) ∀n ∈ Z, i ∈ {1, . . . , N}, ε > 0. (4.36)

Using this extension, we construct a regularization ũi
ε : R

N × Y N → R
N of ûi

ε by

ũi
ε(x, y) =

1
dε

∫ dε/2

−dε/2
ûi

ε(x, (yi + ηi)ei + y′
i) dηi, ε > 0.

Then ∂yi
ũi

ε belongs to L2(RN ; H1(Y N ))N for every ε > 0.
We take s̃i

ε as s̃i
ε,i = ũi

ε,i/(εdε), s̃i
ε,m = ũi

ε,m/ε if m �= i. Using

∂2
ynym

s̃i
ε,i = ∂ymey(s̃i

ε)in + ∂yney(s̃i
ε)im − ∂yiey(s̃i

ε)nm

∀m, n ∈ {1, . . . , N} \ {i}, ε > 0,

and the fact that, for every m, n ∈ {1, . . . , N} \ {i}, ∂ymey(s̃i
ε)in, ∂yney(s̃i

ε)im and
∂yiey(s̃i

ε)mn belong to L2(RN × J i; H−1(Si)), we get

∇y′
i
(∂ym s̃i

ε,i)(x, yiei + ·) ∈ H−1(Si)N−1 for a.e. (x, yi) ∈ R
N × Y.

Then, by a known result (see, for instance, [24]), ∂ym
s̃i

ε,i(x, yiei + ·) belongs to
L2(Si) and satisfies∥∥∥∥∂ym s̃i

ε,i(x, yiei + ·) −
∫

Si

∂ym s̃i
ε,i(x, yiei + η′

i) dη′
i

∥∥∥∥
2

L2(Si)

� C
∑
n �=i

(‖∂ymey(s̃i
ε)in(x, yiei + ·)‖2

H−1(Si)

+ ‖∂yney(s̃i
ε)im(x, yiei + ·)‖2

H−1(Si))

+ C
∑
n �=i

‖∂yiey(s̃i
ε)mn(x, yiei + ·)‖2

H−1(Si)

for every m ∈ {1 . . . , N} \ {i}, every ε > 0 and a.e. (x, yi) ∈ R
N × Y . Integrating

this inequality in (x, yi) ∈ R
N × Y , we get∥∥∥∥∂ym s̃i

ε,i −
∫

Si

∂ym s̃i
ε,idη′

i

∥∥∥∥
2

L2(RN ×Y N )

� C
∑
n �=i

(‖∂ym
ey(s̃i

ε)in‖2
L2(RN ×Ji;H−1(Si)) + ‖∂yn

ey(s̃i
ε)im‖2

L2(RN ×Ji;H−1(Si)))

+ C
∑
n �=i

‖∂yiey(s̃i
ε)mn‖2

L2(RN ×Ji;H−1(Si))

� C
∑
n �=i

‖ey(s̃i
ε)in‖2

L2(RN ×Y N ) + C
∑
n �=i

‖∂yiey(s̃i
ε)mn‖2

L2(RN ×Y N ). (4.37)

Now we use

‖ey(s̃i
ε)in‖2

L2(RN ×Y N ) =
∫

RN ×Y N

∣∣∣∣ 1
dε

∫ dε/2

−dε/2
ei
ε(û

i
ε)in(x, (yi + ηi)ei + y′

i) dηi

∣∣∣∣
2

dy dx

� C‖ei
ε(û

i
ε)‖2

L2(RN ×Y N ) (4.38)
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and

‖∂yi
ey(s̃i

ε)mn‖2
L2(RN ×Y N ) =

∫
RN ×Y N

|ei
ε(û

i
ε)mn(x, (yi + 1

2dε)ei + y′
i)

− ei
ε(û

i
ε)mn(x, (yi − 1

2dε)ei + y′
i)|2 dy dx

� C‖ei
ε(û

i
ε)‖2

L2(RN ×Y N ). (4.39)

So, from (4.37)–(4.39) and (4.19) and the definition of s̃i
ε,i, we deduce that∥∥∥∥ 1

εdε

(
∂ym ũi

ε,i −
∫

Si

∂ym
ũi

ε,i dτ ′
i

)∥∥∥∥
2

L2(RN ×Y N )
� C ∀m �= i. (4.40)

From (4.19) and (4.40), it easily follows that∥∥∥∥1
ε

(
∂yi

ũi
ε,m −

∫
Si

∂yi
ũi

ε,m dτ ′
i

)∥∥∥∥
2

L2(RN ×Y N )
� C ∀m �= i. (4.41)

We define t̃iε : R
N × Y N → R

N by

t̃iε,i(x, y) =
1

εdε

(
ũi

ε,i(x, y) −
∫

Si

ũi
ε,i(x, yiei + τ ′

i) dτ ′
i

−
∑
n �=i

(∫
Si

∂yn
ũi

ε,i(x, yiei + τ ′
i) dτ ′

i

)
yn

)
,

t̃iε,m(x, y) =
1
ε

(
ũi

ε,m(x, y) −
∫

Y

ũi
ε,m(x, τiei + y′

i) dτi

−
∫

Si

ũi
ε,m(x, yiei + τ ′

i) dτ ′
i +

∫
Y N

ũi
ε,m(x, τ) dτ

)
if m �= i.

From (4.40) and (4.41), we obtain

‖∂ym
t̃iε,i‖L2(RN ×Y N ) � C, ‖∂yi

t̃iε,m‖L2(RN ×Y N ) � C (4.42)

for every ε > 0 and every i, m ∈ {1, . . . , N} with m �= i. Moreover, since∫
Si

t̃iε,i(x, yiei + η′
i) dη′

i = 0 a.e. (x, yi) ∈ R
N × Y (4.43)

and ∫
Y

t̃iε,m(x, ηiei + y′
i) dηi = 0 a.e. (x, y′

i) ∈ R
N × Si ∀m �= i, (4.44)

the Poincaré–Wirtinger inequality gives∫
Si

|t̃iε,i(x, yiei + η′
i)|2 dη′

i � C
∑
m�=i

∫
Si

|∂ym
t̃iε,i(x, yiei + η′

i)|2 dη′
i

a.e. (x, yi) ∈ R
N × Y
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and∫
Y

|t̃iε,m(x, ηiei + y′
i)|2 dηi � C

∫
Y

|∂yi
t̃iε,m(x, ηiei + y′

i)|2 dηi,

a.e. (x, y′
i) ∈ R

N × Si.

So t̃iε,i and t̃iε,m, m �= i, are, respectively, bounded in

L2(RN × J i; H1(Si)) and L2(RN × Si; H1(J i)).

Extracting a subsequence of ε if necessary, we deduce that there exists

t̂i = (t̂i1, . . . , t̂
i
N )

such that

t̃iε,i ⇀ t̂ii in L2(RN × J i; H1(Si)),

t̃iε,m ⇀ t̂im in L2(RN × Si; H1(J i)) ∀m �= i.

We remark that

ey(t̃iε)mn(x, y) =
∫ dε/2

−dε/2

(
ei
ε(û

i
ε)mn(x, (yi + ηi)ei + y′

i)

−
∫

Y

ei
ε(û

i
ε)mn(x, (τi + ηi)ei + y′

i) dτi

)
dηi,

ey(t̃iε)im(x, y) =
1
dε

∫ dε/2

−dε/2

(
ei
ε(û

i
ε)im(x, (yi + ηi)ei + y′

i)

−
∫

Si

ei
ε(û

i
ε)im(x, (yi + ηi)ei + τ ′

i) dτ ′
i

)
dηi,

for every m, n ∈ {1, . . . , N} \ {i} and a.e. (x, y) ∈ R
N × Y N . So, by (4.19), we can

now pass to the limit in ε to deduce

ey(t̂i)mn = 0 ∀m, n ∈ {1, . . . , N} \ {i}, (4.45)

ey(t̂i)im(x, y) = µ̂i
m(x, y) −

∫
Si

µ̂i
m(x, yiei + τ ′

i) dτ ′
i ∀m ∈ {1, . . . , N} \ {i},

where we denote by µ̂i
m the weak limit in L2(RN × Y N ) of ei

ε(û
i
ε)im, m �= i.

We define ûi
2 = (ûi

2,1, . . . , û
i
2,N ) by

ûi
2,i(x, y) = t̂ii(x, y) + 2

∑
r �=i

∫
Si

µ̂i
r(x, yiei + τ ′

i) dτ ′
iyr,

ûi
2,m(x, y) = t̂im(x, y) ∀m �= i.

Then ûi
2,i belongs to L2(RN × J i; H1(Si)), ûi

2,m belongs to L2(RN × Si; H1(J i))
for m �= i and

ei
ε(û

i
ε)im ⇀ µ̂i

m = ey(ûi
2)im in L2(RN × Y N ).

From the definition of ûi
2,m and (4.45), ûi

2 satisfies∫
Si

ûi
2,m(x, yiei + η′

i) dη′
i = 0 a.e. (x, yi) ∈ R

N × Y (4.46)
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and
ey(ûi

2)mn = 0 ∀m, n ∈ {1, . . . , N} \ {i}. (4.47)

We prove that, for every m �= i, ûi
2,m is periodic in the variable yi. For this pur-

pose, we remark that, since ûi
2,m belongs to L2(RN × Si; H1(J i)), equations (4.46)

and (4.47) imply that, for every m, n �= i, there exists gi
mn ∈ L2(RN ; H1(J i)) such

that gi
mn = −gi

nm and ûi
2,m satisfies

ûi
2,m(x, y) =

∑
n �=i

gi
mn(x, yi)yn ∀m �= i a.e. (x, y) ∈ R

N × Y N .

In particular, this shows that ûi
2,m ∈ L2(RN ; H1(Y N )) for every m �= i. Moreover,

in order to prove that ûi
2,m is periodic in yi, it suffices to prove this property for

the functions gi
mn, m, n ∈ {1, . . . , N} \ {i}. Now

gi
mn(x, yi) = 12

∫
Si

ûi
2,m(x, yiei + η′

i)ηn dη′
i

= lim
ε→0

12
∫

Si

t̃iε,m(x, yiei + η′
i)ηn dη′

i in L2(RN ; H1(J i)).

From the definition of t̃iε,m and the equality

ũi
ε,m(x + εei, ·) = ũi

ε,m(x, · + ei) in L2({yi = − 1
2}) a.e. x ∈ R

N ,

we derive

gi
mn(x, 1

2 ) − gi
mn(x,− 1

2 )

= lim
ε→0

12
ε

∫
Y N

(ũi
ε,m(x + εei, η) − ũi

ε,m(x, η))ηn dη in L2(RN ). (4.48)

For ϕ ∈ C∞
0 (RN ), we have

1
ε

∫
RN

∫
Y N

(ũi
ε,m(x + εei, η) − ũi

ε,m(x, η))ηn dηϕ(x) dx

=
∫

RN

∫
Y N

ũi
ε,m(x, η)ηn dη

ϕ(x − εei) − ϕ(x)
ε

dx

=
∫

RN

∫
Y N

(r̃i
ε,m(x, η) + ũi

ε,m(x, η′
i))ηn dη

ϕ(x − εei) − ϕ(x)
ε

dx,

where we denote

r̃i
ε,m(x, y) = ũi

ε,m(x, y)−
∫

Si

ũi
ε,m(x, yiei + τ ′

i) dτ ′
i − ũi

ε,m(x, y′
i)+

∫
Si

ũi
ε,m(x, τ ′

i) dτ ′
i .

From r̃i
ε,m(x, y′

i) = 0, a.e. (x, y′
i) ∈ R

N × Si, ∂yi
r̃i
ε,m = ε∂yi

t̃iε,m, equation (4.42)
and the inequality∫

Y

|r̃i
ε,m(x, ηiei + y′

i) − r̃i
ε,m(x, y′

i)|2 dηi

� C

∫
Y

|∂yi r̃
i
ε,m(x, ηiei + y′

i)|2 dηi a.e. (x, y′
i) ∈ R

N × Si,
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we deduce that∫
RN

∫
Y N

r̃i
ε,m(x, η)ηn dη

ϕ(x − εei) − ϕ(x)
ε

dx = Oε ∀m �= i. (4.49)

On the other hand, by the definition of ũi
ε,m and the change of variables (2.2), we

have ∫
Y N

ũi
ε,m(x, η′

i)ηn dη =
1
dε

∫
Si

∫ dε/2

−dε/2
ûi

ε,m(x, ηiei + η′
i)ηn dηi dη′

i

=
1

εNdN
ε

∫
Pε(x)

uε,m(z)
zn − εκn(x/ε)

εdε
dz

=
1
dε

∫
Sm

∫ dε/2

−dε/2
ûm

ε,m(x, ηmem + η′
m)ηn dηm dη′

m

for a.e. x ∈ Ω. Then∫
RN

∫
Y N

ũi
ε,m(x, η′

i)ηn dη
ϕ(x − εei) − ϕ(x)

ε
dx

=
∫

RN

∫
Sm

(
1
dε

∫ dε/2

−dε/2
ûm

ε,m(x, ηmem + η′
m) dηm

)
ηn

ϕ(x − εei) − ϕ(x)
ε

dη′
i dx.

Due to the fact that ûm
ε,m converges weakly in L2(RN ×Y N ) to ûm

0 , equation (4.19)
(with i replaced by m) and the inequality

∫
Y N

∣∣∣∣ûm
ε,m(x, y) − 1

dε

∫ dε/2

−dε/2
ûm

ε,m(x, ηmem + y′
m) dηm

∣∣∣∣
2

dy

� C

∫
Y N

|∂ym
ûm

ε,m(x, y)|2 dy,

we derive∫
RN

∫
Y N

ũi
ε,m(x, η′

i)ηn dη
ϕ(x − εei) − ϕ(x)

ε
dx

= −
∫

RN

∫
Y N

ηn dη ûm
0 (x)∂xiϕ(x) dx + Oε = Oε,

which, together with (4.48) and (4.49), gives that gi
mn is yi-periodic, for every m,

n ∈ {1, . . . , N} \ {i}.

Step 4. We define ẑi
ε : R

N × Y N → R
N as ẑi

ε,i(x, y) = 0 and

ẑi
ε,m(x, y) =

1
εdε

(
ûi

ε,m(x, y) −
∫

Si

ûi
ε,m(x, yiei + τ ′

i) dτ ′
i

−
∑
n �=i

∫
Si

∂yn ûi
ε,m(x, yiei + τ ′

i) dτ ′
iyn

)
,

for every m �= i, every ε > 0 and a.e. (x, y) ∈ Ω × Y N .
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For every m, n ∈ {1, . . . , N} \ {i}, lemma 4.1 and (4.19) imply that ∂yn ẑi
ε,m

is bounded in L2(RN × Y N ). Poincaré–Wirtinger’s inequality also gives ẑi
ε,m is

bounded in L2(RN × Y N ). So ẑi
ε,m is bounded in L2(RN × J i; H1(Si)). Then there

exists ẑi
m ∈ L2(Ω × J i; H1(Si)) such that, for a subsequence, ẑi

ε,m converges weakly
to ẑi

m in L2(Ω × J i; H1(Si)). Moreover, since

ey(ẑi
ε)mn = ei

ε(û
i
ε)mn −

∫
Si

ei
ε(û

i
ε)mn dτ ′

i ∀m, n ∈ {1, . . . , N} \ {i} ∀ε > 0,

we deduce that

σ̂i
mn(x, y) = ey(ẑi)mn(x, y) +

∫
Si

σ̂i
mn(x, yiei + τ ′

i) dτ ′
i ∀m, n ∈ {1, . . . , N} \ {i}

and a.e. (x, y) ∈ Ω × Y N , where σ̂i
mn denotes the weak limit in L2(RN × Y N ) of

ei
ε(û

i
ε)mn. Defining then ûi

3 = (ûi
3,1, . . . , û

i
3,N ) ∈ Ei

3 as ûi
3,i = 0 and

ûi
3,m(x, y) = ẑi

m(x, y) +
∑
n �=i

∫
Si

σ̂i
mn(x, yiei + τ ′

i) dτ ′
iyn

∀m �= i a.e. (x, y) ∈ Ω × Y N ,

we have

ei
ε(û

i
ε)mn ⇀ ey(ûi

3)mn in L2(RN × Y N ) ∀m, n ∈ {1, . . . , N} \ {i}.

The following result gives a converse of theorem 4.7.

Proposition 4.8. Let (ûi
0, û

i
1, û

i
2, û

i
3) be in E i, i ∈ {1, . . . , N}. Then there exists a

sequence uε ∈ H1
Γε

(Ωε)N such that ûi
ε, i ∈ {1, . . . , N}, defined by (2.3), satisfy

ûi
ε,i → ûi

0 in L2(RN × Y N ), (4.50)

ûi
ε,m − ûm

0 − ε

dε
ûi

1,m → 0 in L2(RN × Y N ) ∀m �= i, (4.51)

ei
ε(û

i
ε) → ei

0(û
i
0, û

i
1, û

i
2, û

i
3) in L2(RN × Y N ; SN ). (4.52)

Proof. We consider θε ∈ C1(R) such that

0 � θε(t) � 1 ∀t ∈ R,

θε(t) = 0 if |t| < 1
2dε,

θε(t) = 1 if |t| > 1
2

√
dε,∣∣∣∣dθε

dt

∣∣∣∣ � C√
dε

∀t ∈ R.

Then, for yi
ε given by (2.2), we define uε : Ωε → R

N by

uε,i|Ωi
ε

= ûi
0 + εûi

1,i(·, yi
ε)

+ εdε

(
ûi

2,i(·, yi
ε) − θε(yi

ε,i)
∑
n �=i

(∂xn ûi
0 + ∂xi û

n
0 )yi

ε,n

)

− ε2
∑
n �=i

∂xi û
i
1,n(·, yi

ε)y
i
ε,n,
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uε,m|Ωi
ε

= ûm
0 +

ε

dε
ûi

1,m(·, yi
ε)

+ εûi
2,m(·, yi

ε) + εdε

(
ûi

3,m(·, yi
ε) − θε(yi

ε,i)
∑
n �=i

∂xn
ûm

0 yi
ε,n

)

− ε2
∑
n �=i

∂xn
ûi

1,m(·, yi
ε)y

i
ε,n ∀m �= i.

Then uε belongs to H1
Γε

(Ωε)N and it is easy to see that ûi
ε, i ∈ {1, . . . , N}, defined

by (2.3), satisfy (4.50), (4.51) and (4.52).

Remark 4.9. It is easy to prove that proposition 4.8 holds for (ûi
0, û

i
1, û

i
2, û

i
3) ∈ Ei,

i ∈ {1, . . . , N}. Thus theorem 4.7 is optimal. We do not prove this general result
because we will not use it in the following (see [21] for a proof).

Using proposition 4.8, we can now prove the following corrector result for a
sequence uε in H1

Γε
(Ωε)N such that the convergence in (4.15) is strong.

Theorem 4.10. Let uε be in H1
Γε

(Ωε)N , define ûi
ε, i ∈ {1, . . . , N}, by (2.3) and

take γε = dε/(ε + dε). Let us suppose that, for every i ∈ {1, . . . , N}, there exists
(ûi

0, û
i
1, û

i
2, û

i
3) ∈ Ei such that (4.52) holds. Then the sequences gi

ε ∈ L2(RN )N and
Gi

ε ∈ L2(RN ; SN ), i ∈ {1, . . . , N}, defined by

gi
ε,i(·) =

1
ε

N ∫
Cε(·)

ûi
0(ρ) dρ,

gi
ε,m(·) =

1
εN

∫
Cε(·)

[
ûm

0 (ρ) +
ε

dε
ûi

1,m(ρ, yi
ε(·))

]
dρ ∀m �= i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.53)

and

Gi
ε(·) =

1
εN

∫
Cε(·)

ei
0(û

i
0, û

i
1, û

i
2, û

i
3)(ρ, yi

ε(·)) dρ, (4.54)

satisfy

lim
ε→0

1
|Ωi

ε|

[∫
Ωi

ε

|uε,i(x) − gi
ε,i(x)|2 dx + γ2

ε

∑
m�=i

∫
Ωi

ε

|uε,m(x) − gi
ε,m(x)|2 dx

+
∫

Ωi
ε

|e(uε)(x) − Gi
ε(x)|2 dx

]
= 0

∀i ∈ {1, . . . , N}.
(4.55)

Proof. For i ∈ {1, . . . , N}, let (ϕi,n
0 , ϕi,n

1 , ϕi,n
2 , ϕi,n

3 ) be a sequence in E i such that

lim
n→∞

ϕi,n
0 = ûi

0 in L2(Ω), (4.56)

lim
n→∞

ϕi,n
1,m = ûi

1,m in L2(Ω × Y N ) ∀m �= i,

(4.57)

lim
n→∞

ei
0(ϕ

i,n
0 , ϕi,n

1 , ϕi,n
2 , ϕi,n

3 ) = ei
0(û

i
0, û

i
1, û

i
2, û

i
3) in L2(Ω × Y N ; SN ). (4.58)
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From proposition 4.8, for every n ∈ N, there exists wn
ε ∈ H1

Γε
(Ωε)N , ε > 0, which

satisfies

ŵi,n
ε,i → ϕi,n

0 in L2(RN × Y N ), (4.59)

ŵi,n
ε,m − ϕm,n

0 − ε

dε
ϕi,n

1,m → 0 in L2(RN × Y N ) ∀m �= i,

(4.60)

ei
ε(ŵ

i,n
ε ) → ei

0(ϕ
i,n
0 , ϕi,n

1 , ϕi,n
2 , ϕi,n

3 ) in L2(RN × Y N ; SN ). (4.61)

Using the change of variables (2.2) and the estimate (4.6), we get

‖ûi
ε,i − ŵi,n

ε,i ‖2
L2(RN ×Y N ) =

1
dN−1

ε

‖uε,i − wn
ε,i‖2

L2(Ωi
ε)

� C

dN−1
ε

‖e(uε − wn
ε )‖2

L2(Ωi
ε;SN )

= C‖ei
ε(û

i
ε − ŵi,n

ε )‖2
L2(RN ×Y N ;SN ) ∀n ∈ N, ε > 0.

Passing to the limit first in ε and then in n, by (4.61) and (4.58), we conclude that

lim
n→∞

lim sup
ε→0

‖ûi
ε,i − ŵi,n

ε,i ‖L2(RN ×Y N ) = 0, (4.62)

which, by (4.59) and (4.56), implies that

ûi
ε,i → ûi

0 in L2(RN × Y N ). (4.63)

On the other hand, since ûi
ε(x, y) does not depend on x in Ck

ε , k ∈ Z
N , ε > 0,

the change of variables (2.2) gives

1
dN−1

ε

∫
V i

ε

|uε,i(x) − gi
ε,i(x)|2 dx =

1
dN−1

ε

∑
k∈ZN

∫
Bi,k

ε

∣∣∣∣uε,i(x) − 1
εN

∫
Ck

ε

ûi
0(ρ) dρ

∣∣∣∣
2

dx

=
1

εN

∑
k∈ZN

∫
Y N

∣∣∣∣
∫

Ck
ε

(ûi
ε,i(ρ, y) − ûi

0(ρ)) dρ

∣∣∣∣
2

dy

�
∫

RN ×Y N

|ûi
ε,i(ρ, y) − ûi

0(ρ)|2 dy dρ.

By (4.63), we deduce that the first term in (4.55) tends to zero.
Using (4.7), and reasoning similarly as we did to deduce (4.62), we get

lim
n→∞

lim sup
ε→0

γε‖ûi
ε,m − ŵi,n

ε,m‖L2(RN ×Y N ) = 0 ∀m �= i.

The inequality

γε

∥∥∥∥ûi
ε,m − ûm

0 − ε

dε
ûi

1,m

∥∥∥∥
L2(RN ×Y N )

� γε‖ûi
ε,m − ŵi,n

ε,m‖L2(RN ×Y N ) + γε

∥∥∥∥ŵi,n
ε,m − ϕm,n

0 − ε

dε
ϕi,n

1,m

∥∥∥∥
L2(RN ×Y N )

+ γε

∥∥∥∥ϕm,n
0 +

ε

dε
ϕi,n

1,m − ûm
0 − ε

dε
ûi

1,m

∥∥∥∥
L2(RN ×Y N )
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and equations (4.60), (4.56) and (4.57) then give

γε

(
ûi

ε,m − ûm
0 − ε

dε
ûi

1,m

)
→ 0 in L2(RN × Y N ) ∀m �= i,

which, as above, implies that the second term in (4.55) tends to zero.
The convergence to zero of the third term in (4.55) is easily deduced using the

change of variables (2.2) and (4.52).

4.3. Homogenization result

We already have the suitable tools to prove the homogenization result for (1.1)
in the case of the model structure defined in § 2.

Proof of theorem 2.5. Taking γ2
εuε as a test function in (1.1) and using (4.7), we

deduce that
1

|Ωε|

∫
Ωε

|e(γεuε)|2 dx � ∀ε > 0.

Then, by theorem 4.7 applied to the sequence γεuε, for every i ∈ {1, . . . , N}, there
exists (ûi

0, û
i
1, û

i
2, û

i
3) ∈ Ei such that, up to a subsequence, equations (4.13), (4.14)

and (4.15) hold with ûi
ε replaced by γεû

i
ε. For (v̂i

0, v̂
i
1, v̂

i
2, v̂

i
3) in E i, i ∈ {1, . . . , N},

we consider the sequence vε in H1
Γε

(Ωε)N given by proposition 4.8 applied to
(v̂i

0, v̂
i
1, v̂

i
2, v̂

i
3), i ∈ {1, . . . , N}. Taking γεvε as a test function in (1.1) and using

the continuity with respect to x of F i, Hi and Ai, we get

N∑
i=1

∫
RN ×Y N

Aiei
ε(γεû

i
ε) : ei

ε(v̂
i
ε) dy dx + Oε

=
1

dN−1
ε

∫
Ωε

Aεe(γεuε) : e(vε) dx

=
γε

dN−1
ε

∫
Ωε

(Fεvε + Hε : e(vε)) dx

= γε

N∑
i=1

∫
RN ×Y N

(F iv̂i
ε + Hi : ei

ε(v̂
i
ε)) dy dx + Oε.

Passing to the limit, we deduce that (ûi
0, û

i
1, û

i
2, û

i
3), i ∈ {1, . . . , N}, satisfies

N∑
i=1

∫
RN ×Y N

(Aiei
0(û

i
0, û

i
1, û

i
2, û

i
3) − γHi) : ei

0(v̂
i
0, v̂

i
1, v̂

i
2, v̂

i
3) dy dx

=
N∑

i=1

∫
RN ×Y N

(
γ

N∑
j=1

F i
j v̂

j
0 + (1 − γ)

∑
m�=i

F i
mv̂i

1,m

)
dy dx

∀(v̂i
0, v̂

i
1, v̂

i
2, v̂

i
3) ∈ E i.

By density, we conclude that (ûi
0, û

i
1, û

i
2, û

i
3), i ∈ {1, . . . , N}, is a solution of (2.12).

To conclude the proof of theorem 2.5, thanks to theorem 4.10, it is enough to
prove (2.11). For every i ∈ {1, . . . , N}, the monotonicity properties (2.1) and (2.8)
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of Aε give

α
∑
m�=i

‖(em
ε (γεû

m
ε ) − em

0 (ûm
0 , ûm

1 , ûm
2 , ûm

3 ))χ{|ym|>dε/2}‖2
L2(RN ×Y N ;SN )

+ α‖ei
ε(γεû

i
ε) − ei

0(û
i
0, û

i
1, û

i
2, û

i
3)‖2

L2(RN ×Y N ;SN )

� 1
dN−1

ε

∫
ωε

Aεe(γεuε) : e(γεuε) dx

+ α

∫
RN

∫
|yi|<dε/2

|ei
ε(γεû

i
ε) − ei

0(û
i
0, û

i
1, û

i
2, û

i
3)|2 dy dx

+
N∑

j=1

∫
RN

∫
|yj |>dε/2

Aj(ej
ε(γεû

j
ε) − ej

0(û
j
0, û

j
1, û

j
2, û

j
3)) :

(ej
ε(γεû

j
ε) − ej

0(û
j
0, û

j
1, û

j
2, û

j
3)) dy dx. (4.64)

Using equations (4.13), (4.14) and (4.15), taking γ2
εuε as a test function in (1.1)

and (ûj
0, û

j
1, û

j
2, û

j
3), j ∈ {1, . . . , N}, as a test function in (2.12), we get

N∑
j=1

∫
RN

∫
|yj |>dε/2

Ajej
ε(γεû

j
ε) : ej

ε(γεû
j
ε) dy dx

+
1

dN−1
ε

∫
ωε

Aεe(γεuε) : e(γεuε) dx + Oε

=
1

dN−1
ε

∫
Ωε

Aεe(γεuε) : e(γεuε) dx

=
γε

dN−1
ε

∫
Ωε

(Fεγεuε + Hε : e(γεuε)) dy dx

= γε

N∑
j=1

∫
RN

∫
Y N

(F jγεû
j
ε + Hj : ej

ε(γεû
j
ε)) dy dx + Oε

=
N∑

j=1

∫
RN ×Y N

(
γ

N∑
l=1

F j
l ûl

0 + (1 − γ)
∑
m�=j

F j
mûj

1,m + γHj :

ej
0(û

j
0, û

j
1, û

j
2, û

j
3)

)
dy dx + Oε

=
N∑

j=1

∫
RN ×Y N

Ajej
0(û

j
0, û

j
1, û

j
2, û

j
3) : ej

0(û
j
0, û

j
1, û

j
2, û

j
3) dy dx + Oε. (4.65)

Due to (4.15), we also have

lim inf
ε→0

∫
RN

∫
|yj |>dε/2

Ajej
ε(γεû

j
ε) : ej

ε(γεû
j
ε) dy dx

�
∫

RN ×Y N

Ajej
0(û

j
0, û

j
1, û

j
2, û

j
3) : ej

0(û
j
0, û

j
1, û

j
2, û

j
3) dy dx ∀j ∈ {1, . . . , N}.
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Then, from (4.65), we deduce that

lim
ε→0

γ2
ε

dN−1
ε

∫
ωε

Aεe(uε) : e(uε) dx = 0 (4.66)

and

lim
ε→0

N∑
j=1

∫
RN

∫
|yj |>dε/2

Ajej
ε(γεû

j
ε) : ej

ε(γεû
j
ε) dy dx

=
N∑

j=1

∫
RN ×Y N

Ajej
0(û

j
0, û

j
1, û

j
2, û

j
3) : ej

0(û
j
0, û

j
1, û

j
2, û

j
3) dy dx. (4.67)

By (4.66) and (2.1), we also have∫
RN

∫
|yi|<dε/2

|ei
ε(γεû

i
ε)|2 dy dx =

γ2
ε

dN−1
ε

∫
ωε

|e(uε)|2 dx

� γ2
ε

αdN−1
ε

∫
ωε

Aεe(uε) : e(uε) dx

= Oε. (4.68)

From (4.66) and (4.68), we easily deduce that the first and second terms on the
right-hand side of (4.64) tend to zero, while, using (4.67) and (4.15), we deduce
that

N∑
j=1

∫
RN

∫
|yj |>dε/2

Aj(ej
ε(γεû

j
ε) − ej

0(û
j
0, û

j
1, û

j
2, û

j
3)) :

(ej
ε(γεû

j
ε) − ej

0(û
j
0, û

j
1, û

j
2, û

j
3)) dy dx

=
N∑

j=1

∫
RN

∫
|yj |>dε/2

Ajej
ε(γεû

j
ε) : ej

ε(γεû
j
ε) dy dx

−
N∑

j=1

∫
RN

∫
|yj |>dε/2

Ajej
ε(γεû

j
ε) : ej

0(û
j
0, û

j
1, û

j
2, û

j
3) dy dx

−
N∑

j=1

∫
RN

∫
|yj |>dε/2

Ajej
0(û

j
0, û

j
1, û

j
2, û

j
3) : ej

ε(γεû
j
ε) dy dx

+
N∑

j=1

∫
RN

∫
|yj |>dε/2

Ajej
0(û

j
0, û

j
1, û

j
2, û

j
3) : ej

0(û
j
0, û

j
1, û

j
2, û

j
3) dy dx = Oε.

So, passing to the limit in (4.64), we deduce, in particular, that

lim
ε→0

‖ei
ε(γεû

i
ε) − ei

0(û
i
0, û

i
1, û

i
2, û

i
3)‖L2(RN ×Y N ;SN ) = 0 ∀i ∈ {1, . . . , N}.

This proves (2.11).
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4.4. Reinforced structure

We now turn our attention to the proof of theorem 3.1, which gives the asymptotic
behaviour of the elasticity problem (1.1) posed on the reinforced structure defined
in § 3. The proof follows along the same lines of the proof of theorem 2.5 (a priori
estimates, compactness result and passage to the limit in (1.1)). We briefly sketch
these steps.

First, we obtain a Korn inequality for functions in H1
Γε

(Ωε)2.

Theorem 4.11. There exists C > 0 such that, for every u ∈ H1
Γε

(Ωε)2 and every
ε > 0, we have ∫

Ω3
ε

|∇(uζ)τ |2 dx � C

(
1
ε2 +

1
d2

ε

) ∫
Ωε

|e(u)|2 dx, (4.69)

∫
Ωε

|u|2 dx � C

(
1 +

ε2

d2
ε

) ∫
Ωε

|e(u)|2 dx. (4.70)

Proof. Taking into account the fact that the constant in (4.3) is invariant by trans-
lations and rotations and using Poincaré’s inequality, the same reasoning that
gives (4.9) provides∫

Ω3
ε

|∇(uζ)τ |2 dx � C

(
1
d2

ε

∫
Ω3

ε

|e(u)|2 dx +
1

ε2dε

∫
ωε

|uζ|2 dx

)
.

Since ωε ⊂ Ω1
ε ∩ Ω2

ε and Ω1
ε ∪ Ω2

ε ⊂ Ωε (we remark that Ω1
ε ∪ Ω2

ε is the same struc-
ture that was considered in the previous subsections with N = 2), from (4.5), we
deduce that∫

ωε

|uζ|2 dx �
∫

Ω1
ε∩Ω2

ε

|uζ|2 dx � dε

∫
Ω1

ε∪Ω2
ε

|e(u)|2 dx � dε

∫
Ωε

|e(u)|2 dx.

Reasoning as in theorem 4.3, these inequalities (which are similar to (4.9) and (4.5))
easily give (4.69) and (4.70).

The next compactness result is analogous to theorem 4.7.

Theorem 4.12. We assume that there exists limε→0(ε/dε) = ϑ ∈ [0, +∞] (this
always holds for a subsequence). Let uε be a sequence in H1

Γε
(Ωε)2 that satis-

fies (4.10), and define ûi
ε, i ∈ {1, 2, 3}, by (2.3) and (3.1). Then there exist a subse-

quence of ε, still denoted by ε, (ûi
0, û

i
1, û

i
2, û

i
3) ∈ Ei, i ∈ {1, 2, 3}, such that (4.13)–

(4.15) hold for i ∈ {1, 2}, and for i = 3, defining û0 = (û1
0, û

2
0), we have

û3
0 = û0τ,

û3
ετ ⇀ û0τ in L2(Ω × D

3), (4.71)

û3
εζ ⇀ û0ζ if ϑ = 0,

û3
εζ ⇀ û0ζ + ϑû3

1ζ if ϑ ∈ (0, +∞) in L2(Ω × D
3),

dε

ε
û3

εζ ⇀ û3
1ζ if ϑ = +∞,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.72)

e3
ε(û

3
ε) ⇀ e3

0(û
3
0, û

3
1, û

3
2, û

3
3) in L2(Ω × D

3; S2). (4.73)
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Proof. From (4.10), using the change of variables yi
ε, i ∈ {1, 2, 3}, we deduce that

ûi
ε and ei

ε(û
i
ε) are bounded in L2(R2 × Di)2 and L2(R2 × Di; S2), respectively. On

the one hand, applying theorem 4.7 to

uε|
Ω1

ε∪Ω2
ε

(which satisfies the hypothesis of that theorem), we deduce that there exists

(ûi
0, û

i
1, û

i
2, û

i
3) ∈ Ei, i ∈ {1, 2},

such that (4.13)–(4.15) hold. On the other hand, taking into account the equality

|e3
ε(û

3
ε)| =

∣∣∣∣∣
(

∇y(û3
ετ)τ 1

2 (∇y(û3
ετ)ζ + ∇y(û3

εζ)τ)
1
2 (∇y(û3

ετ)ζ + ∇y(û3
εζ)τ) ∇y(û3

εζ)ζ

)∣∣∣∣∣ ,

working with the components û3
ετ , û3

εζ of û3
ε with respect to the basis {τ, ζ} and

following the same reasoning as that in the proof of theorem 4.7 (in fact, because
we are in dimension two, the reasoning is simpler (see [10])), we obtain there exists
(û3

0, û
3
1, û

3
2, û

3
3) ∈ E3 that satisfies, up to a subsequence, equations (4.71)–(4.73) with

û0 = (û1
0, û

2
0). In order to obtain this result, it is necessary to prove that û3

0 = û0τ .
Defining Cε(x) as in the previous section and Pε(x) = Cε(x) ∩ ωε, a.e. x ∈ Ω, this
follows from the following simple application of the Poincaré–Wirtinger inequality:

û3
0(x) = lim

ε→0

1
|y3

ε(Pε(x))|

∫
y3

ε(Pε(x))
û3

ε(x, y)τ dy

= lim
ε→0

1
|Pε(x)|

∫
Pε(x)

uε(z)τ dz

= lim
ε→0

1
|Pε(x)|

∫
Pε(x)

(
1√
2
uε,1(z) +

1√
2
uε,2(z)

)
dz

= lim
ε→0

[
1√

2|y1
ε(Pε(x))|

∫
y1

ε(Pε(x))
û1

ε,1(x, y) dy

+
1√

2|y2
ε(Pε(x))|

∫
y2

ε(Pε(x))
û2

ε,2(x, y) dy

]

=
1√
2

lim
ε→0

1
ε2d2

ε

∫
εdεY 2

û1
ε,1(x, y) dy +

1√
2

lim
ε→0

1
ε2d2

ε

∫
εdεY 2

û2
ε,2(x, y) dy

= û0(x)τ a.e. x ∈ Ω.

Proof of theorem 3.1. Taking uε as a test function in (1.1) and using (4.70), we
prove that

1
|Ωε|

∫
Ωε

|e(γεuε)|2 dx � C ∀ε > 0.

So we can apply theorem 4.12 to the sequence γεuε and then deduce that, up to
a subsequence, there exist (ûi

0, û
i
1, û

i
2, û

i
3) ∈ Ei, i ∈ {1, 2, 3}, which satisfy (4.13)–

(4.15), for i ∈ {1, 2}, and (4.71)–(4.73), with ûi
ε replaced by γεû

i
ε.
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Let (v̂i
0, v̂

i
1, v̂

i
2, v̂

i
3) be in Ei, i ∈ {1, 2, 3}, with v̂3

0 = v̂0τ , v̂0 = (v̂1
0 , v̂2

0) (indeed, we
can assume that (v̂i

0, v̂
i
1, v̂

i
2, v̂

i
3) is sufficiently smooth and that it is in a dense set

of Ei). Reasoning analogously as in proposition 4.8 (see also remark 4.9), we can
prove that there exists vε ∈ H1

Γε
(Ωε)2 such that the corresponding sequences v̂i

ε,
i ∈ {1, 2, 3}, satisfy

v̂i
ε,i → v̂i

0 in L2(R2 × D
i),

v̂i
ε,m − v̂m

0 − ε

dε
v̂i
1,m → 0 in L2(R2 × D

i), m ∈ {1, 2} \ {i},

ei
ε(v̂

i
ε) → ei

0(v̂
i
0, v̂

i
1, v̂

i
2, v̂

i
3) in L2(R2 × D

i; S2),

for i ∈ {1, 2}, and

v̂3
ετ → v̂0τ in L2(R2 × D

3),

v̂3
εζ − v̂0ζ − ε

dε
v̂3
1ζ → 0 in L2(R2 × D

3),

e3
ε(v̂

3
ε) → e3

0(v̂
3
0 , v̂3

1 , v̂3
2 , v̂3

3) in L2(R2 × D
3; S2).

Using γεvε as test functions in (1.1), we deduce that (ûi
0, û

i
1, û

i
2, û

i
3), i ∈ {1, 2, 3},

is a solution of (3.2). As in the proof of theorem 2.5, we can also prove that the
convergence of e(γεû

i
ε) is strong in L2(Ω × Di; S2), and this allows us to obtain

(2.15) and (3.4).
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linéarisée anisotrope hétérogène dans des cylindres minces. C. R. Acad. Sci. Paris Sér. I
328 (1999), 179–184.

23 G. Nguetseng. A general convergence result for a functional related to the theory of homog-
enization. SIAM J. Math. Analysis 20 (1989), 608–623.

24 J. Něcas. Equations aux dérivées partielles (Presses de l’Université de Montréal, 1965).
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