
Math. Proc. Camb. Phil. Soc. (2022), 173, 201–211 201
doi:10.1017/S0305004121000517

First published online 16 July 2021

The restricted Burnside problem for Moufang loops

BY ALEXANDER GRISHKOV

Department of Mathematics, University of São Paulo,
Caixa Postal 66281, São Paulo-SP, 05311-970, Brazil.

and Omsk F.M. Dostoevsky State University,
Neftezavodskaya 11, Omsk, Omskaya obl., 644053, Russia.

e-mail: grishkov@ime.usp.br

LIUDMILA SABININA†

Department of Mathematics, Autonomous University of the State of Morelos,
Avenida Universidad 1001, Cuernavaca, 62209 Morelos, Mexico.

e-mail: liudmila@uaem.mx

AND EFIM ZELMANOV

Department of Mathematics, University of California, San Diego,
9500 Giman Dr. La Jolla, California 92093-0112, U.S.A.

e-mail: ezelmanov@math.ucsd.edu

(Received 20 April 2020; revised 14 June 2021; accepted 7 April 2021)

Dedicated to the memory of Peter Plaumann

Abstract

We prove that for positive integers m ≥ 1, n ≥ 1 and a prime number p �= 2, 3 there are
finitely many finite m-generated Moufang loops of exponent pn .

2020 Mathematics Subject Classification: 20N05 (Primary); 17D10 (Secondary)

1. Introduction

A loop U is called a Moufang loop if it satisfies the following identities:

((zx)y)x = z((xy)x) and x(y(xz)) = (x(yx))z.

In this paper we solve the restricted Burnside problem for Moufang loops of exponent pn ,
p > 3.

THEOREM 1. For an arbitrary prime power pn, p > 3, there exists a function f (m) such
that any finite m-generated Moufang loop of exponent pn has order < f (m).

For groups this assertion was proved by E. Zelmanov ( [20, 21]). For Moufang loops of
prime exponent it was proved by A. Grishkov [6] (if p �= 3) and G. Nagy [15] (if p = 3).

†Corresponding author

C© The Author(s), 2021. Published by Cambridge University Press on behalf of Cambridge Philosophical Society.

https://doi.org/10.1017/S0305004121000517 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000517
mailto:grishkov@ime.usp.br
mailto:liudmila@uaem.mx
mailto:ezelmanov@math.ucsd.edu
https://doi.org/10.1017/S0305004121000517


202 ALEXANDER GRISHKOV, LIUDMILA SABININA AND EFIM ZELMANOV

In [16, 17] the restricted Burnside problem was solved for a subclass of Moufang loops and
related Bruck loops.

2. Groups with triality

A group G with automorphisms ρ and σ is called a group with triality if ρ3 = σ 2 =
(ρσ)2 = 1 and

[x, σ ][x, σ ]ρ[x, σ ]ρ2 = 1

for every x ∈ G, where [x, σ ] = x−1xσ .
Let G be a group with triality. Let U = {[x, σ ]|x ∈ G}. Then the subset U endowed with

the multiplication

a · b = (a−1)ρb(a−1)ρ2; a, b ∈ U

becomes a Moufang loop.
Every Moufang loop U can be obtained in this way from a suitable group with triality,

which is finite if U is finite. Moreover, if p is a prime number, then a finite Moufang p-loop
can be obtained from a finite p-group with triality ( [3, 5, 10]).

3. Lie and Malcev algebras

Let Fp be a field of order p, let G be a group. Consider the group algebra FpG and its
fundamental ideal ω, spanned by all elements 1 − g, g ∈ G. The Zassenhaus filtration is the
descending chain of subgroups

G = G1 > G2 > · · · ,

where Gi = {g ∈ G | 1 − g ∈ ωi }. Then [Gi , G j ] ⊆ Gi+ j and each factor Gi/Gi+1 is an
elementary abelian p-group. Hence,

L = L p(G) =
∑
i≥1

Li , Li = Gi/Gi+1

is a vector space over Fp. The bracket

[xi Gi+1, y j G j+1] = [xi , y j ]Gi+ j+1; xi ∈ Gi , y j ∈ G j ,

makes L a Lie algebra. Notice that the bracket [ , ] on the left-hand side of the last equality
is a Lie bracket whereas [ , ] on the right-hand side denotes the group commutator.

Let x, y be generators of a free associative algebra over Fp. Then (x + y)p = x p + y p +
{x, y}, where {x, y} is a Lie element. Following [12], we call a Lie Fp−algebra L with an
operation a → a[p], a ∈ L , a Lie p-algebra if

(ka)[p] = k pa[p],
(a + b)[p] = a[p] + b[p] + {a, b},

[a[p], b] = [a, [a, . . . [a︸ ︷︷ ︸
p

, b] . . . ]

for arbitrary k ∈ Fp; a, b ∈ L . The mapping Li → Lip, (gi Gi+1)
[p] = g p

i Gip+1, extends to
the operation a → a[p], a ∈ L , making L a Lie p-algebra. For more details about this
construction see [2, 11, 22].
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We call a Lie algebra (resp. Lie p-algebra) L with automorphisms ρ, σ a Lie algebra with
triality if ρ3 = σ 2 = (ρσ)2 = 1 and for an arbitrary element x ∈ L we have

(xσ − x) + (xσ − x)ρ + (xσ − x)ρ2 = 0.

LEMMA 3·1. Let G be a group with triality and let p be a prime number. Then L p(G) is
a Lie p-algebra with triality.

Proof. The automorphisms ρ, σ of the group G give rise to automorphisms ρ, σ of the Lie
algebra L p(G). For an element xi ∈ Gi we have

[xi , σ ][xi , σ ]ρ[xi , σ ]ρ2 = 1.

It implies that for the element x = xi Gi+1 ∈ Li we have

(xσ − x) + (xσ − x)ρ + (xσ − x)ρ2 = 0.

This completes the proof of the lemma.

Recall that a (nonassociative) algebra is called a Malcev algebra if it satisfies the
identities:

(1). xy = −yx ;
(2). (xy)(xz) = ((xy)z)x + ((yz)x)x + ((zx)x)y,

see [4, 14, 23].

LEMMA 3·2 (see [7]). Let L be a Lie algebra with triality over a field of characteristic
�= 2, 3. Let H = {x ∈ L|xσ = −x}. Recall, that for any x ∈ H, x + xρ + xρ2 = 0. Then H is
a Malcev algebra with multiplication

a ∗ b = [a + 2aρ, b] = [aα, b],
where a, b ∈ H, α = 1 + 2ρ.

LEMMA 3·3. For arbitrary elements a, b, c ∈ H we have

3[[a, b], c] = 2(a ∗ b) ∗ c + (c ∗ b) ∗ a + (a ∗ c) ∗ b.

We remark that in a Lie algebra with triality over a field F , for arbitrary elements
a1, . . . , an ∈ H the subspace

n∑
i=1

Fai +
n∑

i=1

Faα
i =

n∑
i=1

Fai +
n∑

i=1

Faρ

i

is invariant with respect to the group of automorphisms 〈σ, ρ〉.
Proof. Let’s prove that for any x, y, z ∈ H :

(x ∗ y) ∗ z = 2[[xρ2
, yρ], z] + [[x, y], z]. (3·1)
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Using x + xρ + xρ2 = 0 and y + yρ + yρ2 = 0, we get

v = [xρ, y] − [x, yρ] = −[xρ2
, y] − [x, y] + [x, yρ2] + [x, y] = [x, yρ2] − [xρ2

, y];
vρ = [xρ2

, yρ] − [xρ, yρ2] = −[xρ, yρ] − [x, yρ]
+ [xρ, yρ] + [xρ, y] = [xρ, y] − [x, yρ] = v.

Then

vσ = [xρσ , yσ ] − [xσ , yρσ ] = [xρ2
, y] − [x, yρ2] = −v,

hence v ∈ H and, by triality, we have v + vρ + vρ2 = 3v = 0. Since the characteristic of the
field is not 3 then v = 0 and we proved that

[xρ, y] = [x, yρ], [xρ2
, yρ] = [xρ, yρ2]. (3·2)

Finally, we have by (3·2)

(x ∗ y) ∗ z = [x + 2xρ, y] ∗ z

= [[x + 2xρ, y], z + 2zρ]
= [[x, y], z] + 2[[xρ, y], z] + 2[[x + 2xρ, y], zρ]
= [[x, y], z] + 2[[xρ, y], z] + 2[[xρ + 2xρ2

, yρ], z]
= [[x, y], z] + 2[[xρ, y], z] + 2[[−x + xρ2

, yρ], z]
= 2[[xρ2

, yρ], z] + [[x, y], z].

Let J = J (x, y, z) = (x ∗ y) ∗ z + (y ∗ z) ∗ x + (z ∗ x) ∗ y, then by (3·1) we get

J = 2([[xρ2
, yρ], z] + [[yρ2

, zρ], x] + [[zρ2
, xρ], y]).

But t = [[xρ2
, yρ], z] − [[zρ2

, xρ], y] = 0, indeed, we have

t − tρ = ([[xρ2
, yρ], z] − [[zρ2

, xρ], y])ρ − [[xρ2
, yρ], z] + [[zρ2

, xρ], y]
= [[x, yρ2], zρ] − [[z, xρ2], yρ] − [[xρ2

, yρ], z] + [[zρ2
, xρ], y]

= [[xρ2
, y], zρ] − [[z, xρ2], yρ] − [[xρ2

, yρ], z] + [[zρ2
, xρ], y]

= [[xρ2
, zρ], y] + [xρ2

, [y, zρ]] − [[z, yρ], xρ2] − [z, [xρ2
, yρ]]

− [[xρ2
, yρ], z] + [[zρ2

, xρ], y]
= [xρ2

, [y, zρ]] − [[z, yρ], xρ2]
= 0.

Hence, t ∈ H ∩ {v|vρ = v}. As above we can prove that v = 0, since the characteristic of the
field is �= 3.

Then

J (x, y, z) = (x ∗ y) ∗ z + (y ∗ z) ∗ x + (z ∗ x) ∗ y = 6[[xρ2
, yρ], z]. (3·3)
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Now we are ready to prove the Lemma. By (3·1) and (3·3) we get

2(x ∗ y) ∗ z + (z ∗ y) ∗ x + (x ∗ z) ∗ y

= 3(x ∗ y) ∗ z + (z ∗ y) ∗ x + (x ∗ z) ∗ y + (y ∗ x) ∗ z

= 3(x ∗ y) ∗ z + J (x, y, z)

= 6[[xρ2
, yρ], z] + 3[[x, y], z] − 6[[xρ2

, yρ], z]
= 3[[x, y], z],

which proves the lemma.

LEMMA 3·4. If a Lie algebra L with triality is generated by elements

a1, . . . , am, aα
1 , . . . , aα

m,

where a1, . . . , am ∈ H, then the Malcev algebra H is generated by a1, . . . , am.

Proof. We have L = H � S, where S = {a ∈ L|aσ = a} and Hα ⊆ S. Hence the subspace
H of L is spanned by left-normed commutators b = [. . . [b1, b2], b3], . . . , br ], where
b1, . . . , br ∈ {a1, . . . , am, aα

1 , . . . , aα
m} and elements from {a1, . . . , am} occur in b an odd

number of times.

(1) Suppose that br = aα
i , 1 ≤ i ≤ m, b′ = [. . . [b1, b2], . . . , br−1]. Then by the induction

assumption on r the element b′ lies in the Malcev algebra H ′ generated by a1, . . . , am

and b = [b′, aα
i ] = −ai ∗ b′;

(2) Suppose that br ∈ {a1, . . . , am}. If the element br−1 also lies in {a1, . . . , am} and
b′′ = [. . . [b1, . . . ], br−2] then by the induction assumption b′′ ∈ H ′. In this case it
remains to use Lemma 3·3.

Let br−1 ∈ {aα
1 , . . . , aα

m}. Then

b = [[b′′, br−1], br ] = [b′′, [br−1, br ]] + [br−1, [br , b′′]]
By the induction assumption on r applied to the elements a1, . . . , am, am+1 = [br−1, br ] ∈
H ′ the first summand lies in H ′. The second summand was considered in case (1). This
completes the proof of the lemma.

4. Commutator identities in groups

Let Fr be the free group on free generators xi , i ≥ 1; y, z1, z2. Recall the Hall commutator
identity

[xy, z] = [y, [z, x]][x, z][y, z],
where [x, y] = x−1 y−1xy is the group commutator.

Let N be the normal subgroup of Fr generated by the element y and let N ′ by the sub-
group of N generated by [N , N ] and by all elements g p, g ∈ N . Then N/N ′ is a vectors
space over the finite field Fp. For an element g ∈ Fr consider the linear transformation

g′ : N/N ′ −→ N/N ′, hN ′ −→ [g, h]N ′.
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Then the Hall identity implies

(ab)′ = a′ + b′ − b′a′,

or, equivalently, 1 − (ab)′ = (1 − b′)(1 − a′), where 1 is the identity map. Hence, 1 −
(a pn

)′ = (1 − a′)pn
. This implies the following well known lemma

LEMMA 4·1. [x1, [x1, [. . . [x1︸ ︷︷ ︸
pn

, y]] . . . ] = [x pn

1 , y] mod N ′.

COROLLARY. [[x1, z1], [[x1, z1], [. . . , [[x1, z1], y] . . . ] = [[x1, z1]pn
, y] mod N ′.

Applying the so called “collection process” of G. Higman [11] (see also [22]) we linearize
this equality in x1.

LEMMA 4·2. The product
∏

π∈Spn

[[xπ(1), z1], [[xπ(2), z1], [. . . , [[xπ(pn), z1], y] . . . ]

with an arbitrary order of factors lies in the subgroup generated by elements

[[xi1 · · · xir , z1]pn
, y],

1 ≤ i1 < · · · < ir ≤ pn, and commutators c in y, z1, x1, . . . , x pn such that:

(i) c involves all elements y, x1, . . . , x pn ;
(ii) some element y or x j , 1 ≤ j ≤ pn, occurs in c at least twice.

Consider again a group with triality G and the Lie algebra with triality L = L p(G) =
∞∑

i=1
Li . The subspace H = {a ∈ L | aσ + a = 0} is graded, i.e. H =

∞∑
i=1

Hi , Hi = H ∩ Li .

LEMMA 4·3. Suppose that for an arbitrary element g ∈ G we have [g, σ ]pn = 1. Then

(i) for an arbitrary homogeneous element a ∈ Hi , i ≥ 1, we have ad(a)pn = 0,
(ii) for arbitrary homogeneous elements a1, . . . , apn from H we have

∑
π∈Spn

ad(aπ(1)) · · · ad(aπ(pn)) = 0.

Proof. For a homogeneous element a ∈ Hi there exists an element g ∈ Gi such that a =
[g, σ ]Gi+1. Then a[pn ] = [g, σ ]pn

G pni+1 = 0. This implies ad(a)pn = ad(a[pn ]) = 0.

Let a1, . . . , apn be homogeneous elements from H , ai = [gi , σ ]Gn(i)+1, gi ∈ Gn(i), b =
g′G j+1, g′ ∈ G j . Applying Lemma 4·2 to xi = gi , z1 = σ, y = g′ we get the assertion (i i).

LEMMA 4·4. For an arbitrary element a ∈ H we have [a, aρ] = 0.

Proof. We have already mentioned that for an arbitrary element g ∈ [G, σ ] we have
[g, gρ] = 1, see [8]. Hence, [g, gρ] = 0 in L(G).

Let ai ∈ Hi , a j ∈ Hj be homogeneous elements. We need to show that [ai , aρ

j ] +
[a j , aρ

i ] = 0. There exist elements gi ∈ Gi , g j ∈ G j such that ai = [gi , σ ]Gi+1, a j =
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[g j , σ ]G j+1. In the free group Fr consider the element

X = [[x1, z1], [x2, z1]z2][[x2, z1], [x1, z1]z2].
Applying the Hall identity and the Collection Process in the free group Fr we get

[[x1x2, z1], [x1x2, z1]z2] = [[x1, z1], [x1, z1]z2][[x2, z1], [x2, z1]z2] · X · c1 · · · cr ,

where c1, . . . , cr are commutators in x1, x2, z1, z2; each of these commutators involved both
elements x1, x2 and at least one of these elements occurs more than once.

Substitute x1 = gi , x2 = g j , z1 = σ, z2 = ρ. Then the equality above in the free group Fr
implies X ∈ Gi+ j+1. Hence [ai , aρ

j ] + [a j , aρ

i ] = 0, which completes the proof of the lemma.

Example 4·1. Let L be a nilpotent 3-dimensional Lie algebra with basis a, b, c and multipli-
cation [a, b] = c, [a, c] = [b, c] = 0. The group S3 acts on L via aσ = −a, bσ = a + b, cσ =
c, aρ = b, bρ = −a − b, cρ = c. The straightforward computation shows that L is a Lie
algebra with triality and that [a, aρ] = −c �= 0.

LEMMA 4·5.

(i) For an arbitrary element a ∈ H, arbitrary k ≥ 1, we have

ad(aα)pk = ad(a)pk + 2ρ−1ad(a)pk

ρ;
(ii) for arbitrary elements a1, . . . , apk ∈ H we have

∑
π∈Spk

ad(aα
π(1)) · · · ad(aα

π(pk ))

=
∑

π∈Spk

ad(aπ(1)) · · · ad(aπ(pk )) + 2ρ−1
∑

π∈Spk

ad(aπ(1)) · · · adW (aπ(pk ))ρ.

Proof. We only need to prove part (i). Part (ii) is obtained from (i) by linearization. We have
aα = a + 2aρ . By Lemma 4·4 [a, aρ] = 0. Hence,

ad(aα)pk = ad(a)pk + 2pk
ad(aρ)pk = ad(a)pk + 2ρ−1ad(a)pk

ρ.

This completes the proof of the lemma.

We remark that the proof of linearised Engel identity in [6] contains a gap that is filled in
this paper.

For an element a ∈ H let ad∗(a) denote the operator of multiplication by a in the Malcev
algebra, ad∗(a) : h → a ∗ h, ad∗(a) = ad(aα).

LEMMA 4·6.

(i) For an arbitrary homogeneous element a ∈ Hi , i ≥ 1, we have ad∗(a)pn = 0;
(ii) for arbitrary elements a1, . . . , apn ∈ H we have

∑
π∈Spn

ad∗(aπ(1)) · · · ad∗(aπ(pn)) = 0.
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Proof. Assertion (i) follows from Lemma 4·3 and Lemma 4·5. Assertion (ii) follows from
Lemma 4·3 and Lemma 4·5.

5. Local nilpotence in Malcev algebras

PROPOSITION 1. Let M = M1 + M2 + · · · be a finitely generated graded Malcev alge-
bra over a field of characteristic p �= 2, 3, such that:

(i) ad∗(a)pn = 0 for an arbitrary homogeneous element a ∈ M;
(ii)

∑
π∈Spn

ad∗(aπ(1)) · · · ad∗(aπ(pn)) = 0 for arbitrary a1, . . . , apn ∈ M.

Then the Malcev algebra M is nilpotent and finite dimensional.

If I is an ideal of a Malcev algebra M then Ĩ = I 2 + I 2 · M is also an ideal of M . Consider
the descending chain of ideals M [0] = M, M [i+1] = M̃ [i]. We say that a Malcev algebra M is
solvable if M [n] = (0) for some n ≥ 1.

LEMMA 5·1 (Filippov, [4]). A finitely generated solvable Malcev algebra over a field of
characteristic > 3 is nilpotent if and only if each of its Lie homomorphic images is nilpotent.

Consider the free Malcev algebra M(m) on m free generators x1, . . . , xm . As always
N= {1, 2, . . . } is the set of positive integers. The algebra M(m) is Nm-graded via

deg(xi) = (0, 0, . . . , 1
i
, 0, . . . , 0), 1 ≤ i ≤ m, M(m) =

⊕
γ∈Nm

M(m)γ .

Let I be the ideal of M(m) generated by elements a(a(· · · a︸ ︷︷ ︸
pn

b) · · · ) and elements

∑
π∈Spn

aπ(1)(aπ(2)(· · · (aπ(pn)b) · · · ),

where a, a1, . . . , apn , b run over all homogeneous elements of M(m). Let

M(m, pn) = M(m)/I

LEMMA 5·2. The algebra M(m, pn)2 is finitely generated.

Proof. Kuzmin (see [14]) showed that for an arbitrary Malcev algebra M we have M [3] ⊆
M2 · M2. By [20] every Lie homomorphic image of M(m, pn) is a nilpotent algebra. Hence
by Lemma 5·1 of Filippov there exists t ≥ 1 such that

M(m, pn)t ⊆ M(m, pn)[3] ⊆ M(m, pn)2 M(m, pn)2.

Since the algebra M(m, pn) is Nm-graded it implies that M(m, pn)2 is generated by products
of x1, . . . , xm of length �, 2 ≤ � ≤ t − 1. This completes the proof of the lemma.

Recall that an algebra is said to be locally nilpotent if every finitely generated subalgebra
is nilpotent.
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LEMMA 5·3. Let M = M1 + M2 + · · · be a graded Malcev algebra that satisfies assump-
tions (i) and (ii) of Proposition 1. Let I be an ideal of M such that both I and M/I are locally
nilpotent. Then the algebra M is locally nilpotent.

Proof. Let M ′ be a subalgebra of M generated by m homogeneous elements. Then M ′ is a
homomorphic image of the Malcev algebra M(m, pn). By Lemma 5·2 the algebra (M ′)2 is
finitely generated.

Let’s prove that the algebra M ′ is solvable. Since the factor M/I has been assumed to
be locally nilpotent the algebra (M ′ + I )/I is nilpotent and finite dimensional. We will
prove solvability of M ′ by induction on dimF(M ′ + I/I ). If dimF(M ′ + I )/I = 0 then the
subalgebra M ′ is nilpotent since it lies in I. If dimF(M ′ + I )/I > 0 then dimF(M ′)2 + I/I <

dimF(M ′ + I )/I . Hence the algebra (M ′)2 is solvable which implies solvability of M ′.
Since M ′ is solvable then by [20] all Lie homomorphic images of the algebra M ′ are

nilpotent. Hence by Lemma 5·1 the algebra M ′ is nilpotent, which completes the proof of
the lemma.

LEMMA 5·4. Let M = M1 + M2 + · · · be a graded Malcev algebra that satisfies assump-
tions (i) and (ii) of Proposition 1. Then M contains a largest graded locally nilpotent ideal
Loc(M) such that the factor algebra M/Loc(M) does not contain nonzero locally nilpotent
ideals.

REMARK. For Lie algebras this assertion was proved in [13, 18]

Proof. Let I1, I2 be graded locally nilpotent ideals of M . Since the factor algebra I1 +
I2/I1

∼= I2/I1 ∩ I2 is locally nilpotent it follows from Lemma 5·3 that the algebra I1 + I2

is locally nilpotent.
Let Loc(M) be the sum of all graded locally nilpotent ideals of M . We showed that the

ideal Loc(M) is locally nilpotent. By Lemma 5·3 the factor algebra M = M/Loc(M) does
not contain nonzero graded locally nilpotent ideals. Let J be a nonzero (not necessarily
graded) locally nilpotent ideal of M . Let Jgr be the ideal of M generated by nonzero homo-
geneous components of elements of J of maximal degree. It is easy to see that the ideal Jgr

of M is locally nilpotent, a contradiction. This completes the proof of the lemma.

Recall that an algebra A is called prime if for any nonzero ideals I, J of A we have
I J �= (0). A graded algebra A = A1 + A2 + · · · is graded prime if for any nonzero graded
ideals I, J we have I J �= (0). Passing to ideals Igr, Jgr we see that a graded prime algebra is
prime.

The proof of the following lemma follows a well-known scheme (see [21]). We still
include it for the sake of completeness.

LEMMA 5·5. Let M = M1 + M2 + · · · be a graded Malcev algebra satisfying assump-
tions (i) and (ii) of Proposition 1. Then the ideal Loc(M) is an intersection Loc(M) = ⋂

P
of graded ideals P � M such that the factor algebra M/P is prime.

Proof. Choose a homogeneous element a ∈ M \ Loc(M). Since the ideal I (a) generated by
the element a in M is not locally nilpotent there exists a finitely generated graded subalgebra
B ⊆ I (a) that is not nilpotent. Since the algebra B satisfies assumptions (i) and (ii) it follows
from Filippov’s Lemma 5·1 that the algebra B is not solvable.
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Consider the descending chain of subalgebras B(0) = B, B(i+1) = (B(i))2. Since the
algebra B is not solvable we conclude that B(i) �= (0) for all i ≥ 0.

By Zorn’s Lemma there exists a maximal graded ideal P of M with the property that
B(i) � P for all i . Indeed, let P1 ⊆ P2 ⊆ · · · be an ascending chain of graded ideals such
that B is not solvable modulo each of them. If B is solvable modulo

⋃
i≥1

Pi then B(s) ⊆ ⋃
i≥1

Pi

for some s ≥ 1. By Lemma 5·2 the subalgebra B(s) is finitely generated, hence B(s) ⊆ Pi for
some i , a contradiction.

We claim that the factor algebra M/P is graded prime. Indeed, suppose that I, J are
graded ideals of M, P � I, P � J , and I J ⊆ P . By maximality of P there exists i ≥ 1 such
that B(i) ⊆ I and B(i) ⊆ J . Then B(i+1) ⊆ P , a contradiction. This completes the proof of the
lemma.

Proof of Proposition 1. Let M be a graded Malcev algebra satisfying assumptions (i) and
(ii). If M is not nilpotent then M �= Loc(M). By Lemma 5·5, M has a nonzero prime homo-
morphic image. Filippov [4] showed that every prime non-Lie Malcev algebra over a field of
characteristic p > 3 is 7-dimensional over its centroid. Now it remains to refer to the result
of Stitzinger [19] on Engel’s Theorem in the form of Jacobson for Malcev algebras. This
completes the proof of Proposition 1.

6. Proof of Theorem 1

Let U (m, pn) be the free Moufang loop of exponent pn on m free generators x1, . . . , xm .
Let E = E(U (m, pn)) be the minimal group with triality that corresponds to the loop
U (m, pn) (see [9]). The group E is generated by elements x1, . . . , xm, xρ

1 , . . . , xρ
m . Consider

the Zassenhaus descending chain of subgroups E = E1 > E2 > · · · . Let

G = E/
⋂
i≥1

Ei , U = [G, σ ].

Theorem 4 from [5] implies that an arbitrary finite m-generated Moufang loop of exponent
pn is a homomorphic image of the loop U . We will show that the loop U is finite.

As above, consider the Lie p-algebra

L = L p(G) =
⊕
i≥1

Li , Li = Gi/Gi+1,

over the field Fp, |Fp| = p, and the Malcev algebra H = {a − aσ |a ∈ L}. The Malcev
algebra H is graded, H = ⊕

i≥1
Hi , Hi = H ∩ Li , and satisfies assumptions (i) and (ii) of

Proposition 1.
Consider the Lie subalgebra L ′ of L generated by the set Im = {a1, . . . , am, aα

1 , . . . , aα
m},

where ai = xi E2 ∈ L1, 1 ≤ i ≤ m. The whole Lie algebra L is generated by Im as a p-algebra.
Since the subalgebra L ′ is S3-invariant it follows that L ′ is a Lie algebra with triality.

Therefore L ′ gives rise to the Malcev algebra H ′ = L ′ ∩ H . By Lemma 3·4 the elements
a1, . . . , am generate H ′ as a Malcev algebra. Hence, by Proposition 1 the algebra H ′ is
nilpotent and finite dimensional. Let dimFp H ′ = d.

Since the Lie algebra L is generated by a1, . . . , am as a p-algebra it follows that L is
spanned by p powers c[pk ], where c is a commutator in a1, . . . , am of length ≤ 2d, k ≥ 0.
The space H is spanned by pth powers c[pk ], where the commutators c have odd length.
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An arbitrary homogeneous element a ∈ Hi can be represented as [g, σ ]Gi+1, where g ∈
Gi . Hence [g, σ ]pn = 1 implies a[pn ] = 0. Then H is spanned by p-powers c[pk ], where c
is a commutator in a1, . . . , am of odd length ≤ 2d and k < n. Hence, dimFp H < ∞. Since
|H | = |U | we conclude that |U | < ∞. This concludes the proof of Theorem 1.
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