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Recent experimental observations (Kühnen et al., Nat. Phys., vol. 14, 2018b,
pp. 386–390) have shown that flattening a turbulent streamwise velocity profile in pipe
flow destabilises the turbulence so that the flow relaminarises. We show that a similar
phenomenon exists for laminar pipe flow profiles in the sense that the nonlinear
stability of the laminar state is enhanced as the profile becomes more flattened. The
flattening of the laminar base profile is produced by an artificial localised body force
designed to mimic an obstacle used in the experiments of Kühnen et al. (Flow Turbul.
Combust., vol. 100, 2018a, pp. 919–943) and the nonlinear stability measured by the
size of the energy of the initial perturbations needed to trigger transition. Significant
drag reduction is also observed for the turbulent flow when triggered by sufficiently
large disturbances. In order to make the nonlinear stability computations more efficient,
we examine how indicative the minimal seed – the disturbance of smallest energy for
transition – is in measuring transition thresholds. We first show that the minimal seed
is relatively robust to base profile changes and spectral filtering. We then compare the
(unforced) transition behaviour of the minimal seed with several forms of randomised
initial conditions in the range of Reynolds numbers Re = 2400–10 000 and find that
the energy of the minimal seed after the Orr and oblique phases of its evolution is
close to that of a critical localised random disturbance. In this sense, the minimal
seed at the end of the oblique phase can be regarded as a good proxy for typical
disturbances (here taken to be the localised random ones) and is thus used as initial
condition in the simulations with the body force. The enhanced nonlinear stability
and drag reduction predicted in the present study are an encouraging first step in
modelling the experiments of Kühnen et al. and should motivate future developments
to fully exploit the benefits of this promising direction for flow control.

Key words: transition to turbulence

1. Introduction
It is widely established that turbulent wall flows exert a much higher friction

drag than laminar flows. Since the flow regime in oil and gas pipelines is generally
turbulent, larger pumping forces are needed, compared to the laminar case, to maintain
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Stabilisation and drag reduction of pipe flows 851

the desired flow rates with a consequent increase in energy consumption and carbon
emissions. A great deal of research effort is thus directed towards the design of
efficient control strategies to either reduce the turbulent drag or to delay the onset
of turbulence. Transition to turbulence in pipe flows is a fully nonlinear problem
because the laminar state is linearly stable to any infinitesimal disturbance. Therefore,
if one wishes to control or delay transition, it is paramount to understand which
kind of small (but finite-amplitude) disturbances are most effective in initiating the
transition process. A useful tool that has recently been employed to tackle this
challenge is the so-called minimal seed, i.e. the disturbance of lowest energy capable
to trigger transition. However, the question of how representative the minimal seed
is of typical ambient disturbances remains unanswered. To address this issue, we
compare the transition behaviour of the minimal seed with that of different random
initial disturbances in the range of Reynolds numbers Re= 2400–10 000. We find that
the energy of the minimal seed after the initial nonlinear unpacking phase is quite
close to that of a localised random disturbance which just triggers transition. Suitable
initial conditions are thus generated to investigate the stabilising effect of a simple
model for the presence of a baffle in the core of the flow.

Before discussing the formulation (§ 2) and results (§ 3), we provide a short review
of the problem of transition in pipe flows and the different control strategies used to
avoid or suppress turbulence.

1.1. Transition in pipe flows and calculation of the minimal seed
The enigma of how laminar flow through a pipe undergoes the transition to turbulence
has been intriguing and challenging scientists for over a century, since the pioneering
experiments of Reynolds (Reynolds 1883). Despite many pieces of the puzzle being
brought together in the past years (refer, for example, to Kerswell 2005; Eckhardt
et al. 2007; Willis et al. 2008; Mullin 2011, for comprehensive reviews), a full
understanding of the problem still eludes us.

All theoretical and numerical evidence indicates that the laminar state is linearly
stable to any infinitesimal disturbance, although a rigorous proof is still lacking. In
the absence of a linear instability of the laminar state from which a sequence of
bifurcations may be initiated, transition can only be triggered by finite-amplitude
background disturbances. For Re> 3000 the observed transition process is abrupt and
catastrophic and it rapidly results in a complex and highly disordered state (Darbyshire
& Mullin 1995). At transitional Reynolds numbers in the range 1800 < Re < 3000,
instead, turbulence first appears in localised patches of disordered motion, known as
puffs, which coexist with the laminar flow (Wygnanski & Champagne 1973; Avila
et al. 2011). Depending on the level of background noise in the experiment, the flow
rate at which transition occurs can be varied by more than an order of magnitude.
This fact already puzzled Reynolds in 1883 who, in one set of experiments, found
a transitional Reynolds number Rec ≈ 2000, while in another set of experiments
with minimised level of background disturbance, found Rec ≈ 13 000. This value was
pushed to 105 by Pfenninger (1961) with a very tightly controlled environment of his
experiments. Reynolds’ lower critical value has been confirmed in other experiments
(e.g. Wygnanski & Champagne 1973; Darbyshire & Mullin 1995; Avila et al. 2011)
with current estimates in the range 1760–2300.

At lower Reynolds numbers (Re≈ 2000), the critical Reynolds number is somewhat
dependent on the definition of ‘transition’, but at larger Re (Re > 3000) where the
transition is clear, it is widely recognised that the influence of background disturbances
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becomes of great concern. The critical amplitude Ac for the onset of turbulence is
expected to decrease with increasing Reynolds number and its behaviour can be
characterised by Ac ∼ Re−γ , γ > 0. A key question is thus: what is the exponent
γ and, more importantly, can this value be predicted theoretically? Trefethen et al.
(2000) proposed a renormalisation of the amplitude by the average velocity in order
to cast different experimental results in terms of a single definition of Ac, suggesting
lower and upper bounds for γ ∈ [1.2, 1.8]. The experiments carried out by Peixinho
& Mullin (2007) provided a critical exponent γ ∈ [1.3, 1.5] when the flow was
perturbed using push–pull disturbances and γ = 1 when the flow was perturbed by
small impulsive jets. The latter scaling had previously been found in the experiments
of Hof, Juel & Mullin (2003) and was later confirmed numerically by Mellibovsky
& Meseguer (2009) in their ‘impulsive scenario’ with the flow being perturbed by a
local impulsive forcing. In the ‘autonomous scenario’, instead, where the flow was
perturbed by an initial array of streamwise vortices with random noise superimposed
on it, Mellibovsky & Meseguer (2009) obtained critical exponents γ ∈ [1, 1.5] much
closer to those of Peixinho & Mullin (2007) for the push–pull disturbances.

The ultimate goal of these studies is to provide a characterisation of the basin of
attraction of the laminar flow, i.e. the subset of initial conditions which asymptotically
converge to the laminar state. However, these methods are impractical at finding the
smallest possible solution capable of just kicking the system away from the laminar
state, as they require a large number of simulations/experiments. Recent developments
have been achieved using variational methods to construct fully nonlinear optimisation
problems that seek the minimal seed (Pringle & Kerswell 2010; Cherubini et al.
2012; Pringle, Willis & Kerswell 2012; Duguet et al. 2013; Cherubini & Palma
2014); see Kerswell (2018) for a review. From a dynamical-systems point of view,
the minimal seed represents the closest (in a chosen norm) point of approach of the
laminar–turbulent boundary, or ‘edge’, to the basic state in phase space, as shown in
figure 1. If transition is regarded as undesirable, such perturbation will be considered
the ‘most dangerous’ disturbance. Previous studies in a pipe (Pringle & Kerswell
2010; Pringle et al. 2012, referred to as PK10 and PWK12, respectively, throughout
the paper) have revealed important characteristics of the minimal seed, such as its
fully localised nature and its three-phase evolution consisting of the Orr mechanism,
the oblique phase and the lift-up, during which the flow gradually unwrap to give
rise to a large, predominantly streamwise independent final state. However, a link
between the critical initial energies of the minimal seed and those of disturbances
that can typically be generated in a laboratory has not been provided yet. This will
be the focus of the first part of the paper, with the outcomes being summarised in
the key graph, figure 6, where the scaling Ec = Ec(Re) for the minimal seed and
several forms of randomised initial conditions are compared.

1.2. Control of pipe flows
Several different control strategies have been designed in the past fifty years to
reduce the wall friction of fully turbulent flows (refer, for example, to Lumley &
Blossey 1998; Kasagi, Suzuki & Fukagata 2009; Quadrio 2011, for reviews). In light
of the central role of streamwise vortices in the drag and shear stress production
(e.g. Kim, Moin & Moser 1987; Waleffe 1997), Choi, Moin & Kim (1994) proposed
an ‘opposition control technique’ aimed at actively counteracting vortices or selected
velocity components to reduce the skin-friction drag on the wall. Xu, Choi & Sung
(2002) applied suboptimal opposition control (Lee, Kim & Choi 1998) to pipe flow at
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Turbulent

MS

Laminar state

E0

Ec

Í

FIGURE 1. (Colour online) Schematic of the problem in phase space. The laminar–
turbulent edge Σ separates initial conditions that trigger turbulence (characterised by an
initial energy E0 greater than the critical value Ec) from those that decay back to the
laminar state (E0 < Ec). The minimal seed (MS) is the point infinitesimally close to the
boundary just capable of triggering turbulence.

a wall Reynolds number Reτ = 150 and achieved drag reduction of approximately 13
to 23 %. Both passive (e.g. riblets) and active (oscillations or generation of travelling
waves) methods have been employed to inhibit the near-wall turbulence production.
Drag reductions of 25 to 40 % were obtained in fully turbulent pipe flows using
spanwise wall oscillations (Choi & Graham 1998; Quadrio & Sibilla 2000; Choi, Xu
& Sung 2002; Duggleby, Ball & Paul 2007; Zhou & Ball 2008). Zhou & Ball (2008)
also considered streamwise oscillations but found this method to be less effective than
spanwise oscillations. In their experimental and numerical study, Auteri et al. (2010)
were able to achieve 33 % drag reduction by imposing streamwise-modulated waves
of spanwise velocity travelling forward in the streamwise direction. Willis, Hwang &
Cossu (2010) also found it possible to reduce drag by forcing large-scale streaks in
pipe flow and reported a power saving of up to 11 %.

More recently, large-scale control methods that completely relaminarise fully
turbulent flows by manipulating the mean profile have been successfully employed
(Hof et al. 2010; Kühnen et al. 2018b). These methods target the mean shear in
order to counteract its crucial role as energy source in near-wall turbulence (Schoppa
& Hussain 2002). Based on the observation that the streamwise vorticity of a
turbulent puff is mainly produced at the trailing edge by the fast incoming flow,
Hof et al. (2010) developed both experimental and numerical methods to flatten
the velocity profile at the upstream edge of the puff to intercept this mechanism
and successfully relaminarise the puff. Their idea was further developed by Kühnen
et al. (2018b), who were able to achieve a complete and final collapse of turbulence
by appropriate distortions of the mean profile, with the friction losses reduced by
as much as 90 %. Compared to some of the other strategies presented so far (for
example, the opposition control method, which requires a knowledge and detailed
manipulation of the fully turbulent velocity field), this approach is much simpler to
implement as it only requires a steady open-loop manipulation of the streamwise
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velocity component. Experimentally, full relaminarisation could be obtained by:
(i) increasing the turbulence level near the wall by vigorously stirring the flow with
rotors or via wall-normal injection of additional fluid through several small holes in
the pipe wall; or (ii) accelerating the flow close to the wall via streamwise injection
of fluid through an annular gap at the wall; or (iii) by means of a movable pipe wall
segment. The common and key ingredient to all these relaminarisation techniques
is a flattened streamwise velocity profile achieved by a deceleration of the flow in
the bulk region and/or an acceleration of the flow close to the wall. The important
role of the mean-flow distortion was confirmed numerically by adding a global body
force to the equations of motions such that the resulting velocity profile was more
‘plug shaped’. The efficiency of the control mechanism was directly related to the
suppression of the lift-up mechanism (reviewed recently by Brandt 2014), measured
by the linear transient growth. All disturbances schemes were shown to lead to a
reduction of the linear transient growth, that is, the modified profile was shown to
suppress the energy transfer from the mean flow to the streamwise vortices and to
inhibit the streak–vortex interaction. An analogous relaminarisation problem, although
in a different flow configuration, was recently studied by He, He & Seddighi (2016)
using direct numerical simulations. They considered a vertical pipe heated from below
and modelled the buoyancy effect with a streamwise body force of variable shape,
while keeping the mass-flux constant. In this configuration, known as buoyancy-aided
flow, the body force caused a flattening of the mean flow which lead to suppression
of turbulence and, as a consequence, heat transfer deterioration. A new perspective on
the flow relaminarisation phenomenon was proposed, which relies on the quantification
of the flow rate of the perturbation flow induced by the body force.

Most of the literature pertaining to the control of shear flows is devoted to
suppressing fully turbulent flow. However, delaying (or preventing) transition to
turbulence, thus avoiding the worst of turbulence in toto, is even more desirable.
Nevertheless little literature is available on this subject. Suppressing the energy growth
of initial perturbations to delay or prevent transition requires an understanding of how
the basin of attraction of the laminar flow is modified in the presence of the control.
So far, theoretical work has focused on investigating the sensitivity of the linearised
Navier–Stokes equations around the laminar state in order to design suitable controls
(Jovanović 2008). This approach has had some success in mitigating turbulence
transition using both open-loop and feedback-based approaches (Kim & Bewley 2007).
For example, Högberg, Bewley & Henningson (2003) used direct numerical simulation
to demonstrate that linear feedback control strategies can significantly expand the
laminar state’s basin of attraction of plane Couette flow for a range of Reynolds
numbers. In channel flows, Moarref & Jovanović (2010) performed a perturbation
analysis in the wave amplitude of the linearised Navier–Stokes equations to ‘design’
travelling waves which significantly reduce the sensitivity of the flow. However, as
pointed out by Bewley (2001), due to the finite-amplitude nature of transition in shear
flows, a fully nonlinear approach is required to probe the sensitivity of the laminar
state to finite-amplitude disturbances. In a proof-of-concept study, Rabin, Caulfield
& Kerswell (2014) showed how an optimisation approach could be used to design
a more nonlinearly stable plane Couette flow through manipulation of the boundary
conditions. By spanwise oscillating one boundary (with amplitude A and frequency
ω), these authors showed that Ec could be increased by 40 % through careful choice
of A and ω.

Our study is motivated by a recent experimental observation (Kühnen et al. 2018a)
that manipulation of the flow in a pipe with a baffle can lead to full relaminarisation
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for flow rates up to three times (Re=6000) that for which turbulence typically appears
in the presence of ambient perturbations (Re > 2000). Our focus is on theoretically
capturing the phenomenon observed in experiments so that the process can then be
optimised.

2. Formulation
We consider the problem of constant mass-flux fluid flow through a straight

cylindrical pipe of length L and diameter D. The flow is described using cylindrical
coordinates {r, θ, z} aligned with the pipe axis. Length scales are non-dimensionalised
by the radius of the pipe D/2 and velocity components by the laminar centreline
velocity 2 W, where W is the constant bulk velocity. Unless otherwise specified,
energies are given as ‘absolute energies’, i.e. not scaled by the energy of the laminar
flow in the same domain. We consider a perturbation ũ = {ũ, ṽ, w̃} superimposed
on the laminar Hagen–Poiseuille flow (HPF) W(r)ẑ = (1 − r2)ẑ so that the full
velocity field is given by utot =W(r)ẑ+ ũ(r, θ, z, t). The problem is governed by the
Navier–Stokes and continuity equations

NS=
∂ũ
∂t
+W

∂ũ
∂z
+ ũW ′ẑ− ũ×∇× ũ+∇p̃−

4β
Re

ẑ−
1

Re
∇

2ũ= 0, ∇ · ũ= 0, (2.1)

where the prime indicates total derivative, Re = WD/ν is the Reynolds number and
β = β(ũ) is a correction to the pressure gradient such that the mass flux remains
constant. The parameter 1+ β is an observed quantity in experiments and is defined
as the ratio of the observed dissipation D (Pope 2000) (or pressure gradient 〈∂p/∂z〉)
and the corresponding laminar value Dlam (or laminar pressure gradient 〈∂p/∂z〉lam),
namely

1+ β =
D
Dlam
=
〈∂p/∂z〉
〈∂p/∂z〉lam

, (2.2)

where the angle brackets indicate the volume integral

〈· · ·〉 =

∫ L

0

∫ 2π

0

∫ 1

0
· · · r dr dθ dz. (2.3)

Periodic boundary conditions are imposed in the streamwise direction and no-slip/no-
penetration conditions on the pipe wall.

The formulation of the nonlinear variational problem closely follows PWK12 and
the reader is referred to their §2 for a detailed explanation. In its simplest form the
problem can be stated as follows: among all (incompressible) initial conditions of a
given perturbation energy E0, we seek the disturbance that gives rise to the largest
energy growth after a time T .

G(T, E0)=max
ũ0|E0

〈ũ(x, T)2〉
〈ũ(x, 0)2〉

, (2.4)

where ũ0= ũ(x, 0). To accomplish this, a functional L(q, q†
;E0) is defined, where q is

the state vector and q† is the adjoint state vector. The functional is maximised subject
to the constraints imposed through the Lagrange multipliers, namely the constraints
of the three-dimensional Navier–Stokes equations and of the initial disturbance energy.
Numerically, the gradient of the functional with respect to every independent variable
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is imposed to vanish using the iterative optimisation algorithm described in PWK12.
Unless otherwise specified, the following criterion for convergence is implemented: the
algorithm is said to have converged when the relative step, i.e. the size of the step
taken in the ascent direction of L relative to the initial energy E0, is smaller than
10−5 (this tolerance is chosen from experience gathered in previous calculations of
nonlinear optimals, namely PK10 and PWK12).

To find the minimal seed, the initial energy E0 is gradually increased and the
variational problem solved until the critical initial energy Ec is reached where
turbulence is just triggered. Ideally, for asymptotically long times T = Topt, G is
expected to approach a step function in E0, with the jump at the critical value Ec. In
practice, two conjectures proposed by PWK12 are exploited. For asymptotically large
Topt, the initial energy Efail at which the algorithm first fails to converge corresponds
to Ec (conjecture 1) and the converged nonlinear optimal (NLOP) approaches the
minimal seed as E0 approaches Ec (conjecture 2).

The calculations are carried out using the open source code Openpipeflow (Willis
2017), with a flow variable q discretised in the domain {r, θ, z} = [0, 1] × [0, 2π] ×
[0, 2π/α] using Fourier decomposition in the azimuthal and streamwise directions and
finite differences in the radial direction, i.e.

q(rn, θ, z)=
∑
k<|K|

∑
m<|M|

qn,k,mei(αkz+mθ), (2.5)

where n = 1, . . . , N and α is the streamwise wavenumber. The radial points are
clustered close to the wall. For a pipe of length 5D at Re = 2400, we use N = 64,
K = 36, M= 32 and time step 1t= 0.01, with the discretisation appropriately refined
as the Reynolds number is increased to keep the resolution unaltered. Unless otherwise
specified, throughout the paper we use L= 5D as in PWK12.

3. Results and discussion
3.1. Robustness of the minimal seed

3.1.1. Changes to the base flow
Inspired by Kühnen et al.’s (2018b) experiments, we first study the minimal seed

for transition with a modified base flow. By adding a suitable body force, the laminar
base profile becomes more ‘plug-like’, i.e. flatter in the centre of the pipe, than the
parabolic profile of HPF. Kühnen et al. (2018b) considered an initially fully turbulent
state and showed that, by flattening the streamwise velocity profile, they were able
to completely relaminarise the flow. Here, instead, our aim is to investigate how the
basin of attraction of the laminar state is affected by flattening of the base flow and
whether this modification affects the minimal seed, i.e. the closest point of approach
of the edge to the laminar state shown schematically in figure 1.

Following Kühnen et al. (2018b) we use the following family of profiles for the
base flow W(r; δ, c)ẑ (see their equation (19)), where

W(r; δ, c)= (1− δ)
[

1−
cosh(cr)− 1
cosh(c)− 1

]
. (3.1)

The parameter δ is the centreline difference between the laminar profile and the target
profile and c is set by the constant mass-flux condition. The force F=F(r)ẑ required
to generate such a target velocity profile is obtained by substituting W(r; δ, c) in the
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FIGURE 2. (Colour online) (a) Comparison of the parabolic profile (red solid line) and
the forced profile (green dashed line) of the laminar flow. (b) The shape of the force
chosen to decrease the centreline velocity of the laminar flow by 20 % at Re = 1750
(green dashed line). The force is negative (pointing upstream) in the centre and positive
(pointing downstream) near the wall. For comparison, the pressure gradient in a laminar
flow |∂p/∂z| = 4/Re is also shown (red solid line). Similar forced profiles and forcings
are reported by Hof et al. (2010) (figure S2 of their supplementary material) and Kühnen
et al. (2018b) (figure 7 of their extended data).

Case Re α L/D Topt(D/W) N ×K ×M

PK10 1750 2 0.5π 21.35 60× 8× 16
PWK12 2400 0.628 5 75 64× 36× 32

TABLE 1. Parameters and resolution for PK10 and PWK12 cases.

Navier Stokes equations, i.e. F(r) := ẑ · NS. For example, the case with δ = 0.2 and
c= 3.5935 is shown in figure 2. The forcing decelerates the flow in the central part
and accelerates it near the wall while the mass flux is kept fixed.

The effect of the forcing is studied for the parameters corresponding to the works
by PK10 and PWK12 as summarised in table 1. As discussed in PWK12, the choice
of parameters in PK10 was not ideal: the Reynolds number is close to the first
appearance of turbulent state, the target time is short and as a result the algorithm
struggles to discern between conditions that relaminarise and conditions that trigger
turbulence, and in a tightly constrained geometry the basin boundary is highly fractal.
Nevertheless it is useful here to show the effect of the global forcing.

Figure 3 shows the maximum growth (at the target time Topt) as a function of E0
for the cases with forced and parabolic base profile. The initial energy is gradually
increased until Ec is reached.

Most of the data points have been verified by feeding the algorithm with at least
two or three different initial conditions (for example, a snapshot from a turbulent
run, another NLOP at a lower E0 or a turbulence-inducing initial conditions at a
higher E0). The initial energies Efail at which the optimisation algorithm first fails to
converge are marked with a black cross in figure 3. According to the conjecture 1 of
PWK12, these correspond to the critical initial energies Ec, where the edge touches the
energy hypersurface at one velocity state. Due to the reasons mentioned above, in the
PK10 case, especially for δ= 0.2, convergence is sometimes not clear and deteriorates
(becomes slower and slower) as E0 is increased and approaches Efail. The last data
points before Efail, for both values of δ, appear to show convergence, but there still

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1012


858 E. Marensi, A. P. Willis and R. R. Kerswell

0.2 0.3 0.4
E0

0.5 0.6 0.7
(÷ 104)

∂ = 0.12

HPF
∂ = 0.12

0 0.5 1.0 1.5 2.0 2.5
(÷ 104)

HPF
∂ = 0.12
∂ = 0.2

101

102

103

G

104(a)

(b)

101

102

103G

105

104

FIGURE 3. (Colour online) Comparison of G versus E0 with parabolic and forced base
profile for (a) PK10 and (b) PWK12 cases (refer to table 1). For each case, the thick
black cross indicates the initial energy Efail at which the optimisation algorithm first fails
to converge, as we gradually increase E0. Up to the last data point before Efail we were
able to converge the algorithm. The critical energy of the minimal seed is thus bracketed
between these two values of E0. Due to the convergence issues explained in the text and
in PWK12, the search for Ec in the cases with a flattened base profile was not refined as
much as in the unforced cases.

remains some doubt even after running the algorithm for more than 1000 iterations.
Furthermore, the perturbations corresponding to E0=Efail decay immediately after the
time Topt is reached, because at this low Reynolds number turbulence is intermittent
and appears only in the form of decaying puffs.

For the PWK12 case, convergence is clearer than in the PK10 case due to the larger
domain, longer integration time and higher Reynolds number. However, in the forced
case at E0= 6.28× 10−5 (last data point before Efail) neither a smooth convergence nor
a clear increase of the residual was obtained, even after 1000 iterations. Note also that
in the unforced case, G sharply increases when the critical initial energy is reached,
while with a flattened base profile, the increase of G is much more gradual, as this
case behaves similarly to cases where the system is close to the marginal Re (as in
PK10 case discussed above).

Despite these convergence issues, figure 3 shows that by flattening the base profile,
Ec is moved towards higher values of the initial energy and the maximum growth
reached at time Topt is decreased, i.e. the unforced curve G=G(Ec) is shifted ‘down’
and ‘right’ as δ is increased. Therefore, the presence of the forcing expands the basin
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FIGURE 4. (Colour online) (a) Time series of energy for the minimal seeds of PWK12
case (parameters provided in table 1) with forced (green dashed line) and unforced (red
solid line) base profiles. In the forced case, the time evolution of the NLOP just before
Efail is also shown (green dash-dotted line). Although in this case the convergence of
the optimisation algorithm was not clear, the decay of the energy straight after Topt
(indicated by the vertical dotted line) suggests that this disturbance does not lead to a
turbulent episode. The cross-sections of the minimal seeds in (b) the forced (green dashed
border) and (c) unforced (red solid border) cases are also shown. Contours indicate axial
velocity perturbations (with the laminar flow subtracted off): white or light for positive
perturbation, red or dark for negative, outside shade corresponds to zero. The arrows
indicate cross-sectional velocities.

of attraction of the laminar base profile and reduces transient growth. For example, for
the PWK12 case, the critical energy of the minimal seed moves from E0= 3.73× 10−5

to E0 = 6.5 × 10−5 and for E0 < Ec the NLOP of the forced case reaches less than
half of the growth of the unforced case. The energy time series of the minimal seeds
for the parabolic and forced cases are shown in figure 4(a). These initial conditions
clearly lead to a turbulent episode which survives for at least double the optimisation
time. The case E0 = 6.28 × 10−5 for which convergence was critical is also shown.
This initial state seems turbulent at the optimisation time but decays straight after.

Despite the critical initial energy being significantly increased with a flattened base
profile, the fully localised structure of the minimal seed remains largely unchanged, as
shown in the cross-sections of figures 4(b,c). Therefore, the structure of the minimal
seed is found to be fairly robust to changes to the base flow. This is different
from Rabin et al.’s (2014) study of oscillated plane Couette flow where, instead,
qualitative changes in the structure of the minimal seed are found when compared
to the non-oscillated case. In their study, however, the basic fluid response in the
presence of spanwise oscillations becomes time dependent through the additional
spanwise component (refer to their equation (2.1)), while in our case only the shape
of the laminar flow profile is modified, its dimension (one) and dependencies (only
radial) remain unchanged.

3.1.2. Filtering
In order to assess how robust the minimal seed is to smoothening, we perform

the full optimisation procedure over perturbations in a lower-dimensional space for
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FIGURE 5. (Colour online) Critical initial energy as a function of the filtering ratio F for
the unforced PWK12 case (parameters provided in table 1). Insets: cross-sections of the
minimal seeds at different values of F = 0, 0.75 and 0.93. Contours indicate streamwise
velocity beyond the laminar flow (white or light for positive, red or dark for negative) and
arrows indicate cross-sectional velocities.

the set of parameters corresponding to the (unforced) PWK12 case. Specifically, at
each iteration we project the initial condition onto a subspace where only the first
Kf ×Mf wavenumbers are retained. The resolution in the forward and backward steps
is, however, unchanged (i.e. K = 36, M = 32). As a measure of how much we are
truncating we introduce the filtering ratio F defined as

F = 1−

√
Kf

K
Mf

M
. (3.2)

Figure 5 shows the critical energy of the minimal seed as a function of the filtering
ratio, where F = 0 means no filtering (i.e. fully resolved minimal seed) and F = 1
would imply that no perturbation remains. Note that, for a fixed value of F , values
for Kf and Mf are chosen so that the corresponding ratios Kf /K and Mf /M are as close
as possible, i.e. to avoid cases where the filtering in one direction is much higher than
in the other direction. The critical initial energy of the minimal seed remains almost
unchanged for F 6 0.75, that is, when only retaining 25 % of the modes. Since we
are restricting the initial condition to a subset of the energy hypersurface by adding
the filtering constraint, one would expect the minimal seed to occur at a higher initial
energy. Our results thus suggest that the edge is locally quite flat near the minimal
seed. As F is further increased, larger initial energies are needed in order to trigger
turbulence. For example, for F = 0.93 (i.e. only the first 3× 2 modes retained) Ec is
almost an order of magnitude larger than in the fully resolved case. For values of F
larger than this (for example we have tested F = 0.96 where only 2× 1 modes are
retained) it seems that it is not possible to trigger transition. As shown by the cross-
sections in the insets of figure 5, the structure of the minimal seed remains almost
unchanged when the filter is applied, even for cases where the minimal seed occurs
at larger Ec than in the unfiltered case (refer to the last inset to the right).
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Turb. snap. ¡ Re−2.0±0.15
MSorr ¡ Re−2.8

MSobl ¡ Re−2.0

10-8

Ec

Re

FIGURE 6. (Colour online) Energy thresholds Ec versus Re = 2400, 3500, 5000, 7000
and 10 000 for different types of initial conditions: turbulent snapshots (cyan diamonds),
artificially generated global (purple plusses) or localised (blue crosses) random fields and
the minimal seed (black plus symbols correspond to the largest tested value of E0 below
which transition never occurs, while the red squares correspond to the smallest tested value
of E0 for which transition occurs at least once). The green stars and the yellow circles are
the energies of the minimal seed after the Orr and oblique phases, respectively. The lines
represent the power-law scalings obtained by fitting the last four data points. Insets: cross-
sections of a typical global (purple dash-dotted border) and localised (dashed blue border)
random initial condition. Contours indicate streamwise velocity beyond the laminar flow
(white or light for positive, red or dark for negative) and arrows indicate cross-sectional
velocities.

This study shows that the minimal seed is robust to quite severe spectral filtering,
i.e. the small-scale structure of the minimal seed is not important. To confirm this, we
also looked to see where the energy of the fully resolved minimal seed is distributed
across the Fourier modes in θ and z. For F =0.75 and 0.93 we retain ≈96 % and 23 %
of the energy, respectively. It thus appears that, despite the fully localised structure of
the minimal seed, most of the energy is carried by the large-scale modes.

It is possible that radial filtering may have a more significant effect on the energy
thresholds, but the structure remains essentially similar, thus suggesting that truncation
is not a simple route towards a new set of more ‘typical’ initial conditions. Conversely,
it shows that the structure does not have to be perfectly formed to be the optimal.
From this it seems reasonable that the minimal seed might be realised in a laboratory,
but whether it would be ‘naturally’ realised among ‘ambient’ disturbances remains
unclear at this stage.

3.2. Statistical study of transition to turbulence
To establish whether the minimal seed may be used to model typical ambient
perturbations, we compare the critical initial energy of the minimal seed with that of
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a random disturbance. The latter is generated by scattering energy randomly over the
subset of wavenumbers K × M = 12 × 9. At Re = 2400 this truncation corresponds
to F ≈ 0.7, before the rapid increase in Ec (figure 5), where the minimal seed could
still be captured quite faithfully. An arbitrary complex amplitude An is generated for
each of the spectral modes in the chosen subset and the radial dependence introduced
in the form

∑Ns
n=1 Anr sin(nπr) with Ns = 5 (the projection scheme integrated into

the time stepping algorithm is used to ensure that the initial condition is solenoidal).
These initial conditions are fed into direct numerical simulation (DNS) with time
integration T = 125(D/W). Five Reynolds numbers are considered: Re= 2400, 3500,
5000, 7000 and 10 000, with the numerical resolution appropriately enlarged for
increasing Reynolds number. The same subset of wavenumbers used at Re= 2400 is
employed for all the other Reynolds number considered. For each Re we consider 10
to 12 distinct random initial conditions and for each of them we gradually increase
E0 until turbulence is triggered and sustained for a time T(D/W). The criterion to
check for relaminarisation is E3d < 10−8, where E3d is the energy associated with the
streamwise-dependent modes only, as this quantity decays very rapidly when the flow
relaminarises.

An analogous statistical study is carried out using 10 different snapshots from
a turbulent run as initial condition (in a similar fashion to Schneider & Eckhardt
(2008)). Both the random and snapshot initial conditions are global disturbances,
while the minimal seed is fully localised. A third set of random localised initial
conditions is obtained by scattering energy randomly over the wavenumbers as above,
then by multiplying this global disturbance by a smooth spatial windowing function
B(z) and B(θ) so that the disturbance occupies only 1/5 and 1/3 of the streamwise
and azimuthal domain, respectively. For the range of Reynolds numbers considered
here we do not observe a strong localisation of the minimal seed in the radial
direction and therefore we do not localise the random disturbance in this direction.
The smoothing function is defined using equation 8 of Yudhistira & Skote (2011).
For example, for the localisation in the streamwise direction we use:

B(z)= g
(

z− zstart

1zrise

)
− g

(
z− zend

1zfall
+ 1
)
, (3.3)

with

g(z∗)=


0 if z∗ 6 0
{1+ exp[1/(z∗ − 1)+ 1/z∗]}−1 if 0< z∗ < 1
1 if z∗ > 1,

(3.4)

where zstart = 2L/5 and zend = 3L/5 indicate the spatial extent over which the
disturbance is non-zero, and 1zrise = 1zfall = L/10 are the rise and fall distances
of the disturbance. A similar expression to (3.3) is used for B(θ) with θstart = 2π/3,
θend = 4π/3 and 1θrise =1θfall =π/3.

The critical initial energies of the minimal seeds are found with a two-digit accuracy
for all the Reynolds numbers considered, except for Re = 10 000 for which only
one-digit accuracy is reached due to large computational cost of the simulations. The
curves Ec=Re−γ obtained by fitting critical energies found for the turbulent snapshot,
global and localised random sets of data points and for the minimal seed are shown
in figure 6. The data points at Re = 2400 are not used to obtain the fittings as
turbulence can still be transient at this relatively low Reynolds number. A power-law
exponent γ ≈ 2.8 for the minimal threshold energy is obtained. The same exponent
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Source Geometry Disturbance Energy exponent γ

Present study HPF Turb. snapshot 2.0
Present study HPF Global random 2.2
Present study HPF Localised random 2.3
Present study HPF Minimal seed 2.8
Hof et al. (2003) HPF Impulsive jets 2
Mellibovsky & Meseguer (2009) HPF Local impulsive forcing 2
Peixinho & Mullin (2007) HPF ‘Push–pull’ with 2.8Mellibovsky & Meseguer (2009) constant mass flux
Duguet et al. (2013) PCF Minimal seed 2.7
Cherubini et al. (2015) ASBL Minimal seed 2
Huang et al. PPF Minimal seed 3.0
Wall unit scaling (Reτ ) — Localised 2.5

TABLE 2. Power-law scalings Ec=Re−γ obtained in the present study and in the literature
for different types of disturbances and in different geometries (HPF: Hagen–Poiseuille flow,
PCF: plane Couette flow, ASBL: asymptotic suction boundary layer, PPF: plane Poiseuille
flow). For asymptotically large Reynolds number we expect to see scaling with wall units,
which leads to an exponent γ = 2.5.

was obtained experimentally by Peixinho & Mullin (2007) and later confirmed
numerically by Mellibovsky & Meseguer (2009) using ‘push–pull’ perturbations with
constant flow rate. Minimal energies for transition to turbulence were also calculated
by Duguet et al. (2013) for plane Couette flow (refer to their figure 3), by Cherubini,
De Palma & Robinet (2015) for the asymptotic suction boundary layer (refer to
their figure 9) and, very recently, by Z. Huang, C. P. Caulfield and G. Xi (personal
communication) for plane channel flow. Our exponent is close to the γ ≈ 2.7 obtained
by Duguet et al. (2013) for plane Couette flow and γ ≈ 3 found by Huang et al. for
plane Poiseuille flow. Furthermore, our study is reminiscent of figure 19 in Reddy
et al. (1998), where the streamwise-vortex and oblique-wave transition scenarios for
plane channel flows are compared to two-dimensional linear optimals and noise,
although the power-law exponents are not reported in their study. The minimal
seed curve Ec = Re−2.8 is steeper than those pertaining to all the other forms of
disturbances considered. The power-law exponent γ ≈ 2 for the turbulent snapshot
recalls the scaling found by Hof et al. (2003) and Peixinho & Mullin (2007) in their
experiments using small impulsive jets to perturb the flow. For the random global and
localised disturbances, larger exponents than for the turbulent snapshot are obtained,
i.e. γ ≈ 2.2 and 2.3, respectively (refer to table 2 for a summary of the different
exponents γ discussed above). Most noticeably, the critical energy of the minimal
seed is almost three orders of magnitude lower than that of the global disturbances
considered here. With localisation of the random disturbances, the critical energy
drops by almost an order of magnitude with respect to the global initial conditions,
but it is still significantly larger than that of the minimal seed.

Although the minimal seed has a very peculiar structure, which might be unlikely
to be generated in a laboratory, it evolves to a structure that looks much more familiar
to a ‘natural’ disturbance over a relatively short time scale corresponding to the Orr
and oblique-wave phases. The early stages of the minimal seed evolution are shown
in the three-dimensional visualisations of figure 7 at Re= 2400.

The end of the Orr phase is identified by analysing the flow topology of the NLOP
close to t = 0: the streaks that are initially tightly layered and inclined back into
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(a)

(b)

(c)

FIGURE 7. (Colour online) Snapshots showing isocontours of streamwise perturbation
velocity during the early stages of the time evolution of the minimal seed for Re= 2400.
(a) t = 0, (b) t = 1.1D/W (end of the Orr phase) and (c) t = 2.5D/W (end of the
oblique phase). The isocontours in each snapshot correspond to 50 % of the maximum
(light/yellow) and 50 % of the minimum (dark/red) of the streamwise perturbation velocity
in the pipe at that time.

the oncoming flow, are tilted away from the wall by the Orr mechanism and slightly
separated. In a short pipe, as in the PK10 case, the evolution of the flow structure
during the Orr phase is relatively clearer to visualise than for longer pipes (refer to
figure 1 of PK10 and our figure 7). Therefore, there is some discretion in our choice
of the energy size at the end of the Orr phase, but this has a negligible effect on
our ensuing discussion. As in the short-pipe case of PK10, our data suggest that
the Orr phase occurs in a very short time scale (0 < t(D/W) . 0.5–1) and gives
rise to an initial spurt of energy growth. By the end of the Orr phase, the helical
modes starts to become dominant, thus signalling that the oblique-wave mechanism
has come into play. In PK10 the end of the oblique-wave phase was clearly signalled
by the ‘shoulder’ in the time evolution of the total perturbation energy E and the
corresponding ‘bump’ in the time evolution of the three-dimensional energy E3d, as
reproduced in figure 8(a). For the present choice of L= 5D, which is approximately
three times longer than that in PK10, the ‘shoulder’ in the energy time series is not
clearly distinguishable and E3d does not decay straight after the peak because of the
longer length-scale modes (refer to red solid and green dashed lines in figure 8b).
However, by defining a three-dimensional energy Ẽ3d = E3d(k> 3) that includes only
energy from streamwise wavenumbers k > 3, we are able to observe the ‘bump’ in
Ẽ3d (refer to the blue dash-dotted line in figure 8b), where we identify the end of the
oblique phase. Both the time scales of the Orr (0< t(D/W). 0.5–1) and oblique-wave
(0.5–1 . t(D/W). 2.5–3.5) phases are found to be similar to the PK10 case and to
remain almost unchanged with Reynolds number.

If we compare the energies of the minimal seed after the Orr and oblique phases
with the random localised initial conditions (refer to figure 6), then the gap is
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FIGURE 8. (Colour online) Time evolution of the total perturbation energy E (red solid
line) and the energy associated with the streamwise-dependent modes only E3d (green
dashed line) in (a) the case of a short pipe L= 0.5πD at Re= 1750 (from PK10) and in
(b) the case of a longer pipe (L= 5D) at Re= 5000 (present study). In the latter case the
time evolution of Ẽ3d = E3d(k > 3) is also displayed (blue dash-dotted line) to show the
characteristic ‘bump’ towards the end of the oblique phase.

reduced to less than an order of magnitude in the former case and, most noticeably,
to practically zero in the latter case.

Comparing the scaling of the critical initial energy of the minimal seed with the
scaling of its energy at the end of the Orr phase suggests that the growth produced
via the Orr mechanism is independent of the Reynolds number, as expected due to
the inviscid nature of the Orr process. The growth produced via the oblique-wave
mechanism is almost of O(Re). While the growth factor of O(Re2) for the maximum
linear transient growth due to the lift-up mechanism is well documented (e.g. Schmid
& Henningson 2012), to the best of our knowledge, this is the first time that scaling
laws are obtained numerically for the Orr and oblique-wave mechanisms.

As shown by PWK12, the NLOP tracks the laminar–turbulent boundary Σ

before either relaminarising or triggering turbulence. The two bracketing cases
shown in figure 6 as black plusses (relaminarising disturbances) and red squares
(turbulence-inducing disturbances) are further refined with bisections until the
difference in the initial energies is less than 0.005 %. These refined bracketing
trajectories are shown in figure 9(a) for the range of Reynolds numbers considered and
provide evidence of an edge tracked by the minimal seed. Our data (figure 9b) suggest
that the energy of an edge state EΣ decreases with increasing Re, approximately as
Re−1.

As suggested by Kerswell (2018) (refer also to appendix B of Kerswell, Pringle
& Willis (2014)), the minimal seed couples together (via the nonlinear effects) the
Orr, oblique-wave and lift-up mechanisms, which occur on different time scales
and are uncoupled in the linearised dynamics. By ensuring that the energy of the
preceding phase feeds into the following, the minimal seed is thus able to produce
a much larger overall growth than any possible in the linearised problem. Our data
support this picture and suggest that the oblique-wave process produces a growth
of almost O(Re), which is then further magnified by the lift-up mechanism up to
an edge state whose energy scales approximately as ∼Re−1. From this, it follows
that the lift-up mechanism only produces an energy growth of approximately O(Re),
rather than the usually quoted growth factor of O(Re2). A possible explanation
follows from the length scales of the minimal seed becoming finer (and thus the rolls
experiencing more dissipation) as the Reynolds number increases. This is evidenced
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FIGURE 9. (Colour online) (a) Trajectories close to the edge (solid lines: ‘just above’,
dashed line: ‘just below’) at different Reynolds numbers in the range 2400–10 000.
(b) Energy of the edge as a function of Re. At each Reynolds number, EΣ is calculated
as the point on the laminar trajectory where the normalised difference from the turbulent
trajectory becomes greater than 5 %. The values of EΣ are also marked with black circles
in (a). The dashed curve Re−1 is added to show that our scaling assumption is reasonable.
This power-law exponent is not calculated by fitting the data but the curve is shifted so
that it passes closer to the last three data points (consistent with figure 6).

by the cross-sections shown in figure 10 of the time evolution of the minimal seed
up to the beginning of the lift-up phase for Re= 2400 and 10 000. Rolls advect the
mean shear to drive high and low-speed streaks. The diffusion term for a roll of
spanwise wavelength ` suggests that such a roll survives a time ∼Re `2. For a shear
of O(1), the growth in amplitude of a streak is then ∼Re `2. The usual argument
with ` = O(1) then implies an energy growth ∼Re2. Here, an energy growth ∼Re
suggests a length scale `∼ Re−1/4.

It appears that we do not yet see scaling with wall units, `+ = Reτ` and
u+ = Re/Reτu, where Reτ ≡ uτR/ν is the wall Reynolds number (R is the radius of
the pipe) and uτ =

√
ν∂w̃/∂r

|wall is the friction velocity. For a localised perturbation
(l+ constant) we have Reτ ≈

√
2Re. This would suggest a scaling ` ∼ Re−1/2. In the

early stages of the minimal seed dynamics, however, assuming that the energy in wall
units E+ of a localised perturbation is constant leads to a energy scaling E ∼ Re−2.5.
At finite Reynolds number we observe a scaling of E∼ Re−2.8.

The energy of the minimal seed at the end of the oblique phase and the critical
initial energy of the localised random disturbances are similar over the range studied.
Furthermore, their flow topology is also broadly similar, as can be seen by comparing
the cross-section shown in the bottom inset of figure 6 for a typical random localised
initial condition with those shown in the rightmost panel of figure 10 for the minimal
seed at the end of the oblique phase. In this sense, we will regard the minimal seed
at the end of the oblique phase as a reasonable proxy for the transition threshold for
random disturbances.

3.3. Control via a body forcing
Motivated by the recent experiments performed by Hof et al. (2010), Kühnen et al.
(2018a,b), as discussed in § 1.2, we study the effect of adding a localised body force
that mimics the presence of a baffle in the core of the flow. To study the influence
of the baffle on the transition threshold, following the results of the previous section,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1012


Stabilisation and drag reduction of pipe flows 867

(a)

(b)

FIGURE 10. (Colour online) (a) Time evolution of the minimal seed for Re = 10 000.
From left to right: t= 0, t= 1.25D/W (end of the Orr phase) and t= 3.75D/W (end of the
oblique phase). (b) Time evolution of the minimal seed (rotated by π) for Re=2400. From
left to right: t= 0, t= 1.1D/W (end of the Orr phase) and t= 2.5D/W (end of the oblique
phase). The cross-sections are taken at the streamwise location of maximum enstrophy. In
the left half-sections (t = 0) and right half-sections (end of oblique phase), ten contours
are used between the extremes of the corresponding streamwise velocity perturbations. The
central half-sections (end of Orr phase) are scaled with the extremes of the corresponding
streamwise velocity perturbations at the end of the oblique phase (right half-sections). The
cross-sectional velocities (indicated with arrows) are scaled differently for visualisation
reasons.

we use the minimal seed at the end of the oblique phase as an initial condition, and
verify that it measures transition similarly to random localised disturbances.

Consider a mesh of stationary point objects in the flow and assume that each point
experiences a drag proportional to the total velocity. The baffle is then approximated
by the following forcing

F(r, θ, z, t)=−AB(z)utot(r, θ, z, t), (3.5)

where A is the (scalar constant) amplitude of the forcing and B(z) is a (scalar)
smoothed step-like function (refer to equation (3.3)) that introduces a streamwise
localisation of the force. The product AB(z) is a measure of the blockage by the
fine mesh. The form of the forcing in (3.5) represents a primitive implementation of
an immersed boundary method (refer, for example, to equation (2) in Fadlun et al.
2000). As a first approximation, we assume that the baffle is uniform in the radial
direction. The streamwise modulation B(z) is fixed so that the baffle occupies a fifth
of the pipe, and the smoothing effect is felt for a tenth of the pipe upstream and
downstream of it. The only control parameter is thus A. Simulations are fed with the
minimal seed at the end of the oblique phase and the random localised disturbance
obtained in the unforced cases (refer to figure 6), with the energy gradually rescaled
until transition is triggered. The time horizon is T = 125(D/W), as in the statistical
study presented in § 3.2. For the random localised disturbance we apply a random
z-shift to the unforced field before feeding it into the simulations with forcing. For
comparison, we have also calculated the effect of the baffle on the transition threshold
using the (unforced) minimal seed as initial condition. In this instance, we consider
the cases where the initial disturbance is centred in the baffle and half-length away
from it.
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Re (1+ β)turb (1+ β)A=0.005
lam DRlam

2400 1.695 1.143 32.5 %
3500 2.250 1.202 46.5 %
5000 2.940 1.275 56.6 %
7000 3.783 1.354 64.2 %

10 000 4.944 1.48 70 %

TABLE 3. Effect of a forcing of amplitude A= 0.005 at different Reynolds numbers.
The second and fourth columns are calculated using (3.6) and (3.7), respectively.

Our purpose is to investigate whether the flow can be kept laminar in the presence
of the baffle and how much net energy can be saved. The presence of the baffle causes
a pressure drop downstream, which is measured by (1 + β)Alam/turb = DA

lam/turb/Dlam,
where DA

lam/turb is the observed value of the dissipation in the presence of the forcing
in either the laminar or turbulent case and Dlam is the corresponding laminar value
in the unforced case. Hereinafter, the superscript ‘A’ indicates the forced case (A> 0)
and the subscripts ‘lam’ or ‘turb’ refer to the flow being laminar (E0<Ec) or turbulent
(E0 > Ec) at the current value of A > 0. We use the turbulent dissipation Dturb in
the unforced case as a reference value to quantify the effect of the forcing. In the
unforced case, 1+ β ≡ Rep/Re where Rep=WclR/ν is the Reynolds number for fixed
pressure (Wcl is the centreline velocity of the laminar flow). From the Blasius formula
(Blasius 1913) for the turbulent friction coefficient Cf ≡ 16Rep/Re2

= 0.0791Re−0.25, it
follows that

(1+ β)turb ≡
Dturb

Dlam
=

Rep

Re
=

0.0791
16

Re0.75. (3.6)

For the forcing to be beneficial, the dissipation in the presence of the forcing in
either the laminar or turbulent case must be lower than the turbulent dissipation in
the unforced case, i.e. DA

lam/turb <Dturb, or, equivalently (1+ β)Alam/turb < (1+ β)turb. As
a measure of how beneficial the forcing is, we define a ‘laminar’ and a ‘turbulent’
drag reduction as:

DRlam/turb =
Dturb −DA

lam/turb

Dturb
=
(1+ β)turb − (1+ β)Alam/turb

(1+ β)turb
. (3.7)

As A is increased, the critical initial energy Ec can be pushed further from the
corresponding value in the unforced case, but the pressure drop also increases. For
example, in the case of a random localised initial condition, a forcing with A= 0.005
avoids turbulence being triggered for values of the initial energy where turbulence was
first hit in the unforced case (i.e. the initial energies corresponding to the blue crosses
in figure 6), and a considerable laminar drag reduction is obtained, as shown in table 3.
However, a slight increase of E0 would result in the flow to become turbulent again,
with almost no drag reduction being achieved. Hence, with this very low choice of A,
an almost null raise of Ec is achieved.

At Re = 5000 we perform a parametric study on A to find the optimum value
which provides the largest Ec at the minimum cost, i.e. with the maximum drag
reduction. The value of Re = 5000 is chosen to ensure that in the case without a
control the turbulence is sustained, i.e. the chances of turbulence decaying randomly
are practically nil. The results are summarised in figure 11. In (a) the critical
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FIGURE 11. (Colour online) Effect of the forcing for different A at Re= 5000. (a) Critical
initial energies versus forcing amplitude. The critical initial energies for A = 0 coincide
with the data at Re= 5000 of figure 6 for the same types of disturbance. The blue crosses
and yellow circles pertain to simulations fed with a random localised initial condition and
the minimal seed at the end of the oblique phase, respectively. Note that the yellow circles
are slightly shifted for visualisation reasons. In addition, calculations were performed with
the minimal seed (with two different shifts applied) as initial disturbance (red plusses). The
dark-coloured symbols indicate cases where the flow remains turbulent as E0 is increased
further from the first appearance of turbulence, while the light-coloured symbols denote
cases where turbulence is intermittent and characterised by short lifetime. The arrows
pointing upwards indicate that Ec → ∞, i.e. a full collapse of turbulence is obtained.
(b) Dissipation and drag reduction versus forcing amplitude. For A< 0.03 either laminar
(Ia: E0 < Ec) or turbulent (Ib: E0 > Ec) drag reductions are possible, for A > 0.03, only
laminar drag reduction (II) is achieved as turbulence is suppressed.

energies are shown as a function of A for the initial conditions considered here. The
corresponding curves for the turbulent and laminar drag reductions are shown in (b).
Figure 11(a) shows that, as A is gradually increased up to A≈ 0.02, the critical initial
energy increases only slightly, but a considerable turbulent drag reduction is obtained.
For example, at A= 0.02, we obtain DRturb = 20.7 % and DRlam = 37.8 %.

For A> 0.02, transition starts to become intermittent, i.e. as E0 is increased further
from the first appearance of a turbulent episode, the flow either relaminarise or is
characterised by short-lifetime turbulence. In these cases, the ‘critical initial energy’
is indicated by light-coloured symbols in figure 11(a) to distinguish them from
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FIGURE 12. (Colour online) Time series of energy for simulations fed with a random
localised disturbance in the presence of a forcing of amplitude (a) A= 0.02 and (b) A=
0.025. In (a) the flow remains turbulent as E0 is increased further from the first appearance
of turbulence (indicated with red dashed line) and turbulence is sustained, while in (b)
turbulence is intermittent and characterised by short lifetime. In the latter case, for E0>Ec,
the flow is found to either relaminarise or remain turbulent but with a rapid decay towards
the end of the observation time window T = 125(D/W). These scenarios are marked with
dark and light symbols in figure 11, respectively.

the cases, indicated with dark-coloured symbols, where turbulence is sustained. An
example of these two situations is shown in figure 12, where in (a) the flow remains
turbulent for E0 > Ec and turbulence is sustained, while in (b) initial disturbances
relaminarise and some trigger transition, with the disturbance decaying towards the
end of the time window in the latter cases. The scenario where turbulence is short
lived and intermittent is analogous to cases where the Reynolds number is close to
the first appearance of turbulence (Re= 1800–2000), that is, the effect of increasing
A is analogous to that of decreasing the Reynolds number. As A is further increased
(e.g. at A = 0.025) this effect becomes more and more pronounced (for example,
in the case of the random localised initial condition the ‘light crosses’ become
dominant with respect to the ‘dark crosses’) until for A > 0.03 a full collapse of
turbulence is obtained (no turbulence episodes are observed). Therefore, the forcing
does significantly modify the basin of attraction of the laminar state by expanding it
while making its fractal nature more evident until, first, the chaotic attractor transitions
back to a chaotic saddle and finally the laminar state remains the only global attractor.
The fact that collapse of the turbulent attractor is possible for a forcing of this form
can be confirmed using an energy stability type of analysis (refer to appendix A): for
large enough A, the laminar state becomes the global attractor.

At A= 0.03, where full relaminarisation is first obtained, the laminar drag reduction
is still significant (approximately 30 %), as shown in figure 11(b). Therefore we can
conclude that this is the optimum choice of forcing amplitude Aopt. For A > 0.03 it
is not possible to determine DRturb as turbulence is not observed and thus the curve
DRturb(A) is connected onto DRlam(A). For A< 0.03 we can have either laminar or
turbulent drag reduction (i.e. the dynamics either sits on curve Ia or Ib in figure 11),
while for A> 0.03, we only have laminar drag reduction (the dynamics sits on curve
II) due to the relaminarisation (destabilisation of turbulent state). The forcing is found
to be beneficial up to Ac= 0.073, where DRlam becomes negative, i.e. for A> Ac the
cost of the control due to the pressure drop downstream of the baffle becomes greater
than the gain due to the relaminarisation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1012


Stabilisation and drag reduction of pipe flows 871

Figure 11 provides further confirmation that the energy of the minimal seed at
the end of the oblique phase is a reasonable proxy to measure transition threshold
for random localised disturbances. In this sense, the minimal seed at the end of the
oblique phase is a useful tool, potentially enabling us to characterise the critical energy
using a single simulation in place of a more expensive statistical study.

4. Conclusions

Nonlinear variational methods have been used to seek the minimal seed, i.e. the
initial perturbation of lowest energy that triggers transition to turbulence. The minimal
seed represents the most dangerous disturbance to the basic state and, as a result, is
of fundamental interest either from the viewpoint of triggering transition efficiently
or, oppositely, in designing flow control strategies. We have shown that the structure
of the minimal seed is fairly robust to changes in the base flow and to spectral
filtering. In the first case, the minimal seed was calculated with a prescribed base
flow characterised by a flatter profile in the centre of the pipe as compared to the
unforced parabolic profile. In the second case, we projected the initial condition onto a
subspace where only a fraction of the streamwise and azimuthal modes were retained.
The critical initial energy of the minimal seed was shown to increase with the flatter
base profile and with severe spectral filtering (less than 10 % of the modes retained),
but the structure of the minimal seed was found to remain largely unchanged in both
cases.

In order to generate initial conditions that may be considered to model ambient
perturbations, we compared the transition behaviour of the minimal seed with that
of scaled turbulent snapshots and artificially generated global and localised random
disturbances. The random disturbances were obtained by scattering energy randomly
over a subset of wavenumbers (the smallest subset for which the critical initial energy
of the minimal seed was found to remain unchanged in the previous analysis) and
the transition thresholds calculated by gradually increasing the initial energy until
turbulence was triggered. Power-law scalings of the critical initial energy Ec = Re−γ
were obtained with γ in the range 2–3 for different forms of disturbances and
γ ≈ 2.8 for the minimal seed. The critical initial energy of the minimal seed was
found to be approximately two orders of magnitude lower than that of a localised
random disturbance, thus suggesting that, despite being robust, the minimal seed is
also quite special. However, when we considered the energy of the minimal seed
after the initial nonlinear unpacking phase (composed of the Orr and oblique-wave
phases), which occurs in a relatively short time scale, the energy gap with the random
localised disturbance became negligible. In this sense, the minimal seed at the end
of the oblique phase can be regarded as a reasonable proxy for measuring transition
thresholds. Energy growth factors of approximately O(1) and nearly O(Re) for the Orr
and oblique-wave mechanisms, respectively, were numerically obtained in the present
study for the first time, and the overall picture of the nonlinear growth undergone by
the minimal seed to trigger transition discussed. The Orr phase is inviscid and thus
the growth produced via this mechanism is independent of the Reynolds number. The
oblique-wave process produces a growth in energy of nearly O(Re), which is then
seeded to the lift-up mechanism. The disturbance grows by a factor of O(Re) via the
lift-up mechanism, rather than the usually quoted growth factor O(Re2) (a reasonable
explanation for this is suggested by providing evidence that the structures become
smaller and smaller as the Reynolds number increases), up to an edge state whose
energy is shown to scale as O(Re−1).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1012


872 E. Marensi, A. P. Willis and R. R. Kerswell

This analysis prepared us with initial conditions for the study of stabilised pipe
flows, where a body force was added to the governing equations to mimic the presence
of a baffle in the core of the flow, as in the recent experiments by Hof et al. (2010)
and Kühnen et al. (2018a,b). A parametric study on the effect of the amplitude A of
the forcing (corresponding, roughly speaking, to a level of blockage in the pipe due
to the baffle) at Re= 5000 was performed by feeding the simulations with a random
localised disturbance and with the minimal seed at the end of the oblique phase found
in the unforced case. This confirmed that the minimal seed evolved until the end of
the oblique phase is a good proxy for a localised random perturbation, i.e. the critical
energy for transition is similar under a variety of forcing situations. An optimum value
of the forcing amplitude, Aopt = 0.03, which provides a full collapse of turbulence
(Ec→∞) with a drag reduction of approximately 30 %, was obtained. Significant drag
reductions were found to be possible even in cases where a full collapse of turbulence
was not achieved. The forcing was found to be beneficial up to Ac= 0.073, for values
greater than which the cost of the control due to the pressure drop downstream of
the baffle exceeded the energy gain. Although it is not possible at this stage to obtain
meaningful estimates of A in laboratory experiments (e.g. Kühnen et al. 2018a), due
to the artificial forcing used here, this study has shown that modifying the core of the
flow by inserting an obstacle is an efficient way of delaying or suppressing turbulence.
This method is potentially very attractive as it is passive (no energy input) and very
easy to implement. Therefore, we hope that the encouraging results presented here will
motivate future developments, such as more realistic modelling of the experimental
baffle, to fully exploit the benefits of this control method.
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Appendix A. Energy stability analysis of the forced flow
Consider the Navier–Stokes equations with the forcing given by (3.5):

∂utot

∂t
+ utot · ∇utot +∇p=

1
Re
∇

2utot − AB(z)utot, (A 1)

where utot(x, t) = U(r, z) + ũ(x, t), U(r, z) is some steady basic state (the laminar
response to an axisymmetric baffle) and ũ(x, t) is a possibly large perturbation. The
latter is governed by:

∂ũ
∂t
+ ũ · ∇U+U · ∇ũ+ ũ · ∇ũ+∇p̃=

1
Re
∇

2ũ− AB(z) ũ. (A 2)

Dotting with ũ and integrating over the volume gives

∂

∂t
〈ũ2
〉 = 〈|∇ũ|2〉

{
〈ũ · [−AB(z)−∇U] · ũ〉

〈|∇ũ|2〉
−

1
Re

}
. (A 3)
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For the disturbance to decay (i.e. ∂〈ũ2
〉/∂t< 0), the amplitude of the forcing needs to

be sufficiently large so that, for Re→∞,

〈ũ · [−AB(z)−∇U] · ũ〉< 0 ∀ ũ. (A 4)

Provided ‖∇U‖ is bounded as A→∞, we find a critical value of the amplitude

Acrit =max
ũ

−〈ũ · ∇U · ũ〉
〈ũ ·B(z) · ũ〉

, (A 5)

where 〈ũ · B(z) · ũ〉 is positive definite. Therefore, a forcing with amplitude A> Acrit

can stabilise any perturbation or, in other words, the steady basic state becomes a
global attractor.
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