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We consider systems based on sequential order statistics (SOS) with underlying distribu-
tions possessing proportional hazard rates (PHRs). In that case, the lifetime distribution
of the system can be expressed as a distorted distribution. Motivated by the distribution
structure in the case of pairwise different model parameters, a particular class of dis-
torted distributions, the generalized PHR model, is introduced and characterizations of
stochastic comparisons for several stochastic orders are obtained. Moreover, results on the
asymptotic behavior of some aging characteristics, for example, the hazard rate and the
mean residual life function, of general distorted distributions as well as related bounds are
given. The results are supplemented with limiting properties of the systems in the case of
possibly equal model parameters. Some examples are presented in order to illustrate the
application of the findings to systems based on SOS and also to systems with independent
heterogeneous components.

1. INTRODUCTION

An important focus of reliability theory is the study of the performance of technical sys-
tems. Using the notion of coherent systems of Barlow and Proschan [5], the lifetime T
of a system consisting of n components can be expressed as T = φ(X1, . . . , Xn), where
X1, . . . , Xn denote the lifetimes of the components and φ the coherent life function of the
system (see Esary and Marshall [20] or Barlow and Proschan [5], p. 12). In this paper,
the component lifetimes X1, . . . , Xn are mainly modeled via random variables with a par-
ticular dependence structure induced by sequential order statistics (SOS). The model of
SOS has been proposed in Kamps [24] (see also Cramer [14], Cramer and Kamps [16]) for
describing increasingly ordered failure times X∗

1:n ≤ · · · ≤ X∗
n:n of system components in

situations when failures may have an impact on the lifetimes of remaining components.
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Employing component lifetimes given by exchangeable random variables with a dependence
model induced by SOS, component failures can affect the performance of intact components
in the resulting system (see Aki and Hirano [1], Burkschat [7], Navarro and Burkschat [31],
see also Hollander and Peña [22]). The corresponding reliability is then given by the mixture
distribution (cf. Burkschat [7], Navarro and Burkschat [31])

P (T > t) =
n∑

i=1

siP (X∗
i:n > t), t ∈ R, (1.1)

where the weights are determined by the signature s = (s1, . . . , sn) of the system (see
Samaniego [37,38]).

In the following, stochastic comparisons of systems based on SOS are obtained by using
properties of distorted distributions. It is assumed that the underlying distributions pos-
sess proportional hazard rates (PHRs) (see, e.g., Cramer and Kamps [15]). In that case,
the marginal distributions of the SOS and consequently also the distribution of the sys-
tem lifetime can be expressed as distorted distributions. Therefore, we also give results on
the asymptotic behavior of some aging characteristics and on bounds for general distorted
distributions and then apply them to systems based on SOS. These results complement
the findings in Burkschat and Navarro [11], Navarro and Burkschat [31]. Distorted distri-
butions have been recently extensively studied in Hürlimann [23], Navarro et al. [32,33],
Navarro and Gomis [34]. Aside for general results on distorted distributions, we define a
particular model for a distortion function, the generalized PHR model, which is motivated
by the structure of the marginal distribution in the considered setting of SOS. However,
it is also useful for analyzing systems with independent heterogeneous (i.e. non-identically
distributed) component lifetimes.

The paper is organized as follows. In Section 2, the survival function of the lifetime
of a system based on SOS is expressed as a distorted distribution and representations of
the distortion function are given. The case of pairwise different model parameters is treated
explicitly. Motivated by the distribution structure in this case, in Section 3, a particular class
of distorted distributions, the generalized PHR model, is introduced and characterizations
of stochastic comparisons for several stochastic orders are obtained. As a consequence,
we also establish stochastic orders for SOS. In Section 4, limiting properties and bounds
for aging functions, like the hazard rate and the mean residual life (MRL) function, of
general distorted distributions are derived. As particular case, the generalized PHR model
is examined. In Section 5, two examples of systems based on SOS are studied by applying
the results from the preceding sections. Moreover, it is illustrated by another example
that results for the generalized PHR model can be applied to systems with independent
heterogeneous component lifetimes. In the last section, results on the asymptotic behavior
of systems based on SOS are proven for the case of possibly equal model parameters. These
properties supplement the corresponding results for pairwise different model parameters
stated in Section 4.

2. REPRESENTATIONS FOR SYSTEMS BASED ON SOS

Let F be a continuous distribution function with support [0,∞), F = 1 − F , and

F i = F
αi

, i = 1, . . . , n, (2.1)

for parameters α1, . . . , αn ∈ R
+ = (0,∞), that is, F1, ..., Fn belong to the same PHR model

(cf. (3.1) below) with baseline survival function F . Let X∗
1:n, . . . , X∗

n:n denote the SOS based

https://doi.org/10.1017/S0269964817000018 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000018


248 M. Burkschat and J. Navarro

on distributions functions F1, . . . , Fn. In this particular case, the joint distribution of these
random variables coincides with the distribution of n generalized order statistics based on
the model parameters γi = αi(n − i + 1), i = 1, . . . , n, and the distribution function F (see
Kamps [24]). Recall that the reliability function of the lifetime T of a coherent system
based on the SOS is given by (1.1). Let U∗

1:n, . . . , U∗
n:n denote the uniform generalized order

statistics (see also Kamps [24]). Because

X∗
r:n ∼ F−1(U∗

r:n), r = 1, . . . , n,

we obtain

P (T > t) =
n∑

k=1

skP (U∗
k:n > F (t)) = q(F (t)), t ≥ 0,

with

q(x) =
n∑

k=1

skP (U∗
k:n > 1 − x) = 1 −

n∑
k=1

skP (U∗
k:n ≤ 1 − x), x ∈ [0, 1].

It can be shown that q is an increasing continuous function with q(0) = 0, q(1) = 1, that
is, q is a distortion function (see, e.g., Hürlimann [23]). From results given in Burkschat
and Lenz [17], Cramer and Kamps [8], it follows that the distribution function of the rth
uniform generalized order statistic with arbitrary model parameters γ1, . . . , γr > 0 is given
by

FU∗
r:n

(t) = 1 −
⎛
⎝ r∏

j=1

γj

⎞
⎠∫ 1−t

0

Gr,0
r,r [x|γ1, . . . , γr] dx (2.2)

=

⎛
⎝ r∏

j=1

γj

⎞
⎠Gr+1,0

r+1,r+1 [1 − t|γ1 + 1, . . . , γr + 1, 1] , (2.3)

where

Gr,0
r,r [x|γ1, . . . , γr] = Gr,0

r,r

[
x

∣∣∣∣ γ1, ..., γr

γ1−1,...,γr−1

]
, x ∈ (0, 1),

denotes a particular Meijer’s G-function (for its definition, see, e.g., Luke [28] or
Mathai [29]).

Therefore, the preceding distortion function q has the representation

q(x) = 1 −
n∑

k=1

sk

⎛
⎝ k∏

j=1

γj

⎞
⎠Gk+1,0

k+1,k+1 [x|γ1 + 1, . . . , γk + 1, 1] , x ∈ (0, 1).

The derivative of the distortion function is given by

q′(x) =
n∑

k=1

sk

⎛
⎝ k∏

j=1

γj

⎞
⎠Gk,0

k,k [x|γ1, . . . , γk] , x ∈ (0, 1),

due to the relation (see, e.g, Cramer, Kamps, and Rychlik [18])

d

dx
Gr+1,0

r+1,r+1 [x|γ1 + 1, . . . , γr + 1, 1] = −Gr,0
r,r [x|γ1, . . . , γr] .
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Moreover, it follows from Cramer et al. [18] that Gr,0
r,r [x|γ1, . . . , γr] > 0 for x ∈ (0, 1) and

thus q′(x) > 0 for x ∈ (0, 1).
Furthermore, if the parameters γ1, . . . , γr are pairwise different, that is, γi �= γj for

i �= j, then it is known (see Kamps and Cramer [25]) that the distribution function of the
rth uniform generalized order statistic can be expressed as follows:

FU∗
r:n

(t) = 1 −
⎛
⎝ r∏

j=1

γj

⎞
⎠ r∑

i=1

ai,r

γi
(1 − t)γi , t ∈ [0, 1], (2.4)

with the constants

ai,r =
r∏

j=1
j �=i

1
γj − γi

, 1 ≤ i ≤ r ≤ n (with a1,1 = 1), (2.5)

i.e. FU∗
r:n

(1 − x) = 1 − qr:n(x) with

qr:n(x) =

⎛
⎝ r∏

j=1

γj

⎞
⎠ r∑

i=1

ai,r

γi
xγi , x ∈ [0, 1].

Consequently, for pairwise different γ1, . . . , γn, the distortion function is given by

q(x) =
n∑

k=1

sk

⎛
⎝ k∏

j=1

γj

⎞
⎠ k∑

i=1

ai,k

γi
xγi =

n∑
i=1

aix
γi , x ∈ [0, 1], (2.6)

with the coefficients

ai =
1
γi

n∑
k=i

skai,k

⎛
⎝ k∏

j=1

γj

⎞
⎠ , i = 1, . . . , n.

Note that in this case q is equal to the distribution function of a generalized mixture of n
power function distributions with the parameters γ1, . . . , γn (since some coefficients ai can
be negative; for generalized mixtures; see e.g. Navarro [30]). In particular, the derivative
becomes

q′(x) =
n∑

i=1

aiγix
γi−1 =

n∑
i=1

⎛
⎝ n∑

k=i

skai,k

⎛
⎝ k∏

j=1

γj

⎞
⎠
⎞
⎠xγi−1, x ∈ (0, 1].

3. STOCHASTIC COMPARISONS IN THE GENERALIZED PHR MODEL

Motivated by the preceding results for the distortion function of systems based on gener-
alized order statistics, we study stochastic comparisons in a generalization of the classical
PHR model

G = F
γ

(3.1)

with γ ∈ R
+. Taking into account representation (2.6), the PHR model can be extended as

follows.
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Definition 3.1: We say that a reliability function G satisfies the generalized proportional
hazard rate (GPHR) model based on the reliability function F and on the coefficients
a1, . . . , ak ∈ R (not all of them are zero) and γ1, . . . , γk ∈ R

+ if

G(t) =
k∑

i=1

ai(F (t))γi (3.2)

for all t.

Clearly, the PHR model is obtained when k = a1 = 1. The preceding definition is a
particular case of the distorted distributions defined in the context of risk theory (see, e.g.,
Hürlimann [23]), because if G satisfies GPHR model then it can be written as

G(t) = q(F (t)) (3.3)

where q(x) =
∑k

i=1 aix
γi is called the distortion function. This function is a continuous

increasing function over [0, 1] which satisfies q(0) = 0 and q(1) = 1. Note that the right-
hand side of (3.2) defines a proper reliability function for any reliability function F if and
only if

∑k
i=1 ai = 1 and

k∑
i=1

aiγix
γi ≥ 0

for all x ∈ [0, 1]. In that case q is the distribution of a generalized mixture of power dis-
tributions with parameters γ1, . . . , γk ∈ R

+. In this and the two following sections, we will
assume γi �= γj for all i �= j. Then, the results can be directly applied to coherent systems
based on SOS using the corresponding distribution theory (see (2.4) and (2.6)).

If G satisfies (3.2) and is absolutely continuous, then the associated probability density
function (pdf) is

g(t) =
k∑

i=1

aiγi(F (t))γi−1f(t)

and its hazard rate is

hG(t) =
∑k

i=1 aiγi(F (t))γi∑k
i=1 ai(F (t))γi

hF (t),

where f is the pdf of F and hF = f/F is its hazard rate function.
Ordering properties for distorted distributions and generalized mixtures were obtained

from Navarro [32], Navarro et al. [30], Navarro and Gomis [34]. Analogously, we can obtain
the following ordering properties for the GPHR model.

Proposition 3.2: Let G and G
∗

be two reliability functions satisfying the GPHR model
with a common baseline reliability F and with respective coefficients a1, . . . , ak ∈ R, γ1, . . . ,
γk ∈ R

+, a∗
1, . . . , a

∗
k∗ ∈ R and γ∗

1 , . . . , γ∗
k∗ ∈ R

+. Then:
(i) G ≤st G

∗
for all F if and only if

k∗∑
i=1

a∗
i x

γ∗
i −

k∑
j=1

ajx
γj ≥ 0

for all x ∈ [0, 1].
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(ii) G ≤hr G
∗

for all F if and only if

k∗∑
i=1

k∑
j=1

a∗
i aj(γj − γ∗

i )xγ∗
i +γj ≥ 0 (3.4)

for all x ∈ [0, 1].
(iii) G ≤rh G

∗
for all F if and only if

k∗∑
i=1

k∑
j=1

a∗
i aj(γ∗

i − γj)xγ∗
i +γj ≤

k∗∑
i=1

a∗
i γ

∗
i xγ∗

i −
k∑

j=1

ajγjx
γj (3.5)

for all x ∈ [0, 1].
(iv) G ≤lr G

∗
for all absolutely continuous F if and only if

k∗∑
i=1

k∑
j=1

a∗
i ajγ

∗
i γj(γj − γ∗

i )xγ∗
i +γj ≥ 0 (3.6)

for all x ∈ [0, 1].
(v) G ≤mrl G

∗
for all F with μG ≤ μG∗ if

∑k∗

i=1 a∗
i x

γ∗
i∑k

i=1 aixγi

is bathtub in (0, 1].

Proof: The proof of (i) is immediate.
To prove (ii) we note that G ≤hr G

∗
holds if and only if

G
∗
(t)

G(t)
=
∑k∗

i=1 a∗
i (F (t))γ∗

i∑k
j=1 aj(F (t))γj

(3.7)

is increasing in t. This property holds for any F if and only if

R(x) =
∑k∗

i=1 a∗
i x

γ∗
i∑k

j=1 ajxγj

(3.8)

decreases for all x ∈ (0, 1]. By differentiating we obtain

R′(x) =sign

[
k∗∑
i=1

a∗
i γ

∗
i xγ∗

i

]⎡⎣ k∑
j=1

ajx
γj

⎤
⎦−

[
k∗∑
i=1

a∗
i x

γ∗
i

]⎡⎣ k∑
j=1

ajγjx
γj

⎤
⎦

=
k∗∑
i=1

k∑
j=1

a∗
i aj(γ∗

i − γj)xγ∗
i +γj

for all x ∈ (0, 1]. Here =sign means that both sides of the equation have the same sign.
Therefore R decreases in (0, 1] if and only if (3.4) holds for all x ∈ [0, 1].
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Analogously, to prove (iii) we note that G ≤rh G
∗

holds if

G∗(t)
G(t)

=
1 − G

∗
(t)

1 − G(t)
=

1 −∑k∗

i=1 a∗
i (F (t))γ∗

i

1 −∑k
j=1 aj(F (t))γj

is increasing in t. This property holds for all F if and only if

R(x) =
1 −∑k∗

i=1 a∗
i x

γ∗
i

1 −∑k
i=1 aixγi

(3.9)

decreases for all x ∈ [0, 1). By differentiating, we obtain

R
′
(x) =sign −

[
k∗∑
i=1

a∗
i γ

∗
i xγ∗

i

]⎡⎣1 −
k∑

j=1

ajx
γj

⎤
⎦+

[
1 −

k∗∑
i=1

a∗
i x

γ∗
i

]⎡⎣ k∑
j=1

ajγjx
γj

⎤
⎦

=
k∗∑
i=1

k∑
j=1

a∗
i aj(γ∗

i − γj)xγ∗
i +γj −

k∗∑
i=1

a∗
i γ

∗
i xγ∗

i +
k∑

j=1

ajγjx
γj

for all x ∈ [0, 1). Therefore R decreases in [0, 1) if and only if (3.5) holds for all x ∈ [0, 1].

To prove (iv) we note that G ≤lr G
∗

holds if and only if the ratio of the respective
density functions

g∗(t)
g(t)

=
f(x)

∑k∗

i=1 a∗
i γ

∗
i (F (t))γ∗

i −1

f(x)
∑k

j=1 ajγj(F (t))γj−1

is increasing in t. This property holds for all absolutely continuous F if and only if

r(x) =
∑k∗

i=1 a∗
i γ

∗
i xγ∗

i∑k
i=1 aiγixγi

(3.10)

decreases for all x ∈ (0, 1). By differentiating we obtain

r′(x) =sign

[
k∗∑
i=1

a∗
i (γ

∗
i )2xγ∗

i

]⎡⎣ k∑
j=1

ajγjx
γj

⎤
⎦−

[
k∗∑
i=1

a∗
i γ

∗
i xγ∗

i

]⎡⎣ k∑
j=1

aj(γj)2xγj

⎤
⎦

=
k∗∑
i=1

k∑
j=1

a∗
i ajγ

∗
i γj(γ∗

i − γj)xγ∗
i +γj

for all x ∈ (0, 1). Therefore r decreases in (0, 1) if and only if (3.6) holds for all x ∈ [0, 1].
Finally, the proof of (v) is obtained from (3.7) and Theorem 2.3 in Navarro and

Gomis [34]. �

Remark 3.3: Note that, from the preceding proof, an alternative condition to check the HR
ordering is to study whether the function R defined in (3.8) is decreasing in [0, 1]. Analo-
gously, to check the RHR or the LR orders we can study the functions R or r, respectively,
defined in the preceding proof. This is equivalent to use (3.2) and the general results for
distorted distributions obtained in Navarro et al. [32].
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Clearly we can apply the general results obtained in the preceding proposition to coher-
ent systems based on SOS from a PHR model (2.1) by using the representation given in
(2.6). In particular, for the SOS (k-out-of-n systems) we obtain the following results.

Proposition 3.4: Let X∗
r:n and Y ∗

s:m be two SOS obtained from PHR models with a common
reliability function F and with respective coefficients α1, . . . , αn ∈ R

+ and β1, . . . , βm ∈ R
+.

If γi = (n − i + 1)αi for i = 1, . . . , n and δj = (m − j + 1)βj for j = 1, . . . ,m, we assume
that γi �= γj and δi �= δj for all i �= j. Let

ai,r =
r∏

j=1
j �=i

1
γj − γi

, 1 ≤ i ≤ r ≤ n

and

bi,s =
s∏

j=1
j �=i

1
δj − δi

, 1 ≤ i ≤ s ≤ m.

Then:
(i) X∗

r:n ≤st Y ∗
s:m for all F if and only if⎡

⎣ s∏
j=1

δj

⎤
⎦ s∑

i=1

bi,s

δi
xδi −

⎡
⎣ r∏

j=1

γj

⎤
⎦ r∑

i=1

ai,r

γi
xγi ≥ 0

for all x ∈ [0, 1].
(ii) X∗

r:n ≤hr Y ∗
s:m for all F if and only if

s∑
i=1

r∑
j=1

aj,rbi,s

(
1
δi

− 1
γj

)
xδi+γj ≥ 0

for all x ∈ [0, 1].
(iii) X∗

r:n ≤rh Y ∗
s:m for all F if and only if

s∑
i=1

r∑
j=1

aj,rbi,s

(
1
γj

− 1
δi

)
xδi+γj ≤

⎡
⎣ r∏

j=1

γj

⎤
⎦
−1

s∑
i=1

bi,sx
δi −

⎡
⎣ s∏

j=1

δj

⎤
⎦
−1

r∑
i=1

ai,rx
γi

for all x ∈ [0, 1].
(iv) X∗

r:n ≤lr Y ∗
s:m for all F if and only if

s∑
i=1

r∑
j=1

aj,rbi,s (γj − δi) xδi+γj ≥ 0

for all x ∈ [0, 1].
(v) X∗

r:n ≤mrl Y ∗
s:m for all F with E(X∗

r:n) ≤ E(Y ∗
s:m) if

∑s
i=1

bi,s

δi
xδi∑r

j=1
aj,r

γj
xγj

is bathtub in (0, 1].
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The proof is immediate from (2.6) and Proposition 3.2. For example, note that from
Proposition 3.4(iv) we obtain the following trivial result for series systems from two different
PHR models: X∗

1:n ≤lr Y ∗
1:m holds for all F if and only if γ1 ≥ δ1, that is, nα1 ≥ mβ1.

Remark 3.5: The results obtained here for the GPHR model can also be applied to coherent
systems with independent components satisfying the PHR model. Stochastic comparisons
for k-out-of-n systems in this setting have been recently reviewed in Balakrishnan and
Zhao [4].

It is well known (see, e.g., Barlow and Proschan [5]) that the reliability functions of the
systems with independent components can be written as

FT (t) = Q(F 1(t), . . . , Fn(t)),

where F 1, . . . , Fn are the reliability functions of the component lifetimes and Q is a
multinomial, which only depends on the structure of the system. This function is given by

Q(x1, . . . , xn) =
r∑

i=1

∏
k∈Pi

xk −
r−1∑
i=1

r∑
j=i

∏
k∈Pi∩Pj

xk + · · · + (−1)r+1
∏

k∈P1∩···∩Pr

xk,

where P1, . . . , Pr are the minimal path sets of the system. A path set is a set P such that
if all the components in P work, then the system works. A minimal path set is a path
set which does not contain other path sets. Therefore, under the PHR model, the system
reliability function can be written as in (3.2) and we can apply the results obtained here.
An example is given in Section 5.

4. LIMITING PROPERTIES AND BOUNDS OF AGING FUNCTIONS

In this section, we study limiting properties and bounds of aging functions of distorted
distributions. Specific results are obtained for the GPHR model defined in the preceding
section. Therefore, these results can be applied to SOS as well as coherent systems based
on them (see Section 2).

Firstly, we study the hazard rate function. In this section we assume that G is a distorted
distribution from F and that both are absolutely continuous with support [0,∞). For the
respective density functions g and f of G and F , it is assumed that g(x) > 0 and f(x) > 0
for x > 0. The respective reliability functions satisfy

G(t) = q(F (t))

where q is a distortion function. The respective pdfs satisfy

g(t) = f(t)q′(F (t))

and the hazard rate functions are related via

hG(t) =
g(t)
G(t)

= f(t)
q′(F (t))
q(F (t))

= hF (t)α(F (t)),

where hF = f/F and α(u) = uq′(u)/q(u). Therefore, we obtain the following immediate
results.
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Proposition 4.1: If G is a distorted distribution from F , then

lim
t→∞

hG(t)
hF (t)

= lim
u→0+

α(u)

and

hF (t) inf
u∈(0,1]

α(u) ≤ hG(t) ≤ hF (t) sup
u∈(0,1]

α(u),

where α(u) = uq′(u)/q(u).

We should mention here that the function α was also used in Navarro et al. [33] to
determine whether the IFR and DFR classes are preserved under the formation of distorted
distributions. Specifically, there it is proved that the IFR (resp. DFR) class is preserved if
and only if α is decreasing (resp. increasing). Results on aging properties, like the IFR and
DFR classes, of SOS can be found in Cramer and Kamps [16], Cramer [13], Burkschat and
Navarro [9], Torrado, Lillo, and Wiper [39], Burkschat and Torrado [12].

If G satisfies the GPHR model (3.2), then

α(u) =
∑k

i=1 aiγiu
γi∑k

i=1 aiuγi

and

lim
t→∞

hG(t)
hF (t)

= lim
u→0+

α(u) = γ1:k,

where γ1:k = min(γ1, . . . , γk), provided that a1, . . . , ak ∈ R \ {0}.
To obtain a similar result for MRL functions, we need to study at first the limiting

behavior of the reliability functions. The result can be stated as follows.

Proposition 4.2: If G is a distorted distribution from F and there exists a distortion
function p with p(u) > 0 for u ∈ (0, 1) such that

lim
u→0+

q(u)
p(u)

= c ∈ R
+,

then

lim
t→∞

G(t)
p(F (t))

= c

and

lim
t→∞

mG(t)
mp(t)

= 1,

where mG is the MRL of G and mp is the MRL of p(F ).
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Proof: The limit of the reliability functions is given by

lim
t→∞

G(t)
p(F (t))

= lim
u→0+

q(u)
p(u)

= c > 0.

From the definition of the MRL, we have

lim
t→∞

mG(t)
mp(t)

= lim
t→∞

p(F (t))
G(t)

lim
t→∞

∫∞
t

G(x)dx∫∞
t

p(F (x))dx
.

The first limit is

lim
t→∞

p(F (t))
G(t)

= lim
u→0+

p(u)
q(u)

= 1/c > 0.

By applying the L’Hôpital’s rule to the second limit, we get

lim
t→∞

∫∞
t

G(x)dx∫∞
t

p(F (x))dx
= lim

t→∞
G(t)

p(F (t))
= c > 0

and so the stated result holds. �

Note that the function p can also be used to obtain bounds for the reliability function as

p(F (t)) inf
u∈(0,1]

q(u)
p(u)

≤ G(t) ≤ p(F (t)) sup
u∈(0,1]

q(u)
p(u)

.

Analogously, for the expected values we have

μp inf
u∈(0,1]

q(u)
p(u)

≤ μG ≤ μp sup
u∈(0,1]

q(u)
p(u)

where μG is the mean of G and

μp =
∫ ∞

0

p(F (x))dx

is the mean of p(F ).
In particular, if G satisfies the GPHR model (3.2) with a1, . . . , ak ∈ R \ {0}, then

lim
u→0+

q(u)
uγ1:k

= aj > 0,

where γj = γ1:k < γi for all i �= j and

lim
t→∞

mG(t)
mp(t)

= 1

for p(u) = uγ1:k .
Next, we present an alternative way of computing the limit of the hazard rate function

of a distorted distribution. The proof is similar to that of the preceding proposition.
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Proposition 4.3: If G is a distorted distribution from F and there exists a distortion
function p with derivative p′(u) > 0 for 0 < u < ε and some ε ∈ (0, 1) such that

lim
u→0+

q′(u)
p′(u)

= c ∈ R
+,

then

lim
t→∞

G(t)
p(F (t))

= lim
t→∞

g(t)
f(t)p′(F (t))

= c

and

lim
t→∞

hG(t)
hp(t)

= 1,

where hG and hp are the hazard rate function of G and p(F ), respectively.

In particular, if G satisfies the GPHR model (3.2) with a1, . . . , ak ∈ R \ {0} and p(u) =
uγ1:k with γ1:k = min(γ1, . . . , γk), then

lim
u→0+

q′(u)
p′(u)

= lim
u→0+

∑k
i=1 aiγiu

γi−1

γ1:kuγ1:k−1
= aj > 0,

where γj = γ1:k < γi for all i �= j. Hence

lim
t→∞

hG(t)
hp(t)

= 1,

where hp(t) = γ1:khF (t). Therefore, as above, we obtain

lim
t→∞

hG(t)
hF (t)

= γ1:k.

Remark 4.4: Analogously to the preceding results, we can conclude from (2.6) for a system
based on SOS with signature vector s = (s1, . . . , sr, 0, . . . , 0) with sr > 0 and decreasingly
ordered model parameters γ1 > · · · > γr that (cf. Burkschat and Navarro [11], Theorems 4.7
and 4.1)

lim
t→∞

FT (t)
F

γr (t)
= srar,r

r−1∏
j=1

γj = sr

r−1∏
j=1

γj

γj − γr
, lim

t→∞
hT (t)
hF (t)

= γr.

For the corresponding results for systems with iid components, see Block, Dugas, and
Samaniego [6] and Samaniego [38], Section 5.3; see also Liu, Mao, and Hu [27].

Finally, we study the dispersion of the distorted distribution by using the Gini mean
difference defined as

ΔF = E(X2:2 − X1:2) = 2
∫ ∞

0

F (t)(1 − F (t))dt,

where X1:2,X2:2 are the order statistics obtained from two IID random variables with the
same distribution F . This dispersion measure was used in Kozyra and Rychlik [26] to obtain
bounds for L-statistics and coherent systems with IID components. Let us see how these
results can be extended to distorted distributions.
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Proposition 4.5: If G = q(F ) is the reliability function of Y and

μF =
∫ ∞

0

F (t)dt < ∞,

then

inf
u∈(0,1)

β(u) ≤ E

(
Y − μF

ΔF

)
≤ sup

u∈(0,1)

β(u),

where

β(u) =
q(u) − u

2u(1 − u)
, u ∈ (0, 1). (4.1)

Proof: The lower bound can be obtained as follows:

E

(
Y − μF

ΔF

)
=
∫ ∞

0

q(F (t)) − F (t)
ΔF

dt

=
∫ ∞

0

q(F (t)) − F (t)
2F (t)(1 − F (t))

2F (t)(1 − F (t))
ΔF

dt

≥ inf
u∈(0,1)

β(u)
∫ ∞

0

2F (t)(1 − F (t))
ΔF

dt

= inf
u∈(0,1)

β(u)

with β given in (4.1). The upper bound can be obtained in a similar manner. �

5. EXAMPLES

In this section, we apply the results from the first sections in several examples. In the first
example, we compare in the HR order two differently structured systems based on SOS
from the same PHR model. Note that the considered system structures cannot be ordered
in the HR order by using signatures.

Example 5.1: We want to compare in the HR order the systems with lifetimes

T1 = min(X1,max(X2,X3),max(X3,X4))

and

T2 = max(min(X1,X2),min(X1,X3,X4),min(X2,X3,X4))

(i.e. systems numbers 12 and 15 of Table 1 in Navarro et al. [36]). These systems are ST
ordered for any exchangeable model (see Figure 1 in Navarro et al. [36]) which includes
the dependence model defined by the SOS (see Navarro and Burkschat [31]). In partic-
ular, T1 ≤st T2 for SOS based on any PHR model (2.1) and any F . However, they are
not necessarily HR ordered for any exchangeable model (see Figure 2 in Navarro et al.
[36]). So we want to study whether they are HR ordered for a particular (known) SOS–
PHR model, that is, for fixed parameter values α1, . . . , α4. Their respective signatures are
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s1 = (1/4, 7/12, 1/6, 0) and s2 = (0, 5/6, 1/6, 0) (see, e.g., Table 1 in Navarro et al. [36]).
Hence, from (2.6), the respective distortion functions are

q1(x) =
1
4
q1:4(x) +

7
12

q2:4(x) +
1
6
q3:4(x)

and

q2(x) =
5
6
q2:4(x) +

1
6
q3:4(x),

where q1:4(x) = xγ1 ,

q2:4(x) =
γ2

γ2 − γ1
xγ1 +

γ1

γ1 − γ2
xγ2 ,

q3:4(x) =
γ2

γ2 − γ1

γ3

γ3 − γ1
xγ1 +

γ1

γ1 − γ2

γ3

γ3 − γ2
xγ2 +

γ1

γ1 − γ3

γ2

γ2 − γ3
xγ3 ,

γ1 = 4α1, γ2 = 3α2 and γ3 = 2α3. Therefore

q1(x) =
(

1
4

+
7
12

γ2

γ2 − γ1
+

1
6

γ2

γ2 − γ1

γ3

γ3 − γ1

)
xγ1 +

(
7
12

γ1

γ1 − γ2
+

1
6

γ1

γ1 − γ2

γ3

γ3 − γ2

)
xγ2

+
1
6

γ1

γ1 − γ3

γ2

γ2 − γ3
xγ3

and

q2(x) =
(

5
6

γ2

γ2 − γ1
+

1
6

γ2

γ2 − γ1

γ3

γ3 − γ1

)
xγ1 +

(
5
6

γ1

γ1 − γ2
+

1
6

γ1

γ1 − γ2

γ3

γ3 − γ2

)
xγ2

+
1
6

γ1

γ1 − γ3

γ2

γ2 − γ3
xγ3 .

Then we can use Proposition 3.2(ii), to study if these two systems are HR ordered (or
not) for any F . From Remark 3.3, we just need to study whether the function R defined
in (3.8) is decreasing in (0, 1]. For example, if α1 = 1, α2 = 2 and α3 = 1, we obtain the R
function plotted in Figure 1 (solid). As this function is not decreasing, these systems are
not HR ordered for all F for these parameter values (note that even for α1 = α2 = α3 = 1,
that is, the situation of iid component lifetimes, we also get a function R which is not
decreasing). However, if α1 = 1, α2 = 2 and α3 = 4, we obtain the R function plotted in
Figure 1 (dotted). It can be shown that R′(x) =sign x4 − 2x2 − 1 < 0 for x ∈ (0, 1), that is,
R is decreasing. Consequently, T1 ≤hr T2 holds for all F . Note that in both cases we have
R ≥ 1 and so T1 ≤st T2 for all F . This last result can be obtained by using signatures (for
any exchangeable model); see Navarro et al. [36]. Moreover, from the results given in the
preceding section the system hazard rate functions satisfy limt→∞ hTi

(t)/hF (t) = 2 in the
first case and limt→∞ hTi

(t)/hF (t) = 4 in the second, for i = 1, 2.

The following example shows that some coherent systems can be HR ordered in the iid
case but not HR ordered in the case of components coming from the SOS model.

Example 5.2: Let us consider the coherent systems with lifetimes T1 = min(X1,max(X2,
X3,X4)) and T2 = max(X1,min(X2,X3,X4)). Example 3.1 in Navarro [30] proves that if
the components are iid with a common distribution F , then T1 ≤lr T2 for any F . However,
their respective signatures (1/4, 1/4, 1/2, 0) and (0, 1/2, 1/4, 1/4) are not HR-ordered. As
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Figure 1. Plots of the function R defined in (3.8) for the systems studied in Example 5.1
when α1 = 1, α2 = 2 and α3 = 1 (solid) and α1 = 1, α2 = 2 and α3 = 4 (dotted). In the
first case, the systems are not HR ordered, but in the second they are HR ordered, since R
is decreasing in (0, 1].

the signatures are ST ordered, we have T1 ≤st T2 for any exchangeable random vector
(X1,X2,X3,X4).

Let us assume that the components are dependent with the dependence model defined
by the SOS obtained from a PHR model with parameters α1, . . . , α4 and baseline reliability
F . Note that it is crucial that the signatures of the considered systems are not HR ordered.
For systems based on the SOS–PHR model with signatures which are HR ordered, it follows
T1 ≤hr T2 (see Navarro and Burkschat [31, Sections 2 and 3]). Now, if we assume that
γi = (4 − i + 1)αi, i = 1, . . . , 4 are pairwise different, then the reliability functions of these
systems can be written as a distortion of F with respective distortion functions p1 and
p2 given by (2.6). For example, for α1 = α2 = α3 = 1 and α4 = 10, we get γ1 = 4, γ2 = 3,
γ3 = 2 and γ4 = 10 and the respective distortion functions are

q1(x) = x4 − 3x3 + 3x2 + 0x10

and

q2(x) =
1
2
x4 − 20

7
x3 +

27
8

x2 − 1
56

x10.

By plotting the ratio R(x) = q2(x)/q1(x) (see Figure 2, left) we see that R is not monotonic
and so these systems are not HR ordered for any F . The hazard rate functions in the case
of a baseline exponential distribution with mean 1 can be seen in Figure 2, right (solid,
T1, dotted, T2). In this case they are not HR ordered. However, for other parameters, we
might obtain different results. For example, for α1 = α2 = α3 = 1 and α4 = 5, we obtain the
ratio R(x) = q2(x)/q1(x) plotted in Figure 3 (left). Therefore, T1 ≤hr T2 for any F since
R is decreasing. Hence we can study whether they are LR ordered. To this end we plot
the function r defined in (3.10) in Figure 3 (right). As r is decreasing, T1 ≤lr T2 holds for
any F .
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Figure 2. Plot (left) of the function R defined in (3.8) for the systems studied in Exam-
ple 5.2 when α1 = α2 = α3 = 1 and α4 = 10. The systems are not HR ordered for any F
since R is not monotonic. Hazard rate plots (right) in the case of a baseline exponential
distribution with mean 1 (solid, T1, dotted, T2). In this case, they are not HR ordered.

Figure 3. Plot (left) of the function R defined in (3.8) for the systems studied in Exam-
ple 5.2 when α1 = α2 = α3 = 1 and α4 = 5. The systems are HR ordered for any F since R
is decreasing. Plot (right) of the function r defined in (3.10). The systems are LR ordered
for any F since r is decreasing.

We can also use the results given above to study the limiting behavior of the aging
functions of these systems. For example, for the first system we obtain

α1(x) =
xq′1(x)
q1(x)

=
4x2 − 9x + 6
x2 − 3x + 3

.

Therefore, from Proposition 4.1, we have

lim
t→∞

hT1(t)
hF (t)

= lim
u→0+

α1(u) = 2 = γ1:3

for any F . Of course, this is what we have in Figure 2 (right, solid line) since for this
exponential distribution hF (t) = 1 for t ≥ 0. Moreover, we have

inf
u∈(0,1]

α1(u) = 1, and sup
u∈(0,1]

α1(u) = 2,
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and so hF (t) ≤ hT1(t) ≤ 2hF (t). Analogously, for the other system we obtain

lim
t→∞

hT2(t)
hF (t)

= 2

and 0 ≤ hT2(t) ≤ 2hF (t) (i.e., in this case we do not have a lower bound). Of course, this
is what we have in Figure 2 (right, dotted line). It is easy to see that the functions α1(u)
and α2(u) are strictly decreasing in (0, 1] and so, from the results given in Navarro et al.
[33], the IFR class is preserved (i.e., if F is IFR, then T1 and T2 are IFR). For that reason
we obtain strictly increasing hazard rate functions in Figure 2 (right). However, the DFR
class is not preserved for all F as can be seen in Figure 2 (right) where a DFR model (the
exponential distribution is both IFR and DFR since it has a constant hazard rate) gives
systems with strictly increasing hazard rate functions.

To study the limits of the MRL functions we note that

lim
x→0+

q1(x)
x2

= lim
x→0+

x4 − 3x3 + 3x2

x2
= 3

and so, from Proposition 4.2, we obtain

lim
t→∞

FT1(t)

F
2
(t)

= 3

and

lim
t→∞

mT1(t)
m(t)

= 1,

where mT1 is the MRL of T1 and m is the MRL of F
2
. Note that 3 is the coefficient of

x2 = xγ1:3 in q1. To obtain bounds for the system reliability we study the function q1(x)/x2,
obtaining

inf
u∈(0,1]

q1(u)
u2

= 1, and sup
u∈(0,1]

q1(u)
u2

= 3,

and so F
2
(t) ≤ FT1(t) ≤ 3F

2
(t) and μ ≤ E(T1) ≤ 3μ where μ =

∫∞
0

F
2
(t)dt is the mean of

F
2
. For example, for an exponential distribution with mean 1, we obtain 1/2 ≤ E(T1) ≤ 3/2.

Analogously, from Proposition 4.3, as

lim
x→0+

q′1(x)
2x

= lim
x→0

4x2 − 9x + 6
2

= 3,

we obtain (again)

lim
t→∞

hT1(t)
2hF (t)

= 1,

where 2hF is the hazard rate of F
2
. Similar results can be obtained for T2.
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Finally, we use the results given in Proposition 4.5 to study bounds expressed in the
Gini mean difference units. To this purpose we compute the function β for T1 obtaining

β(x) =
x4 − 3x3 + 3x2 − x

2x(1 − x)
= − (x − 1)2

2
.

Hence, infx∈[0,1] β(x) = −1/2 and supx∈[0,1] β(x) = 0 and we have the following bounds

μF − 1
2
ΔF ≤ E(T1) ≤ μF

for all F . Analogously, for the second system we obtain

μF − 1
2
ΔF ≤ E(T2) ≤ μF +

1
2
ΔF .

The following example shows how the results obtained here for the GPHR model can
also be applied to systems with independent heterogeneous (non i.d.) components satisfying
the PHR model (see Remark 3.5).

Example 5.3: Let us consider a 2-out-of-3 system with independent non i.d. components
satisfying the PHR model, that is, T = X2:3 and the component reliability functions are
F i(t) = F

αi(t), αi > 0, i = 1, 2, 3. The minimal path sets are {1, 2}, {1, 3}, {2, 3}. Without
loss of generality, we can assume α1 < α2 < α3. Then the system reliability is given by

FT (t) = F 1(t)F 2(t) + F 1(t)F 3(t) + F 2(t)F 3(t) − 2F 1(t)F 2(t)F 3(t)

= F
α1+α2(t) + F

α1+α3(t) + F
α2+α3(t) − 2F

α1+α2+α3(t).

Hence, it is included in the GPHR model with γ1 = α1 + α2, γ2 = α1 + α3, γ3 = α2 + α3

and γ4 = α1 + α2 + α3. Therefore, we can use the results given above to study the limiting
behavior of the aging functions of this system. For example, for αi = i for i = 1, 2, 3, we
obtain FT = q(F ) where

q(x) = x3 + x4 + x5 − 2x6.

Then

α(x) =
xq′(x)
q(x)

=
3 + 4x + 5x2 − 12x3

1 + x + x2 − 2x3
.

Therefore, from Proposition 4.1, we have

lim
t→∞

hT (t)
hF (t)

= lim
x→0+

α(x) = 3 = α1 + α2 = γ1:4

for any F . Moreover, we have

inf
u∈(0,1]

α(u) = 0, and sup
u∈(0,1]

α(u) ∼= 3.24364

and so hT (t) ≤ 3.24364hF (t). It is easy to see that the function α(x) is first strictly increasing
and then strictly decreasing in (0, 1] and so, from the results given in Navarro et al. [33],
the IFR and DFR classes are not preserved (e.g. for an exponential distribution we obtain
a bathtub shaped hazard rate).
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Analogously, to study the limit of the MRL function, we note that

lim
x→0+

q(x)
x3

= lim
x→0+

x3 + x4 + x5 − 2x6

x3
= 1

and so, from Proposition 4.2, we obtain

lim
t→∞

FT (t)

F
3
(t)

= 1

and

lim
t→∞

mT (t)
m(t)

= 1,

where mT is the MRL of T and m is the MRL of F
3
. Note that in the general case we have

lim
t→∞

FT (t)

F
α1+α2(t)

= 1

and

lim
t→∞

mT (t)
m(t)

= 1,

where m is the MRL of F
α1+α2 . To obtain bounds for the system reliability we study the

function q(x)/x3, obtaining

inf
u∈(0,1]

q(u)
u3

= 1, and sup
u∈(0,1]

q(u)
u3

∼= 1.5282,

and so F
3
(t) ≤ FT (t) ≤ 1.5282F

3
(t) and μ ≤ E(T1) ≤ 1.5282μ, where μ =

∫∞
0

F
3
(t)dt is

the mean of F
3
. Analogously, from Proposition 4.3, as

lim
x→0+

q′(x)
3x2

= lim
x→0+

3x2 + 4x3 + 5x4 − 12x5

3x2
= 1,

we obtain (again)

lim
t→∞

hT (t)
3hF (t)

= 1,

where 3hF is the hazard rate of F
3
. Moreover, in order to obtain the bounds from

Proposition 4.5, we consider the following function

β(x) =
x3 + x4 + x5 − 2x6 − x

2x(1 − x)
=

2x4 + x3 − x − 1
2

.

Hence, infx∈[0,1] β(x) ∼= −0.6424 and supx∈[0,1] β(x) = 0.5. The supremum is attained when
x → 1 and the infimum at

x0 =
1
8

3
√

31 + 8
√

15 +
1

8 3
√

31 + 8
√

15
− 1

8
∼= 0.401278.

Then, we have the following bounds

μF − 0.6424ΔF ≤ E(T ) ≤ μF + 0.5ΔF

for all F .
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6. THE CASE OF SEVERAL EQUAL MODEL PARAMETERS

In this section, we complete the analysis on the asymptotic behavior of the survival function
for system lifetimes based on the dependence model induced by SOS from the PHR model
(2.1) by allowing that some of the parameters γj are equal. Let F be an absolutely continuous
distribution function with density f(x) > 0 for x > 0. For γ1, . . . , γn > 0 and r ∈ {1, . . . , n},
let γ1:r ≤ · · · ≤ γr:r denote the increasingly ordered values of γ1, . . . , γr. Remember that
γi = (n − i + 1)αi, i = 1, . . . , n. Moreover, let �(r) denote the number of distinct values in
γ1, . . . , γr and let the integers d

(r)
v , v = 1, . . . , �(r), be chosen such that

γ1:r = · · · = γ
d
(r)
1 :r

< γ
d
(r)
1 +1:r

= · · · = γ
d
(r)
1 +d

(r)
2 :r

<

· · · < γ
d
(r)
1 +···+d

(r)

�(r)−1
+1:r

= · · · = γ
d
(r)
1 +···+d

(r)

�(r) :r
.

Then, the (ordered) different values δ
(r)
1 < · · · < δ

(r)

�(r) among γ1, . . . , γr are given by δ
(r)
v =

γ
d
(r)
1 +···+d

(r)
v :r

, v = 1, . . . , �(r). Now, the distribution function of the rth sequential order
statistic is given by (cf. Cramer and Kamps [17])

P (U∗
r:n > F (t)) =

⎛
⎝ r∏

j=1

γj

⎞
⎠ �(r)∑

v=1

d(r)
v −1∑
j=0

K
(r)
v,j

(δ(r)
v )d

(r)
v −j(d(r)

v − j − 1)!j!
Γ(d(r)

v − j,−δ(r)
v ln F (t)),

with K
(r)
v0 =

∏�(r)

q=1,q �=v(δ
(r)
q − δ

(r)
v )−d(r)

q ,

K
(r)
v,j =

j−1∑
p=0

�(r)∑
q=1,q �=v

(−1)p+1

(
j − 1

p

)
p! d(r)

q

(δ(r)
q − δ

(r)
v )p+1

K
(r)
v,j−1−p, j ∈ N,

and the incomplete gamma function

Γ(r, z) =
∫ ∞

z

yr−1 exp(−y) dy.

Because for r ∈ N, z > 0

Γ(r, z) = (r − 1)!
r−1∑
k=0

e−z zk

k!
,

we obtain

P (U∗
r:n > F (t)) =

⎛
⎝ r∏

j=1

γj

⎞
⎠ �(r)∑

v=1

d(r)
v −1∑
j=0

K
(r)
v,j

(δ(r)
v )d

(r)
v −j · j!

(F (t))δ(r)
v

d(r)
v −j−1∑

k=0

(− ln((F (t))δ(r)
v ))k

k!
.

Therefore, in this case the distribution of the rth sequential order statistic is given by a gen-
eralized mixture of the distributions of the first, second, ..., d

(r)
v -th records (see, e.g., Arnold,

Balakrishnan, and Nagaraja [2]) based on the survival functions F
δ(r)

v , v = 1, . . . , �(r). Recall
that the survival function of the d-th record Rd in a sequence of iid random variables with
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distribution function F is given by

P (Rd > t) = F (t)
d−1∑
k=0

(− ln(F (t)))k

k!
, t ∈ R.

In particular, then the distribution of the lifetime of a coherent system based on SOS can
be expressed as a generalized mixture of records from the same PHR model based on F .
Clearly, this distribution can also be interpreted as a distorted distribution based on the
survival function F (see Section 2).

Similarly to the GPHR model, we can examine generalized mixtures in this situation.
Let a1, . . . , ak ∈ R, δ1, . . . , δk > 0 and r1, . . . , rk ∈ N. Assume that the vectors (ri, δi), i =
1, . . . , k, are different. Moreover, assume that

G(t) =
k∑

i=1

ai(F (t))δi

ri−1∑
k=0

(− ln((F (t))δi))k

k!
, t ∈ R,

defines a survival function on R for any survival function F , that is, the associated distortion
function

q(x) =
k∑

i=1

aix
δi

ri−1∑
k=0

(−δi ln(x))k

k!

satisfies the conditions q(0) = 0, q(1) = 1, and q is increasing in [0, 1]. Let

δ∗ = min{δ1 . . . , δk}, r∗ = max{ri : i ∈ {1, . . . , k} with δi = δ∗},

and let i∗ be chosen such that (r∗, δ∗) = (ri∗ , δi∗). Then, if a1, . . . , ak ∈ R \ {0},

lim
t→∞

G(t)
G∗(t)

= ai∗ > 0, (6.1)

where

G∗(t) = (F (t))δ∗
r∗−1∑
k=0

(− ln((F (t))δ∗))k

k!

denotes the survival function of the r∗-th record based on the survival function F
δ∗ . With

δ ≥ 0 and r ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . . }, this follows immediately from:

lim
x→0+

[xδ(− ln(x))r] =

⎧⎪⎨
⎪⎩

1, δ = 0, r = 0,

0, δ = 0, r < 0,

0, δ > 0, r ∈ Z.

(6.2)

Moreover, if in the generalized mixture a1, . . . , ak ∈ R (i.e. zero is included), then the limit
in (6.1) holds with ai∗ ≥ 0.

Theorem 6.1: Let T denote the lifetime of a coherent system based on SOS from the PHR
model (2.1). Let s = (s1, . . . , sr, 0, . . . , 0) with sr > 0 denote the signature of the system and

https://doi.org/10.1017/S0269964817000018 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000018


STOCHASTIC COMPARISONS OF SYSTEMS BASED ON SEQUENTIAL ORDER 267

d = #{j ∈ {1, . . . , r} : γj = γ1:r}. Then,

lim
t→∞

FT (t)
FRd(γ1:r)(t)

= c ∈ R
+,

where

FRd(γ1:r)(t) = (F (t))γ1:r

d−1∑
k=0

(−γ1:r ln F (t))k

k!
, t ∈ R,

denotes the survival function of the dth record Rd(γ1:r) based on an iid sequence of random
variables with survival function F

γ1:r . Moreover, c ≥ sr holds.

Proof: Rewriting FT as a generalized mixture

FT (t) =
k∑

i=1

ai(F (t))δi

ri−1∑
k=0

(− ln((F (t))δi))k

k!
, t ∈ R,

with appropriately chosen ai ∈ R, δi > 0, ri ∈ N and k ∈ N, it follows from the preceding
results that the considered limit c exists as a real number such that c ≥ 0. Since sr > 0 by
assumption, it is sufficient to prove c ≥ sr. At first, we obtain

FT (t) =
r∑

m=1

smP (X∗
m:n > t) ≥ srP (X∗

r:n > t).

Using results from Cramer and Kamps [17], the mth sequential order statistic can be
expressed as

X∗
m:n = H−1

F

⎛
⎝ m∑

j=1

Zj

γj

⎞
⎠ , m = 1, . . . , r,

where Z1, . . . , Zr are iid according to a standard exponential distribution and H−1
F denotes

the inverse of the cumulative hazard rate HF = − ln F of F . Hence, with J = {j ∈
{1, . . . , r} : γj = γ1:r},

P (X∗
r:n > t) = P

⎛
⎝ r∑

j=1

Zj

γj
> HF (t)

⎞
⎠ ≥ P

⎛
⎝∑

j∈J

Zj

γj
> HF (t)

⎞
⎠ = P

⎛
⎝∑

j∈J

Zj > γ1:rHF (t)

⎞
⎠ .

Because |J | = d by assumption, the random variable
∑

j∈J Zj is distributed according to a
gamma distribution with shape parameter d and scale parameter 1. Therefore, we get

P

⎛
⎝∑

j∈J

Zj > γ1:rHF (t)

⎞
⎠ = e−γ1:rHF (t)

d−1∑
k=0

(γ1:rHF (t))k

k!

= (F (t))γ1:r

d−1∑
k=0

(−γ1:r ln F (t))k

k!
= FRd(γ1:r)(t),

and consequently
FT (t) ≥ srFRd(γ1:r)(t), t > 0,

which yields the assertion. �
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Remark 6.2: If γ1:r = k ∈ N, then the distribution of Rd(γ1:r) in Theorem 6.1 coincides with
the distribution of a so-called kth record value. The kth record values describe the kth largest
values in a sequence of iid random variables with distribution function F (cf. Dziubdziela
and Kopociński [19]; see also Kamps [24]).

Corollary 6.3: Let hF denote the hazard rate of F . In the situation of Theorem 6.1, let hT

and hRd(γ1:r) denote the hazard rates of the random variables T and Rd(γ1:r), respectively.
Then,

lim
t→∞

hT (t)
hRd(γ1:r)(t)

= 1 and lim
t→∞

hT (t)
hF (t)

= γ1:r.

Proof: The density of T can be written as

fT (t) =
k∑

i=1

aifRri
(δi)(t), t ∈ R,

with appropriately chosen ai ∈ R, δi > 0, ri ∈ N and k ∈ N, where

fRr(δ)(t) =
δ

(r − 1)!
(−δ ln F (t)

)r−1
(F (t))δ−1f(t), t ∈ R,

denotes the density function of the r-th record based on an iid sequence of random variables
with survival function F

δ
. Using (6.2), it follows again that the limit of fT (t)/fRd(γ1:r)(t) for

t → ∞ is given by a non-negative real number. By applying L’Hôpital’s rule, Theorem 6.1
yields

lim
t→∞

fT (t)
fRd(γ1:r)(t)

= lim
t→∞

FT (t)
FRd(γ1:r)(t)

= c ∈ R
+.

Therefore, the first limit holds and using

lim
t→∞

hRd(γ1:r)(t)
γ1:rhF (t)

= lim
t→∞

1
(d−1)!

(−γ1:r ln F (t)
)d−1

∑d−1
k=0

(−γ1:r ln F (t))k

k!

= 1,

the second one is obtained. �

Theorem 6.1 and Corollary 6.3 are generalizations of the results given in Remark 4.4.
In the following corollary, the limiting behavior of the MRL functions is established.

Corollary 6.4: In the situation of Theorem 6.1, let E(X∗
r:n) < ∞. Let mT and mRd(γ1:r)

denote the MRL functions of the random variables T and Rd(γ1:r), respectively. Then,

lim
t→∞

mT (t)
mRd(γ1:r)(t)

= 1.

Moreover, for d > 1, if

lim
t→∞

mγ1:r (t)hF (t)
HF (t)

= 0

holds with HF = − ln F , then

lim
t→∞

mT (t)
mγ1:r (t)

= 1,

where mγ1:r denotes the MRL function of F
γ1:r .
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Proof: In order to show the result for the MRL functions, note at first that E(X∗
r:n) < ∞

implies E(T ) < ∞, because of the signature based representation of the survival function
of T and 0 ≤ X∗

1:n ≤ · · · ≤ X∗
r:n almost surely. Moreover, E(Rd(γ1:r)) < ∞ holds due to

P (X∗
r:n > x) ≥ P (Rd(γ1:r) > x) for x ≥ 0 (cf. the proof of Theorem 6.1). In particular,

E(R1(γ1:r)) = mγ1:r (0) < ∞. Since FT and FRd(γ1:r) can be interpreted as distorted dis-
tributions based on F , the first limit can be concluded by utilizing Proposition 4.2 and
Theorem 6.1.

For proving the second limit, it is sufficient to show for the dth record Rd = Rd(1) based
on the distribution function F that E(Rd) < ∞ and

lim
t→∞

mF (t)hF (t)
HF (t)

= 0 (6.3)

imply

lim
t→∞

mF (t)
mRd

(t)
= 1.

Then the assertion follows by applying this result to records based on F
γ1:r , because the

cumulative hazard rate and the hazard rate of F
γ1:r satisfy

HF
γ1:r (t) = γ1:rHF (t), hF

γ1:r (t) = γ1:rhF (t), t > 0.

In order to prove the above statement, we will show at first that

lim
t→∞

∫ ∞

t

F (y) dy ·
d−1∑
k=0

(HF (t))k

k!
= 0. (6.4)

Note that the cumulative hazard rate HF is increasing with HF (t) → ∞ for t → ∞. In
particular,

∫ ∞

t

F (y)
d−1∑
k=0

(HF (y))k

k!
dy ≥

∫ ∞

t

F (y) dy ·
d−1∑
k=0

(HF (t))k

k!
, t ≥ 0,

and so the limit (6.4) follows from E(Rd) < ∞. Now, we consider

lim
t→∞

mF (t)
mRd

(t)
= lim

t→∞

∫∞
t

F (y) dy ·∑d−1
k=0

(HF (t))k

k!∫∞
t

F (y)
∑d−1

k=0
(HF (y))k

k! dy

for d ≥ 2. Using (6.4), we can apply L’Hôpital’s rule to the second limit of the type ’00 ’ and
get

lim
t→∞

mF (t)
mRd

(t)
= lim

t→∞
F (t)

∑d−1
k=0

(HF (t))k

k! − ∫∞
t

F (y) dy · hF (t) ·∑d−2
k=0

(HF (t))k

k!

F (t)
∑d−1

k=0
(HF (t))k

k!

= lim
t→∞

(
1 − mF (t)hF (t)

∑d−2
k=0

(HF (t))k

k!∑d−1
k=0

(HF (t))k

k!

)

= lim
t→∞

(
1 − mF (t)hF (t)

HF (t)

∑d−2
k=0

(HF (t))k

k!∑d−1
k=0

(HF (t))k−1

k!

)
.

Due to assumption (6.3), this limit is equal to 1. �
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Remark 6.5: There exist distributions with a MRL function m which does not satisfy the
condition (6.3). An example can be given as follows (cf. Hall and Wellner [21, p. 181]). Let
m(t) = (t + e) ln(t + e), t ≥ 0, with e = exp(1). In particular,

∫ t

0

1
m(y)

dy = ln(ln(t + e)), t ≥ 0,

and therefore
∫∞
0

1
m(y) dy = ∞. Thus, it can be seen that m is the MRL function of a

distribution function F (cf. Hall and Wellner [21, p. 172]). Moreover, m′(t) = ln(t + e) + 1
with limit ∞ for t → ∞. The hazard rate h, cumulative hazard rate H and survival function
F are given by

h(t) =
m′(t) + 1

m(t)
=

ln(t + e) + 2
(t + e) ln(t + e)

,

H(t) =
∫ t

0

h(y) dy = ln(t + e) + 2 ln(ln(t + e)) − 1,

F (t) = exp(−H(t)) =
e

(t + e)(ln(t + e))2
.

Consequently, it can be seen that

lim
t→∞

m(t)h(t)
H(t)

= lim
t→∞

m′(t) + 1
H(t)

= 1.

However, note that in this case∫ t

0

F (y)H(y) dy = e

(
ln(ln(t + e)) + 1 − 2 ln(ln(t + e)) + 1

ln(t + e)

)

and therefore the MRL function of the dth record Rd, d ≥ 2, based on F does not exist,
because

E(R2) =
∫ ∞

0

F (y)H(y) dy = ∞.

Finally, we apply the results from this and the preceding sections to a system based on
SOS with some equal model parameters.

Example 6.6: Consider a system with lifetime given by

T = min(X1,max(X2, . . . , X5)),

where X1, . . . , X5 are exchangeable random variables with the dependence model defined
by SOS from the PHR model (2.1). Let α1 = 1. After the first failure, no additional load is
imposed on the remaining components, that is, α2 = 1. However, it is assumed that after
the second failure, the current load on the system is distributed evenly among the remaining
components. Therefore, now α3 = 4/3 is chosen (see Burkschat and Navarro [10], Remark
2.3 and Balakrishnan et al. [3], Example 1). After the third failure, the load is distributed in
the same vein on the two last components, that is, α4 = 4/2 = 2. The system will definitely
stop functioning with the next component failure. Therefore, the parameter α5 can be
chosen arbitrarily, because the system lifetime distribution does not depend on it. Recalling
the definition of the model parameters, we obtain in this situation γ1 = 5, γ2 = γ3 = γ4 = 4.
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Moreover, the signature of the system is given by s= (1/5, 1/5, 1/5, 2/5, 0) (cf. system 87
in Tables 1 and 2 of Navarro and Rubio [35]). The survival function of T can be expressed
with a distorted distribution q as FT = q(F ), where q has the representation

q(x) =
1
5
q1:5(x) +

1
5
q2:5(x) +

1
5
q3:5(x) +

2
5
q4:5(x)

with

q1:5(x) = xγ1 = x5,

q2:5(x) =
γ1

γ1 − γ2
xγ2 +

γ2

γ2 − γ1
xγ1 = −4x5 + 5x4,

q3:5(x) = γ1γ2γ3

(
Γ(2,−γ2 ln(x))

γ2
2(γ1 − γ2)

− Γ(1,−γ2 ln(x))
γ2(γ1 − γ2)2

+
Γ(1,−γ1 ln(x))
γ1(γ2 − γ1)2

)

= 16x5 + 5(1 − 4 ln(x))x4 − 20x4

q4:5(x) = γ1γ2γ3γ4

(
Γ(3,−γ2 ln(x))
2γ3

2(γ1 − γ2)
− Γ(2,−γ2 ln(x))

γ2
2(γ1 − γ2)2

+
Γ(1,−γ2 ln(x))
γ2(γ1 − γ2)3

+
Γ(1,−γ1 ln(x))
γ1(γ2 − γ1)3

)

= −64x5 + 5(1 − 4 ln(x) + 8 ln2(x))x4 − 20(1 − 4 ln(x))x4 + 80x4.

Therefore, we obtain

q(x) = x4(16 ln2(x) + 20 ln(x) − 23x + 24), x ∈ (0, 1].

By applying Theorem 6.1, we conclude

lim
t→∞

FT (t)
FR3(4)(t)

= c ∈ R
+.

Using the notation FR3(4) = p(F ) with

p(x) = x4
2∑

k=0

(−4 ln(x))k

k!
,

we get precisely

c = lim
x→0+

q(x)
p(x)

= lim
x→0+

16 ln2(x) + 20 ln(x) − 23x + 24
1 − 4 ln(x) + 8 ln2(x)

= 2.

Moreover, bounds for the survival function of the system lifetime can be established.
Utilizing

inf
u∈(0,1]

q(u)
p(u)

∼= 0.80872, sup
u∈(0,1]

q(u)
p(u)

= 2,

we find

0.80872F R3(4)(t) ≤ FT (t) ≤ 2FR3(4)(t), t ≥ 0.

In particular, bounds for the expected system lifetime are given by

0.80872E(R3(4)) ≤ E(T ) ≤ 2E(R3(4)).
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Alternatively, the bounds based on the Gini mean difference in Proposition 4.5 can be
determined by studying the function

β(x) =
16 ln2(x)x3 + 20x3 ln(x) − 23x4 + 24x3 − 1

2(1 − x)
, x ∈ (0, 1).

Because of
inf

x∈(0,1)
β(x) ∼= −0.52299, sup

x∈(0,1)

β(x) = 0,

we obtain
μF − 0.52299ΔF ≤ E(T ) ≤ μF .

Furthermore, Corollary 6.3 and Proposition 4.1 yield (cf. Figure 4 (left) for the case of an
underlying standard exponential distribution)

lim
t→∞

hT (t)
hR3(4)(t)

= 1, lim
t→∞

hT (t)
hF (t)

= 4

and
hF (t) ≤ hT (t) ≤ 4hF (t), t > 0,

because the function

α(u) =
uq′(u)
q(u)

=
64 ln2(x) + 112 ln(x) − 115x + 116

16 ln2(x) + 20 ln(x) − 23x + 24

satisfies
inf

u∈(0,1]
α(u) = 1, and sup

u∈(0,1]

α(u) = 4.

In particular, the above results yield that hT approaches 4hF from below. Additionally,
since α(u) is strictly decreasing on (0, 1], it follows that the IFR class is preserved for this

Figure 4. Plots of the hazard rates (left) and the MRL functions (right) of FT (solid),
FR3(4) (dashed) and F

4
(dotted) in Example 6.6 with underlying reliability F (t) = e−t.
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system (cf. Navarro et al. [33]). Finally, using Proposition 4.2 and Corollary 6.4 we can
determine the asymptotic behavior of the MRL function of the system:

lim
t→∞

mT (t)
mR3(4)(t)

= 1.

For example, in the case of the exponential distribution with F (t) = e−t, it can be shown
that the conditions in Corollary 6.4 are satisfied and consequently we also get (see Figure 4,
right)

lim
t→∞mT (t) =

1
4
,

because the MRL function m4 of F
4

is given by m4(t) = 1/4, t ≥ 0. Furthermore, as q/p
can be seen to be bathtub, we obtain the MRL ordering R3(4) ≤mrl T when the means are
ordered. This is not always the case as can be seen in Figure 4 (right), where ET < ER3(4).
Note that they are not ST (HR) ordered for any F , since q/p crosses y = 1.
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