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Abstract. We prove that for C0-generic homeomorphisms, acting on a compact smooth
boundaryless manifold with dimension greater than one, the upper metric mean dimension
with respect to the smooth metric coincides with the dimension of the manifold. As an
application, we show that the upper box dimension of the set of periodic points of a
C0-generic homeomorphism is equal to the dimension of the manifold. In the case of
continuous interval maps, we prove that each level set for the metric mean dimension with
respect to the Euclidean distance isC0-dense in the space of continuous endomorphisms of
[0, 1] with the uniform topology. Moreover, the maximum value is attained at a C0-generic
subset of continuous interval maps and a dense subset of metrics topologically equivalent
to the Euclidean distance.
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1. Introduction
The topological entropy is an invariant by topological conjugation and a very useful tool
either to measure how chaotic is a dynamical system or to attest that two dynamics are
not conjugate. It counts, in exponential scales, the number of distinguishable orbits up to
arbitrarily small errors. Clearly, on a compact metric space, a Lipschitz map has finite
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topological entropy. However, if the dynamics is just continuous, the topological entropy
may be infinite. Actually, Yano proved in [20] that, on compact smooth manifolds with
dimension greater than one, the set of homeomorphisms having infinite topological entropy
is C0-generic. So the topological entropy is no longer an effective label to classify them.

In order to obtain a new invariant to distinguish maps with infinite entropy, Linden-
strauss and Weiss introduced in [13] the notions of upper metric mean dimension and lower
metric mean dimension of an endomorphism f of a metric space (X, d), which we will
denote by mdimM (X, f , d) and mdimM (X, f , d), respectively. Historically, the concepts
of upper and lower metric mean dimension have often been useful to distinguish dynamical
systems acting on infinite-dimensional spaces. We highlight that these notions can also be
meaningful and provide a new insight in the finite-dimensional setting. For instance, in
[10] the authors consider homeomorphisms homotopic to the identity on the torus and
employed precisely the metric mean dimension as the finer scaling of complexity they
needed to describe the multifractal aspects of the sets of points with prescribed rotation
vectors. Actually, while C0-generic dynamics have infinite topological entropy [20], the
metric mean dimension can be used to detect different rates of complexity at which this
may grow to infinite. An extension of this notion to Zk-actions can be found in [4, 5, 7], and
a variational principle for the metric mean dimension of free semigroup actions appeared
in [1].

The upper and lower metric mean dimensions are metric versions of the mean
dimension, a concept proposed by Gromov in [3] which may be viewed as a dynamical
analogue of the topological dimension. In particular, it is known that the mean dimension
of a homeomorphism f : X → X acting on a topological space X of finite dimension is
zero. The upper and lower metric mean dimensions, unlike Gromov’s concept, depend on
the metric adopted on the space and are non-zero only if the topological entropy of the
dynamics is infinite.

More recently, it was proved in [18] that, on a compact manifold with dimension
greater than one, having positive upper metric mean dimension is a C0-dense property
in the whole class of homeomorphisms. Moreover, the authors established that the set of
homeomorphisms with metric mean dimension equal to the dimension of the manifold
is C0-dense in the set of all the homeomorphisms with a fixed point. Unfortunately, the
previous subset is not C0-dense in the space of homeomorphisms. The existence of a fixed
point is crucial due to the need of an adequate construction of separated sets using the
pseudo-horseshoes introduced in [20]. If, instead, f admits a periodic point of period
p > 1, then the argument of [18] ensures that mdimM (f p, X, d) = dimX, hence, as
mdimM (f p, X, d) 6 p mdimM (f , X, d),

mdimM (X, f , d) >
dimX

p
. (1.1)

Therefore, in order to be able to consider homeomorphisms with periodic points of
arbitrarily large periods (actually the C0 generic case, as proved in [8]) and still obtain
mdimM (X, f , d) = dimX, one must compensate for the loss of metric mean dimension
caused by their likely long periods. In this work we show that for C0-generic homeomor-
phisms, acting on compact smooth boundaryless manifolds with dimension greater than
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one, the metric mean dimension is not only positive but also equal to the dimension of the
manifold. Our argument grew out of the results of [8, 11, 20], to which we refer the reader
for more background.

Let us be more precise. It is known, after [20, Proposition 2], that for any homeomor-
phism f , any scale δ > 0 and any N ∈ N there exist a C0-arbitrary small perturbation g
of f and a suitable iterate gk which has a compact invariant subset semiconjugate to a
subshift of finite type with Nk symbols. This ensures the existence of some scale ε0 > 0
(depending on N and f ) such that the largest cardinality of any (n, ε)-separated subset
of X with respect to g satisfies s(g, n, ε) > Nn for every ε 6 ε0 and all big enough n;
so htop(g) > log N . Although Yano’s strategy succeeds in producing homeomorphisms
C0 close to f with arbitrarily large topological entropy, it fails to bring forth any lower
bound on their metric mean dimension since there exists no explicit relation between ε0

andN . To obtain better estimates than (1.1) for the metric mean dimension, we endeavored
to find such a connection in RdimX, and then forwarded the conclusions to the manifold
X using the bi-Lipschitz nature of the charts. We have had to perform several C0-small
perturbations along the orbit of a periodic point (recalling the global changes made in
the proof of Pugh’s C1 closing lemma [16]) in order to build a new version of the
pseudo-horseshoes used in [20], now obliged to satisfy two conditions: to exist at all
sufficiently small scales and to exhibit the required separation in all moments of the
construction. We will return to this issue in §7.

The second setting we address here concerns the spaces C0([0, 1], d) and C0([0, 1], ρ)
of continuous endomorphisms of the interval [0, 1], with the uniform metric, where d
stands for the Euclidean distance and ρ denotes any metric topologically equivalent to d .
Adjusting the construction of horseshoes done by Misiurewicz in [14], which paved the
way to prove that the topological entropy of maps of the interval is lower semicontinuous
and upper-bounded by the exponential growth rate of the periodic points, the authors of
[18] showed that the subset of those maps with maximal upper metric mean dimension
(whose value is one) is dense inC0([0, 1], d). A finer construction allowed us to prove that,
for every 0 6 β 6 1, the level set of continuous maps for which the metric mean dimension
exists and is equal to β is a dense subset of C0([0, 1], d). Additionally, we show that the
maximal value is attained at a C0-generic subset of C0([0, 1], ρ) and a dense subset of
metrics topologically equivalent to the Euclidean distance. For more details we refer the
reader to §3.

2. Upper and lower metric mean dimension
Most of the results we will use or prove require some mild homogeneity of the space so that
local perturbations can be made. For simplicity we consider here only the case of smooth
compact connected manifolds. Let X be such a manifold and d be a metric compatible
with the topology on X. Given a continuous map f : X → X and a non-negative integer
n, define the dynamical metric dn : X ×X → [0, +∞) by

dn(x, y) = max {d(x, y), d(f (x), f (y)), . . . , d(f n−1(x), f n−1(y))}

and denote by Bf (x, n, ε) the ball of radius ε around x ∈ X with respect to the metric dn.
It is not difficult to check that dn generates the same topology as d .
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Having fixed ε > 0, we say that a set A ⊂ X is (n, ε)-separated by f if dn(x, y) > ε

for every x, y ∈ A. Denote by s(f , n, ε) the maximal cardinality of all (n, ε)-separated
subsets of X by f . Due to the compactness of X, the number s(f , n, ε) is finite for every
n ∈ N and ε > 0.

Definition 2.1. The lower metric mean dimension of (f , X, d) is given by

mdimM (X, f , d) = lim inf
ε → 0

h(f , ε)

|log ε|

where h(f , ε) = lim supn→ +∞ (1/n)log s(f , n, ε). Similarly, the upper metric mean
dimension of (X, f , d) is the limit

mdimM (X, f , d) = lim sup
ε → 0

h(f , ε)

|log ε|
.

The upper/lower metric mean dimensions satisfy the following properties we may
summon later.

(1) If the topological entropy htop(f ) = limε → 0h(f , ε) is finite (as when f is a
Lipschitz map on a compact metric space), then

mdimM (X, f , d) = mdimM (X, f , d) = 0.

(2) Given two continuous maps f1 : X1 → X1 and f2 : X2 → X2 on compact metric
spaces (X1, d1) and (X2, d2), we have

mdimM(X1 ×X2, f1 × f2, d1 × d2) = mdimM(X1, f1, d1)+ mdimM(X2, f2, d2).

(3) Given a continuous map f : X → X on a compact metric space (X, d), the
upper box dimension of (X, d) is an upper bound for mdimM (X, f , d) (cf. [18,
Remark 4]).

(4) Let f : X → X be a continuous map on a compact metric space (X, d) and k be a
positive integer. The inequality

mdimM (X, f k , d) 6 k mdimM (X, f , d)

is always valid (the proof is similar to that for the entropy in [19]). The equality may
fail (see the previous item), though it is valid whenever f is Lipschitz, in which case
these values are zero for every k ∈ N.

(5) For every continuous map f : X → X on a compact metric space (X, d), we have

mdimM(�(f ), f |�(f ), d) = mdimM(X, f , d),

where �(f ) stands for the set of non-wandering points of f .
(6) Given a continuous map f : X → X on a compact metric space X,

mdim(X, f ) 6 mdimM (X, f , d)

for every metric d on X compatible with the topology of X (cf. [13, Theorem 4.2]),
where mdim(X, f ) stands for the mean dimension of (X, f ). The existence
of a compatible metric for which the equality holds is conjectured for every
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map (cf. [12]). This is known to be valid in the case of minimal systems (cf.
[11, Theorem 4.3]) and to be true C0-generically (cf. [6, Appendix]).

3. Main results
Let (X, d) be a compact smooth boundaryless manifold with dimension greater than one.
Denote by Homeo(X, d) the set of homeomorphisms of (X, d). This is a complete metric
space if endowed with the metric

D(f , g) = max
x ∈ X

{d(f (x), g(x)), d(f−1(x), g−1(x))}.

It is known from [18] that the upper metric mean dimension of every f ∈ Homeo(X, d)
cannot be bigger than the dimension of the manifold X. Our first result states that typical
homeomorphisms have the largest upper metric mean dimension with respect to any metric
compatible with the smooth structure of the smooth manifold X.

THEOREM A. Let X be a compact smooth boundaryless manifold with dimension strictly
greater than one and d be a metric compatible with the smooth structure ofX. There exists
a C0-Baire residual subset R ⊂ Homeo(X, d) such that

mdimM (X, f , d) = dim X for all f ∈ R.

Some comments are in order. Firstly, we note that homeomorphisms in one-dimensional
smooth manifolds have zero entropy (thus their metric mean dimension is zero), so we
cannot drop the requirement on the dimension of the manifold. A second remark concerns
the use of a metric compatible with the smooth structure on the manifold. As a matter of
fact, by employing smooth charts one guarantees that the induced metric on the Euclidean
space is equivalent to the Euclidean metric, which is a product metric of one-dimensional
length factors, enabling one to effectively make the computations.

The previous result also sheds light on the differences between the upper and lower
metric mean dimensions. Since the manifold X has finite dimension (so its Lebesgue
covering dimension is also finite), mdim(X, f ) = 0 for every f ∈ Homeo(X, d) (cf. [13]).
Moreover, one always has

mdim(X, f ) 6 mdimM (X, f , d).

Therefore, if f ∈ R then

0 = mdim(X, f ) 6 inf
ρ

mdimM (X, f , ρ) 6 sup
ρ

mdimM (X, f , ρ) = dim X

where the infimum and supremum are taken on the space of distances ρ which induce
the same topology on X as d . As the conjecture mentioned in [12] turns out to be true
C0-generically, that is, for generic homeomorphisms,

0 = mdim(X, f ) = inf
ρ

mdimM (X, f , ρ)

(cf. [6, Appendix]), then C0-generically one finds

inf
ρ

mdimM (X, f , ρ) < sup
ρ

mdimM (X, f , ρ).
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It is natural to consider the upper metric mean dimension as a function of three
variables, namely the dynamics f , the f -invariant non-empty compact set Z ⊂ X and the
metric d , and to ask whether it varies continuously. Concerning the first variable, within
the space of homeomorphisms satisfying the assumptions of Theorem A the irregularity
of the map Z 7→ mdimM (Z, f |Z , d), with respect to the Hausdorff metric, is a con-
sequence of property (5) in §2 together with the C0-general density theorem [8]. Indeed,
C0-generically the non-wandering set is the limit (in the Hausdoff metric) of finite unions
of periodic points, on which the upper metric mean dimension is zero, whereas Theorem A
ensures that generically the upper metric mean dimension is positive. Regarding the
variable f , in the case of smooth manifolds (X, d) where the C1-diffeomorphisms are
C0-dense on the space of homeomorphisms (which is true if the dimension of the manifold
X is less than or equal to three; cf. [15]), Theorem A implies that there are no continuity
points of the map f 7→ mdimM (X, f , d). As far as we know, the dependence of the
upper metric mean dimension on the distance d is still not understood.

The study of the upper metric mean dimension for generic homeomorphisms in
Theorem A leads to an unexpected generic feature of the set of periodic points, measured
through their upper box dimension.

THEOREM B. Let X be a compact smooth boundaryless manifold with dimension strictly
greater than one and let d be a metric compatible with the smooth structure of X. There
exists a C0-Baire generic subset R ⊂ Homeo(X, d) such that

dimB (Per(f )) = dim X for all f ∈ R.

The second problem we address in this paper is closely related to the previous one.
Focusing on the space of continuous interval maps, we obtain stronger results both on
the multifractal structure and the largest level set of the upper metric mean dimension with
respect to any metric d topologically equivalent to the Euclidean distance (see Theorem C).
Recall that two metrics d1 and d2 on a space X are topologically equivalent if the identity
map from (X, d1) to (X, d2) is a homeomorphism. We show that, in the case of continuous
maps on ([0, 1], d), actually each level set for the upper metric mean dimension is relevant,
since it is C0-dense in C0([0, 1]) with the uniform norm. Besides, we prove that the
level set of the largest upper metric mean dimension is C0-Baire generic independently
of the chosen metric on the interval as long as it is topologically equivalent to the
Euclidean distance, thus extending the statement of Theorem A to the one-dimensional
context.

THEOREM C. Let C0([0, 1], d) be the space of continuous endomorphisms of the interval
([0, 1], d), where d stands for the Euclidean distance. For every β ∈ [0, 1] there exists a
dense subset Dβ ⊂ C0([0, 1], d) for the uniform metric such that

mdimM ([0, 1], f , d) = mdimM ([0, 1], f , d) = β for all f ∈ Dβ .

Moreover, if ρ denotes any metric topologically equivalent to the Euclidean distance then
C0-generically in C0([0, 1], ρ) one has mdimM ([0, 1], f , ρ) = 1.
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Regarding the space of continuous endomorphisms of ([0, 1], d), we may summarize
as follows what is now known.

(1) The subset of maps f ∈ C0([0, 1], d) satisfying mdimM ([0, 1], f , d) = 1 is
C0-generic (cf. Theorem C).

(2) The subset of maps of f ∈ C0([0, 1], d) such that mdimM ([0, 1], f , d) = 0 =
mdim(X, f ) is C0-generic (cf. [6]).

(3) For each 0 < β < 1, the subset of maps f ∈ C0([0, 1], d) satisfying mdimM ([0, 1],
f , d) = mdimM ([0, 1], f , d) = β is C0-dense (cf. Theorem C).

If one endows the space M of metrics on [0, 1] with the metric

d1, d2 ∈ M 7→ D(d1, d2) = min
{

1, max
x, y ∈ X

|d1(x, y)− d2(x, y)|
}

then, though not complete due to the existence of pseudo-metrics on its closure, M is
a Baire space (cf. [17]). Yet the existence of discrete metrics, which form an open dense
subset on (M, D), prevents this space from being separable (cf. [17, Theorem 4]). Besides,
under such metrics the interval [0, 1] is not compact, hence the definition of metric mean
dimension is meaningless. If, however, we restrict to the space ME of metrics on [0, 1]
which are topologically equivalent to the Euclidean distance, then we get a subset of
C0([0, 1] × [0, 1], R+) with the uniform norm determined by the Euclidean distance in
[0, 1] × [0, 1]. In this way, ME is separable and Theorem C has the following direct
consequence.

COROLLARY D. There exist a dense subset D ⊂ ME and a C0-Baire generic subset G of
C0([0, 1], d) such that

mdimM ([0, 1], f , ρ) = 1 for all f ∈ G, for all ρ ∈ D.

We observe that, in spite of Corollary D, it may happen that some metric on ME is
able to drastically drop the upper metric mean dimension. The construction of minimizing
metrics for the upper metric mean dimension, and the estimation of the minimum value,
are still open problems.

4. Absorbing disks
In this section we address some generic topological properties of homeomorphisms acting
on smooth manifolds, with the aim of checking the existence of absorbing disks with
arbitrarily small diameter.

Following Hurley in [8], if the dimension of the manifold X is dim X and Ddim X
1

denotes the closed unit ball in Rdim X, call B ⊂ X a disk if it is homeomorphic to Ddim X
1 .

A closed subset K of X is called k-absorbing for a homeomorphism f of X if f k(K) is
contained in the interior of K , and K is said to be absorbing if it is k-absorbing for some
k ∈ N. Note that if B is a k-absorbing disk, then, by the Brouwer fixed point theorem, B
contains a point periodic by f with period k. We say that a point P ∈ X is a periodic
attracting point for f if there is a p-absorbing disk B satisfying:

(1) diam(f i(B)) < diam(B) for every 1 6 i 6 p − 1;
(2)

⋂
j>0 f jp(B) = {P }.
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Observe that, since f is a bijection, the last equality implies that f p(P ) = P . We also
remark that, given a periodic attracting point, it is possible to choose the disk B satisfying
f j (B) ∩ B = ∅ for every 1 6 j < p. In the next sections we will always assume that
absorbing disks satisfy this property.

Proposition 3 in [8] ensures that for every F ∈ Homeo(X, d) and every ε > 0 there
is f ∈ Homeo(X, d) exhibiting a periodic attracting point and such that D(F , f ) < ε.
Notice that having a periodic attracting point is aC0 quasi-robust property. More precisely,
for every g ∈ Homeo(X, d) that is C0 close enough to f the following conditions hold:

(a) if B is a p-absorbing disk for f ∈ Homeo(X, d) then B is p-absorbing for g;
(b) if B is a p-absorbing disk for f ∈ Homeo(X, d) then for every 1 6 j < p the disk

f i(B) is p-absorbing for g;
(c) for every δ > 0 we may find some J > 0 such that f Jp(B) has diameter smaller than

δ and is a p-absorbing disk for g.

Properties (a) and (b) are immediate consequences of the closeness in the uniform topology
and the compactness of B. Property (c) is due to the attracting nature of the periodic point
(that is, B is a p-absorbing disk satisfying

⋂
j>0 f jp(B) = {P }) and item (a). Unless

stated otherwise, the p-absorbing disks we will use satisfy the aforementioned properties.
Altogether this shows that having a p-absorbing disk of diameter δ is a C0-open and

dense condition. Therefore, taking the intersection of the sets

Hn = {f ∈ Homeo(X, d) : f has an absorbing disk with diameter at most 1/n}

we obtain the following lemma.

LEMMA 4.1. C0-generic homeomorphisms have absorbing disks of arbitrarily small
diameter.

5. Pseudo-horseshoes
In this section we introduce the class of invariants that will play the key role in the proof
of Theorem A. They will be defined first on Euclidean spaces and afterwards extended to
manifolds via charts.

5.1. Pseudo-horseshoes on Rk . Consider in Rk the norm

‖(x1, . . . , xk)‖ := max
1 6 i 6k

|xi |.

Given r > 0 and x ∈ Rk , set

Dkr (x) = {y ∈ Rk : ‖x − y‖ 6 r},
Dkr = Dkr ((0, . . . , 0)).

For 1 6 j 6 k, let πj : Rk → Rj be the projection on the first j coordinates.

Definition 5.1. Consider r > 0, x = (x1, . . . , xk) and y = (y1, . . . , yk) in Rk , and take
an open set U ⊂ Rk containing Dkr (x). Having fixed a positive integer N , we say that a
homeomorphism ϕ : U → Rk has a pseudo-horseshoe of type N at scale r connecting
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x to y if the following conditions are satisfied.

(1) ϕ(x) = y.
(2) ϕ(Dkr (x)) ⊂ int(Dk−1

r (πk−1(y))) × R.
(3) For i = 0, 1, . . . , [N/2],

ϕ

(
Dk−1
r (πk−1(x))×

{
xk − r +

4ir

N

})
⊂ int(Dk−1

r (πk−1(y)))× (−∞, yk − r).

(4) For i = 0, 1, . . . , [(N − 1)/2],

ϕ

(
Dk−1
r (πk−1(x)) ×

{
xk − r +

(4i + 2)r

N

})
⊂ int(Dk−1

r (πk−1(y)))

× (yk + r , +∞).

(5) For each i ∈ {0, . . . , N − 1}, the intersection

Vi = Dkr (y) ∩ ϕ

(
Dk−1
r (x)×

[
xk − r +

2ir

N
, xk − r +

(2i + 2)r

N

])

is connected and satisfies:

(a) Vi ∩ (Dk−1
r (y)× {−r}) 6= ∅;

(b) Vi ∩ (Dk−1
r (y)× {r}) 6= ∅;

(c) each connected component of Vi ∪ ∂Dkr (y) is simply connected.

The name pseudo-horseshoe seems adequate since, when x = y, the map ϕ does admit
a compact invariant subset which is semiconjugate to a subshift of finite type (cf. [9]).
Each Vi is called a vertical strip of the pseudo-horseshoe ϕ, and we denote the collection
of vertical strips of ϕ by Vϕ .

Notice that this definition is both topological and geometrical. Indeed, while we
consider homeomorphisms, we also assume that a certain scale is preserved and identify a
preferable vertical direction by means of coordinates.

Definition 5.2. Consider ε > 0 and a homeomorphism ϕ : U → Rk with a pseudo-
horseshoe of type N at scale r connecting x to y. The pseudo-horseshoe is said to be
ε-separating if we may choose the collection Vϕ so that the Hausdorff distance between
distinct vertical strips is bigger than ε, that is, inf {‖a − b‖ : a ∈ Vi , b ∈ Vj } > ε for
every i 6= j .

5.2. Pseudo-horseshoes on manifolds. So far, pseudo-horseshoes were defined in open
sets of Rk . Now we need to extend this notion to manifolds.

Definition 5.3. Let (X, d) be a compact smooth manifold of dimension dim X. Given
f ∈ Homeo(X, d) and constants 0 < α < 1, δ > 0, 0 < ε < δ and p ∈ N, we say that
f has a (δ, ε, p, α)-pseudo-horseshoe if we may find a pairwise disjoint family of open
subsets (Ui)0 6 i 6 p−1 of X so that

f (Ui) ∩ U(i+1)mod p 6= ∅ for all i,

and a collection (φi)0 6 i 6 p−1 of homeomorphisms

φi : D
dim X
δ ⊂ Rdim X → Ui ⊂ M
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satisfying, for every 0 6 i 6 p − 1, the following requirements.

(1) (f ◦ φi)(Ddim X
δ ) ⊂ U(i+1)mod p.

(2) The map

ψi = φ−1
(i+1)mod p ◦ f ◦ φi : Ddim X

δ → Rdim X

has a pseudo-horseshoe of type ⌊(1/ε)α dim X⌋ at scale δ connecting x = 0 to itself
and such that:

(a) there are families {Vi,j }j and {Hi,j }j of vertical and horizontal strips, respec-
tively, with j ∈ {1, 2, . . . , ⌊(1/ε)α dim X⌋}, such that Hi,j = ψ−1

i (Vi,j );
(b) for every j1 6= j2 ∈ {1, 2, . . . , ⌊(1/ε)α dim X⌋} we have

min {inf {‖a − b‖ : a ∈ Vi,j1 , b ∈ Vi,j2},

inf {‖z− w‖ : z ∈ Hi,j1 , w ∈ Hi,j2}} > ε.

Regarding the parameters (δ, ε, p, α) that identify the pseudo-horseshoe, we note that
δ is a small scale determined by the size of the p domains and the charts so that item
(1) of Definition 5.3 holds; ε is the scale at which a large number (which is inversely
proportional to ε and involves α) of finite orbits is separated to comply with requirement
(2) of Definition 5.3; and α is conditioned by the room in the manifold needed to build the
convenient amount of ε-separated points.

Definition 5.4. We say that f has a coherent (δ, ε, p, α)-pseudo-horseshoe if the
pseudo-horseshoe satisfies the following extra condition.

(3) For every 0 6 i 6 p − 1 and every j1 6= j2 ∈ {1, 2, . . . , ⌊(1/ε)α dim X⌋}, the hori-
zontal strip Hi,j1 crosses the vertical strip V(i+1)mod p,j2 .

By crossing we mean that there exists a foliation of each horizontal strip Hi,j ⊂ Ddim X
δ

by a family Ci,j of continuous curves c : [0, 1] → Hi,j such that ψi(c(0)) ∈ Dk−1
δ × {−δ}

and ψi(c(1)) ∈ Dk−1
δ × {δ}.

There are two important main features of coherent (δ, ε, p, α)-pseudo-horseshoes.
Firstly, (δ, ε, p, α)-pseudo-horseshoes associated to a homeomorphism f persist by
C0 perturbations of f . Secondly, if the (δ, ε, p, α)-pseudo-horseshoe is coherent,
then the composition ψp−1 ◦ · · · ◦ ψ0 on the suitable subdomain of Ddim X

δ contains
⌊(1/ε)α dim X⌋p horizontal strips which are mapped onto vertical strips and are eventually
ε-separated by f up to the pth iterate. In particular, any homeomorphism f which
has a coherent (δ, ε, p, α)-pseudo-horseshoe also has a (p, ε)-separated set with
⌊(1/ε)α dim X⌋p elements (see Figure 1). It is precisely this type of characterization of
the local behavior of vertical and horizontal strips in a neighborhood of a p-periodic point
we will further select that leads to the main differences between our argument and those
used in [18, 20].

Remark 5.5. While vertical and horizontal strips in Rk can be defined in terms of
Euclidean coordinates, the same notions on the manifold X are local and depend both on
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≡

≡

FIGURE 1. Illustration of a coherent (top) and a non-coherent (bottom) pseudo-horseshoe.

the dynamics of f and the smooth charts (φi)06i6p−1. On the manifold, the intermediate
value theorem ensures that Ĥi,j := φi(Hi,j ) ⊂ Ui crosses every vertical strip V̂i,j :=
f (Ĥi,j ) as well.

Remark 5.6. To estimate the metric mean dimension using local charts taking values in
Euclidean coordinates, the separation scale in Euclidean coordinates (as in Definition 5.3)
has to be preserved by charts. For this reason, we assume that the local charts (φi)06i6p−1

are bi-Lipschitz, and thus we require the compact manifold to be smooth.

6. Separating sets
We start by linking the existence of pseudo-horseshoes to the presence of big separating
sets.
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PROPOSITION 6.1. Assume that X is a smooth compact manifold. If f ∈ Homeo(X, d)
then there exists C > 1 such that, if f has a coherent (δ, ε, p, α)-pseudo-horseshoe, then

s(f , p ℓ, C−1ε) >

(⌊(
1

ε

)α dim X⌋)p ℓ
for all ℓ ∈ N. (6.1)

Proof. Let N = ⌊(1/ε)α dim X⌋. By assumption, there are charts (φi)06i6p−1 such that
each of the maps ψi = φ−1

(i+1)mod p ◦ f ◦ φi has an ε-separating pseudo-horseshoe of type

N at scale δ. Moreover, the horizontal strips (Hi,j )j=1,...,N in the domainDdim X
δ of ψi are

ε-separated and the same holds for the vertical strips (Vi,j )j=1,...,N in the image of ψi .
Define the horizontal and vertical strips, respectively, on the manifold X by

Ĥi,j := φi(Hi,j ) and V̂i,j := f (Ĥi,j ) = (f ◦ φi)(Ĥi,j )

for 0 6 i 6 p − 1 and 1 6 j 6 N . Observe that, by construction,

φ−1
(i+1)mod p(V̂i,j ) = (φ−1

(i+1)mod p ◦ f ◦ φi)(Hi,j ) = ψi(Hi,j ) = Vi,j

is a vertical strip in the domain Ddim X
δ of the pseudo-horseshoe ψi . Consider also the

following non-empty compact subsets of X:

j ∈ {1, . . . , N} 7→ K̂0,j := Ĥ0,j ,

j1, j2 ∈ {1, . . . , N} 7→ K̂1,j1,j2 := f−1(V̂0,j1 ∩ Ĥ1,j2)

= f−1(f (K̂0,j1) ∩ Ĥ1,j2),

...
...

j1, j2, . . . , jp ∈ {1, . . . , N} 7→ K̂p−1,j1,j2,...,jp

:= f−(p−1)(f p−1(K̂p−2,j1,j2,...,jp−1) ∩ Ĥp−1,jp ).

Taking into account that X is a smooth manifold, we may assume that all the maps
{φ±1
i : 0 6 i 6 p − 1} are Lipschitz with Lipschitz constant bounded by a uniform

constant C > 1. In particular, by item 2(b) in Definition 5.3, there exist at least N points
which are (C−1ε)-separated by f in K̂0,j .

Claim. With the previous notation,

(j1, j2) 6= (J1, J2),

x ∈ K̂1,j1,j2 ⇒ x and y are (2, C−1ε)-separated,

y ∈ K̂1,J1,J2

Indeed, as φ−1
2 is C-Lipschitz and j1 6= J1,

d2(x, y) > d(f (x), f (y)) > dist(V̂1,j1 , V̂1,J1) > C−1dist(V1,j1 , V1,J1) > C−1ε

where

dist(A, B) :=
{

inf {‖a − b‖ : a ∈ A, b ∈ B} if A, B ⊂ Rk ,
inf {d(a, b) : a ∈ A, b ∈ B} if A, B ⊂ X.
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On the other hand, if j1 = J1 and j2 6= J2, then f (x), f (y) ∈ V̂1,j1 but they lie in different
horizontal strips; consequently, f 2(x) ∈ V̂1,j2 and f 2(y) ∈ V̂1,J2 and so

d2(x, y) > d(f 2(x), f 2(y)) > C−1dist(V̂1,j2 , V̂1,J2) > C−1ε.

Recall that we have associated to (j1, j2, . . . , jp) ∈ {1, 2, . . . , N}p the non-empty
compact set

K̂p−1,j1,j2,...,jp = f−(p−1)(f p−1(K̂p−2,j1,j2,...,jp−1) ∩ Ĥp−1,jp )

and observe that, whenever (j1, j2, . . . , jp) 6= (J1, J2, . . . , Jp), one has

dp(x, y) > C−1ε for all x ∈ K̂p−1,j1,j2,...,jp , for all y ∈ K̂p−1,J1,J2,...,Jp .

This proves that

s(f , p , C−1ε) > Np.

To show (6.1) for ℓ ∈ N \ {1}, we repeat ℓ times the previous recursive argument for the
iterate f p and the sets K̂p−1,j1,j2,...,jp instead of f and the sets K̂0,j .

COROLLARY 6.2. Under the assumptions of Proposition 6.1 one has

lim sup
n→ +∞

1

n
log s(f , n, C−1ε) > α dim X|log ε|. (6.2)

7. A C0-perturbation lemma along orbits
We are interested in constructing coherent pseudo-horseshoes inside absorbing disks
with small diameter. The argument depends on a finite number of C0-perturbations of
the initial dynamics on disjoint supports. Furthermore, the pseudo-horseshoes will be
obtained inside a small neighborhood of an orbit associated to a suitable concatenation
of homeomorphisms C0-close to the initial dynamics.

Taking into account that X is a smooth compact boundaryless manifold, we may fix
a finite atlas a whose charts are bi-Lipschitz. If ra > 0 denotes the Lebesgue covering
number of the domains of the charts, up to a homothety we may assume that the image of
every disk of radius ra in X contains a diskDdim X

1 (v) ⊂ Rdim X for some v ∈ Rdim X. Let
L > 0 be an upper bound of the bi-Lipschitz constants of all the charts.

PROPOSITION 7.1. Given δ0 > 0 and f ∈ H, there exist p ∈ N and 0 < δ < δ0 such that,
for every 0 < ε ≪ δ and every α ∈ (0, 1), we may find g ∈ Homeo(X, d) satisfying:

(a) g has a coherent (δ, Lε, p, α)-pseudo-horseshoe;
(b) D(g, f ) 6 2δ0.

Proof. We recall from §4 that C0 generic homeomorphisms, belonging to the residual
set H given by Lemma 4.1, have absorbing disks of arbitrarily small diameter which do
not disappear under small C0 perturbations. More precisely, given δ0 > 0, each f ∈ H

has both a p-absorbing disk B with diameter smaller than δ0, for some p ∈ N, and an
open neighborhood Wf in Homeo(X, d) such that for every g ∈ Wf the disk B is still
p-absorbing for g. In what follows we will always assume that Wf is inside the open ball
in (Homeo(X, d), D) centered at f with diameter δ0.
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We start by fixing coordinate systems. By Brouwer’s fixed point theorem, f has a
periodic point P of period p in B. For every 0 6 i 6 p − 1, let φi be a bi-Lipschitz
chart from Ddim X

1 ⊂ Rdim X onto some open neighborhood of f i(P ) contained in the
disk f i(B) and such that φi((0, . . . , 0)) = f i(P ). These charts are obtained by the
composition of restrictions of the charts of the atlas a and possible translations, which
do not affect the value of L.

The next step is to choose δ > 0 such that every C0-perturbation h ∈ Homeo(X, d) of
the identity whose support has diameter smaller than 3Lδ satisfies h ◦ f ∈ Wf , and so
D(h ◦ f , f ) 6 δ0. The existence of such a δ is guaranteed by the uniform continuity of
f−1, since

D(h ◦ f , f ) = max
x ∈ X

{D(h(f (x)), f (x)), D(f−1(h−1(x)), f−1(x))}.

We may assume, reducing δ if necessary, that the ball B3Lδ(f
i(P )) is strictly contained

in f i(B) for every 0 6 i 6 p − 1. In fact, we may say more: the closeness in the uniform
topology ensures that the ball B3Lδ(gi ◦ · · · ◦ g1(P )) is contained in f i(B) for every gi
which is C0-close enough to f and all 0 6 i 6 p − 1.

Step 1: Let N = ⌊(1/ε)α dim X⌋. Reducing δ if necessary, we may assume that the map

φ−1
1 ◦ f ◦ φ0 : Ddim X

3δ → Ddim X
1

is well defined, fixes the origin and is a homeomorphism onto its image. A reasoning
similar to the proof of [20, Proposition 1] provides a homeomorphism ρ1 : Ddim X

1 →
Ddim X

2δ isotopic to the identity and such that the following conditions hold.

(1) (ρ1 ◦ φ−1
1 ◦ f ◦ φ0) (D

dim X
δ ) ⊂ int(Ddim X−1

δ )× (−2δ, 2δ).
(2) For i = 0, 1, . . . , [N/2],

(ρ1 ◦ φ−1
1 ◦ f ◦ φ0)

(
0, . . . , 0,

(
− 1 +

4i

N

)
δ

)
∈ int(Ddim X−1

δ ) × (−2δ, −δ).

(3) For i = 0, 1, . . . , [(N − 1)/2],

(ρ1 ◦ φ−1
1 ◦ f ◦ φ0)

(
0, . . . , 0,

(
− 1 +

4i + 2

N

)
δ

)
∈ int(Ddim X−1

δ ) × (δ, 2δ).

By continuity of ρ1, if r > 0 is small enough then conditions (1)–(3) above have the
following implications.

(1′) (ρ1 ◦ φ−1
1 ◦ f ◦ φ0) (D

dim X−1
r × D1

δ ) ⊂ int(Ddim X−1
δ )× (−2δ, 2δ).

(2′) For i = 0, 1, . . . , [N/2],

(ρ1 ◦ φ−1
1 ◦ f ◦ φ0)

(
Ddim X−1
r ×

{(
− 1 +

4i

N

)
δ

})
⊂ int(Ddim X−1

δ )× (−2δ, −δ).

(3′) For i = 0, 1, . . . , [(N − 1)/2].

(ρ1 ◦ φ−1
1 ◦ f ◦ φ0)

(
DdimX−1
r ×

{(
− 1 +

4i + 2

N

)
δ

})
⊂ int(DdimX−1

δ )× (δ, 2δ).
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FIGURE 2. Illustration of the isotopy creating a pseudo-horseshoe.

Now, properties (1′)–(3′) imply that there exists a family V = (Vi)16i6N of connected
disjoint vertical strips such that

Vi = (ρ1 ◦ φ−1
1 ◦ f ◦ φ0)(Ki) ⊂ Ddim X

δ

for some connected subset

Ki ⊂ Ddim X−1
r ×

[(
− 1 +

2i

N

)
δ,

(
− 1 +

2i + 2

N

)
δ

]
.

The isotopic perturbation ρ1 of the identity can be performed so that item (5) of
Definition 5.1 holds, and we shall assume this is the case. See Figure 2. Making an extra
C0-perturbation supported inDdim X

δ , if necessary, we ensure that the vertical strips Vi are
a distance ε apart. This separability process is feasible because α ∈ (0, 1), so

N =
⌊(

1

ε

)α dim X⌋
<

(
1

ε

) dim X

.

Let h1 ∈ Homeo(X, d) be a homeomorphism taking ρ1 to a neighborhood of f (P ) and
such that

h1(z) :=
{
φ1 ◦ ρ1 ◦ φ−1

1 (z) if z ∈ f (φ0(D
dim X
2δ )),

z if z /∈ f (φ0(D
dim X
3δ )).

By construction, the diameter of the support of h1 is smaller than 3Lδ. By the choice of δ,
this ensures that the homeomorphism f1 = h1 ◦ f belongs to Wf , and so D(f1, f ) 6 δ0.
Moreover, in Ddim X

2δ one has

φ−1
1 ◦ f1 ◦ φ0 = φ−1

1 ◦ h1 ◦ f ◦ φ0 = ρ1 ◦ φ−1
1 ◦ f ◦ φ0

and, consequently, f1 has a L−1ε-separated pseudo-horseshoe of type N at scale δ
connecting P to f (P ) (which may differ from f1(P )). Thus, if p = 1, the proof of
Proposition 7.1 is complete.

Step 2: Assume now that p > 2. By construction, the homeomorphism f1 belongs to Wf ,
and so f1(B) is a p-absorbing disk for f1. Now, by a translation in the charts φ1 and
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φ2 in Rdim X, which does not change the Lipschitz constant L, we assume without loss
of generality that φ1(0, 0, . . . , 0) = f (P ) and φ2(0, 0, . . . , 0) = f1(f (P )). Therefore,
(φ2 ◦ f1 ◦ φ−1

1 ) (0, 0, . . . , 0) = (0, 0, . . . , 0).

Proceeding as in Step 1, we find homeomorphisms ρ2 : Ddim X
1 → Ddim X

2δ and

h2(z) :=
{
φ2 ◦ ρ2 ◦ φ−1

2 (z) if z ∈ f1(φ1(D
dim X
2δ )),

z if z /∈ f1(φ1(D
dim X
3δ )),

such that:

• the support of h2 is contained in a ball with diameter 3Lδ centered at f1(f (P ));
• f2 = h2 ◦ f1 has a L−1ε-separated pseudo-horseshoe of type N at scale δ connecting

f (P ) to f1(f (P )).

The support of the perturbation h2 is disjoint from that of the homeomorphism h1 and has
diameter smaller that 3Lδ; thus f2 ∈ Wf , and so D(f2, f ) 6 δ0.

Let us summarize what we have obtained so far. Under the two previous perturbations
we have built a homeomorphism f2 ∈ Wf exhibiting two pseudo-horseshoes, one con-
necting P to f (P ) and another connecting f (P ) to f1(f (P )). Since these perturbations
are performed in Euclidean coordinates (using either the charts φi or their modifications
by rigid translations, which do not change the notions of horizontal and vertical strip),
and then extended to the manifold X using the fixed charts, we are sure that these
pseudo-horseshoes are coherent.

Step 3: The recursive argument. Set f0 = f . Using the previous argument recur-
sively, we obtain homeomorphisms {f0, f1, f2, . . . , fp−1} such that fi ∈ Wf , so
clearly D(fi , f ) 6 δ0 for every 1 6 i 6 p − 1; besides, fp−1 has L−1ε-separated
pseudo-horseshoes connecting the successive points of the finite piece of the random
orbit,

{P , f0(P ), (f1 ◦ f0)(P ), (f2 ◦ f1 ◦ f0)(P ), . . . , (fp−1 ◦ · · · ◦ f2 ◦ f1 ◦ f0)(P )}.

If the points (fp−1 ◦ · · · ◦ f2 ◦ f1 ◦ f0)(P ) and P are distinct, to conclude the proof
of Proposition 7.1 we need an extra perturbation to identify them. This last perturba-
tion is performed in the interior of the disk B, so the resulting homeomorphism g

satisfies D(g, fp−1) 6 δ0 and g = f in X \
⋃

0 6 j 6 p−1 f j (B). Therefore, D(g, f ) 6

D(g, fp−1)+D(fp−1, f ) 6 2δ0 and g has a L−1ε-separated pseudo-horseshoe of type
N at scale δ connecting the point P to itself.

Remark 7.2. For the construction of the pseudo-horseshoes it is essential that α is strictly
smaller than one. Indeed, only if 0 < α < 1 are we able to create ⌊(1/ε)α dim X⌋ points
that are ε-separated inside a ball with diameter 2δ, since this obliges ε > 0 to satisfy the
condition dim X

√
⌊(1/ε)α dim X⌋ε < 4δ or, equivalently, 0 < ε <

1−α√4δ.

8. Proof of Theorem A
Firstly, we note that mdimM (X, f , d) 6 dim X for every f ∈ Homeo(X, d) (cf. [18, §5]).
We are left to prove the converse inequality in a residual subset of Homeo(X, d).
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Fix a strictly decreasing sequence (εk)k ∈ N in the interval (0, 1) which converges to
zero. For any α ∈ (0, 1) and k ∈ N, consider the C0-open set O(εk , α) of the homeomor-
phisms g ∈ Homeo(X, d) such that g has a coherent (δ, Lεk , p, α)-pseudo horseshoe, for
some δ > 0 and p ∈ N and L > 0. Observe that, given α ∈ (0, 1) and K ∈ N, the set

OK(α) :=
⋃

k∈N
k>K

O(εk , α)

is C0-open and, by Proposition 7.1, non-empty. Furthermore, it is C0-dense in
Homeo(X, d) since the residual H (cf. Lemma 4.1) is C0-dense in the Baire space
Homeo(X, d) and Proposition 7.1 holds for every f ∈ H. Define

R :=
⋂

α ∈ (0,1) ∩ Q

⋂

K ∈ N

OK(α).

This is a C0-Baire residual subset of Homeo(X, d), and we have the following lemma.

LEMMA 8.1. mdimM (X, g, d) = dim X for every g ∈ R.

Proof. Take g ∈ R. Given a rational number α ∈ (0, 1) and a positive integer K , the
homeomorphism g has a coherent (δ, LεjK , p, α)-pseudo-horseshoe for some jK > K ,
δ > 0, p ∈ N and L > 0. Therefore, by Corollary 6.2,

lim sup
n→ +∞

1

n
log s(g, n, LεjK ) > α dim X |log εjK |

for a subsequence (εjK )K ∈ N of (εk)k ∈ N. Thus,

mdimM(X, g, d) > lim sup
k → +∞

lim supn→ +∞ (1/n) log s(g, n, Lεk)

|log εk|
> α dim X.

As α ∈ (0, 1) ∩ Q is arbitrary, Theorem A is proved.

Remark 8.2. The assumption that the manifold X has no boundary is not essential.
Allowing boundary points, we need to alter the argument to prove Proposition 7.1 in two
respects. Firstly, absorbing disks must be considered with respect to the induced topology.
Secondly, the role of the Brouwer fixed point theorem is transferred to the C0-closing
lemma, which also ensures the existence of a periodic point. In the case where this periodic
point lies at the boundary of the manifold, an additional C0-arbitrarily small perturbation
yields a close homeomorphism with an interior periodic point. Accordingly, we are obliged
to change the closeness estimate on the statement of Proposition 7.1, by replacing 2δ0

by 3δ0.

9. Proof of Theorem B
LetX be a compact smooth boundaryless manifold with dimension strictly greater than one
and d be a metric compatible with the smooth structure of X. It is known that there exist
C0-Baire generic subsets Ri ⊂ Homeo(X, d) (i = 1, 2) such that the following statements
hold.
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(1) The closure of the set Per(f ) of periodic points coincides with both the
non-wandering set �(f ) and the chain-recurrent set CR(f ) of every homeomor-
phism f ∈ R1 (cf. [8]).

(2) mdimM (X, f , d) = dim X for every f ∈ R2 (by Theorem A).

Therefore, taking into account that mdimM (X, g, d) = mdimM (�(g), g |�(g), d) for all
homeomorphisms g ∈ Homeo(X, d), we obtain

mdimM (Per(f ), f |Per(f ), d) = mdimM (�(f ), f |�(f ), d) = dim X

for every homeomorphism f in theC0-Baire generic subset R := R1 ∩ R2. Now, noticing
that mdimM (�(f ), f |�(f ), d) 6 dimB (�(f )) 6 dim X, we conclude that

dimB (Per(f )) = dimB (�(f )) = dim X for all f ∈ R.

The theorem now follows from the fact that the upper box dimensions of a set and its
closure coincide (cf. [2, Proposition 3.4]).

10. Proof of Theorem C
We begin by presenting the proof for the case of Euclidean distance. Later we will stress
the necessary adaptations for more general metrics.

10.1. Euclidean metric. The first step of the proof is the construction of piecewise affine
continuous models with any prescribed metric mean dimension. To complete the argument
we use surgery in the space of continuous maps on the interval.

10.1.1. Piecewise affine models. Recall that d stands for the Euclidean metric on [0, 1]
and that C0([0, 1], d) is the space of continuous maps on the interval [0, 1] with the
uniform metric. We start by describing examples in C0([0, 1], d) with metric mean
dimension equal to any prescribed value β ∈ [0, 1].

PROPOSITION 10.1. For every β ∈ [0, 1] there exists a piecewise affine function fβ ∈
C0([0, 1], d) such that fβ(0) = 0, fβ(1) = 1 and mdimM ([0, 1], fβ , d) = β.

Proof. If β = 0, the assertion is trivial: take, for instance, fβ = identity map. Now, fix β ∈
(0, 1], take a0 = a−1 = 1 and consider a sequence (ak)k∈N of numbers in (0, 1) strictly
decreasing to zero. For any k > 0, consider the interval

Jk = [a2k+1, a2k],

denote by γk the diameter a2k − a2k+1 of Jk and fix a point bk+1 of the interval
(a2k+2, a2k+1). LetGk := [a2k+2, a2k+1] be the closed interval gap between Jk and Jk+1.

On each interval Gk , define fβ as a continuous piecewise affine map which maps
the interval [a2k+2, a2k+1] onto itself, fixes the boundary points and has an attracting
fixed point at bk whose topological basin of attraction contains all points in the interval
(a2k+2, a2k+1). By construction the set

⋃
k>0 Gk is fβ -invariant, restricted to which fβ

has zero topological entropy; hence this compact set will not contribute to the metric mean
dimension of fβ .
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ik subintervals

k subintervals

FIGURE 3. Selection procedure of piecewise linear components of fβ .

We now define the map fβ on the set
⋃
k>0 Jk . Let (ℓk)k>0 be a strictly increasing

sequence of positive odd integers such that ℓ0 > 3. Fix k > 0 and subdivide the interval
Jk into ℓk sub-intervals (Jk,i)16i6ℓk of equal size γk/ℓk , where γk = a2k − a2k+1. For
each 0 6 i < ℓk , set

ck,i := a2k+1 + i
γk

ℓk
.

Then define

fβ(x) :=





ℓk

γk
(x − ck,i)+ a2k+1 if x ∈ Jk,1+4i , 0 6 i 6 ik ,

−
ℓk

γk
(x − ck,i)+ a2k if x ∈ Jk,3+4i , 0 6 i 6 ik − 1,

(10.1)

where 1 6 ik 6 ℓk is given by

ik :=
⌊(

ℓk

γk

)β⌋
. (10.2)

In rough terms, we have defined fβ on each interval Jk as a piecewise affine self-map
taking values on Gk ∪ Jk ∪Gk−1 in such a way that it has a metric mean dimension close
to β at a certain scale. See Figure 3. Notice that this construction is entirely analogous to
the generation process of a (δ, ε, p, α)-pseudo-horseshoe in §5, taking δ = γk , ε = γk/ℓk ,
p = 1 and α = β. In particular, having such a pseudo-horseshoe is a C0-open condition.

In the remaining sets
( ⋃

0 6 i < (4ik−1)/4

Jk,2+4i

)
∪

( ⋃

1+4ik < i 6 ℓk

Jk,i

)
∪

( ⋃

0 6 i < (4ik−3)/2

Jk,4+4i

)

(10.3)
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a2k+1a2k+2a2k+3 a2k

bk

•

•

•

•

•

FIGURE 4. Local construction of an attractor between two consecutive pseudo-horseshoes.

we define fβ as a piecewise affine map preserving the boundary points in such a way that
the sets (10.3) are mapped inside the regions Gk−1 and Gk , respectively (see, for example,
Figure 4). By construction, the map fβ is continuous, piecewise affine and fixes the points
0 and 1.

Claim. If the sequences (ak)k∈N and (ℓk)k∈N satisfy the additional condition

a2k =
a2k−2 − a2k−1

ℓk−1
for all k ∈ N, (10.4)

then mdimM ([0, 1], fβ , d) = β.

Indeed, given ε > 0 smaller than (a2 − a3)/ℓ1, let k = k(ε) ∈ N be the largest positive
integer such that

ε < εk :=
a2k − a2k+1

ℓk
.

Thus εk+1 6 ε < εk , and so assumption (10.4) ensures that a2k+2 = εk+1 6 ε. Therefore,

fβ([0, a2k+2]) ⊂ [0, a2k+2] ⊂ [0, ε]

and, as ε < εk , for every n ∈ N one has

s(fβ , n, ε) > s(fβ |J∞
k

, n, ε) > s(fβ |J∞
k

, n, εk) =
⌊(

ℓk

γk

)β⌋n
=

⌊
1

ε
β
k

⌋n
>

⌊
1

εβ

⌋n

(10.5)
where J∞

k :=
⋂
i≥0 f

−i
β (Jk). Consequently, as n is arbitrary,

mdimM ([0, 1], fβ , d) > β.
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Before proceeding, we note that the sequences (ak)k∈N and (ℓk)k∈N may be chosen
complying with condition (10.4).

On the other hand, by construction the derivative of fβ at the points of the intersection

Jk ∩ f−1
β (Jk) ∩ . . . ∩ f−(n−1)

β (Jk) is constant and equal to γk/ℓk . Thus, this set is formed
by (γk/ℓk)n disjoint and equally spaced subintervals. Moreover, any such subinterval is the
(n, εk/2)-dynamical ball associated to its mid-point. Therefore, every (n, ε)-dynamical
ball of fβ which is contained in an (n, εk)-dynamical ball inside Jk ∩ f−1

β (Jk) ∩ . . . ∩
f

−(n−1)
β (Jk) has diameter less than or equal to ε (γk/ℓk)n (actually equal when dynamical

balls do not intersect the boundary of the connected components of Jk ∩ f−1
β (Jk) ∩ . . . ∩

f
−(n−1)
β (Jk)). This implies, in particular, that

s(fβ |J∞
k

, n, ε) 6 s(fβ |J∞
k

, n, εk) ·
εk (γk/ℓk)

n

ε (γk/ℓk)n
= s(fβ |J∞

k
, n, εk) ·

εk

ε
=

⌊
1

ε
β
k

⌋n
·
εk

ε

(10.6)
and so

lim sup
n→ ∞

1

n
log s(fβ |J∞

k
, n, ε) 6 β|log εk| 6 β|log ε|.

Furthermore, if 1 6 t < k then (10.6) also implies that

s(fβ |J∞
t

, n, ε) 6 s(fβ |J∞
t

, n, εt ) ·
εt

ε
,

which yields

lim sup
n→ +∞

1

n
log s(fβ |J∞

t
, n, ε) 6 β|log εt | 6 β|log ε|.

Since ε may be taken arbitrarily small, we conclude that

mdimM ([0, 1], fβ , d) 6 β.

Thus, mdimM ([0, 1], fβ , d) = β. This completes the proofs of the claim and of the
proposition.

10.1.2. Level sets of the metric mean dimension. Let us now show that for every β ∈
[0, 1] there exists a C0-dense subset Dβ ⊂ C0([0, 1], d) such that mdimM ([0, 1], f , d) =
β for every f ∈ Dβ .

When β = 0 it is enough to take D0 = C1([0, 1]) which is a C0-dense subset of
C0([0, 1], d). Indeed, for any C1 interval map f one has htop(f ) 6 log ‖f ′‖∞ < +∞
and, consequently, mdimM ([0, 1], f , d) = 0.

Fix 0 < β 6 1 and f ∈ C0([0, 1], d), and let ε > 0 be arbitrary. We claim that there
exists h ∈ C0([0, 1], d) such that D(f , h) < ε and mdimM ([0, 1], h, d) = β. The proof
is done through a local perturbation starting at the space of C1-interval maps as we will
explain. Firstly, by the denseness of the C1-interval maps we may choose h1 ∈ C1([0, 1])
so that D(h1, h) < (ε/3). Secondly, if P denotes a fixed point of h1 (which surely exists),
let h2 ∈ C0([0, 1], d) be such that D(h2, h1) < (ε/3) and whose set of fixed points in a
small neighborhood of P consists of an interval J centered at P . This C0-perturbation can
be performed in such a way that h2 is C1 at all points except, possibly, the extreme points
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of J . Finally, if Ĵ ( J̃ ( J and Ĵ , J̃ are intervals of diameter smaller than ε/3, we take a
C1 map χ such that χ ≡ 1 on Ĵ and χ ≡ 0 on [0, 1] \ J̃ .

Let Tλ denote the homothety of parameter λ ∈ (0, 1) and |Ĵ | stand for the diameter of
the interval Ĵ . Since {χ , 1 − χ} is a partition of unity, the map

h3 := h3,β = (1 − χ) · h2 + χ · T|Ĵ | ◦ fβ ◦ T|Ĵ |−1 (10.7)

is continuous, coincides with h2 on [0, 1] \ J̃ and is linearly conjugate to fβ on the interval
Ĵ . Moreover, by the uniform continuity of h2 we can choose h3 so that D(h3, h2) < (ε/3)
provided that Ĵ , J̃ are small enough. This guarantees thatD(h3, h) < ε and, since all maps
in the combination (10.7) but fβ are smooth (except possibly at two points), one has

mdimM ([0, 1], h3, d) = mdimM ([0, 1], fβ , d) = β.

This concludes the proof of the first part of Theorem C.
Regarding the last statement of Theorem C, we might argue as in the proof of

Theorem A. However, as we have established that D1 is C0-dense in C0([0, 1], d),
the reasoning can be simplified (observe that the case α = 1 was not considered in
Theorem A).

Take a strictly decreasing sequence (εk)k ∈ N in the interval (0, 1) converging to zero.
Given K ∈ N, consider the non-empty C0-open set

DK = {g ∈ C0([0, 1]) : g has a (γ , εk , 1, 1)-pseudo-horseshoe, for some

k > K and γ > 0}.

Notice that DK is C0-dense in C0([0, 1], d) by the first part of Theorem C. Define

D :=
⋂

K ∈ N

DK .

This is a C0-Baire residual subset of C0([0, 1], d). Besides, mdimM ([0, 1], g, d) = 1
for every g ∈ D. Indeed, given a positive integer K , such a map g has a (γjK , εjK , 1, 1)-
pseudo-horseshoe for some jK > K and γjK > 0. Therefore, an estimate analogous to
(10.5) indicates that, for a subsequence (εjK )K ∈ N of (εk)k ∈ N, one has

lim sup
n→ +∞

1

n
log s(g, n, εjK ) > |log εjK |.

Thus,

mdimM ([0, 1], g, d) > lim sup
k → +∞

lim supn→ +∞ (1/n) log s(g, n, εk)

|log εk|
> 1

and so mdimM ([0, 1], g, d) = 1.

10.2. Metrics in ME . Let ρ be any metric on [0, 1] topologically equivalent to d , and
C0([0, 1], ρ) denote the space of continuous endomorphisms of the interval ([0, 1], ρ).
The argument used in the case of the Euclidean distance does not apply directly due to the
possible absence of homogeneity. More precisely, the surgery described in equation (10.7)
may not preserve the upper metric mean dimension of the piecewise affine model.
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Nevertheless, we will show that a suitable C0-local perturbation replaces the previous role
of the homothety.

10.2.1. Piecewise affine models. The construction is similar to that in §10.1.1, in local
domains.

PROPOSITION 10.2. For every closed interval I ⊂ [0, 1] there exists a piecewise
affine function g1 ∈ C0(I , ρ) such that g1 fixes the boundary points of I and
mdimM (I , g1, ρ |I×I ) = 1.

Proof. The proof is similar to that of Proposition 10.1. Write I = [a, b]. Take a0 = a−1 =
a and consider a sequence (ak)k∈N of numbers in I strictly decreasing to a. For any k > 0,
consider the interval

Jk = [a2k+1, a2k],

denote by γk the d-diameter of Jk and fix a point bk+1 of the interval (a2k+2, a2k+1).
Let Gk := [a2k+2, a2k+1] be the closed interval gap between Jk and Jk+1. As before, on
each interval Gk , define g1 as a continuous piecewise affine map which maps the interval
[a2k+2, a2k+1] onto itself, fixes the boundary points and has an attracting fixed point at
bk whose topological basin of attraction contains all points in the interval (a2k+2, a2k+1).
The set

⋃
k>0 Gk does not contribute to the metric mean dimension of g1.

We now define the map g1 on the set
⋃
k>0 Jk . Let (ℓk)k>0 be a strictly increasing

sequence of positive odd integers such that ℓ0 > 3. Fix k > 0 and subdivide the interval
Jk into ℓk sub-intervals (Jk,i)16i6ℓk of equal d-length, each of them with length γk/ℓk . As
before, it is enough to define g1 affine and increasing on intervals of the form Jk,1+4i , 0 6

i 6 ik , and affine and decreasing on intervals of the form Jk,3+4i , 0 6 i 6 ik − 1, where

ik :=
⌊
ℓk

γk

⌋
. (10.8)

In the remaining sets
( ⋃

0 6 i < (4ik−1)/4

Jk,2+4i

)
∪

( ⋃

1+4ik < i 6 ℓk

Jk,i

)
∪

( ⋃

0 6 i < (4ik−3)/2

Jk,4+4i

)

(10.9)
we define g1 as a piecewise affine map preserving the boundary points of I in such a
way that the sets (10.9) are mapped inside the regions Gk−1 and Gk , respectively. By
construction, the map g1 is continuous, piecewise affine and fixes the points a and b.

We claim that if the sequences (ak)k∈N and (ℓk)k∈N satisfy the additional condition

a2k =
diamρ([a2k−2, a2k−1])

ℓk−1
for all k ∈ N, (10.10)

then mdimM (I , g1, ρ) = 1. Indeed, an estimate identical to (10.5) (which at this point
involves a counting argument and does not make use of the metric) ensures that

mdimM (I , g1, ρ |I×I ) > 1.

This proves the proposition.
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10.2.2. Maximal level set of the upper metric mean dimension. In order to complete
the proof of the theorem, as before it is enough to show that there exists a C0-dense
subset D1 ⊂ C0([0, 1], ρ) such that mdimM ([0, 1], f , ρ) = 1 for every f ∈ D1. Take any
continuous map f of the interval. Since it has a fixed point, by a C0-small perturbation
we produce a C0-close continuous map exhibiting an interval I ⊂ [0, 1] of fixed points.
Let g1 : I → I be given by Proposition 10.2 with mdimM (I , g1, ρ |I×I ) = 1. The map
f1 ∈ C0([0, 1], ρ) given by

f1(x) =
{
g1(x) if x ∈ I ,

f (x) otherwise,

is C0-close to f and satisfies mdimM ([0, 1], f1, ρ) = 1. This completes the proof of
Theorem C.

Remark 10.3. A final word is in order concerning the different range of the results obtained
for homeomorphisms on high-dimensional manifolds and those established for continuous
maps of the interval. While the use of a metric compatible with the smooth structure on
the manifold may turn out not to be essential, the fact is that our proof of Theorem A
depends on the property that the cardinality of an ε-separated set on the cube [0, 1]dim X

is approximately equal to (1/ε)dim X, an estimate valid for the Euclidean metric since it is
strongly equivalent to the metric given by the maximum of the coordinates.
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