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SUMMARY
The ability to reliably estimate free space is an essential requirement for efficient and safe robot
navigation. This paper presents a novel system, built upon a stochastic framework, which estimates
free space quickly from stereo data, using self-supervised learning. The system relies on geometric
data in the close range of the robot to train a second-stage appearance-based classifier for long range
areas in a scene. Experiments are conducted on board an unmanned ground vehicle, and the results
demonstrate the advantages of the proposed technique over other self-supervised systems.
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1. Introduction
Scene understanding and modeling is an essential condition for the success of any unmanned
autonomous robot exploration. In its most basic form, this understanding reduces to delineating
occupied space from free space and is essential for a system to safely navigate its environment.

The problem of estimating free space in structured and static environments is usually solved by
exploiting properties of certain well defined structures, such examples include those of Hedau et al.1

and Labayarde et al.2 While the first exploits the box like geometry of furniture to estimate free space
in indoor scenes from a single camera image, the second uses the planar geometry of a road and
identifiable lane markings to estimate the free space in urban road scenes. In unstructured or unknown
environments such as forest areas, the lack of structure of the scene causes methods relying on static
scene properties to fail.

To account for the ever changing properties of free space in unstructured scenes, it is common
to resort to learning-based systems, which usually require a training phase in which training data
representing free space is used as an input to the learning algorithm. The extraction and classification
of training data are usually performed through direct human supervision; unfortunately, this becomes
impractical and time consuming as the range of properties to be learned becomes larger. Furthermore,
the resulting system cannot extend classification beyond the environments it learned during training,
thereby restricting its autonomy.

Recent free space estimation approaches tackle this problem through self-supervision, where one
classifier directly supervises input to a second classifier. The first classifier uses data it is confident
about to label parts of the environment as free space; this data is then provided as input to the second
classifier that extends the labeling over the whole environment. The proposed system in this paper
lies within this framework, allowing fully autonomous free space estimation without relying on any
rigid assumptions such as a planar ground or bootstrapping methods.

The contribution of this paper is in a novel self-supervised system for the segmentation of outdoor
ground terrain of varying morphology, from man-made flat areas to relatively rugged terrain. The
system is implemented on board an unmanned ground vehicle (UGV), and we present our results of
ground class classification and occupancy grid mapping on three different outdoor environments.
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The remainder of this paper is structured as follows. Section 2 provides a brief summary of previous
systems employing self-supervision. Section 3 explains in detail our proposed free space estimation
system. Section 4 presents the experiments as well as an in-depth analysis of the results achieved by
our proposed system. Section 5 concludes the paper and presents the direction of future work.

2. Related Work
This section presents at first a summary of the state of the art in self-supervised learning algorithms
used for free space estimation, and then provides an overview of the v-disparity algorithm used
to produce the raw data input to our robust and fast free space estimation, hereafter referred to as
RFFSE.

2.1. Self-supervised learning for free space estimation
There are many systems in literature that successfully employed different sensors to estimate free
space. This section provides a review on methods that are used for long-term navigation. Systems that
use high capacity models on a fixed dataset such as3 are not within the scope of comparison of this
manuscript. Sugar et al.4 used a 3-D LIDAR to find the occupancy probability of the environment
through a semi-supervised learning approach. The robot is driven by a human operator through a
safe trajectory, where it collects the remission and spatial features of free space, which are used as
training data for a one-class classifier. Dahlkamp et al.5 used a 2-D LIDAR to extract training data
belonging to free space using the Probabilistic Terrain Analysis (PTA) algorithm proposed in ref. [6].
The training data is then projected to a monocular camera and used to build a color based classifier. The
PTA algorithm requires unknown parameters to be learned offline using human supervision. These
two systems are suitable when the properties of the robot’s operating environment resemble those of
the training environment. The proposed RFFSE method differs from both methods in that it extracts
training pixels belonging to free space independent of any human supervision and it does not have
free parameters that need to be trained prior to deployment in a given environment.

Radars have also been successfully employed for self-supervision in free space estimation. Milella
et al.7 used the echo in a radar image to reliably extract training patches from free space, and then
projected these patches to a monocular camera coordinate frame in order to train a visual classifier.
The classification was done through Mahalanobis distance thresholding. The optimal threshold is
determined by constructing ROC curves on a training dataset. In their work, the radar produces
training patches at a specified distance of 11.4 meters in front of the robot. Unfortunately, in some
scenarios distance patches might not possess the same features as closer ones, thereby causing the
latter to be classified as obstacles. The proposed RFFSE method mitigates this problem by extracting
training patches from all over the field of view of the camera. Stereo cameras are also used for self-
supervised free space estimation and provide a dense 3-D representation of the scene with additional
color information. Milella et al.8 utilize a stereo camera to extract geometric features that are used to
classify voxels in a 3-D point cloud belonging to free space through the same classifier used in ref. [7].
Reina et al.9 also used a stereo sensor to classify free space via a mixture of Gaussians model with
automatic estimation of the number of components. The main weakness in these two systems is that in
order to create the ground model, both systems need to be initialized in an area free of obstacles. The
requirement for initialization is problematic when the systems fails and the human operator cannot
intervene to reinitialize them. It is worth noting that RFFSE does not need any special initialization
and in fact can be launched inside a heavily cluttered scene.

Howard et al.10 introduced two methods for learning to ascribe geometric properties (e.g.,
occupancy) in distant areas—where stereo information is unreliable—from experience gained in a
local area, where geometric and proprioceptive properties are clearly perceived. The system required
offline training of a support vector machine (SVM) with a large number of hand-labeled traversable
and non-traversable examples. RFFSE does not require offline training and is self-supervised.

Kim et al.11 used the assumption that free space in stereo data should have a low derivative in
stereo disparity space to provide training labels for a supervised classifier that describes class data
in a codebook method. The requirement of a threshold to determine the definition of low derivative
makes the training data extraction algorithm unreliable. RFFSE overcomes this problem by only
requiring a single free parameter that determines the reliability versus the number of training points
extracted.
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Vernaza et al.12 used a stereo sensor in a Markov random field framework to classify pixels in the
image belonging to the ground plane. The largest planar region is assumed to be the ground plane,
and pixels belonging to it are taken as ground pixels. Hadsell et al.13 used the Hough transform up to
three times to fit planes to stereo point clouds, while bounding the maximum slope a UGV can drive
on, to remove points belonging to the ground plane. Moghadam et al.14 used Ransac plane fitting to
determine points belonging to the largest plane in 3-D stereo generated point clouds, which is assumed
to be the ground plane. These points are then used to supervise a supervised classifier to classify far
away pixels in stereo images. These training data extraction method fail in scenarios where the ground
plane is not the largest plane in the image. In contrast, RFFSE utilizes the properties of the projection
of the ground on the v-disparity image, and is able to extract training pixels even if the ground class
is not planar.

Kostavelis et al.15 proposed a system for traversability estimation based on machine learning. The
system uses stereo vision to extract features that train an SVM for classifying traversable and not
traversable terrain. The system requires hand-labelling of training data and does not generalize very
well to images of scenes that are not included in the training set. Since RFFSE is self-supervised and
does not rely on any prior in classifying ground regions, it works well in transitioning between scenes
with different ground flatness, without the need for training on a dataset that is comprehensive of the
various ground morphologies a robot might encounter outdoors.

Reina et al.16 fused LIDAR and stereo for the assessment of traversable terrain in off-road scenes;
their system used two self-learning classifiers, one based on LIDAR and the second on stereo. The
disadvantages in their system include the requirement for offline determination of weights using
ground truth data, and the requirement for the scene to be free of obstacles during initialization.
RFFSE is simpler since it does not require any calibration between LIDAR and stereo camera, and it
also does not require any special conditions during initialization.

Proprioceptive sensors such as vibration sensors have also been used to provide labels for free space
classification tasks.17–19 These sensors generate vibration signatures as features and require the robot
to have previously driven over a patch to determine if it belongs to the ground class. The vibration-
based classifiers usually require manual tuning.18 RFFSE requires minimal human supervision and
does not require manual tuning.

It is noticed that the main weakness in the state of the art lies mainly in the training data extraction
methods, where they all impose strong assumptions on the geometry of the ground plane. By using the
projection of the ground class onto the v-disparity image coupled with a Bayesian linear regression
framework, RFFSE is able to reliably extract training data from the entire image in a robust and quick
manner.

2.2. The v-disparity algorithm
The v-disparity algorithm was first proposed by Labayrade et al.2 for road plane estimation in urban
scenes. It transforms a disparity image to a v-disparity image by forming a 256-bin histogram of
disparity values for each row of the disparity image and concatenating these histograms in the same
order as the rows they were generated from. Figure 1 provides an example of a v-disparity image
with its corresponding disparity image and Algorithm 1 lists the construction procedure. For more
information on the v-disparity image, we refer the reader to the work of Hu and Uchimura.20

Algorithm 1: v-Disparity Image Construction
Input: m × n Disparity Image, D
Output: m × 256 v-Disparity Image, V D

1 Initialize V D as an empty array ;
2 begin
3 for every row i in D do
4 Compute the 256 bin histogram h of disparity values in row i ;
5 Insert h at the bottom of V D ;
6 end
7 end
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Fig. 1. Left: disparity image. The bright color signifies larger disparity, and hence smaller depth. Right: v-disparity
image. The projection of the ground class in the scene is a slanted line, which is visible in the v-disparity image
(the image on the right has been manipulated to add contrast and better visualize the vertical lines).

Fig. 2. (a) Original v-disparity image with visible vertical lines representing obstacles. (b) Application of edge
detection. (c) Application of a majority black morphological operation. (d) Application of the randomized binary
area opening morphological operation. The final filtered version of the v-disparity image after the randomized
binary area opening procedure.

3. Proposed RFFSE System
In this section, the details of the proposed RFFSE system are explained, staring from the v-disparity
image filtering, to the online learning of the occupancy probabilities, to the second-stage classification.

3.1. v-disparity image filtering
It has been previously proven in ref. [2] that under near-zero roll angle of a camera, horizontal and
oblique planes project as slanted lines onto the v-disparity image. This can be seen in Fig. 1, where
the ground’s projection appears as a prominent slanted line in the v-disparity image. Direct detection
of the ground correlation line(1) in the raw v-disparity image is unreliable, especially in cluttered and
unstructured scenes.21–24 We instead use the filtering algorithm proposed in our previous work21 to
get a robust estimate of the ground correlation line (Figure 2 briefly explains the process).

(1)The slanted line projection of the ground class is termed the ground correlation line.2
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3.2. Online learning of the occupancy probability density function
In scenarios where the ground class is made up of a single plane, the filtered v-disparity image
contains a continuous, and well defined ground correlation line, which can be reliably modeled as a
first degree polynomial. However, in unstructured or cluttered scenes, the ground correlation line might
have a variable width, might contain discontinuities, or might not be a first degree polynomial. To
accommodate these cases, Bayesian linear regression is performed by using the v, d pairs in V D f iltered

as input, to provide as output a learned predictive distribution P(d/v) that describes the probability
of a measurement variable d to belong to the ground correlation line (and hence to the ground class),
given its row coordinate v. A further comment is warranted here: under extreme camera-roll angles,
the projection of a horizontal plane appears not as a line but as a belt centered around that line; the
higher the roll of the camera, the larger the width of the belt. We deal with this problem by modeling
the projection in the v-disparity space not as a line, but as a second order polynomial, as will be
explained below.

3.2.1. Learning the predictive distribution. The non-planar nature of the ground plane in off-road
scenarios leads to a distorted ground line projection in the v-disparity image that might not be straight.
To accommodate this case, the disparity d is modeled as a second degree polynomial function of v

which has the form

d = w0 + w1v + w2v
2 + δ = wTφ∗(v) + δ, (1)

where φ∗(v) are the set of second degree polynomial basis function, [φ0(v) φ1(v) φ2(v)]T =
[v0 v1 v2]Tand w the parameter vector w = [w0 w1 w2]T. δ is a zero mean Gaussian random variable
with precision β. The conditional distribution of d takes the following form:

P(d|v, w, β ) = N (d; wTφ∗(v), β−1). (2)

The vectors v = [v1, . . . , vN ]T and d = [d1, . . . , dN ]T are now defined as the training data pairs,
where vn,dn are coordinate pairs extracted from the filtered v-disparity image. Target training variables
[d1, . . . , dN ] are assumed to be Independent and Identically Distributed (IID) variables drawn from
the conditional distribution in (2) and as such, their likelihood function has the expression

P(d|v, w, β ) =
N∏

n=1

N (dn; wTφ∗(vn), β−1). (3)

3.2.2. Bayesian linear regression. At first, it should be noted that throughout this section, the variables
v and v will be added to the conditional variables through the independence assumption. To begin with
the Bayesian treatment of linear regression, a prior distribution is defined over the model parameter
vector w as

P(w|α) = P(w|v, v, α, β ) = N (0, α−1I ). (4)

The prior is considered to be a zero mean and isotropic Gaussian with a single precision parameter α.
This choice of prior reduces the number of its unknown parameters to only α and results in a Gaussian
posterior distribution when multiplied with the likelihood function in (3). Having set the prior, the
posterior distribution of the parameter vector w given the training data can be written using Bayes
rule as

P(w|v, v, d, α, β ) = �P(d|v, v, α, β, w)P(w|v, v, α, β ), (5)

where � is a normalization coefficient and P(d|v, v, α, β, w) is the likelihood function in (3). The
posterior distribution is computed by completing the squares in the exponential and then making use
of the standard form of the normalization coefficient of the Gaussian, and has the form

P(w|v, v, d, α, β ) = N (w; μw, �w ), (6)
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where μw is the mean

μw = β�w�Td, (7)

and �w is the 3 × 3 covariance matrix

�−1
w = αI + β�T�. (8)

Here, I is a 3 × 3 identity matrix and � is the design matrix, written in terms of the input vector v as

� =

⎡
⎢⎣

1 v1 v2
1

.

.

1 vn v2
n

⎤
⎥⎦ . (9)

The predictive distribution is expanded according to the theorem of total probability as

P(d|v, v, d, α, β ) =
∫

w
P(d|v, v, d, α, β, w)P(w|v, v, d, α, β )dw. (10)

It is noted that the predictive distribution is the result of a convolution of two Gaussian distributions
in (2) and (6). Accordingly, the predictive distribution has the following form:

P(d|v, v, d, α, β ) = N (d; μT
wφ∗(v), �p), (11)

where the variance �p can be written as

�p = 1

β
+ φ∗(v)T�wφ∗(v). (12)

Although the unknown parameter w has been marginalized, the previous equations require precise
knowledge of the precision parameters α and β, which might not be available a priori.

As a final thought, the importance of all the assumptions undertaken in this section lies in obtaining a
closed-form equation for the mean and variance of the predictive distribution, which can be efficiently
computed in with minimal computation time.

3.2.3. Learning the precision parameters. In a fully Bayesian treatment, the predictive distribution
would be expanded using the theorem of total probability over all three unknown parameters α, β,
and w. This expansion would have the form

P(d|v, v, d) =
∫

α

∫
β

∫
w

P(d|v, v, d, α, β, w)P(w|v, v,d, α, β )P(α, β|v, v, d)dwdβdα,

which has no closed-form solution due to the lack of knowledge of the conditional joint PDF
P(α, β|v, v, d). An approximation of the fully Bayesian treatment of this hierarchical model is
computed by setting the hyper-parameters at the highest level of the hierarchy (α and β) to their
most likely values instead of integrating them out.25

We start by assuming that the conditional joint PDF is sharply peaked around the values of the true
hyper-parameters α̂ and β̂. The predictive distribution in this case can be estimated as

P(d|v, v, d) � P(d|v, v, d, α̂, β̂ ) =
∫

w
P(d|v, v, d, α̂, β̂, w)P(w|v, v, d, α̂, β̂ )dw.

To estimate the two hyper-parameters, the conditional joint PDF is expanded using Bayes theorem as

P(α, β|v, v, d) ∝ P(d|v, v, α, β )P(α, β|v, v). (13)
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Due to the lack of knowledge of the hyper-parameters
α and β their joint prior P(α, β|v, v) is assumed to be uniform, and thus is relatively flat.
Because of the previous assumption, maximizing the conditional joint PDF P(α, β|v, v, d) is
equivalent to maximizing P(d|v, v, α, β ) and as such, the true hyper-parameters can be estimated as

α̂ = argmax
α

P(d|v, v, α, β ),

β̂ = argmax
β

P(d|v, v, α, β ).
(14)

The estimates of the hyper-parameters require the computation of the likelihood function
P(d|v, v, α, β ), which has the form

P(d|v, v, α, β ) =
∫

w

P(d|v, v, α, β, w)P(w|v, v, α, β )dw. (15)

Deriving the convolution, the evidence function P(d|v, v, α, β ) has the form

P(d|v, v, α, β ) =
(

β

2π

) N
2

(α) |�−1
w |− 1

2 exp

[−β

2
||d − �μw||2 + α

2
μwμT

w

]
.

Maximizing the evidence function is the same as maximizing its natural logarithm and as such, the
hyper-parameters can be computed by setting the partial derivative of the logarithm of the evidence
function with respect to the respective hyper-parameter to zero. The natural logarithm of the evidence
function can be written as

ln P(d|v, v, α, β ) = ln α + N

2
ln β − ln |�−1

w |
2

− N

2
ln(2π ) − β

2
||d − �μw||2 − α

2
μwμT

w.

The derivative equation with respect to α is

∂ ln P(d|v, v, α, β )

∂α
= 1

α
− 1

2

[
μwμT

w + ∂ ln |�−1
w |

∂α

]
. (16)

The determinant of the matrix �−1
w can be rewritten in terms of the eigenvalues of the matrix β�T �

as

|�−1
w | =

∏
i

(λi + α).

Computing the partial derivative, the following equation is obtained:

∂ ln |�−1
w |

∂α
=

∑
i

1

λi + α
. (17)

Setting the partial derivative in (16) to zero, the hyper-parameter α will have the form

α = 1

μwμT
w

∑
i

λi

λi + α
. (18)

Similar analysis is done with respect to the hyper-parameter β to obtain

1

β
= 1

N − ∑
i

λi
λi+α

N∑
n=1

[dn − μT
wφ∗(vn)]2. (19)
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Fig. 3. The original v-disparity image (black and white) and the resulting probability density function in Eq.
(20) estimated from Bayesian linear regression (colored). The estimated PDF can be seen to closely resemble
the ground correlation line, with an additional probabilistic interpretation. The color of each pixel determines
the probability of a point in the v-disparity image to belong to the ground class.

It is noted that both solutions are implicit solutions of the parameters themselves. To solve for the
hyper-parameters, an initial value must be chosen to calculate μw and the sum

∑
i

λi
λi+α

and then
compute α and β using (18) and (19), respectively, until convergence, which is determined when the
difference between the old and new values of the hyper-parameters is less than a specified tolerance.
The tolerance is set to a very low value of 10−10 for both hyper-parameters. Furthermore, the initial
value of the hyper-parameter does not affect the end result after convergence.

3.2.4. Using the learned PDF for training pixels extraction. After learning the hyper-parameters
α̂ and β̂ from (18) and (19), respectively, �p can be computed from (12) resulting in a tractable form
of the predictive distribution written as

P(d|v, v, d, α̂, β̂ ) = N (d; μT
wφ∗(v), �p). (20)

A visual representation of the predictive distribution can be seen in Fig. 3. RFFSE uses this predictive
distribution (20) to extract training pixels by labeling pixels with a disparity value d belonging to a
certain confidence interval as training pixels. This leads to RFFSE having only a single free parameter,
the confidence interval, whose effect on the extracted training data will be shown in the following
sections.

3.3. The second-stage classifiers
The Bayesian linear regression framework above provides incomplete pixel labels belonging
to the positive ground class that contain no negative obstacle samples. It separates N image
pixels into two subsets: T P denoting pixels with a label lground = 1, and UP denoting unlabeled
pixels with l = ∅. Furthermore, each pixel in both subsets is assigned an M dimensional feature
vector f̄ = ( f1, . . . , fm)T. The second-stage classification task is thus defined as providing a label
l ∈ {ground, obstacle} = {1, 0} for each pixel in UP. In what follows, two second-stage classification
schemes are proposed to perform this task: the positive naive Bayes (PNB) classifier, and the ν-support
vector classifier.
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3.3.1. The positive naive Bayes classifier. The PNB classifier as defined by Denis et al.26 estimates
the probability of a pixel to belong to a class by counting the frequencies of its observed features. It
then provides unlabeled pixels a label l according to

l = argmax
l∈{0,1}

P(l| f1, f2, . . . , fm), (21)

= argmax
l∈{0,1}

ηP(l )P( f1, f2, . . . , fm|l ), (22)

where η is a normalization coefficient, and where (22) is derived from (21) through the Bayes rule.
Assuming conditional independence of each component of the feature vector, (22) reduces to

l = argmax
l∈{0,1}

ηP(l )
M∏

i=1

P( fi/l ). (23)

For now, it is assumed that each component of the feature vector lies in a strictly positive discrete
feature space such that fi ∈ [0, 2, . . . , K]∀i ∈ [1, M], creating a vocabulary V of discrete features.
Furthermore, the features are assumed to have multinomial distribution given the class label such
that P( fi/l ) ∼ multinomial. The functions C( fi, S) and C(S) are counting functions that return the
number of occurrences of feature fi in the set S and the number of elements of set S, respectively.
Mathematically, these functions are defined as

C( fi, S) =
N∑

j=1

1{ fi = f j ∧ l = lS}, (24)

C(S) =
N∑

j=1

1{l = lS}, (25)

where lS is the label associated with a set S and1 is the indicator function. The PNB classifier estimates
the positive class conditional probability for each component of the feature vector as

P( fi|l = 1) = ζp + C( fi, T P)

ζpCard (V ) + C(T P)
, (26)

where Card (V ) is the cardinality of the vocabulary V , and ζp is a smoothing parameter.
Estimating the negative class conditional probability is a non-trivial problem due to the absence

of negative labeled training data. The derivation is formulated using the law of total probability such
that

P( fi) = P( fi|l = 0)P(l = 0) + P( fi|l = 1)P(l = 1). (27)

The negative probability is then written as

P( fi|l = 0) = P( fi) − P( fi|l = 1)P(l = 1)

P(l = 0)
. (28)

Furthermore, P( fi) is estimated from the unlabeled data using the counting functions defined above
as

P( fi) = C( fi,UD)

C(UD)
. (29)
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Finally, the negative class conditional probability estimate can be written as

P( fi/l = 0) = 1 + max(0,C( fi,UD) − P(l = 1)P( fi/l = 1)C(UD))

Card (V ) + (1 − P(l = 1))C(UD)
, (30)

where the max function was used to insure a non-negative probability,27 and where Laplace smoothing
was applied. It has to be noted that the estimation of the prior probability P(l = 1) directly from the
available data is not possible, and should be provided as an input. Finally, (26) and (30) are substituted
in (23), and labels can be generated for each pixel in the scene.

3.3.2. The ν-support vector classifier. The ν-SVC was proposed by Scholkopf et al.28 in 1999
and became a popular kernel-based learning algorithm for one class classification problems. The
ν-SVC learns a hyperplane in a higher dimensional feature space, such that the set T P is separated
from the origin with maximum margin. The hyperplane is found by solving the following quadratic
program:

min
α

1

2

∑
jk

α jαkk( f̄ j, f̄k ) subject to :

0 ≤ α j ≤ 1

C(T P)
,

∑
j

α j = ν,

(31)

where f̄1, . . . , f̄C(T P) are feature vectors of pixels belonging to the set T P , and k( f̄ j, f̄k ) is some
kernel function that maps the data to a higher dimensional feature space. The parameter ν ∈ [0, 1] is
related to the number of pixels to be considered as support vectors. After constructing the hyperplane,
pixels in UD are given a label l such that

l = max(0, sgn(
∑

j

α jk( f̄ j, f̄ ) − ρ)), (32)

ρ =
∑

k

αkk( f̄ j, f̄k ), for any 0 ≤ αk ≤ 1

C(T P)
. (33)

Unlike the PNB classifier the feature space does not need to be discrete. The kernel used in this
implementation is the radial basis function (RBF) kernel with equation

k( f̄ j, f̄k ) = exp(
−( f̄ j − f̄k )2

2s2
), (34)

where s is the scale parameter. We refer the reader to the work of ref. [28] for a detailed analysis of
the effect of the ν and s on the classification results of the ν-SVC.

3.3.3. Feature selection. The selection of discriminant features to be used by the second-stage
classifiers is essential for good classification results. However, if one strives for real time performance,
the computational requirement of extracting features should also be taken into consideration. In these
notes, a subset of appearance- and geometric-based features are chosen to provide a decent compromise
between discriminating power and computational time.

The system proposed in this paper required to collect training data at each frame and in a quick
manner; accordingly, the sought after features need not be temporally invariant, but instead, we opt to
use features that are computationally efficient. We select the raw data features available directly from
stereo image data, including the mean height, and the mean of R, G, and B channels. Furthermore, the
height variance and the maximum absolute difference in height were added, as they describe geometric
textural roughness, and also require little computational time. The PNB classifier requires the feature
space to be discrete. Color features chosen above are already discrete, taking values between 0 and
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Fig. 4. Deployed sensors and robot. The Zed Stereo Camera is rigidly mounted on top of the Clearpath Husky
UGV.

255. On the other hand, the chosen geometric features take continuous values and as such require
discretization before being learned by the PNB classifier. The discretization is performed according
to the following equation:

fnew = 255 × fold − min( fold )

max( fold ) − min( fold )
, (35)

producing feature values between 0 and 255 for all components of the feature vector. As a final note,
the discretization method is a linear transformation, and as such the characteristics of the feature
distributions are preserved.

4. Experiments and Results
This section presents the experimental setup used for data acquisition and describes the datasets
acquired. It then provides an analysis of the robustness of the representation of feature distributions
of the ground class by the extracted training data. Finally, the classification and environment mapping
results of the proposed second-stage classifiers using RFFSE for training data extraction are presented
and analyzed.

4.1. Hardware
As shown in Fig. 4, Stereo Lab’s Zed Camera29 is used to aquire 720×1280 RGB images as well
as 3-D point clouds at 10 frames per second. The camera is mounted on the clearpath Husky UGV
that inputs odometry and IMU information to an extended Kalman filter, which outputs the pose
relative to the world coordinate frame. Training data extraction, feature vector extraction, free space
classification, and occupancy grid mapping were implemented using Matlab and ran on an Intel
Core R© i7™ processor at 3 GHz with 32 GB RAM.

4.2. Datasets
To be able to perform the necessary experiments, three datasets30 were created with terrains ranging
from planar to non-planar ground. Each frame in the dataset is comprised of a stereo pair of 720 × 1280
colored images, their corresponding disparity image, and pixel X , Y , and Z coordinates with respect to
the camera’s coordinate frame. Furthermore, the frame contains odometry information representing
the frame’s position and orientation with respect to a world coordinate frame. The three datasets
include the following:
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Fig. 5. The effect of varying the confidence interval on the amount and quality of training pixels extracted in the
image.

Difficult dataset: A total of 88 images were taken with a stereo camera mounted on a UGV driven on
non-planar off-road terrain.

Moderate dataset: A total of 120 images were taken with a stereo camera mounted on a UGV driven
on a moderately non-planar park-like terrain.

Easy dataset: A total of 145 images were taken with a stereo camera mounted on a UGV driven on a
planar man-made terrain.

It has to be noted that pixels lacking geometric features due to rectification, occlusion, or being
located beyond the stereo camera’s maximum range are not considered in this evaluation. Finally,
pixel level ground truth labels are generated manually for every frame of the three datasets.

4.3. The effect of the confidence interval on extracted training pixels
The predictive distribution (20) is used to extract training pixels by labeling pixels with a disparity
value d belonging to a given confidence interval as training pixels. Figure 5 shows the effect of varying
the confidence interval on the quality and quantity of training pixels. The first row shows training
pixels extracted at 90% confidence interval. The confidence interval is decreased by 20% for each
subsequent lower row, reaching 10% confidence interval for the bottom row. It can be noted that as
the width of the confidence interval decreases, the number of correctly labeled training pixels (green)
decreases, but at the same time the number of outliers (red) also decreases. In other words, fewer but
more accurate training pixels are obtained by tightening the confidence interval.
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Fig. 6. Left: the fraction outliers computed by running the proposed algorithm over the three datasets. Right: An
example of the presence of outliers in the extracted training pixels. Correctly labeled training pixels are shown
in green, whereas outliers are shown in red.

4.4. Assessing the quality of extracted training pixels
Although it is established that the proposed algorithm can indeed provide training pixels, the quality
of the extracted training pixels remains an unanswered question. To begin with the analysis, goodness
criteria need to be specified. The extracted training data should contain a minimal number of outliers.
Furthermore, it should be a representative sample of the class from which it has been extracted. It has
to be noted that the confidence interval is set to 30% for all the tests performed. This value is seen
to provide a suitable compromise between the number of training data and the outlier fraction for the
three datasets the system was tested on.

The first goodness criterion to be analyzed is the outlier fraction, that is, the fraction of extracted
pixels that are labeled as training pixels from the ground class, but do not actually belong to the
ground class. The left sub-figure of Fig. 6 provides a plot of the fraction of outliers in the extracted
training data per frame of the three datasets. It can be seen that the training data extraction algorithm
becomes more prone to erroneously labeled data as the environment becomes harsher. On the other
hand, the mean outlier fraction produced by the algorithm is 0.0268, 0.0452 and 0.1098 for the easy,
moderate and difficult datasets, respectively, which is tolerable and can be handled through second-
stage classification. The outlier fraction is highly correlated with the quality of the disparity images,
and tends to increase as the quality of the disparity images deteriorates. This is a natural outcome
of the dependence of RFFSE on the disparity space for training data extraction and it is anticipated
that RFFSE should produce a very low outlier fraction as disparity generating algorithms become
better.

To assess how well the extracted training data resembles the true class distribution, a comparison
of the sufficient statistics of the true distribution and the estimated distribution of the six features
in the selected feature space is performed. The features are assumed to be normally distributed and
their mean and standard deviation are compared. Table I presents a comparison between the sufficient
statistics of the true versus estimated distributions taken from a randomly selected frame from each
dataset. It can be seen that the estimated distribution’s mean and variance closely resembles that of
the true distribution with minimal error. This implies that the proposed algorithm accurately models
the true feature distribution for the ground class.

To further validate the goodness of the estimation, the true distribution is visualized by plotting
the normalized histogram of all the pixels that belong to ground class, found from hand-labeled pixel
level ground truth. The estimated distributions’ plots is superposed over that of true distributions’
plots in Figs. 7–9 for a random frame from each of the three datasets. In all three cases, the estimated
probability distribution closely resembles the true distribution. The reported results validate the
claim that RFFSE chooses a representative sample of the ground class as training data with a minimal
number of outliers. The remainder of this section is focused on reporting the results of using the
extracted training data to supervise classifiers for free space classification tasks and for environment
mapping.
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Table I. A comparison of the true ground class distribution’s vs. the estimate ground class distribution
sufficient statistics for a random frame from each of the three datasets.

Easy dataset

Statistic Red Blue Green Mean Y Y var. Y diff.

True mean 151.1 151.4 149.7 24.7 5.1 12.5
Estimated mean 153.7 153.8 152.3 24.7 5.2 11.8
True variance 323 323 291 5 115 1867
Estimated variance 290 311 330 6 113 1804

Moderate dataset

Statistic Red Blue Green Mean Y Y var. Y diff.

True mean 112.9 130.3 100.9 15.4 2.2 13.2
Estimated mean 114.6 132.2 102.5 15.2 1.9 12
True variance 682 431 662 4 25 1842
Estimated variance 680 431 639 6 23 1376

Difficult dataset

Statistic Red Blue Green Mean Y Y var. Y diff.

True mean 71.5 90 69.7 5.6 1.6 14.4
Estimated mean 66.3 78.4 64 5 1.8 14.9
True variance 844 1531 805 2 12 1616
Estimated variance 718 981 637 2 13 1714

4.5. Free space classification and mapping results
All experiments were done with the feature vector and classifier parameters held constant across all
three datasets. Furthermore, the confidence interval of the training data extraction algorithm is set to
30%.

4.5.1. Free space classification. The labels obtained from the two classifiers are compared to ground
truth labels in order to compute three performance criteria, which are the recall, precision, and
specificity. Examples of classification labels are presented in Fig. 12 for the PNB classifier and
in Fig. 13 for the ν-SVC classifier. It has to be noted that the PNB classifier classifies each
pixel in the 720 × 1280 images, whereas the ν-SVC classifies 5 × 32 image blocks. In the easy
dataset, the PNB classifier performs better than the ν-SVC classifier in terms of recall, achieving
a mean recall value of 0.9131, while the mean precision is 0.9823 and mean specificity is 0.9936
(see Fig. 10).

The ν-SVC classifier on the other hand achieved a mean recall of 0.8853, a mean precision of
0.9713, and a mean specificity of 0.9897. The better performance of the PNB classifier in terms of
recall is attributed to the linear separability of individual features in the proposed feature vector and
to the resemblance of their probability densities to that of the normal distribution as can be seen in
Fig. 7.

When applied on the moderate dataset on the other hand, the ν-SVC classifier seems to perform
better with a mean recall value of 0.8549 versus a mean recall of 0.8326 for the PNB classifier.
The ν-SVC’s precision is 0.9416, about 1% lower than the PNB classifier, while the specificity is
approximately the same. This is expected as precision and recall are antithetic, as one increases, the
other decreases. The better performance of the ν-SVC is primarily due to the complex nature of the
scene. The ground class color distribution as it can be seen in Fig. 8 is multimodal and not linearly
separable, and thus it is expected that the ν-SVC classifier performs better than the PNB classifier in
such scenarios.

Finally, the performance of the ν-SVC classifier on the difficult dataset is also better than the
PNB classifier, achieving a mean recall of 0.8795 with a mean precision of 0.8561 and specificity of
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Fig. 7. Easy dataset. The true probability distributions of the features for the positive (blue) and negative (red)
class in a random frame from the easy dataset. The estimated probability distribution for the positive class (green)
is found using training pixels extracted via our proposed algorithm. The features are all linearly separable and
unimodal, thus approximated well by a normal distribution.

0.9479. The PNB classifier on the other hand achieved a mean recall of 0.8590, with a mean precision
of 0.8872, and mean specificity of 0.9611. The reason behind the better performance is that five out of
six features in the difficult dataset are seen not to be linearly separable in Fig. 9. As a final conclusion,
both classifiers provide suitable free space classification results, with the ν-SVC performing slightly
better than the PNB classifier on difficult terrain.

4.5.2. Free space mapping. To be able to use the output of the proposed classifiers for occupancy grid
mapping, alterations must be done to transform the binary output to usable probabilities. The world
occupancy grid is initialized as a 1000 × 1000 cell grid with each cell representing a 10 cm × 10 cm
world patch.
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Fig. 8. Moderate dataset. The true probability distributions of the features for the positive (blue) and negative
(red) class in a random frame from the moderate dataset. The estimated probability distribution for the positive
class (green) is found using training pixels extracted via RFSFE. The color features’ distributions are seen to
exhibit two modes due to the fact that the ground class is characterized by two different colors in this dataset.
Furthermore, the geometric features are seen to still be linearly separable and unimodal.

Initially, the occupancy probability of each cell is set to 0.5. The occupancy probability is then
updated as the UGV explores the environment as follows:

Ot = Ot−1 + Osensor, (36)

where Ot−1 represents the previous occupancy probability value in the cell, and Osensor represents
the current probability update. Obtaining Osensor is specific to each classifier. For the PNB classifier,
Osensor is defined as

Osensor = log(ηP(l = 1)
M∏

i=1

P( fi/l = 1)) − log(ηP(l = 0)
M∏

i=1

P( fi/l = 0)), (37)
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Fig. 9. Difficult dataset. The true probability distributions of the features for the positive (blue) and negative
(red) class in a random frame from the difficult dataset. The estimated probability for the positive class (green)
is found using training pixels extracted via RFSFE. The color features’ positive and negative class distributions
seem to be superposed and highly inseparable. Furthermore, positive and negative class distributions of the
height variance and the maximum absolute difference in height are also highly inseparable.

where η is a normalization constant, fi are features in the feature vector, and l is the label ∈ [0, 1].
This equation suggests that the occupancy probability for each voxel in the local occupancy grid is
computed as the difference between the two class posterior probabilities.

Modifying the result of the ν-SVC is more complex. At first, the raw score inside the sgn function
in (33) is transformed via the logistic function to transform score values to the interval [0, 1]. The
transformed value is then doubled, and 1 is subtracted from it to obtain the new occupancy probability
as

Osensor = 2

1 + exp(− ∑
j α jk( f̄ j, f̄ ) + ρ)

− 1. (38)

https://doi.org/10.1017/S0263574718000371 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000371


Self-supervised free space estimation 1295

Fig. 10. The free space mapping results of the PNB and ν-SVC for the easy and difficult datasets. The ν-SVC
is seen to perform better in free space mapping than the PNB mainly because of its conservative nature.

The logic behind the above equation is that the logistic function maps any positive value to a value
greater than 0.5 and any negative value to a value less than 0.5, and thus by doubling the transformed
value and subtracting 1, Osensor values between [−0.5, +0.5] are obtained. The performance of the
mapping done by the classifiers is also of importance. The mapping procedure is performed by first
performing coordinate transformation to align the camera coordinate frame with the robot coordinate
frame. The 3-D point cloud is then projected onto the X and Y 2-D planes. The mapping procedure
follows the description in Section 4.5.2. Points with the same X,Y are handled by addition of their
log odds values.

Figure 11 shows the maps of the environment of the three datasets created by the two classifiers.
For the easy dataset, the performance of the two classifiers is relatively close. On the other hand,
the ν-SVC outperforms the PNB classifier on the moderate and difficult datasets. It can be seen that
in the moderate dataset, the PNB classifier cannot find a path as it wrongly classifies free space as
obstacles.

It can be observed from the experiments performed that the ν-SVC classifier is much more
conservative than the PNB classifier. This is because the probabilistic output of the ν-SVC (Fig. 13)
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Fig. 11. The free space mapping results of the PNB and ν-SVC for the three datasets (easy at top, moderate
at middle, and difficult at bottom). The ν-SVC is seen to perform better in free space mapping than the PNB
mainly because of its conservative nature.

is very close to either 0 or 1, while that of the PNB classifier (Fig. 12) is more spread out on the [0, 1]
interval providing more levels on the occupancy grid.

Computation time should also be taken into account when evaluating the performance of the two
classifiers. The computation time is measured as the time required to extract training data using
the proposed algorithm, perform the classification and construct the occupancy grid representation.
Figure 14 shows the results of the computation time in seconds for both classifiers (here, we only show
the results of the easy and difficult datasets). It can be clearly seen that the PNB classifier requires
less computation time that the ν-SVC classifier. The PNB classifier requires 0.46, 0.5, 0.58 seconds
per frame from the easy, moderate and difficult datasets, respectively, versus 0.56, 0.57, 0.6 seconds
per frame for the ν-SVC classifier.

As a final thought, both classifiers manage to map the environment in the three datasets fairly well.
The PNB classifier classifies the environment pixel wise, and as such is more susceptible to noise, but
is better in detecting boundaries. Furthermore, the PNB classifier is seen to be faster than the ν-SVC
classifier, and provides continuous probability values for each pixel. On the other hand, the ν-SVC
classifier performs better when features are not linearly separable. As a final recommendation, one
should use the PNB classifier in man-made, planar environments, and the ν-SVC classifier in difficult
non-planar environments.

5. Conclusion and Future Work
This paper proposed a fast and robust system that classifies and maps free space in outdoor
environment, in which the ground features different levels of flatness. Results show that training
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Fig. 12. PNB classifier results: training data extraction (first column), the occupancy grid result (second column),
and the final ground segmentation. The first two rows are from the easy dataset, the second two from the moderate
dataset, and the final two from the difficult dataset.

data extracted through RFFSE contain a small fraction of outliers and correctly models the true
feature distribution of the ground class. Furthermore, RFFSE suggests two different classifiers, each
suitable for different environments; while PNB is more suited to man-made structured environments
because of its speed, ν-SVC works better in unstructured outdoor scenes.

For future work, we are exploring a sequential model learning system, as the current proposed
second-stage classifiers are memory-less, and throw away precious training data from previous frames.
Furthermore, looking into Markov random fields to model inter-pixel dependencies could provide
decent boosts in classification performance. Also, switching between the two proposed classifiers
would allow the system to benefit from the advantages of both. Finally, it would be an interesting
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Fig. 13. ν-SVC classifier results: the training data extraction (first column), the occupancy grid results (second
column), and the final ground segmentation. The first two rows are from the easy dataset, the second two from
the moderate dataset, and the final two from the difficult dataset.

idea to include our ground plane estimation results within a semantic SLAM framework; knowing
the location of ground could assist in segmenting and recognizing outdoor objects such as trees and
lampposts, and effectively lead to an improved semantic SLAM solution.
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Fig. 14. Computation time for the PNB and ν-SVC for the easy and difficult datasets.
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