The restricted Burnside problem for Moufang loops

BY ALEXANDER GRISHKOV

Department of Mathematics, University of São Paulo, Caixa Postal 66281, São Paulo-SP, 05311-970, Brazil. and Omsk F.M. Dostoevsky State University, Neftezavodskaya 11, Omsk, Omskaya obl., 644053, Russia. e-mail: grishkov@ime.usp.br

LIUDMILA SABININA[†]

Department of Mathematics, Autonomous University of the State of Morelos, Avenida Universidad 1001, Cuernavaca, 62209 Morelos, Mexico. e-mail: liudmila@uaem.mx

AND EFIM ZELMANOV

Department of Mathematics, University of California, San Diego, 9500 Giman Dr. La Jolla, California 92093-0112, U.S.A. e-mail: ezelmanov@math.ucsd.edu

(Received 20 April 2020; revised 14 June 2021; accepted 7 April 2021)

Dedicated to the memory of Peter Plaumann

Abstract

We prove that for positive integers $m \ge 1$, $n \ge 1$ and a prime number $p \ne 2$, 3 there are finitely many finite *m*-generated Moufang loops of exponent p^n .

2020 Mathematics Subject Classification: 20N05 (Primary); 17D10 (Secondary)

1. Introduction

A loop U is called a *Moufang loop* if it satisfies the following identities:

((zx)y)x = z((xy)x) and x(y(xz)) = (x(yx))z.

In this paper we solve the restricted Burnside problem for Moufang loops of exponent p^n , p > 3.

THEOREM 1. For an arbitrary prime power p^n , p > 3, there exists a function f(m) such that any finite m-generated Moufang loop of exponent p^n has order < f(m).

For groups this assertion was proved by E. Zelmanov ([20, 21]). For Moufang loops of prime exponent it was proved by A. Grishkov [6] (if $p \neq 3$) and G. Nagy [15] (if p = 3).

[†]Corresponding author

© The Author(s), 2021. Published by Cambridge University Press on behalf of Cambridge Philosophical Society.

202 ALEXANDER GRISHKOV, LIUDMILA SABININA AND EFIM ZELMANOV

In [16, 17] the restricted Burnside problem was solved for a subclass of Moufang loops and related Bruck loops.

2. Groups with triality

A group G with automorphisms ρ and σ is called a group with triality if $\rho^3 = \sigma^2 = (\rho\sigma)^2 = 1$ and

$$[x,\sigma][x,\sigma]^{\rho}[x,\sigma]^{\rho^2} = 1$$

for every $x \in G$, where $[x, \sigma] = x^{-1}x^{\sigma}$.

Let *G* be a group with triality. Let $U = \{[x, \sigma] | x \in G\}$. Then the subset *U* endowed with the multiplication

$$a \cdot b = (a^{-1})^{\rho} b (a^{-1})^{\rho^2}; a, b \in U$$

becomes a Moufang loop.

Every Moufang loop U can be obtained in this way from a suitable group with triality, which is finite if U is finite. Moreover, if p is a prime number, then a finite Moufang p-loop can be obtained from a finite p-group with triality ([3,5,10]).

3. Lie and Malcev algebras

Let \mathbb{F}_p be a field of order p, let G be a group. Consider the group algebra $\mathbb{F}_p G$ and its fundamental ideal ω , spanned by all elements 1 - g, $g \in G$. The Zassenhaus filtration is the descending chain of subgroups

$$G=G_1>G_2>\cdots,$$

where $G_i = \{g \in G \mid 1 - g \in \omega^i\}$. Then $[G_i, G_j] \subseteq G_{i+j}$ and each factor G_i/G_{i+1} is an elementary abelian *p*-group. Hence,

$$L = L_p(G) = \sum_{i \ge 1} L_i, \ L_i = G_i / G_{i+1}$$

is a vector space over \mathbb{F}_p . The bracket

$$[x_iG_{i+1}, y_jG_{j+1}] = [x_i, y_j]G_{i+j+1}; \ x_i \in G_i, y_j \in G_j,$$

makes L a Lie algebra. Notice that the bracket [,] on the left-hand side of the last equality is a Lie bracket whereas [,] on the right-hand side denotes the group commutator.

Let x, y be generators of a free associative algebra over \mathbb{F}_p . Then $(x + y)^p = x^p + y^p + \{x, y\}$, where $\{x, y\}$ is a Lie element. Following [12], we call a Lie \mathbb{F}_p -algebra L with an operation $a \to a^{[p]}$, $a \in L$, a Lie p-algebra if

$$(ka)^{[p]} = k^{p}a^{[p]},$$

$$(a+b)^{[p]} = a^{[p]} + b^{[p]} + \{a, b\},$$

$$[a^{[p]}, b] = [\underbrace{a, [a, \dots [a]}_{p}, b] \dots]$$

for arbitrary $k \in \mathbb{F}_p$; $a, b \in L$. The mapping $L_i \to L_{ip}$, $(g_i G_{i+1})^{[p]} = g_i^p G_{ip+1}$, extends to the operation $a \to a^{[p]}, a \in L$, making L a Lie *p*-algebra. For more details about this construction see [2, 11, 22].

We call a Lie algebra (resp. Lie *p*-algebra) *L* with automorphisms ρ , σ a *Lie algebra with triality* if $\rho^3 = \sigma^2 = (\rho\sigma)^2 = 1$ and for an arbitrary element $x \in L$ we have

$$(x^{\sigma} - x) + (x^{\sigma} - x)^{\rho} + (x^{\sigma} - x)^{\rho^{2}} = 0.$$

LEMMA 3.1. Let G be a group with triality and let p be a prime number. Then $L_p(G)$ is a Lie p-algebra with triality.

Proof. The automorphisms ρ , σ of the group G give rise to automorphisms ρ , σ of the Lie algebra $L_p(G)$. For an element $x_i \in G_i$ we have

$$[x_i, \sigma][x_i, \sigma]^{\rho}[x_i, \sigma]^{\rho^2} = 1.$$

It implies that for the element $x = x_i G_{i+1} \in L_i$ we have

$$(x^{\sigma} - x) + (x^{\sigma} - x)^{\rho} + (x^{\sigma} - x)^{\rho^{2}} = 0.$$

This completes the proof of the lemma.

Recall that a (nonassociative) algebra is called a *Malcev algebra* if it satisfies the identities:

(1). xy = -yx;(2). (xy)(xz) = ((xy)z)x + ((yz)x)x + ((zx)x)y,

see [4, 14, 23].

LEMMA 3.2 (see [7]). Let *L* be a Lie algebra with triality over a field of characteristic $\neq 2, 3$. Let $H = \{x \in L | x^{\sigma} = -x\}$. Recall, that for any $x \in H, x + x^{\rho} + x^{\rho^2} = 0$. Then *H* is a Malcev algebra with multiplication

$$a * b = [a + 2a^{\rho}, b] = [a^{\alpha}, b],$$

where $a, b \in H$, $\alpha = 1 + 2\rho$.

LEMMA 3.3. For arbitrary elements $a, b, c \in H$ we have

$$3[[a, b], c] = 2(a * b) * c + (c * b) * a + (a * c) * b.$$

We remark that in a Lie algebra with triality over a field F, for arbitrary elements $a_1, \ldots, a_n \in H$ the subspace

$$\sum_{i=1}^{n} Fa_{i} + \sum_{i=1}^{n} Fa_{i}^{\alpha} = \sum_{i=1}^{n} Fa_{i} + \sum_{i=1}^{n} Fa_{i}^{\rho}$$

is invariant with respect to the group of automorphisms $\langle \sigma, \rho \rangle$.

Proof. Let's prove that for any $x, y, z \in H$:

$$(x * y) * z = 2[[x^{\rho^2}, y^{\rho}], z] + [[x, y], z].$$
(3.1)

204 ALEXANDER GRISHKOV, LIUDMILA SABININA AND EFIM ZELMANOV Using $x + x^{\rho} + x^{\rho^2} = 0$ and $y + y^{\rho} + y^{\rho^2} = 0$, we get

$$v = [x^{\rho}, y] - [x, y^{\rho}] = -[x^{\rho^{2}}, y] - [x, y] + [x, y^{\rho^{2}}] + [x, y] = [x, y^{\rho^{2}}] - [x^{\rho^{2}}, y];$$

$$v^{\rho} = [x^{\rho^{2}}, y^{\rho}] - [x^{\rho}, y^{\rho^{2}}] = -[x^{\rho}, y^{\rho}] - [x, y^{\rho}] + [x^{\rho}, y^{\rho}] + [x^{\rho}, y] = [x^{\rho}, y] - [x, y^{\rho}] = v.$$

Then

$$v^{\sigma} = [x^{\rho\sigma}, y^{\sigma}] - [x^{\sigma}, y^{\rho\sigma}] = [x^{\rho^2}, y] - [x, y^{\rho^2}] = -v,$$

hence $v \in H$ and, by triality, we have $v + v^{\rho} + v^{\rho^2} = 3v = 0$. Since the characteristic of the field is not 3 then v = 0 and we proved that

$$[x^{\rho}, y] = [x, y^{\rho}], \ [x^{\rho^2}, y^{\rho}] = [x^{\rho}, y^{\rho^2}].$$
(3.2)

Finally, we have by $(3 \cdot 2)$

$$(x * y) * z = [x + 2x^{\rho}, y] * z$$

= $[[x + 2x^{\rho}, y], z + 2z^{\rho}]$
= $[[x, y], z] + 2[[x^{\rho}, y], z] + 2[[x + 2x^{\rho}, y], z^{\rho}]$
= $[[x, y], z] + 2[[x^{\rho}, y], z] + 2[[x^{\rho} + 2x^{\rho^{2}}, y^{\rho}], z]$
= $[[x, y], z] + 2[[x^{\rho}, y], z] + 2[[-x + x^{\rho^{2}}, y^{\rho}], z]$
= $2[[x^{\rho^{2}}, y^{\rho}], z] + [[x, y], z].$

Let J = J(x, y, z) = (x * y) * z + (y * z) * x + (z * x) * y, then by (3·1) we get $J = 2([[x^{\rho^2}, y^{\rho}], z] + [[y^{\rho^2}, z^{\rho}], x] + [[z^{\rho^2}, x^{\rho}], y]).$

But $t = [[x^{\rho^2}, y^{\rho}], z] - [[z^{\rho^2}, x^{\rho}], y] = 0$, indeed, we have

$$\begin{split} t - t^{\rho} &= ([[x^{\rho^2}, y^{\rho}], z] - [[z^{\rho^2}, x^{\rho}], y])^{\rho} - [[x^{\rho^2}, y^{\rho}], z] + [[z^{\rho^2}, x^{\rho}], y] \\ &= [[x, y^{\rho^2}], z^{\rho}] - [[z, x^{\rho^2}], y^{\rho}] - [[x^{\rho^2}, y^{\rho}], z] + [[z^{\rho^2}, x^{\rho}], y] \\ &= [[x^{\rho^2}, y], z^{\rho}] - [[z, x^{\rho^2}], y^{\rho}] - [[x^{\rho^2}, y^{\rho}], z] + [[z^{\rho^2}, x^{\rho}], y] \\ &= [[x^{\rho^2}, z^{\rho}], y] + [x^{\rho^2}, [y, z^{\rho}]] - [[z, y^{\rho}], x^{\rho^2}] - [z, [x^{\rho^2}, y^{\rho}]] \\ &- [[x^{\rho^2}, y^{\rho}], z] + [[z^{\rho^2}, x^{\rho}], y] \\ &= [x^{\rho^2}, [y, z^{\rho}]] - [[z, y^{\rho}], x^{\rho^2}] \\ &= 0. \end{split}$$

Hence, $t \in H \cap \{v | v^{\rho} = v\}$. As above we can prove that v = 0, since the characteristic of the field is $\neq 3$.

Then

$$J(x, y, z) = (x * y) * z + (y * z) * x + (z * x) * y = 6[[x^{\rho^2}, y^{\rho}], z].$$
(3.3)

Now we are ready to prove the Lemma. By (3.1) and (3.3) we get

$$2(x * y) * z + (z * y) * x + (x * z) * y$$

= 3(x * y) * z + (z * y) * x + (x * z) * y + (y * x) * z
= 3(x * y) * z + J(x, y, z)
= 6[[x^{ρ²}, y^ρ], z] + 3[[x, y], z] - 6[[x^{ρ²}, y^ρ], z]
= 3[[x, y], z],

which proves the lemma.

LEMMA 3.4. If a Lie algebra L with triality is generated by elements

 $a_1,\ldots,a_m,a_1^{\alpha},\ldots,a_m^{\alpha},$

where $a_1, \ldots, a_m \in H$, then the Malcev algebra H is generated by a_1, \ldots, a_m .

Proof. We have $L = H \dotplus S$, where $S = \{a \in L | a^{\sigma} = a\}$ and $H^{\alpha} \subseteq S$. Hence the subspace H of L is spanned by left-normed commutators $b = [\dots [b_1, b_2], b_3], \dots, b_r]$, where $b_1, \dots, b_r \in \{a_1, \dots, a_m, a_1^{\alpha}, \dots, a_m^{\alpha}\}$ and elements from $\{a_1, \dots, a_m\}$ occur in b an odd number of times.

- (1) Suppose that $b_r = a_i^{\alpha}$, $1 \le i \le m$, $b' = [\dots [b_1, b_2], \dots, b_{r-1}]$. Then by the induction assumption on *r* the element *b'* lies in the Malcev algebra *H'* generated by a_1, \dots, a_m and $b = [b', a_i^{\alpha}] = -a_i * b'$;
- (2) Suppose that $b_r \in \{a_1, \ldots, a_m\}$. If the element b_{r-1} also lies in $\{a_1, \ldots, a_m\}$ and $b'' = [\ldots [b_1, \ldots], b_{r-2}]$ then by the induction assumption $b'' \in H'$. In this case it remains to use Lemma 3.3.

Let $b_{r-1} \in \{a_1^{\alpha}, ..., a_m^{\alpha}\}$. Then

$$b = [[b'', b_{r-1}], b_r] = [b'', [b_{r-1}, b_r]] + [b_{r-1}, [b_r, b'']]$$

By the induction assumption on *r* applied to the elements $a_1, \ldots, a_m, a_{m+1} = [b_{r-1}, b_r] \in$ *H'* the first summand lies in *H'*. The second summand was considered in case (1). This completes the proof of the lemma.

4. Commutator identities in groups

Let *Fr* be the free group on free generators x_i , $i \ge 1$; y, z_1 , z_2 . Recall the Hall commutator identity

$$[xy, z] = [y, [z, x]][x, z][y, z],$$

where $[x, y] = x^{-1}y^{-1}xy$ is the group commutator.

Let N be the normal subgroup of Fr generated by the element y and let N' by the subgroup of N generated by [N, N] and by all elements $g^p, g \in N$. Then N/N' is a vectors space over the finite field \mathbb{F}_p . For an element $g \in Fr$ consider the linear transformation

$$g': N/N' \longrightarrow N/N', hN' \longrightarrow [g, h]N'.$$

206 ALEXANDER GRISHKOV, LIUDMILA SABININA AND EFIM ZELMANOV Then the Hall identity implies

$$(ab)' = a' + b' - b'a',$$

or, equivalently, 1 - (ab)' = (1 - b')(1 - a'), where 1 is the identity map. Hence, $1 - (a^{p^n})' = (1 - a')^{p^n}$. This implies the following well known lemma

LEMMA 4.1.
$$[\underbrace{x_1, [x_1, [\dots, [x_1], y]]}_{p^n}, y] = [x_1^{p^n}, y] \mod N'.$$

COROLLARY. $[[x_1, z_1], [[x_1, z_1], [..., [[x_1, z_1], y]...] = [[x_1, z_1]^{p^n}, y] \mod N'.$

Applying the so called "collection process" of G. Higman [11] (see also [22]) we linearize this equality in x_1 .

LEMMA 4.2. The product

$$\prod_{\pi \in S_{p^n}} [[x_{\pi(1)}, z_1], [[x_{\pi(2)}, z_1], [\dots, [[x_{\pi(p^n)}, z_1], y] \dots]$$

with an arbitrary order of factors lies in the subgroup generated by elements

$$[[x_{i_1}\cdots x_{i_r}, z_1]^{p^n}, y]$$

 $1 \le i_1 < \cdots < i_r \le p^n$, and commutators c in y, $z_1, x_1, \ldots, x_{p^n}$ such that:

- (i) c involves all elements y, x_1, \ldots, x_{p^n} ;
- (ii) some element y or x_j , $1 \le j \le p^n$, occurs in c at least twice.

Consider again a group with triality G and the Lie algebra with triality $L = L_p(G) = \sum_{i=1}^{\infty} L_i$. The subspace $H = \{a \in L \mid a^{\sigma} + a = 0\}$ is graded, i.e. $H = \sum_{i=1}^{\infty} H_i$, $H_i = H \cap L_i$.

LEMMA 4.3. Suppose that for an arbitrary element $g \in G$ we have $[g, \sigma]^{p^n} = 1$. Then

- (i) for an arbitrary homogeneous element $a \in H_i$, $i \ge 1$, we have $ad(a)^{p^n} = 0$,
- (ii) for arbitrary homogeneous elements a_1, \ldots, a_{p^n} from H we have

$$\sum_{\pi\in S_{p^n}}\operatorname{ad}(a_{\pi(1)})\cdots\operatorname{ad}(a_{\pi(p^n)})=0.$$

Proof. For a homogeneous element $a \in H_i$ there exists an element $g \in G_i$ such that $a = [g, \sigma]G_{i+1}$. Then $a^{[p^n]} = [g, \sigma]^{p^n}G_{p^n i+1} = 0$. This implies $ad(a)^{p^n} = ad(a^{[p^n]}) = 0$.

Let a_1, \ldots, a_{p^n} be homogeneous elements from H, $a_i = [g_i, \sigma]G_{n(i)+1}$, $g_i \in G_{n(i)}$, $b = g'G_{j+1}$, $g' \in G_j$. Applying Lemma 4.2 to $x_i = g_i$, $z_1 = \sigma$, y = g' we get the assertion (*ii*).

LEMMA 4.4. For an arbitrary element $a \in H$ we have $[a, a^{\rho}] = 0$.

Proof. We have already mentioned that for an arbitrary element $g \in [G, \sigma]$ we have $[g, g^{\rho}] = 1$, see [8]. Hence, $[g, g^{\rho}] = 0$ in L(G).

Let $a_i \in H_i$, $a_j \in H_j$ be homogeneous elements. We need to show that $[a_i, a_j^{\rho}] + [a_j, a_i^{\rho}] = 0$. There exist elements $g_i \in G_i$, $g_j \in G_j$ such that $a_i = [g_i, \sigma]G_{i+1}$, $a_j = [g_i, \sigma]G_{i+1}$.

 $[g_i, \sigma]G_{i+1}$. In the free group Fr consider the element

$$X = [[x_1, z_1], [x_2, z_1]^{z_2}][[x_2, z_1], [x_1, z_1]^{z_2}].$$

Applying the Hall identity and the Collection Process in the free group Fr we get

$$[[x_1x_2, z_1], [x_1x_2, z_1]^{z_2}] = [[x_1, z_1], [x_1, z_1]^{z_2}][[x_2, z_1], [x_2, z_1]^{z_2}] \cdot X \cdot c_1 \cdots c_r,$$

where c_1, \ldots, c_r are commutators in x_1, x_2, z_1, z_2 ; each of these commutators involved both elements x_1, x_2 and at least one of these elements occurs more than once.

Substitute $x_1 = g_i$, $x_2 = g_j$, $z_1 = \sigma$, $z_2 = \rho$. Then the equality above in the free group Fr implies $X \in G_{i+j+1}$. Hence $[a_i, a_i^{\rho}] + [a_j, a_i^{\rho}] = 0$, which completes the proof of the lemma.

Example 4.1. Let *L* be a nilpotent 3-dimensional Lie algebra with basis *a*, *b*, *c* and multiplication [a, b] = c, [a, c] = [b, c] = 0. The group S_3 acts on *L* via $a^{\sigma} = -a$, $b^{\sigma} = a + b$, $c^{\sigma} = c$, $a^{\rho} = b$, $b^{\rho} = -a - b$, $c^{\rho} = c$. The straightforward computation shows that *L* is a Lie algebra with triality and that $[a, a^{\rho}] = -c \neq 0$.

Lemma 4.5.

(i) For an arbitrary element $a \in H$, arbitrary $k \ge 1$, we have

$$ad(a^{\alpha})^{p^{k}} = ad(a)^{p^{k}} + 2\rho^{-1}ad(a)^{p^{k}}\rho;$$

(ii) for arbitrary elements $a_1, \ldots, a_{p^k} \in H$ we have

$$\sum_{\pi \in S_{p^k}} \operatorname{ad}(a_{\pi(1)}^{\alpha}) \cdots \operatorname{ad}(a_{\pi(p^k)}^{\alpha})$$

=
$$\sum_{\pi \in S_{p^k}} \operatorname{ad}(a_{\pi(1)}) \cdots \operatorname{ad}(a_{\pi(p^k)}) + 2\rho^{-1} \sum_{\pi \in S_{p^k}} \operatorname{ad}(a_{\pi(1)}) \cdots \operatorname{ad}W(a_{\pi(p^k)})\rho.$$

Proof. We only need to prove part (i). Part (ii) is obtained from (i) by linearization. We have $a^{\alpha} = a + 2a^{\rho}$. By Lemma 4.4 [a, a^{ρ}] = 0. Hence,

$$ad(a^{\alpha})^{p^{k}} = ad(a)^{p^{k}} + 2^{p^{k}}ad(a^{\rho})^{p^{k}} = ad(a)^{p^{k}} + 2\rho^{-1}ad(a)^{p^{k}}\rho.$$

This completes the proof of the lemma.

We remark that the proof of linearised Engel identity in [6] contains a gap that is filled in this paper.

For an element $a \in H$ let $ad^*(a)$ denote the operator of multiplication by a in the Malcev algebra, $ad^*(a) : h \to a * h$, $ad^*(a) = ad(a^{\alpha})$.

Lemma 4.6.

- (i) For an arbitrary homogeneous element $a \in H_i$, $i \ge 1$, we have $ad^*(a)^{p^n} = 0$;
- (ii) for arbitrary elements $a_1, \ldots, a_{p^n} \in H$ we have

$$\sum_{\pi \in S_{n^n}} ad^*(a_{\pi(1)}) \cdots ad^*(a_{\pi(p^n)}) = 0.$$

208 ALEXANDER GRISHKOV, LIUDMILA SABININA AND EFIM ZELMANOV

Proof. Assertion (i) follows from Lemma 4.3 and Lemma 4.5. Assertion (ii) follows from Lemma 4.3 and Lemma 4.5.

5. Local nilpotence in Malcev algebras

PROPOSITION 1. Let $M = M_1 + M_2 + \cdots$ be a finitely generated graded Malcev algebra over a field of characteristic $p \neq 2, 3$, such that:

- (i) $ad^*(a)^{p^n} = 0$ for an arbitrary homogeneous element $a \in M$;
- (ii) $\sum_{\pi \in S_{p^n}} \operatorname{ad}^*(a_{\pi(1)}) \cdots \operatorname{ad}^*(a_{\pi(p^n)}) = 0 \text{ for arbitrary } a_1, \ldots, a_{p^n} \in M.$

Then the Malcev algebra M is nilpotent and finite dimensional.

If *I* is an ideal of a Malcev algebra *M* then $\tilde{I} = I^2 + I^2 \cdot M$ is also an ideal of *M*. Consider the descending chain of ideals $M^{[0]} = M$, $M^{[i+1]} = M^{[i]}$. We say that a Malcev algebra *M* is *solvable* if $M^{[n]} = (0)$ for some $n \ge 1$.

LEMMA 5.1 (Filippov, [4]). A finitely generated solvable Malcev algebra over a field of characteristic > 3 is nilpotent if and only if each of its Lie homomorphic images is nilpotent.

Consider the free Malcev algebra M(m) on m free generators x_1, \ldots, x_m . As always $\mathbb{N} = \{1, 2, \ldots\}$ is the set of positive integers. The algebra M(m) is \mathbb{N}^m -graded via

$$\deg(x_i) = (0, 0, \dots, \frac{1}{i}, 0, \dots, 0), \ 1 \le i \le m, \ M(m) = \bigoplus_{\gamma \in \mathbb{N}^m} M(m)_{\gamma}.$$

Let *I* be the ideal of M(m) generated by elements $\underbrace{a(a(\cdots a \ b) \cdots)}_{p^n}$ and elements

$$\sum_{\pi\in S_{p^n}}a_{\pi(1)}(a_{\pi(2)}(\cdots(a_{\pi(p^n)}b)\cdots),$$

where a, a_1, \ldots, a_{p^n} , b run over all homogeneous elements of M(m). Let

$$M(m, p^n) = M(m)/I$$

LEMMA 5.2. The algebra $M(m, p^n)^2$ is finitely generated.

Proof. Kuzmin (see [14]) showed that for an arbitrary Malcev algebra M we have $M^{[3]} \subseteq M^2 \cdot M^2$. By [20] every Lie homomorphic image of $M(m, p^n)$ is a nilpotent algebra. Hence by Lemma 5.1 of Filippov there exists $t \ge 1$ such that

$$M(m, p^n)^t \subseteq M(m, p^n)^{[3]} \subseteq M(m, p^n)^2 M(m, p^n)^2.$$

Since the algebra $M(m, p^n)$ is \mathbb{N}^m -graded it implies that $M(m, p^n)^2$ is generated by products of x_1, \ldots, x_m of length $\ell, 2 \le \ell \le t - 1$. This completes the proof of the lemma.

Recall that an algebra is said to be *locally nilpotent* if every finitely generated subalgebra is nilpotent.

LEMMA 5.3. Let $M = M_1 + M_2 + \cdots$ be a graded Malcev algebra that satisfies assumptions (i) and (ii) of Proposition 1. Let I be an ideal of M such that both I and M/I are locally nilpotent. Then the algebra M is locally nilpotent.

Proof. Let M' be a subalgebra of M generated by m homogeneous elements. Then M' is a homomorphic image of the Malcev algebra $M(m, p^n)$. By Lemma 5.2 the algebra $(M')^2$ is finitely generated.

Let's prove that the algebra M' is solvable. Since the factor M/I has been assumed to be locally nilpotent the algebra (M' + I)/I is nilpotent and finite dimensional. We will prove solvability of M' by induction on $\dim_F(M' + I/I)$. If $\dim_F(M' + I)/I = 0$ then the subalgebra M' is nilpotent since it lies in I. If $\dim_F(M' + I)/I > 0$ then $\dim_F(M')^2 + I/I < \dim_F(M' + I)/I$. Hence the algebra $(M')^2$ is solvable which implies solvability of M'.

Since M' is solvable then by [20] all Lie homomorphic images of the algebra M' are nilpotent. Hence by Lemma 5.1 the algebra M' is nilpotent, which completes the proof of the lemma.

LEMMA 5.4. Let $M = M_1 + M_2 + \cdots$ be a graded Malcev algebra that satisfies assumptions (i) and (ii) of Proposition 1. Then M contains a largest graded locally nilpotent ideal Loc(M) such that the factor algebra M/Loc(M) does not contain nonzero locally nilpotent ideals.

REMARK. For Lie algebras this assertion was proved in [13, 18]

Proof. Let I_1 , I_2 be graded locally nilpotent ideals of M. Since the factor algebra $I_1 + I_2/I_1 \cong I_2/I_1 \cap I_2$ is locally nilpotent it follows from Lemma 5.3 that the algebra $I_1 + I_2$ is locally nilpotent.

Let Loc(M) be the sum of all graded locally nilpotent ideals of M. We showed that the ideal Loc(M) is locally nilpotent. By Lemma 5.3 the factor algebra $\overline{M} = M/Loc(M)$ does not contain nonzero graded locally nilpotent ideals. Let J be a nonzero (not necessarily graded) locally nilpotent ideal of \overline{M} . Let J_{gr} be the ideal of \overline{M} generated by nonzero homogeneous components of elements of J of maximal degree. It is easy to see that the ideal J_{gr} of \overline{M} is locally nilpotent, a contradiction. This completes the proof of the lemma.

Recall that an algebra A is called *prime* if for any nonzero ideals I, J of A we have $IJ \neq (0)$. A graded algebra $A = A_1 + A_2 + \cdots$ is *graded prime* if for any nonzero graded ideals I, J we have $IJ \neq (0)$. Passing to ideals I_{gr} , J_{gr} we see that a graded prime algebra is prime.

The proof of the following lemma follows a well-known scheme (see [21]). We still include it for the sake of completeness.

LEMMA 5.5. Let $M = M_1 + M_2 + \cdots$ be a graded Malcev algebra satisfying assumptions (i) and (ii) of Proposition 1. Then the ideal Loc(M) is an intersection Loc(M) = $\bigcap P$ of graded ideals $P \triangleleft M$ such that the factor algebra M/P is prime.

Proof. Choose a homogeneous element $a \in M \setminus \text{Loc}(M)$. Since the ideal I(a) generated by the element a in M is not locally nilpotent there exists a finitely generated graded subalgebra $B \subseteq I(a)$ that is not nilpotent. Since the algebra B satisfies assumptions (i) and (ii) it follows from Filippov's Lemma 5.1 that the algebra B is not solvable.

210 Alexander Grishkov, Liudmila Sabinina and Efim Zelmanov

Consider the descending chain of subalgebras $B^{(0)} = B$, $B^{(i+1)} = (B^{(i)})^2$. Since the algebra *B* is not solvable we conclude that $B^{(i)} \neq (0)$ for all i > 0.

By Zorn's Lemma there exists a maximal graded ideal P of M with the property that $B^{(i)} \not\subset P$ for all *i*. Indeed, let $P_1 \subseteq P_2 \subseteq \cdots$ be an ascending chain of graded ideals such that B is not solvable modulo each of them. If B is solvable modulo $\bigcup P_i$ then $B^{(s)} \subseteq \bigcup P_i$ $i \ge 1$

for some $s \ge 1$. By Lemma 5.2 the subalgebra $B^{(s)}$ is finitely generated, hence $B^{(s)} \subseteq P_i$ for some *i*, a contradiction.

We claim that the factor algebra M/P is graded prime. Indeed, suppose that I, J are graded ideals of M, $P \subsetneq I$, $P \subsetneq J$, and $IJ \subseteq P$. By maximality of P there exists $i \ge 1$ such that $B^{(i)} \subseteq I$ and $B^{(i)} \subseteq J$. Then $B^{(i+1)} \subseteq P$, a contradiction. This completes the proof of the lemma.

Proof of Proposition 1. Let M be a graded Malcev algebra satisfying assumptions (i) and (ii). If M is not nilpotent then $M \neq Loc(M)$. By Lemma 5.5, M has a nonzero prime homomorphic image. Filippov [4] showed that every prime non-Lie Malcev algebra over a field of characteristic p > 3 is 7-dimensional over its centroid. Now it remains to refer to the result of Stitzinger [19] on Engel's Theorem in the form of Jacobson for Malcev algebras. This completes the proof of Proposition 1.

6. Proof of Theorem 1

Let $U(m, p^n)$ be the free Moufang loop of exponent p^n on m free generators x_1, \ldots, x_m . Let $E = E(U(m, p^n))$ be the minimal group with triality that corresponds to the loop $U(m, p^n)$ (see [9]). The group E is generated by elements $x_1, \ldots, x_m, x_1^{\rho}, \ldots, x_m^{\rho}$. Consider the Zassenhaus descending chain of subgroups $E = E_1 > E_2 > \cdots$. Let

$$G = E / \bigcap_{i \ge 1} E_i, \quad U = [G, \sigma].$$

Theorem 4 from [5] implies that an arbitrary finite *m*-generated Moufang loop of exponent p^n is a homomorphic image of the loop U. We will show that the loop U is finite.

As above, consider the Lie *p*-algebra

$$L = L_p(G) = \bigoplus_{i \ge 1} L_i, \quad L_i = G_i / G_{i+1},$$

over the field \mathbb{F}_p , $|\mathbb{F}_p| = p$, and the Malcev algebra $H = \{a - a^{\sigma} | a \in L\}$. The Malcev algebra H is graded, $H = \bigoplus H_i$, $H_i = H \cap L_i$, and satisfies assumptions (i) and (ii) of Proposition 1.

Consider the Lie subalgebra L' of L generated by the set $I_m = \{a_1, \ldots, a_m, a_1^{\alpha}, \ldots, a_m^{\alpha}\}$ where $a_i = x_i E_2 \in L_1$, $1 \le i \le m$. The whole Lie algebra L is generated by I_m as a p-algebra.

Since the subalgebra L' is S_3 -invariant it follows that L' is a Lie algebra with triality. Therefore L' gives rise to the Malcev algebra $H' = L' \cap H$. By Lemma 3.4 the elements a_1, \ldots, a_m generate H' as a Malcev algebra. Hence, by Proposition 1 the algebra H' is nilpotent and finite dimensional. Let $\dim_{\mathbb{F}_n} H' = d$.

Since the Lie algebra L is generated by a_1, \ldots, a_m as a p-algebra it follows that L is spanned by p powers $c^{[p^k]}$, where c is a commutator in a_1, \ldots, a_m of length $\leq 2d, k \geq 0$. The space H is spanned by pth powers $c^{[p^k]}$, where the commutators c have odd length.

An arbitrary homogeneous element $a \in H_i$ can be represented as $[g, \sigma]G_{i+1}$, where $g \in G_i$. Hence $[g, \sigma]^{p^n} = 1$ implies $a^{[p^n]} = 0$. Then H is spanned by p-powers $c^{[p^k]}$, where c is a commutator in a_1, \ldots, a_m of odd length $\leq 2d$ and k < n. Hence, $\dim_{\mathbb{F}_p} H < \infty$. Since |H| = |U| we conclude that $|U| < \infty$. This concludes the proof of Theorem 1.

Acknowledgements. The first author was supported by CNPq (grant 307824/2016-0), by FAPESP (Brazil) and Russian Foundation for Basic Research (under grant 16-01-00577a). The second author was supported in part by SNI-CONACyT, PRODEP-UAEM "Estancias cortas de investigacion de integrantes de Cuerpos Academicos Consolidados-2020", FAPESP 2019/24418-0 and UC MEXUS grants. The third author gratefully acknowledges the support of the NSF grant DMS 1601920.

The authors are grateful to the referee for helpful remarks.

REFERENCES

- [1] R. H. BRUCK. A survey of binary systems, vol. 20, (Springer, 1971).
- [2] J. D. DIXON, M. P. F. DU SAUTOY, A. MANN, and D. SEGAL. Analytic pro-p groups, second ed., Cambridge Studies in Advanced Math., no. 61, (Cambridge University Press, Cambridge, 1999).
- [3] S. DORO. Simple Moufang loops. Math. Proc. Camb. Phil. Soc. 83 (1978), no. 3, 377–392.
- [4] V. T. FILIPPOV. The Engel algebras of Malcev. Algebra and Logic 15 (1976), no. 1, 89-109.
- [5] G. GLAUBERMAN. On loops of odd order. II. J. Algebra 8 (1968), 393-414.
- [6] A. N. GRISHKOV. The weakened Burnside problem for Moufang loops of prime period. Sibirsk. Mat. Zh. 28 (1987), no. 3, 60–65, 222.
- [7] A. GRISHKOV. Lie algebras with triality. J. Algebra 266 (2003), no. 2, 698–722.
- [8] A. N. GRISHKOV and A. V. ZAVARNITSINE. Lagrange's theorem for Moufang loops. *Math. Proc. Cambridge Philos. Soc.* 139 (2005), no. 1, 41–57.
- [9] A. N. GRISHKOV and A. V. ZAVARNITSINE. Groups with triality. J. Algebra Appl. 5 (2006), no. 4, 441–463.
- [10] A. N. GRISHKOV and A. V. ZAVARNITSINE. Sylow's theorem for Moufang loops. J. Algebra 321 (2009), no. 7, 1813–1825.
- [11] G. HIGMAN. Lie ring methods in the theory of finite nilpotent groups Proc. Internat. Congress Math. 1958. (Cambridge Univ. Press, New York, 1960), pp. 307–312.
- [12] N. JACOBSON. *Lie algebras*. Interscience Tracts in Pure and Applied Math., no. 10, (Interscience Publishers, New York-London, 1962).
- [13] A. I. KOSTRIKIN. On Lie rings satisfying the Engel condition. Dokl. Akad. Nauk SSSR (N.S.) 108 (1956), 580–582.
- [14] E. N. KUZMIN. Structure and representations of finite dimensional Malcev algebras. *Quasigroups Related Systems* 22 (2014), no. 1, 97–132.
- [15] G. P. NAGY. Burnside problems for Moufang and Bol loops of small exponent. Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 687–696.
- [16] P. PLAUMANN and L. SABININA. On nuclearly nilpotent loops of finite exponent. Comm. Algebra 36 (2008), no. 4, 1346–1353.
- [17] P. PLAUMANN and L. SABININA. *Some remarks on the Burnside problem for loops*, Advances in Algebra and Combinatorics, (World Sci. Publ., Hackensack, NJ, 2008), pp. 293–302.
- [18] B. I. PLOTKIN. Algebraic sets of elements in groups and Lie algebras. Uspehi Mat. Nauk 13 (1958), no. 6 (84), 133-138.
- [19] E. L. STITZINGER. On nilpotent and solvable Malcev algebras. Proc. Amer. Math. Soc. 92 (1984), no. 2, 157–163.
- [20] E. I. ZELMANOV. Solution of the restricted Burnside problem for groups of odd exponent. *Izv. Akad. Nauk SSSR Ser. Mat.* 54 (1990), no. 1, 42–59, 221.
- [21] E. I. ZELMANOV. Solution of the restricted Burnside problem for 2-groups. Mat. Sb. 182 (1991), no. 4, 568–592.
- [22] E. ZELMANOV. Nil rings and periodic groups. KMS Lecture Notes in Mathematics. (Korean Mathematical Society, Seoul, 1992).
- [23] K. A. ZHEVLAKOV, A. M. SLINKO, I. P. SHESTAKOV, and A. I. SHIRSHOV. *Rings that are nearly associative*. Pure Appl. Math., vol. 104, (Academic Press, Inc., New York-London, 1982).