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Evaporation of multiple droplets
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We derive an accurate estimate for the diffusive evaporation rates of multiple droplets
of different sizes and arbitrary contact angles placed on a horizontal substrate. The
derivation, which is based on a combination of Green’s second identity and the method
of reflections, simply makes use of the solution for the evaporation of a single droplet.
The theoretical results can serve as a guide for future computational and experimental
studies on the collective evaporation of arrays of droplets, as well as similar multi-body,
diffusion-dominated transport problems.
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1. Introduction

The study of droplet evaporation on solid surfaces has a rich history in the field of
transport phenomena (see e.g. Cazabat & Guena 2010; Erbil 2012; Stauber et al. 2014;
Brutin & Starov 2018; Giorgiutti-Dauphiné & Pauchard 2018). While the majority of
research has focused on the drying of single sessile droplets, there is broad interest in
understanding the evaporation of multiple drops through experiments, simulations and
theory; representative studies include Schäfle et al. (1999), Sokuler et al. (2010), Carrier
et al. (2016), Shaikeea, Jyoti & Basu (2016), Laghezza et al. (2016), Castanet et al. (2016),
Bao et al. (2018), Hatte et al. (2019), Chong et al. (2020) and Wray, Duffy & Wilson
(2020). Among the most recent of these investigations is the theoretical analysis of Wray
et al. (2020). Repurposing the mathematical derivation of Fabrikant (1985), they presented
approximate expressions for the local and integrated evaporative flux from the surface
of an array of thin (i.e. disk-like) droplets. The approximate total evaporation rates were
then integrated in time to calculate the evolution and lifetime of the evaporating drops.
The results of these calculations were subsequently compared with the experimental
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measurements of Khilifi et al. (2019) involving seven droplets arranged in an I-shaped
configuration.

Here, we provide a straightforward and physically insightful approach to obtain the
evaporation rates of multiple droplets, which is not restricted to a particular geometry.
This integral theorem-based approach and its possible extensions should be broadly useful
as compared with more laborious methods that have been traditionally employed to study
diffusive mass transfer problems involving two or more objects.

2. Problem statement and solution

Consider an array of droplets (all the same liquid, but possibly different sizes) numbered
n = 1, 2, . . . , N, with Sn denoting the free surface area of the n-th droplet (see figure 1).
Let φ = (c − c∞) / (cs − c∞) be the dimensionless vapour concentration field, where c is
the dimensional concentration field, and cs and c∞ are its values on the free surface of the
droplets and far away from them, respectively. In many practical situations, the time scale
for the diffusion of the vapour concentration is much smaller than the total evaporation
time of the droplets. For instance, for millimetre-sized water droplets drying in still air at
room conditions, the ratio of these two time scales is very small (of the order of 10−5).
Moreover, for slowly evaporating drops under (nearly) isothermal conditions, the advective
vapour transport by the Stefan and buoyancy-driven flows can be neglected. Therefore,
assuming that the transport of the vapour phase is dominated by diffusion, we then have

∇2φ = 0, (2.1a)

with the boundary conditions

φ = 1, on S1, S2, . . . , SN, n · ∇φ = 0, on Ss, and φ → 0, as r = |r| → ∞,

(2.1b)
where Ss represents the exposed surface of the substrate, r is the position vector and n is
the unit normal vector directed into the vapour phase.

Our goal is to determine the rate at which the n-th droplet loses mass. This quantity,
represented by Jn, is obtained by integrating the flux of c over Sn, i.e.

Jn = −D (cs − c∞)

∫
Sn

n · ∇φ dS, (2.2)

where D is the diffusion coefficient of the vapour. Conventionally, the evaporation rate is
calculated after solving the boundary-value problem described by (2.1). However, for an
array of droplets, as we now show, it is possible to construct an approximate expression
for Jn without directly solving for φ.

2.1. An integral-theorem-based representation of the net fluxes

Consider the auxiliary field φ̂n corresponding to the evaporation of the n-th droplet in the
absence of other drops. Here φ̂n satisfies

∇2φ̂n = 0, with φ̂n = 1, on Sn, n · ∇φ̂n = 0, on Sŝ and

φ̂n → 0, as r → ∞, (2.3)

where Sŝ denotes the non-wetted area of the substrate. Next, apply Green’s second identity
(see e.g. Vandadi, Jafari Kang & Masoud 2016; Masoud & Stone 2019) between φ and φ̂
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Figure 1. (a) Evaporation of four identical spherical-cap sessile droplets with contact radius R and contact
angle θ , as an example of a multi-droplet problem described by (2.1). (b–m) Droplet arrangements considered
in the validation study (see figure 2, and tables 1 and 2 of Appendix A). In each configuration, droplets with
the same rate of evaporation are grouped together and labelled α, β or γ .

to arrive at

∫
S1+S2+···+SN+Ss+S∞

φ̂ n · ∇φ dS =
∫

S1+S2+···+SN+Ss+S∞
φ n · ∇φ̂ dS, (2.4)
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where S∞ represents a bounding surface at infinity. Integrals over S∞ vanish since both φ

and φ̂n decay sufficiently fast at large distances. Integrals over the bare substrate are also
zero because n · ∇φ = n · ∇φ̂n = 0 on Ss. Hence, we obtain

∫
Sn

φ̂n n · ∇φ dS +
N∑

m=1,
m/=n

∫
Sm

φ̂n n · ∇φ dS

=
∫

Sn

φ n · ∇φ̂n dS +
N∑

m=1,
m/=n

∫
Sm

φ n · ∇φ̂n dS, (2.5)

which further simplifies to

Jn − D (cs − c∞)

N∑
m=1,
m/=n

∫
Sm

φ̂n n · ∇φ dS = Ĵn (2.6)

by using the boundary conditions in (2.1b) and (2.3), recalling the definitions of J and Ĵ,
and recognizing that

∫
S n · ∇φ̂n dS = ∫

V ∇2φ̂n dV = 0, where S is the surface enclosing
the volume V located outside of the n-th droplet. Indeed, (2.6), which is an exact
relation for the total flux from any drop n in an array of N drops, recovers Fabrikant’s
formula for the net flux of a potential flow through a perforated plate with arbitrarily
distributed circular holes (Fabrikant 1985), which was obtained via a series of complex
transformations (see also Wray et al. 2020).

2.2. An approximation scheme for solving (2.6)
To determine Jn, according to (2.6), we need to approximate the surface integrals over Sm.
From the method of reflections, φ in the neighbourhood of the m-th droplet (i.e. near Sm)
can be expressed as

φ = φ(0)
m +

∞∑
i=1

⎛
⎜⎜⎝φ(i)

m +
N∑

n=1,
n/=m

φ(i−1)
n

⎞
⎟⎟⎠ , (2.7)

where

φ(0)
m = Jm

Ĵm
φ̂m and φ(i)

m =
N∑

n=1,
n/=m

φ(i,n)
m , for i ≥ 1, (2.8)

with φ
(i,n)
m being the correction field in response to the non-uniform disturbances arising

from φ
(i−1)
n (e.g. see Kim & Karilla 2005; Michelin, Guérin & Lauga 2018). Note that, by
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Evaporation of multiple droplets

definition, the reflections make no contribution to the net flux from Sm, i.e.∫
Sm

n · ∇φ(i,n)
m dS =

∫
Sm

n · ∇φ(i−1)
n dS = 0, for n /= m and i ≥ 1. (2.9)

In the same neighbourhood, we can also write φ̂n(r) in the form of a Taylor series
expansion about a judiciously chosen point rm (located in or about droplet m) as

φ̂n(r) = φ̂n

∣∣∣
r=rm

+ (r − rm) · ∇φ̂n

∣∣∣
r=rm

+ 1
2 (r − rm) (r − rm) : ∇∇φ̂n

∣∣∣
r=rm

+ · · · .

(2.10)
Replacing φ̂n and φ in the surface integral of interest with their representations from (2.8)
and (2.10), we can write the exact expression∫

Sm

φ̂n n · ∇φ dS = φ̂n

∣∣∣
r=rm

∫
Sm

n · ∇φ(0)
m dS + φ̂n

∣∣∣
r=rm

∫
Sm

n · ∇(φ − φ(0)
m )dS

+
∫

Sm

(
φ̂n − φ̂n

∣∣∣
r=rm

)
n · ∇φ(0)

m dS +
∫

Sm

(
φ̂n − φ̂n

∣∣∣
r=rm

)
n · ∇ (φ) (φ − φ(0)

m ) dS.

(2.11)

The first integral on the right-hand side of this relation is equal to −Jm/ [D (cs − c∞)],
while the second integral is zero (see (2.9)). The third integral is nil, too, because

φ(1,n)
m = −

(
φ(0)

n − φ(0)
n

∣∣∣
r=rm

)
= − Jn

Ĵn

(
φ̂n − φ̂n

∣∣∣
r=rm

)
(2.12)

on Sm and, therefore,∫
Sm

(
φ̂n − φ̂n

∣∣∣
r=rm

)
n · ∇φ(0)

m dS = −JmĴn

ĴmJn

∫
Sm

φ̂m n · ∇φ(1,n)
m dS = 0, (2.13)

where the first equality in (2.13) results from Green’s second identity, followed by the
use of φ̂m = 1 on Sm and (2.9). In taking the above steps, it is important to recall that
φ

(1,n)
m is responsible for cancelling out spurious non-uniformities on Sm imposed by the

first reflection from droplet n, i.e. from the field φ
(0)
n = (Jn/Ĵn) φ̂n.

Finally, let ε = R/�, where R and � denote, respectively, the characteristic length scale of
the largest drop (if they differ in size) and the minimum centre-to-centre distance between
droplet pairs. Since φ̂ decays, to the leading order, as 1/r, we infer that both φ̂n − φ̂n|r=rm

and ∇(φ − φ
(0)
m ) scale with ε2, which means that the fourth integral in (2.11) scales with

ε4. Equation (2.11), therefore, reduces to

∫
Sm

φ̂n n · ∇φ dS = −
φ̂n

∣∣∣
r=rm

Jm

D (cs − c∞)
+ O(ε4), (2.14)

which, upon substitution in (2.6), yields

1 ≈ Jn

Ĵn
+

N∑
m=1,
m/=n

φ̂n

∣∣∣
r=rm

Jm

Ĵn
. (2.15)

The above expression constitutes a linear system of algebraic equations for Jn that can
be readily solved provided that the solution of the single-droplet problem φ̂ (see (2.3))
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is known. Thus, we have constructed an approximate formula for the evaporation rates
of an array of multiple sessile droplets, even when the array contains a mixture of drops
with different sizes and contact angles. We note that (2.15) recovers (3.2) of Wray et al.
(2020) (which is identical to equation (15) of Fabrikant 1985) for the special case of
disk-shaped (zero-thickness) droplets with rm located at the centre of the disks. Perhaps
more interestingly, (2.15) can also be viewed as a condition that enforces φ = 1 on Sn
during successive reflections (see e.g. Michelin et al. 2018).

2.3. On the choice of the evaluation point rm

The accuracy of (2.15) beyond O(ε) is dependent on the choice of the location of rm. On
one hand, the conventional wisdom suggests that we set the evaluation point of the Taylor
series expansion to an origin about which the multipole expansion of φ̂ has no dipolar
term. In the context of conduction heat transfer, this point is known as the ‘centre of heat’
(see e.g. Brenner 1963). For example, the heat centre for spherical-cap droplets is located at
the centre of their contact area. However, on the other hand, we know that φ̂ is continuous
and n · ∇φ is an integrable function that does not change sign on Sm. As a result, the mean
value theorem for definite integrals argues for selecting a spot on the free surface of the
droplet as the reference point for approximating the surface integrals in (2.6). Following
this argument, as a generic approach (without extra fine-tuning), we choose the point of
evaluation to be the geometric centre of Sm.

3. Discussion

To evaluate the fidelity of (2.15) with our choice of rm, we compare its predictions
for several test cases with the results obtained from the direct numerical solution of
(2.1). Specifically, the comparisons are made for the evaporation of multiple identical
spherical-cap droplets that are arranged in various configurations as depicted in figure
1(b–m). There exists an analytical solution for the evaporation of a single spherical-cap
droplet with contact radius R, contact angle θ and free surface S (see e.g. Lebedev 1965;
Popov 2005). From this solution (which was originally expressed in a boundary-fitting
toroidal coordinate system), the distribution of the dimensionless vapour concentration
field takes the form of

φ̂ = 4A
R
r̃

+ (A − 4B)
R3

(
r̃2 − 3z̃2

)
r̃5 + O

[(
R
r̃

)5
]

, (3.1)

where

A = 1
8πR

∫
S

n · ∇φ̂ dS =
∫ ∞

0

{
1 + cosh [(2π − θ) τ ]

cosh (θτ )

}−1

dτ, (3.2a)

B =
∫ ∞

0

{
1 + cosh [(2π − θ) τ ]

cosh (θτ )

}−1

τ 2 dτ, (3.2b)

r̃ = |r̃| and r̃ = r − rc with rc being the location of the centre of the droplet’s contact
area. Equation (3.1) offers an excellent approximation of φ̂ for r̃/R � 2 (touching drops),
and therefore it is used to calculate φ̂n|r=rm in (2.15). Note that the general form of the
expansion for φ̂ is correct for any axisymmetric droplet. Of course, the formulae for A
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Figure 2. Percentage difference between the predictions of (2.15) (using (3.1)) for the normalized rates of
evaporation and the results of the numerical simulations. The rates are normalized by their respective values
for isolated (but otherwise the same) droplets, and are tabulated in tables 1 and 2 of Appendix A. The errors
are calculated for the spacings (a) � = 2.5R and (b) � = 3R (see figure 1) and for the contact angles θ =
π/6, π/3, π/2. In each configuration, droplets with distinguished evaporation rates are labelled α, β and γ , as
shown in figures 1(b–m).

and B differ from (3.2) for non-spherical-cap shapes. Furthermore, the leading-order (i.e.
O(R/r̃)) term in the expansion is valid for arbitrary geometries, with A being dependent
on the specific shape.

In addition, a finite-element approach, as implemented in COMSOL Multiphysics, is
employed to carry out the numerical calculations based on (2.1) and (2.1b). The outer
boundary at infinity is modelled as a large hemisphere of radius 500R, whose centre
coincides with the centre of the droplet arrangements. Tetrahedral elements are used to
mesh the computational domain such that the grid density is the highest in the vicinity
of the droplets. The accuracy of the computational scheme was validated via comparison
with highly accurate numerical results for the evaporation of a pair of identical disks (see
table 1 of Fabrikant 1985). Specifically, we found that the relative error of our calculations
for J/Ĵ is less than 0.3 % for all tabulated spacings ranging from � = 2R to � = 10R.

We calculated the percentage difference between the predictions of (2.15) (using (3.1))
for the normalized rates of evaporation and those calculated numerically; the results are
shown in figure 2. The rates are normalized by their respective values for an isolated
(but otherwise the same) droplet, and their magnitudes are tabulated in tables 1 and
2 of Appendix A. The comparisons are made for two centre-to-centre droplet spacings
of � = 2.5R and � = 3R (see figure 1), and three contact angles θ = π/6, π/3, π/2.
Note that, in each configuration, there may be one, two or three sets of droplets with
distinguished evaporation rates. These sets are labelled α, β and γ (as shown in figure
1b–m) to facilitate the presentation of the results.

Inspecting the results, we find that the approximation error of (2.15) is only a few per
cent or less for most cases. It appears, however, that our formulation underestimates the
rate of evaporation for high-contact angle droplets that are surrounded by their neighbours
(see the red triangles of configurations g, j, l and m). However, even in these cases, the
maximum error is roughly 25 % for � = 2.5R (red triangle of configuration m in figure
2a), which sharply declines to approximately 10 % as the spacing increases to � = 3R
(red triangle of configuration m in figure 2b). We also checked that had we set rm to
the contact area centre of the droplets (i.e. their centre of heat), the corresponding errors
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Numerical simulation Prediction of (2.15) (using (3.1)) Estimation error (%)
Config. θ α β γ α β γ α β γ

b π/6 0.777 — — 0.778 — — 0.041 — —
b π/3 0.758 — — 0.758 — — 0.008 — —
b π/2 0.728 — — 0.729 — — 0.154 — —
c π/6 0.586 0.726 — 0.583 0.730 — 0.557 0.664 —
c π/3 0.551 0.706 — 0.546 0.711 — 0.914 0.751 —
c π/2 0.497 0.676 — 0.493 0.683 — 0.865 1.069 —
d π/6 0.639 — — 0.636 — — 0.440 — —
d π/3 0.614 — — 0.610 — — 0.653 — —
d π/2 0.577 — — 0.574 — — 0.612 — —
e π/6 0.544 0.697 — 0.545 0.702 — 0.180 0.614 —
e π/3 0.509 0.677 — 0.509 0.682 — 0.039 0.673 —
e π/2 0.457 0.647 — 0.459 0.653 — 0.417 0.942 —
f π/6 0.567 — — 0.564 — — 0.452 — —
f π/3 0.539 — — 0.536 — — 0.717 — —
f π/2 0.500 — — 0.496 — — 0.731 — —
g π/6 0.441 0.657 — 0.434 0.660 — 1.729 0.566 —
g π/3 0.398 0.634 — 0.388 0.638 — 2.575 0.602 —
g π/2 0.334 0.602 — 0.324 0.607 — 2.854 0.801 —
h π/6 0.504 0.521 0.678 0.509 0.522 0.682 0.965 0.1 0.529
h π/3 0.470 0.487 0.658 0.475 0.487 0.662 1.096 0.083 0.585
h π/2 0.419 0.436 0.628 0.427 0.437 0.633 1.857 0.226 0.836
i π/6 0.522 — — 0.520 — — 0.339 — —
i π/3 0.494 — — 0.491 — — 0.601 — —
i π/2 0.453 — — 0.450 — — 0.595 — —
j π/6 0.343 0.584 — 0.328 0.588 — 4.413 0.559 —
j π/3 0.299 0.56 — 0.280 0.563 — 6.540 0.584 —
j π/2 0.237 0.524 — 0.214 0.529 — 9.385 0.865 —
k π/6 0.483 0.506 0.664 0.488 0.507 0.667 0.959 0.056 0.517
k π/3 0.449 0.472 0.644 0.454 0.472 0.647 1.029 0.153 0.527
k π/2 0.400 0.422 0.614 0.406 0.422 0.618 1.707 0.099 0.737
l π/6 0.282 0.517 — 0.257 0.520 — 9.054 0.648 —
l π/3 0.241 0.491 — 0.209 0.495 — 13.507 0.732 —
l π/2 0.186 0.454 — 0.146 0.460 — 21.873 1.246 —
m π/6 0.234 0.355 0.476 0.211 0.351 0.484 9.928 1.161 1.660
m π/3 0.200 0.325 0.453 0.171 0.319 0.463 14.750 1.760 2.024
m π/2 0.155 0.283 0.422 0.116 0.276 0.434 24.982 2.217 3.039

Table 1. Normalized evaporation rates of multiple identical spherical-cap droplets (with contact radius R and
contact angle θ ) arranged in various configurations as shown in figure 1(b–m) of the main text. The rates are
normalized by their respective values for a single (but otherwise the same) droplet. The results are reported for
the spacing � = 2.5R and contact angles θ = π/6, π/3, π/2.

would have been much larger, nearly 40 % and 20 % errors, respectively. The relatively
higher prediction errors are partly due to stronger shielding effects in the aforementioned
configurations, which significantly decrease the evaporation rate of the α-type droplets.
To put this into perspective, the evaporation rate for the middle droplet in configuration m
when its contact angle is θ = π/2 is reduced to approximately 15 % of the rate at which
the same droplet evaporates in isolation. Overall, the results of figure 2 demonstrate the
high fidelity of the evaporation rates predicted by (2.15). We reiterate that the predictions
here, for a wide range of configurations, are obtained using only the solution of the
single-droplet problem and solving a linear system of algebraic equations (see (2.15) and
(3.1)).
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Numerical simulation Prediction of (2.15) (using (3.1)) Estimation error (%)
Config. θ α β γ α β γ α β γ

b π/6 0.807 — — 0.808 — — 0.136 — —
b π/3 0.788 — — 0.789 — — 0.101 — —
b π/2 0.758 — — 0.760 — — 0.273 — —
c π/6 0.640 0.757 — 0.640 0.759 — 0.014 0.321 —
c π/3 0.605 0.736 — 0.605 0.739 — 0.120 0.391 —
c π/2 0.551 0.704 — 0.552 0.709 — 0.157 0.662 —
d π/6 0.679 — — 0.678 — — 0.088 — —
d π/3 0.653 — — 0.651 — — 0.218 — —
d π/2 0.613 — — 0.613 — — 0.119 — —
e π/6 0.597 0.728 — 0.599 0.731 — 0.297 0.335 —
e π/3 0.562 0.707 — 0.564 0.709 — 0.253 0.332 —
e π/2 0.508 0.675 — 0.512 0.679 — 0.677 0.554 —
f π/6 0.610 — — 0.610 — — 0.108 — —
f π/3 0.581 — — 0.580 — — 0.283 — —
f π/2 0.538 — — 0.537 — — 0.206 — —
g π/6 0.510 0.690 — 0.508 0.692 — 0.284 0.285 —
g π/3 0.466 0.667 — 0.464 0.668 — 0.590 0.258 —
g π/2 0.399 0.632 — 0.398 0.634 — 0.260 0.405 —
h π/6 0.557 0.574 0.709 0.560 0.575 0.711 0.624 0.253 0.270
h π/3 0.522 0.539 0.688 0.525 0.540 0.690 0.662 0.185 0.260
h π/2 0.468 0.486 0.656 0.474 0.489 0.659 1.271 0.558 0.442
i π/6 0.567 — — 0.567 — — 0.071 — —
i π/3 0.537 — — 0.535 — — 0.232 — —
i π/2 0.492 — — 0.491 — — 0.141 — —
j π/6 0.415 0.621 — 0.410 0.622 — 1.206 0.246 —
j π/3 0.369 0.595 — 0.362 0.596 — 2.001 0.198 —
j π/2 0.301 0.557 — 0.293 0.559 — 2.542 0.378 —
k π/6 0.535 0.559 0.695 0.538 0.560 0.697 0.594 0.201 0.220
k π/3 0.500 0.524 0.674 0.503 0.524 0.675 0.611 0.102 0.186
k π/2 0.447 0.471 0.642 0.453 0.473 0.644 1.165 0.442 0.352
l π/6 0.350 0.556 — 0.339 0.558 — 3.004 0.296 —
l π/3 0.305 0.529 — 0.291 0.530 — 4.733 0.261 —
l π/2 0.241 0.489 — 0.223 0.492 — 7.626 0.569 —
m π/6 0.288 0.403 0.512 0.276 0.401 0.516 4.035 0.430 0.748
m π/3 0.249 0.370 0.487 0.233 0.367 0.492 6.360 0.801 0.904
m π/2 0.196 0.323 0.452 0.174 0.320 0.459 11.131 0.885 1.565

Table 2. Normalized evaporation rates of multiple identical spherical-cap droplets (with contact radius R and
contact angle θ ) arranged in various configurations as shown in figures 1(b–m) of the main text. The rates are
normalized by their respective values for a single (but otherwise the same) droplet. The results are reported for
the spacing � = 3R and contact angles θ = π/6, π/3, π/2.

In conclusion, we highlight that the implications of our findings go beyond the
evaporation of sessile droplets and extend to a large class of diffusive mass transfer
problems that also includes, among other problems, the dissolution of micro and nano
bubbles (see e.g. Dollet & Lohse 2016; Michelin et al. 2018; Zhu et al. 2018). Additional
areas of physics that benefit from our solution strategy for the Laplace equation are
potential flow, conduction heat transfer, electrostatics, etc. Moreover, we note that our
derivations can be further generalized, often in a fairly straightforward fashion, to include,
for example, (i) pendent drops of unequal size, (ii) transient effects, (iii) additional linear
terms in the governing equation (e.g. solving for the Helmholtz rather than the Laplace
equation) and (iv) Neumann or mixed (Robin) boundary conditions on Sn.
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Appendix A. Tabulated evaporation rates

The evaporation rates corresponding to figures 2(a) and 2(b) are presented in tables 1
and 2, respectively. The rates are given in a normalized form, i.e. they are divided by
their respective values for a single (but otherwise the same) droplet. We note that the
evaporation rate of an isolated sessile droplet can be calculated from (3.2a), and the
specific values for drops with contact angles θ = π/6, π/3, π/2 are, respectively,

Ĵπ/6 = 4.416, Ĵπ/3 = 5.086 and Ĵπ/2 = 2π, (A1a–c)

where Ĵ is non-dimensionalized by DR (cs − c∞).
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