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We investigate the structure of the twisted Brauer monoid Bτ
n, comparing and

contrasting it with the structure of the (untwisted) Brauer monoid Bn. We
characterize Green’s relations and pre-orders on Bτ

n, describe the lattice of ideals and
give necessary and sufficient conditions for an ideal to be idempotent generated. We
obtain formulae for the rank (smallest size of a generating set) and (where
applicable) the idempotent rank (smallest size of an idempotent generating set) of
each principal ideal; in particular, when an ideal is idempotent generated, its rank
and idempotent rank are equal. As an application of our results, we describe the
idempotent generated subsemigroup of Bτ

n (which is not an ideal), as well as the
singular ideal of Bτ

n (which is neither principal nor idempotent generated), and we
deduce that the singular part of the Brauer monoid Bn is idempotent generated, a
result previously proved by Maltcev and Mazorchuk.
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1. Introduction

The Temperley–Lieb algebras were introduced in [41] to study lattice problems
in (planar) statistical mechanics. These algebras have played important roles in
many different areas of mathematics, most notably in the foundational works of
Jones [30] and Kauffman [32] on knot polynomials. As noted by Kauffman in [32],
the structure of the Temperley–Lieb algebra is governed by an underlying (count-
ably infinite) monoid that has now become known as the Kauffman monoid [8,34];
an approach via a natural finite quotient of this monoid was described in [42].
Kauffman also noted in [32] that the Temperley–Lieb algebras are closely related
to the algebras introduced by Brauer in his famous 1937 article [9] on invariant
theory and representations of orthogonal groups. The Temperley–Lieb and Brauer
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algebras both have bases consisting of certain diagrams that are concatenated in
a natural way (see below), so that the product of two basis elements is a scalar
multiple of another basis element. Other such algebras, known collectively as dia-
gram algebras, include partition algebras [26,31,36], partial Brauer algebras [24,37],
Motzkin algebras [6], rook monoid algebras [25,40] and many more. These diagram
algebras are all twisted semigroup algebras [42] of certain finite diagram semigroups
(such as the partition monoid, Brauer monoid and Jones monoid), but they may
also be viewed as (ordinary) semigroup algebras of the so-called twisted diagram
semigroups (the Kauffman monoid is a canonical example).

Studies of diagram semigroups have led to important results concerning the
associated algebras, including cellularity [42], presentations [15, 16] and idempo-
tent enumeration [11, 12]; see also [19] for an alternative approach to calculating
dimensions of irreducible representations. But it is also interesting to note that
diagram semigroups have played a part in the development of semigroup theory
itself, particularly in the context of regular ∗-semigroups [17, 18] and pseudovari-
eties of finite semigroups [2–4]. Although the twisted diagram semigroups are more
closely related to diagram algebras, they have so far received less attention than
their untwisted relatives, with existing studies (see [5, 7, 8, 10, 12, 14, 34]) focusing
mostly on the Kauffman monoid (which we have already discussed). This paper
therefore aims to further the study of twisted diagram semigroups, and here we
focus on the twisted Brauer monoid.1 In particular, we conduct a thorough inves-
tigation of the algebraic structure of the monoid, paying particular attention to
Green’s relations and pre-orders (which govern divisibility in the monoid and for-
malize several natural parameters associated to Brauer diagrams) and the lattice
of ideals (which plays an important role in the cellular structure of the associated
algebra [21]). We also consider combinatorial problems, such as determining which
ideals are idempotent generated and calculating invariants such as the smallest size
of (idempotent-)generating sets.

The paper is organized as follows. In § 2, we recall the definition of the Brauer
monoid Bn, and record some known results we shall need in what follows. Section 3,
which concerns the twisted Brauer monoid Bτ

n, forms the bulk of the paper, and
consists of four subsections. In § 3.1, we describe Green’s relations and pre-orders
on Bτ

n, and we also characterize the regular elements of Bτ
n. Section 3.2 contains a

classification of the ideals of Bτ
n. We calculate the smallest size of a generating set

for each principal ideal of Bτ
n in § 3.3, where we also give necessary and sufficient

conditions for an ideal to be idempotent generated; we also calculate the smallest
size of an idempotent generating set for such an ideal. Finally, in § 3.4, we apply
the results of the previous sections to prove results about the singular part of Bτ

n

and the idempotent generated subsemigroups of Bτ
n and Bn.

2. The Brauer monoid

Fix a non-negative integer n, and write [n] = {1, . . . , n} and [n]′ = {1′, . . . , n′}.
Denote by Bn the set of all set partitions of [n] ∪ [n]′ into blocks of size 2. For

1 The twisted Brauer monoid also played a role in [5], where it was called the wire monoid.
We use the current terminology because of the above-mentioned links with twisted semigroup
algebras.
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α =

β =

= αβ

Figure 1. Two Brauer diagrams α, β ∈ B10 (left), their product αβ ∈ B10 (right) and
the graph Γ (α, β) (centre).

example, here is an element of B6:

α = {{1, 3}, {2, 3′}, {4, 1′}, {5, 6}, {2′, 6′}, {4′, 5′}}.

There is a unique element of B0, namely the empty partition. It is easy to see that

|Bn| = (2n − 1)!! = (2n − 1) · (2n − 3) · · · 3 · 1 =
(2n)!
2n · n!

=
n!
2n

·
(

2n

n

)
.

An element of Bn may be represented (uniquely) by a graph on vertex set [n]∪ [n]′;
a single edge is included between vertices u, v ∈ [n] ∪ [n]′ if and only if {u, v} is a
block of α. Such a graph is called a Brauer n-diagram (or just a Brauer diagram if
n is understood from context). We typically identify α ∈ Bn with its corresponding
Brauer diagram. When drawing a Brauer diagram, the vertices 1, . . . , n are arranged
in a horizontal line, with vertices 1′, . . . , n′ in a parallel line below; unless otherwise
specified, the vertices are assumed to be increasing from left to right. For example,
with α ∈ B6 as above, we have

α =

It will often be convenient to order the top and/or bottom vertices differently, but
the ordering will always be made clear (see figure 3, for example).

The set Bn forms a monoid, known as the Brauer monoid of degree n, under an
operation we now describe. Let α, β ∈ Bn. Write [n]′′ = {1′′, . . . , n′′}. Let α∨ be the
graph obtained from α by changing the label of each lower vertex i′ to i′′. Similarly,
let β∧ be the graph obtained from β by changing the label of each upper vertex i
to i′′. Consider now the graph Γ (α, β) on the vertex set [n]∪ [n]′ ∪ [n]′′ obtained by
joining α∨ and β∧ together so that each lower vertex i′′ of α∨ is identified with the
corresponding upper vertex i′′ of β∧. Note that Γ (α, β), which we call the product
graph of α, β, may contain parallel edges. We define αβ ∈ Bn to be the Brauer
diagram that has an edge {x, y} if and only if x, y ∈ [n] ∪ [n]′ are connected by a
path in Γ (α, β). An example calculation (with n = 10) is given in figure 1.

The identity element of Bn is the Brauer diagram 1 = . The set

Sn = {α ∈ Bn : dom(α) = codom(α) = [n]}

is the group of units of Bn, and is (isomorphic to) the symmetric group on [n].
Let α ∈ Bn. A block of α is called a transversal if it has non-empty intersection

with both [n] and [n]′, and an upper hook (respectively, lower hook) if it is contained
in [n] (respectively, [n]′). The rank of α, denoted by rank(α), is equal to the number
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of transversals of α. For x ∈ [n] ∪ [n]′, let [x]α denote the block of α containing x.
We define the domain and codomain of α to be the sets

dom(α) = {x ∈ [n] : [x]α ∩ [n]′ �= ∅} and codom(α) = {x ∈ [n] : [x′]α ∩ [n] �= ∅}.

Note that rank(α) = |dom(α)| = | codom(α)|, and that n − rank(α) is equal to
the number of hooks of α (half of which are upper hooks, and half lower). We also
define the kernel and cokernel of α to be the equivalences

ker(α) = {(x, y) ∈ [n] × [n] : [x]α = [y]α},

coker(α) = {(x, y) ∈ [n] × [n] : [x′]α = [y′]α}.

To illustrate these ideas, with α = ∈ B6 as above, we have rank(α) = 2,

dom(α) = {2, 4}, codom(α) = {1, 3},

ker(α) = (1, 3 | 2 | 4 | 5, 6), coker(α) = (1 | 2, 6 | 3 | 4, 5),

using an obvious notation for equivalences.
It is immediate from the definitions that

dom(αβ) ⊆ dom(α), ker(αβ) ⊇ ker(α),
codom(αβ) ⊆ codom(β), coker(αβ) ⊇ coker(β),

for all α, β ∈ Bn. For example, the identity ker(αβ) ⊇ ker(α) says that any upper
hook of α is an upper hook of αβ.

We now recall from [18] another way to specify an element of Bn. With this in
mind, let α ∈ Bn. We write

α =
(

i1 · · · ir a1, b1 · · · as, bs

j1 · · · jr c1, d1 · · · cs, ds

)
(†)

to indicate that α has transversals {i1, j
′
1}, . . . , {ir, j

′
r}, upper hooks {a1, b1}, . . . ,

{as, bs} and lower hooks {c′
1, d

′
1}, . . . , {c′

s, d
′
s}. Note that it is possible for either

r or s to be 0, but we always have n = r + 2s. In particular, we always have
rank(α) = r ≡ n (mod 2).

For α ∈ Bn, we write α∗ for the Brauer diagram obtained from α by interchanging
dashed and undashed vertices (i.e. by reflecting α in the horizontal axis). The
‘∗’ operation gives Bn the structure of a regular ∗-semigroup [39]; that is, for all
α, β ∈ Bn,

α∗∗ = α, (αβ)∗ = β∗α∗, αα∗α = α, α∗αα∗ = α∗.

(The fourth identity follows easily from the first three.) This symmetry allows us
to shorten many proofs.

Recall that Green’s relations R, L , J , H , D are defined on a semigroup S, for
x, y ∈ S, by

x R y ⇐⇒ xS1 = yS1, x L y ⇐⇒ S1x = S1y,

x J y ⇐⇒ S1xS1 = S1yS1,

H = R ∩ L , D = R ∨ L = R ◦ L = L ◦ R.
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Here, S1 denotes the monoid obtained by adjoining an identity 1 to S (if necessary).
If S is finite, then J = D . If x ∈ S, and if K is one of Green’s relations, we denote
by Kx the K -class of x in S. An H -class contains an idempotent if and only if
it is a group, in which case it is a maximal subgroup of S. If e and f are D-
related idempotents of S, then the subgroups He and Hf are isomorphic. If S is a
monoid, then the H -class of the identity element of S is the group of units of S. An
element x ∈ S is regular if x = xyx and y = yxy for some y ∈ S or, equivalently,
if Dx contains an idempotent, in which case Rx and Lx do too. In a D-class of
S, either every element is regular or every element is non-regular. We say S is
regular if every element of S is regular. For more background on semigroups, see,
for example, [27, 29]. The Brauer monoid Bn is regular since, as noted above, it is
a regular ∗-semigroup.

The next result, which describes Green’s relations on Bn, was originally proved
in [38, theorem 7]; see also [20,33,42].

Proposition 2.1 (Marorchuk [38]). Let α, β ∈ Bn. Then

(i) α R β ⇐⇒ ker(α) = ker(β) ⇐⇒ αSn = βSn,

(ii) α L β ⇐⇒ coker(α) = coker(β) ⇐⇒ Snα = Snβ,

(iii) α J β ⇐⇒ α D β ⇐⇒ rank(α) = rank(β) ⇐⇒ SnαSn = SnβSn.

In particular,

Rα = αSn, Lα = Snα, Hα = αSn ∩Snα, Dα = Jα = SnαSn for all α ∈ Bn.

For the remainder of the paper, it will be convenient to define z ∈ {0, 1} with
z ≡ n (mod 2). We shall also define the indexing set I(n) = {z, z +2, . . . , n− 2, n}.
So rank(α) ∈ I(n) for all α ∈ Bn, and the D-classes of Bn are precisely the sets

Dr = {α ∈ Bn : rank(α) = r} for all r ∈ I(n).

The following two results were proved in [19, theorem 8.4].

Proposition 2.2 (East and Gray [19]). Let r = n − 2s ∈ I(n), and set

ρnr =
(

n

r

)
· (n − r − 1)!! =

n!
2ss!r!

and δnr = ρ2
nr · r! =

n!2

22ss!2r!
.

Then

(i) Dr contains ρnr R-classes and ρnr L -classes,

(ii) each H -class contained in Dr has size r! (and group H -classes contained in
Dr are isomorphic to Sr),

(iii) |Dr| = δnr.

Theorem 2.3 (East and Gray [19]). The ideals of Bn are precisely the sets

Ir = Dz ∪ Dz+2 ∪ · · · ∪ Dr = {α ∈ Bn : rank(α) � r} for all r ∈ I(n).
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If r ∈ I(n) \ {n}, then

Ir = 〈Dr〉 = 〈E(Dr)〉 and rank(Ir) = idrank(Ir) = ρnr,

where the numbers ρnr are defined in proposition 2.2.

3. The twisted Brauer monoid

When forming the product αβ, where α, β ∈ Bn, the product graph Γ (α, β) may
contain components that lie completely in [n]′′; such components are called float-
ing components. We write τ(α, β) for the number of such floating components in
Γ (α, β). In the example from figure 1, Γ (α, β) has a unique floating component,
namely {1′′, 2′′, 4′′, 5′′}, so τ(α, β) = 1. There are two main ways to modify the
product in Bn to take these floating components into account. One leads to the
Brauer algebra [9], an associative algebra with Bn as its basis, and the other leads
to the twisted Brauer monoid, which we now describe. Specifically, we define

Bτ
n = N × Bn = {(i, α) : i ∈ N, α ∈ Bn}

with the product � defined, for i, j ∈ N and α, β ∈ Bn, by

(i, α) � (j, β) = (i + j + τ(α, β), αβ).

One can easily check that

τ(α, β) + τ(αβ, γ) = τ(α, βγ) + τ(β, γ) for all α, β, γ ∈ Bn. (3.1)

It quickly follows that � is associative. We call Bτ
n (with the ‘�’ operation) the twisted

Brauer monoid of degree n. We note that there is a natural inclusion ι : Bn →
Bτ

n : α �→ (0, α), and we typically identify Bn with its image under ι. But it is
important to note that ι is not a homomorphism, since α � β = (τ(α, β), αβ) �= αβ
if τ(α, β) �= 0. It follows from the associativity of � that, for any α1, . . . , αk ∈ Bn,

α1 � · · · � αk = (τ(α1, . . . , αk), α1 · · ·αk)

for some τ(α1, . . . , αk) ∈ N. Note that, for any α, β, γ ∈ Bn, τ(α, β, γ) is equal to the
common value in (3.1). It is of special importance (and easily seen) that τ(α, β) = 0
if either α or β belongs to Sn. It is also immediate that τ(α, β) = τ(β∗, α∗), so if
we define (i, α)∗ = (i, α∗), then

(i, α)∗∗ = (i, α) and ((i, α) � (j, β))∗ = (j, β)∗ � (i, α)∗

for all (i, α), (j, β) ∈ Bτ
n. In other words, Bτ

n is a ∗-semigroup (a semigroup with
involution). But this ‘∗’ operation does not give Bτ

n the structure of a regular ∗-
semigroup [39], since it is not necessarily the case that (i, α)�(i, α)∗ �(i, α) = (i, α);
for example, the latter does not hold if i � 1 or if τ(α, α∗) � 1. In fact, Bτ

n is not
a regular ∗-semigroup at all, as it is not even regular, as we shall see in the next
section.
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3.1. Green’s relations and pre-orders

Our next goal is to describe Green’s relations on the twisted Brauer monoid Bτ
n.

In order to do this, it will be convenient to first describe Green’s pre-orders on Bτ
n.

Recall that Green’s pre-orders �R, �L , �J are defined on a semigroup S, for
x, y ∈ S, by

x �R y ⇐⇒ xS1 ⊆ yS1,

x �L y ⇐⇒ S1x ⊆ S1y,

x �J y ⇐⇒ S1xS1 ⊆ S1yS1.

So, for example, R = �R ∩ �R. In order to avoid confusion, we shall use the
symbols R, �R, etc., for Green’s relations and pre-orders on Bn, and write Rτ ,
�τ

R, etc., for the corresponding relations and pre-orders on Bτ
n. We first need to

prove a result concerning Green’s pre-orders on Bn, which involves the twisting
map τ .

Proposition 3.1. Let α, β ∈ Bn. Then

(i) α �R β ⇐⇒ ker(α) ⊇ ker(β) ⇐⇒ α = βδ for some δ ∈ Bn with τ(β, δ) = 0,

(ii) α �L β ⇐⇒ coker(α) ⊇ coker(β) ⇐⇒ α = γβ for some γ ∈ Bn with
τ(γ, β) = 0,

(iii) α �J β ⇐⇒ rank(α) � rank(β) ⇐⇒ α = γβδ for some γ, δ ∈ Bn with
τ(γ, β, δ) = 0.

Proof. We begin with (i). Again, it is well-known that α �R β ⇐⇒ ker(α) ⊇
ker(β). Next, suppose ker(α) ⊇ ker(β). Then we may write

α =
(

i1 · · · ir a1, b1 · · · as, bs as+1, bs+1 · · · as+t, bs+t

j1 · · · jr c1, d1 · · · cs, ds cs+1, ds+1 · · · cs+t, ds+t

)
and

β =
(

i1 · · · ir a1 b1 · · · as bs as+1, bs+1 · · · as+t, bs+t

k1 · · · kr e1 f1 · · · es fs es+1, fs+1 · · · es+t, fs+t

)
.

It is easy to check that α = βδ with τ(β, δ) = 0, where

δ =
(

k1 · · · kr es+1 fs+1 · · · es+t fs+t e1, f1 · · · es, fs

j1 · · · jr cs+1 ds+1 · · · cs+t ds+t c1, d1 · · · cs, ds

)
.

This completes the proof of (i). Part (ii) follows by duality.

For (iii), suppose rank(α) � rank(β). As above, it suffices to demonstrate the
existence of γ, δ with the desired properties. We may write

α =
(

i1 · · · ir a1, b1 · · · as, bs as+1, bs+1 · · · as+t, bs+t

j1 · · · jr c1, d1 · · · cs, ds cs+1, ds+1 · · · cs+t, ds+t

)
and

β =
(

l1 · · · lr g1 h1 · · · gs hs gs+1, hs+1 · · · gs+t, hs+t

k1 · · · kr e1 f1 · · · es fs es+1, fs+1 · · · es+t, fs+t

)
.
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Now, set

ε =
(

l1 · · · lr g1, h1 · · · gs, hs gs+1, hs+1 · · · gs+t, hs+t

j1 · · · jr c1, d1 · · · cs, ds cs+1, ds+1 · · · cs+t, ds+t

)
.

Then ker(ε) ⊇ ker(β). By (i), it follows that there exists δ ∈ Bn with ε = βδ and
τ(β, δ) = 0. But also ε L α, so proposition 2.1(ii) gives α = γε for some γ ∈ Sn.
In particular, α = γε = γβδ, and τ(γ, β, δ) = τ(γ, βδ) + τ(β, δ) = 0.

Proposition 3.2. Let i, j ∈ N and α, β ∈ Bn. If K is any of R, L , J , then

(i, α) �τ
K (j, β) ⇐⇒ i � j and α �K β.

Proof. We just treat the �τ
J pre-order, since the other cases are similar. Suppose

first that (i, α) �τ
J (j, β). Then

(i, α) = (h, γ) � (j, β) � (k, δ) = (h + j + k + τ(γ, β, δ), γβδ)

for some h, k ∈ N and γ, δ ∈ Bn. But then i = h + j + k + τ(γ, β, δ) � j and
α = γβδ �J β. Conversely, suppose i � j and α �J β. By proposition 3.1(iii),
there exist γ, δ ∈ Bn such that α = γβδ and τ(γ, β, δ) = 0. But then one can easily
check that (i, α) = (i − j, γ) � (j, β) � (0, δ), completing the proof.

Let i ∈ N and α ∈ Bn. If K is one of Green’s relations, we write Kα and Kτ
(i,α)

for the K -class of α in Bn and the K τ -class of (i, α) in Bτ
n.

Corollary 3.3. Let i, j ∈ N and α, β ∈ Bn. If K is any of R, L , H , J , D ,
then

(i, α) K τ (j, β) ⇐⇒ i = j and α K β.

Consequently, Kτ
(i,α) = {i} × Kα for any (i, α) ∈ Bτ

n.

Proof. The descriptions of the Rτ , L τ , H τ , J τ relations follow immediately from
proposition 3.2. It remains only to show that J τ ⊆ Dτ . But this is true because

(i, α) J (j, β) =⇒ [i = j and α J β]
=⇒ [i = j and α D β]
=⇒ [i = j and α R γ L β for some γ ∈ Bn]
=⇒ (i, α) Rτ (i, γ) L τ (j, β)
=⇒ (i, α) Dτ (j, β).

So the Dτ -classes of Bτ
n are precisely the sets

Dr;k = {k} × Dr = {(k, α) : rank(α) = r} for all r ∈ I(n) and k ∈ N.

Note that, under the identification of α ∈ Bn with (0, α) ∈ Bτ
n, we have Dr;0 = Dr

for all r ∈ I(n).
Recall that the set S/J of all J -classes of a semigroup S is a partially ordered

set under the order � defined, for x, y ∈ S, by Jx � Jy ⇐⇒ x �J y. We shall
write � and �τ for the partial orders on Bn/D and Bτ

n/Dτ , respectively (recall
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D7; 0

D5; 0

D3; 0

D1; 0

D7; 1

D5; 1

D3; 1

D1; 1

D7; 2

D5; 2

D3; 2

D1; 2

D7; 3

D5; 3

D3; 3

D1; 3

D7; 4

D5; 4

D3; 4

D1; 4

Figure 2. The structure of the partially ordered set (Bτ
7/Dτ , �τ ). The principal ideal I5;2

is shaded light grey, and its generating set M5;2 is shaded dark grey.

that J = D and J τ = Dτ in Bn and Bτ
n). So, by propositions 3.1 and 3.2, we

have

Dr � Ds ⇐⇒ r � s and Dr;k � Ds;l ⇐⇒ [r � s and k � l].

So the partially ordered set (Bτ
n/Dτ ,�τ ) is a lattice, and is order-isomorphic to the

direct product of the chains (I(n),�) and (N,�); this is analogous to the case of
the Kauffman monoid [34]. Figure 2 gives an illustration for n = 7 (the reader may
ignore the shading in the diagram for now).

We conclude this section with a description of the regular elements of Bτ
n.

Proposition 3.4. An element (i, α) ∈ Bτ
n is regular if and only if i = 0 and

rank(α) > 0. In particular, Bτ
n is not regular.

Proof. From (i, α) � (j, β) � (i, α) = (2i + j + τ(α, β, α), αβα), we deduce that (i, α)
cannot be regular if

(i) i � 1, since then 2i + j + τ(α, β, α) � 2i > i, or

(ii) rank(α) = 0, since then 2i + j + τ(α, β, α) � 2i + j + 1 > i.

Conversely, if i = 0 and r > 0, then one may easily check that ε = ∈ Dr;0
is an idempotent of Bτ

n (i.e. ε = ε�ε). It follows that the Dτ -classes Dr;0 with r > 0
are all regular.
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3.2. Ideals

We may now describe the ideals of Bτ
n. Recall that a principal ideal of a semigroup

S is of the form

S1aS1 = {xay : x, y ∈ S1} = {x ∈ S : x �J a} for a ∈ S.

By proposition 3.2, we may immediately describe the principal ideals of Bτ
n. These

are precisely the sets

Ir;k = {(i, α) : rank(α) � r, i � k} for r ∈ I(n) and k ∈ N.

Note that Ir;k ⊆ Is;l ⇐⇒ Dr;k �τ Ds;l ⇐⇒ [r � s and k � l]. The principal
ideal I5;2 of Bτ

7 is illustrated in figure 2. We now show that every ideal of Bτ
n is

the union of finitely many principal ideals (not every infinite semigroup shares this
property).

Proposition 3.5.

(i) Let r1, . . . , rs ∈ I(n) and k1, . . . , ks ∈ N, with r1 > · · · > rs and k1 > · · · > ks.
Then Ir1;k1 ∪ · · · ∪ Irs;ks

is an ideal of Bτ
n.

(ii) Each ideal of Bτ
n is of the form described in (i).

(iii) Each ideal of Bτ
n is uniquely determined by (and uniquely determines) the

parameters r1, . . . , rs, k1, . . . , ks, as described in (i).

Proof. Part (i) is clear. Next, suppose I is an arbitrary non-empty ideal of Bτ
n. Set

r1 = max{rank(α) : (k, α) ∈ I (∃k ∈ N)},

k1 = min{k ∈ N : (k, α) ∈ I (∃α ∈ Dr1)}.

(Note that k1 is defined in terms of r1.) Then Ir1;k1 ⊆ I. If I = Ir1;k1 , then we are
done. Otherwise, set

r2 = max{rank(α) : (k, α) ∈ I \ Ir1;k1 (∃k ∈ N)},

k2 = min{k ∈ N : (k, α) ∈ I \ Ir1;k1 (∃α ∈ Dr2)}.

(Note that r1 > r2 is obvious, while k1 > k2 follows from the fact that Ir1;k1 already
contains Ir2;k1 .) Then Ir2;k2 ⊆ I. If I = Ir1;k1 ∪ Ir2;k2 , then we are done. Otherwise,
we define r3 and k3 similarly. Continuing in this fashion, since I(n) is a finite
chain, we eventually obtain I = Ir1;k1 ∪ · · · ∪ Irs;ks

for some r1, . . . , rs ∈ I(n) and
k1, . . . , ks ∈ N with r1 > · · · > rs and k1 > · · · > ks, giving (ii). For (iii), it is clear
that Ir1;k1 ∪ · · · ∪ Irs;ks

= Iq1;l1 ∪ · · · ∪ Iqt;lt if and only if (r1, . . . , rs) = (q1, . . . , qt)
and (k1, . . . , ks) = (l1, . . . , lt).

Remark 3.6. Note that

Ir1;k1 ∪ · · · ∪ Irs;ks
⊂ Iq1;l1 ∪ · · · ∪ Iqt;lt

⇐⇒ (∀i ∈ [s])(∃j ∈ [t]) Iri;ki ⊂ Iqj ;lj

⇐⇒ (∀i ∈ [s])(∃j ∈ [t]) [ri � qj and ki � lj ].
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α α

β α

γ β

(a) (b)

Figure 3. Diagrammatic verification that (a) α = βγ with τ(β, γ) = 0 from the proof of
lemma 3.7, and (b) α = αβ with τ(α, β) = 1 from the proof of lemma 3.9; see the text for
more details. In both cases, grey vertices are ordered i1, . . . , ir, a1, b1, . . . , as, bs, and black
vertices are ordered j1, . . . , jr, c1, d1, . . . , cs, ds.

3.3. Small generating sets

We now turn to the question of minimal generation of the principal ideals. Recall
that if S is a semigroup, then the rank of S, denoted rank(S), is the minimum
cardinality of a subset A ⊆ S such that S = 〈A〉. If S is idempotent generated, then
the idempotent rank of S, denoted idrank(S), is defined analogously with respect
to generating sets consisting of idempotents. In this section, we give necessary and
sufficient conditions for a principal ideal Ir;k to be idempotent generated. We also
calculate the rank and idempotent rank (if appropriate) for an arbitrary principal
ideal Ir;k; in particular, we show that rank(Ir;k) = idrank(Ir;k) if Ir;k is idempotent
generated.

If Σ ⊆ Bn (respectively, Γ ⊆ Bτ
n), we write 〈Σ〉 (respectively, 〈〈Γ 〉〉) for the

subsemigroup of Bn (respectively, Bτ
n) generated by Σ (respectively, Γ ). Since we

identify Bn with a subset of Bτ
n, via the mapping α �→ (0, α), it is possible to

consider both 〈Σ〉 and 〈〈Σ〉〉 for a subset Σ ⊆ Bn; these are obviously not equal in
general.

It will be necessary to consider the ideals Ir;k in a number of separate cases,
depending on the values of the parameters r, k (see theorem 3.20). We begin with
the ideals Ir;0 with r < n. For this, we shall need the following two lemmas, the
second of which will also be used later.

Lemma 3.7. If r � n − 4, then Dr ⊆ Dr+2 � Dr+2.

Proof. Write α as in equation (†) on p. 734, where r � n−4. We show in figure 3(a)
that α = βγ for some β, γ ∈ Dr+2 with τ(β, γ) = 0.

Remark 3.8. A weaker version of lemma 3.7 was proved in [19, lemma 8.3], where
it was shown that Dr ⊆ 〈Dr+2〉; the proof of that result was much simpler, as no
conditions were imposed on the twisting map τ , and the ∗-regular structure of Bn

played a role.

Lemma 3.9. If α ∈ Bn \Sn, then α = αβ for some β ∈ Bn with rank(β) = rank(α)
and τ(α, β) = 1.
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Proof. Write α as in equation (†) on p. 734. We demonstrate the existence of β in
figure 3(b).

Proposition 3.10. If r ∈ I(n) \ {n}, then Ir;0 = 〈〈Dr〉〉.

Proof. We first show, by descending induction, that Ds ⊆ 〈〈Dr〉〉 for all s ∈ I(r).
Indeed, this is obvious if s = r, while if s < r, then lemma 3.7 and an induction
hypothesis gives Ds ⊆ Ds+2 � Ds+2 ⊆ 〈〈Dr〉〉. It follows that Ir ⊆ 〈〈Dr〉〉. Now
suppose that i � 1 and α ∈ Ir. We have seen that α ∈ 〈〈Dr〉〉. By lemma 3.9, we
may choose some β ∈ Dr such that α = αβ and τ(α, β) = 1. But then it quickly
follows that

(i, α) = α � β � · · · � β︸ ︷︷ ︸
i

∈ 〈〈Dr〉〉.

We have shown that Ir;0 ⊆ 〈〈Dr〉〉. The reverse inclusion is clear.

Proposition 3.10 does not hold for the top ideal In;0 = Bτ
n, but we may use it as

a stepping stone to calculate rank(Bτ
n). Recall that rank(Sn) = 2 if n � 3.

Proposition 3.11. Suppose n � 3. Let α, β ∈ Sn be such that Sn = 〈α, β〉, and
let γ ∈ Dn−2;0 and (1, δ) ∈ Dn;1 be arbitrary. Then Bτ

n = 〈〈α, β, γ, (1, δ)〉〉. Further,
rank(Bτ

n) = 4.

Proof. Write S = 〈〈α, β, γ, (1, δ)〉〉. First note that Sn = 〈α, β〉 = 〈〈α, β〉〉 ⊆ S.
Together with proposition 2.1, it then follows that S contains Dn−2 = Dγ =
SnγSn = Sn � γ � Sn. Proposition 3.10 then gives In−2;0 = 〈〈Dn−2〉〉 ⊆ S. Finally,
let i � 1 and σ ∈ Sn be arbitrary. Then

(i, σ) = (0, σδ−i) � (1, δ) � · · · � (1, δ)︸ ︷︷ ︸
i

∈ S,

which completes the proof that Bτ
n = S = 〈〈α, β, γ, (1, δ)〉〉. It also follows that

rank(Bτ
n) � 4.

Suppose now that Bτ
n = 〈〈Σ〉〉. The proof will be complete if we can show that

|Σ| � 4. Since Bτ
n \ Sn = In−2;0 ∪ In;1 is an ideal of Bτ

n, it follows that Σ contains
a generating set for Sn, so that |Σ ∩ Sn| � 2. Now let σ ∈ Sn be arbitrary, and
consider an expression

(1, σ) = (i1, α1) � · · · � (ik, αk) = (i1 + · · · + ik + τ(α1, . . . , αk), α1 · · ·αk),

where (i1, α1), . . . , (ik, αj) ∈ Σ. Since α1 · · ·αk = σ ∈ Sn, and since Bn \ Sn is
an ideal of Bn, it follows that α1, . . . , αk ∈ Sn. Then τ(α1, . . . , αk) = 0, so 1 =
i1 + · · · + ik, which gives is = 1 for some (unique) s ∈ [k]. Thus, Σ contains an
element of Dn;1: namely, (1, αs). Similarly, consideration of an element of Dn−2;0
as a product of elements from Σ shows that Σ contains an element of Dn−2;0. As
noted above, this completes the proof.

Next, we calculate rank(Ir;0) in the case that 0 < r < n. In fact, since the ideal
Ir;0 is idempotent generated for such a value of r (as we shall soon show), we shall
also calculate idrank(Ir;0). Since

(i, α) � (i, α) = (2i + τ(α, α), α2),
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(a) (b)

(c) (d)

α

σij

α

σij

α

σij

α

α

σij

α α

β

α

β

β1

β2

Figure 4. Diagrammatic verification that ασij = α � β, where β ∈ 〈〈Eτ (Dr)〉〉, as in the
proof of proposition 3.12; see the text for more details. In all cases, grey vertices are ordered
i1, . . . , ir, a1, b1, . . . , as, bs, and black vertices are ordered j1, . . . , jr, c1, d1, . . . , cs, ds.

it follows that all idempotents of Bτ
n are contained in Bn. However, not every idem-

potent of Bn is an idempotent of Bτ
n; that is, α = α2 in Bn does not necessarily

imply α = α � α in Bτ
n. In order to avoid confusion when discussing idempotents

from Bn and Bτ
n, if Σ ⊆ Bn, we shall write

E(Σ) = {α ∈ Σ : α = α2} and Eτ (Σ) = {α ∈ Σ : α = α � α}.

For example, one may easily check that

α = ∈ E(B6) \ Eτ (Bτ
6 ) but β = ∈ Eτ (Bτ

6 ).

Indeed, α � α = (2, α) �= α in Bτ
6 . The idempotents of Bn and Bτ

n (and a number of
other diagram semigroups) were characterized and enumerated in [11], but we shall
not need to use these descriptions here.

Proposition 3.12. Suppose r ∈ I(n) \ {0, n}. Then Ir;0 = 〈〈Eτ (Dr)〉〉.

Proof. By proposition 3.10, it suffices to show that Dr ⊆ 〈〈Eτ (Dr)〉〉. By proposi-
tion 3.4, Dr = Dr;0 is a regular Dτ -class of Bτ

n, so we may choose an idempotent
ε ∈ Eτ (Dr). Since Dr = Dε = SnεSn, by proposition 2.1, it suffices to show that
λερ ∈ 〈〈Eτ (Dr)〉〉 for all λ, ρ ∈ Sn. In fact, by a simple induction on the length of λ
and ρ as products of transpositions, it suffices to show that

(I) for all α ∈ Dr and all 1 � i < j � n, ασij = α � β for some β ∈ 〈〈Eτ (Dr)〉〉,
and
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(II) for all α ∈ Dr and all 1 � i < j � n, σijα = β � α for some β ∈ 〈〈Eτ (Dr)〉〉,
where we denote by σij ∈ Sn the transposition that interchanges i and j. By
symmetry, it suffices just to prove (I). So, let α ∈ Dr and 1 � i < j � n be
arbitrary, and write α as in equation (†) on p. 734. Recall that r, s � 1. We now
consider four separate cases:

(i) i, j ∈ codom(α);

(ii) i ∈ codom(α) but j ∈ [n] \codom(α);

(iii) i, j ∈ [n] \codom(α) but (i, j) �∈ coker(α);

(iv) (i, j) ∈ coker(α).

We show that, in all cases, ασij = α � β for some β ∈ 〈〈Eτ (Dr)〉〉. First, we con-
sider case (i). Relabelling the vertices, if necessary, we may assume that (i, j) =
(jr−1, jr). In figure 4(a), we show that ασij = αβ1β2 for some β1, β2 ∈ Eτ (Dr)
with τ(α, β1, β2) = 0, giving ασij = α � (β1 � β2), as required (we leave it to the
reader to verify that β1, β2 ∈ Eτ (Bτ

n)). Similarly, for cases (ii)–(iv), we may assume
that (i, j) = (jr, a1), (i, j) = (b1, a2) and (i, j) = (a1, b1), respectively. In figure 4,
we show that ασij = α � β for some β ∈ Eτ (Dr) in cases (ii) and (iii), and that
ασij = α in case (iv). As noted above, this completes the proof.

Remark 3.13. The trick in the above proof, of considering expressions of the form
ασij and σijα, bears some resemblance to the proof of [1, lemma 1.2].

The proof of the next result uses several ideas and results from [22]; see also [23].

Proposition 3.14. Suppose r ∈ I(n) \ {0, n}. Then Ir;0 is idempotent generated,
and

rank(Ir;0) = idrank(Ir;0) = ρnr,

where the numbers ρnr are defined in proposition 2.2.

Proof. For simplicity, write D = Dr;0 and I = Ir;0. So I = 〈〈Eτ (D)〉〉, by propo-
sition 3.12. The principal factor of D, denoted D◦, is the semigroup on the set
D ∪ {0}, with multiplication ‘◦’ defined, for α, β ∈ D, by

α ◦ 0 = 0 ◦ α = 0 ◦ 0 = 0 and α ◦ β =

{
α � β if α � β ∈ D,

0 otherwise.

Suppose the Rτ - and L τ -classes contained in D are {Rj : j ∈ J} and {Lk : k ∈ K},
where J ∩K = ∅. The Graham–Houghton graph of D◦ is the (bipartite) graph ∆ =
∆(D◦) with vertex set J∪K and edge set {{j, k} : Rj∩Lk contains an idempotent}.
We note that ∆ is balanced, in the sense that |J | = |K|; this common value is equal
to ρnr, by proposition 2.2 and corollary 3.3. By [11, theorem 40], each Rτ - and
L τ -class in D contains the same number of idempotents; this number was denoted
by bnr in [11], and a recurrence relation was given for these numbers. It follows
that ∆ is bnr-regular, in the sense that each vertex of ∆ is adjacent to bnr other
vertices. Since n � 3 (as I(n)\ {0, n} is non-empty), we have bnr � 2. It was shown
in [22, lemma 3.1] that being k-regular with k � 2 implies that ∆ satisfies the
so-called strong Hall condition:
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α α

α α

β β

(a) (b)

Figure 5. Diagrammatic verification that α = αβ from the proof of lemma 3.15
((a) r > 0, (b) r = 0); see the text for more details. Grey vertices are ordered
i1, . . . , ir, a1, b1, . . . , as, bs, and black vertices are ordered j1, . . . , jr, c1, d1, . . . , cs, ds.

for all ∅ � H � J , |N(H)| > |H|, where N(H) is the set of all vertices
adjacent to a vertex from H.

We also note that ∆ is connected ; indeed, this follows from the fact that D◦ is idem-
potent generated, as explained in [22, p. 61]. Since ∆ is connected and balanced and
satisfies the strong Hall condition, [22, lemma 2.11] gives rank(D◦) = idrank(D◦) =
|J | = |K| = ρnr. But, since I = 〈〈D〉〉, it follows that rank(I) = rank(D◦) and
idrank(I) = idrank(D◦).

Next we consider the ideals Ir;k, where r, k > 0. First we need a technical lemma.

Lemma 3.15. Let α ∈ Bn \ Sn.

(i) If rank(α) > 0, then α = α � β for some β ∈ Dα.

(ii) If rank(α) = 0, then α = α � β for some β ∈ D2.

Proof. Write α as in equation (†) on p. 734. In figure 5, we demonstrate the existence
of β (of the desired rank) such that α = αβ with τ(α, β) = 0.

Proposition 3.16. Let r ∈ I(n) \ {0}, and let k � 1. Set

Mr;k =
⋃

s∈I(r),k�l<2k

Ds;l = {(l, α) ∈ Bτ
n : k � l < 2k, rank(α) � r}.

Then

(i) Ir;k = 〈〈Mr;k〉〉,

(ii) any generating set for Ir;k contains Mr;k, so Mr;k is the unique minimal (with
respect to size or inclusion) generating set for Ir;k,

(iii) rank(Ir;k) = |Mr;k| = k ·
∑

s∈I(r) δns, where the numbers δns are defined in
proposition 2.2.
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Proof. We begin with (i). Let (i, α) ∈ Ir;k be arbitrary. If k � i < 2k, then (i, α) ∈
Mr;k, so suppose i � 2k. Write i = qk + s, where q ∈ N and k � s < 2k. By
lemma 3.15, there exists β ∈ Ir such that α = αβ with τ(α, β) = 0. But then

(i, α) = (s, α) � (k, β) � · · · � (k, β)︸ ︷︷ ︸
q

∈ 〈〈M0;k〉〉.

This completes the proof of (i). For (ii), suppose Γ is an arbitrary generating set
for Ir;k. Let (i, α) ∈ Mr;k be arbitrary, and consider an expression

(i, α) = (i1, α1) � · · · � (it, αt) = (i1 + · · · + it + τ(α1, . . . , αt), α1 · · ·αt),

where (i1, α1), . . . , (it, αt) ∈ Γ . Since i1, . . . , it � k and since i < 2k, it follows that
t = 1, so that (i, α) = (i1, α1) ∈ Γ , giving (ii). It follows immediately from (i)
and (ii) that rank(Ir;k) = |Mr;k|. The formula for |M0;k| follows from the fact that
|Ds;l| = |Ds| = δns (see corollary 3.3 and proposition 2.2).

Remark 3.17. The generating set M5;2 of the ideal I5;2 of Bτ
7 is illustrated in

figure 2.

Proposition 3.18. Suppose n is even, and let k ∈ N be arbitrary. Set M0;k =
D0;k ∪ · · · ∪ D0;2k. Then

(i) I0;k = 〈〈M0;k〉〉,

(ii) any generating set for I0;k contains M0;k, so M0;k is the unique minimal (with
respect to size or inclusion) generating set for I0;k,

(iii) rank(I0;k) = |M0;k| = (k + 1) · δn0, where the numbers δn0 are defined in
proposition 2.2.

Proof. We omit the proof as it is very similar to that of proposition 3.16. The main
difference is that we apply lemma 3.9 instead of lemma 3.15. This explains the
factor of k + 1 in the expression for rank(I0;k).

Remark 3.19. Note that M0;0 = D0;0 = D0. We saw that I0;0 = 〈〈D0〉〉 in proposi-
tion 3.10.

For convenience, we gather the results on ranks of principal ideals into a single
theorem.

Theorem 3.20. Let n � 3, r ∈ I(n) and k ∈ N. Then

rank(Ir;k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 if r = n and k = 0,

ρnr if 0 < r < n and k = 0,

(k + 1) · δn0 if r = 0,

k ·
∑

s∈I(r) δns if r > 0 and k > 0,

where the numbers ρnr, δnr are defined in proposition 2.2. Further, Ir;k is idempotent
generated if and only if 0 < r < n and k = 0, in which case idrank(Ir;k) =
rank(Ir;k).
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Remark 3.21. An obvious necessary condition for an ideal I of an arbitrary semi-
group S to be idempotent generated is that there must be idempotents in any
maximal J -class of I. Since idempotents of Bτ

n can only exist in J τ = Dτ -classes
of the form Dr;0, it follows that any idempotent generated ideal of Bτ

n is a principal
ideal (of the form described in theorem 3.20).

3.4. Applications

A famous result of Howie [28] states that the singular ideal Tn \ Sn of the full
transformation semigroup Tn is idempotent generated. In fact, the idempotent gen-
erated subsemigroup 〈E(Tn)〉 is equal to {1} ∪ (Tn \ Sn). This is true also of the
Brauer monoid Bn: specifically, 〈E(Bn)〉 = {1}∪(Bn \Sn), as shown in [35], where a
presentation for Bn\Sn was also given. Similar results for other diagram semigroups
appear in [13,16,19].

We now apply the results of previous sections to explore the analogous situation
for the twisted Brauer monoid Bτ

n. This is more complicated, and it is not the case
that the singular ideal Bτ

n \ Sn is idempotent generated. We may still calculate
the rank of this singular ideal, and we also describe the idempotent generated
subsemigroup 〈〈Eτ (Bτ

n)〉〉, and calculate its rank and idempotent rank (which are
equal). We also deduce the above-mentioned result that Bn \ Sn is idempotent
generated.

Theorem 3.22. If n � 3, then rank(Bτ
n \ Sn) =

(
n
2

)
+ n!.

Proof. Note that Bτ
n \ Sn = In−2;0 ∪ In;1. By (the proof of) proposition 3.14, we

may choose a subset Σ ⊆ Dn−2;0 with In−2;0 = 〈〈Σ〉〉 and |Σ| = rank(In−2;0) =
ρn,n−2 =

(
n
2

)
. Now set Γ = Σ ∪ Dn;1. Since 〈〈Σ〉〉 = In−2;0 ⊇ Dz;1 ∪ · · · ∪ Dn−2;1, it

follows that 〈〈Γ 〉〉 ⊇ Mn;1, so 〈〈Γ 〉〉 ⊇ In;1. Thus, Bτ
n \ Sn = In−2;0 ∪ In;1 = 〈〈Γ 〉〉. In

particular,

rank(Bτ
n \ Sn) � |Γ | = |Σ| + |Dn;1| =

(
n

2

)
+ n!. (3.2)

Conversely, suppose Ξ is an arbitrary generating set for Bτ
n \ Sn. Let α ∈ Dn−2;0

be arbitrary, and consider an expression

α = (0, α) = (i1, α1) � · · · � (ik, αk) = (i1 + · · · + ik + τ(α1, . . . , αk), α1 · · ·αk),

where (i1, α1), . . . , (ik, αk) ∈ Ξ. Then we must have

i1 = · · · = ik = τ(α1, . . . , αk) = 0 and α1 · · ·αk = α.

Then, for any j ∈ [k], n − 2 = rank(α) = rank(α1 · · ·αk) � rank(αj) � n − 2.
In particular, (ij , αj) ∈ Dn−2;0 for each j ∈ [k]. We have shown that Dn−2;0 ⊆
〈〈Ξ ∩ Dn−2;0〉〉. It follows that In−2;0 = 〈〈Dn−2;0〉〉 ⊆ 〈〈Ξ ∩ Dn−2;0〉〉. In particular,

|Ξ ∩ Dn−2;0| � rank(In−2;0) =
(

n

2

)
. (3.3)

Next, let σ ∈ Sn be arbitrary. As in the proof of proposition 3.16, considering an
expression for (1, σ) as a product of elements from Ξ shows that, in fact, (1, σ) ∈ Ξ.
In particular, it follows that Dn;1 ⊆ Ξ, so

|Ξ \ Dn−2;0| � |Dn;1| = n!. (3.4)
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Adding (3.3) and (3.4), we obtain |Ξ| �
(
n
2

)
+ n!. Since Ξ was an arbitrary gener-

ating set for Bτ
n \Sn, it follows that rank(Bτ

n \Sn) �
(
n
2

)
+n!. Combined with (3.2),

this completes the proof.

We now describe the idempotent generated subsemigroup of Bτ
n and derive a

formula for its rank and idempotent rank.

Theorem 3.23. Let n � 3 and let S = 〈〈Eτ (Bτ
n)〉〉 be the idempotent generated

subsemigroup of Bτ
n. Then

S = {1} ∪ In−2;0 = {1} ∪ (N × (Bn \ Sn)) = {1} ∪ {(i, α) : i ∈ N, α ∈ Bn \ Sn},

and rank(S) = idrank(S) =
(
n
2

)
+ 1.

Proof. Since 1 ∈ Eτ (Bτ
n), and since In−2;0 is idempotent generated by proposi-

tion 3.12, it is clear that {1} ∪ In−2;0 ⊆ S. To show the reverse containment, it
suffices to show that S \ In−2;0 = {1}. So suppose (i, α) ∈ S \ In−2;0. In particular,
α ∈ Dn = Sn, and we have

(i, α) = α1 � · · · � αk = (τ(α1, . . . , αk), α1 · · ·αk)

for some idempotents α1, . . . , αk ∈ Eτ (Bτ
n). (Recall that Eτ (Bτ

n) ⊆ E(Bn).) Since
α1 · · ·αk = α ∈ Sn, and since Bn \ Sn is an ideal of Bn, it follows that α1, . . . , αk ∈
Sn. In particular, τ(α1, . . . , αk) = 0. But also E(Sn) = {1}, as Sn is a group.
So α1 = · · · = αk = 1, and (i, α) = (τ(α1, . . . , αk), α1 · · ·αk) = (0, 1) = 1, as
required. The statement about the rank and idempotent rank follows immediately
from proposition 3.14 and the obvious fact that In−2;0 = 〈〈Σ〉〉 ⇐⇒ S = {1} ∪
In−2;0 = 〈〈{1} ∪ Σ〉〉.

As a final application, we prove the following result, which is a (slight) strength-
ening of a result from [35].

Theorem 3.24 (cf. Maltcev and Mazorchuk [35]). Let n � 3. The singular part
Bn \ Sn of the Brauer monoid Bn is idempotent generated. In fact,

{1} ∪ (Bn \ Sn) = 〈E(Bn)〉 = 〈Eτ (Bn)〉.

Proof. First, it is clear that 〈Eτ (Bn)〉 ⊆ 〈E(Bn)〉. Next note that, since no non-
identity element of Sn is a product of idempotents (from Bn), we have 〈E(Bn)〉 ⊆
{1} ∪ (Bn \ Sn). Finally, suppose α ∈ Bn \ Sn is arbitrary. Then, by theorem 3.23,
(0, α) = α = α1 � · · · � αk = (τ(α1, . . . , αk), α1 · · ·αk) for some idempotents
α1, . . . , αk ∈ Eτ (Bτ

n). In particular, α = α1 · · ·αk ∈ 〈Eτ (Bn)〉 (and, in addition,
τ(α1, . . . , αk) = 0).

Remark 3.25. One may easily check that 〈E(B2)〉 = {1} ∪ (B2 \ S2) �= {1} =
〈Eτ (B2)〉. In the above proof, we showed that every element of Bn \Sn (with n � 3)
may be written as a product of idempotents from Eτ (Bn) in such a way that no
floating components are created in the formation of the product. We note that this
also follows from [35, proposition 2] or [19, proposition 8.7], but we omit the details.
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