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Abstract We prove the existence of exponentially and superexponentially localized breather solutions
for discrete nonlinear Klein–Gordon systems. Our approach considers d-dimensional infinite lattice models
with general on-site potentials and interaction potentials being bounded by an arbitrary power law, as
well as, systems with purely anharmonic forces, cases which are much less studied particularly in a higher-
dimensional set-up. The existence problem is formulated in terms of a fixed-point equation considered
in weighted sequence spaces, which is solved by means of Schauder’s Fixed-Point Theorem. The proofs
provide energy bounds for the solutions depending on the lattice parameters and its dimension under
physically relevant non-resonance conditions.
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1. Introduction

Intrinsic localized modes (ILMs) or discrete breathers in nonlinear lattices have attracted
significant interest, not least due to the important role they play in many physical realms
where features of localization in systems of coupled oscillators are involved (for a review
see [28] and references therein) [1, 2, 8, 9, 17–24, 35–40, 42, 43, 45, 46, 53, 54, 62]. Rep-
resentative results for the existence and non-existence of breathers, as spatially localized
and time-periodically varying solutions, are provided in [6, 7, 12, 31, 34, 44], and for the
stability of small-amplitude breathers and the notion of exponential stability in [10, 11,
49]. Analytical and numerical methods have been developed to continue breather solu-
tions in conservative and dissipative systems starting from the anti-integrable limit [47,
48, 60].

During recent years, the existence of breathers has been verified in a number of exper-
iments in various contexts including micromechanical cantilever arrays [57], arrays of
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Exponentially spatially localized breather solutions 481

coupled Josephson junctions [13], antiferromagnetic chains [56, 59], coupled optical wave
guides [26, 29], Bose–Einstein condensates in optical lattices [25, 61], in coupled torsion
pendula [22], electrical transmission lines [27, 50], and granular crystals [14]. Regarding
their creation mechanism in conservative systems, modulational instability (MI) provides
the route to the formation of breathers originating from an initially spatially homoge-
neous state imposed to (weak) perturbations. To be precise, the MI of band edge plane
waves triggers an inherent instability leading to the formation of a spatially localized
state [55].

In this work, we extend the results of [32] (where one-dimensional systems of nonlinearly
interacting particles without on-site potentials were treated) and [33] (for a general class
of one-dimensional systems with a nonlinear interaction between its constituents and with
general potentials), to higher-dimensional systems, where localization effects are expected
to be more intricate [8, 9, 17, 28, 45, 46].

In particular, we present a comparatively concise proof of the existence of breathers for
general d-dimensional infinite nonlinear Klein–Gordon (KG) lattices based on Schauder’s
fixed-point theorem [58]. In detail, we discuss systems with on-site potentials V (x)
whose second derivative is bounded by |V ′′(x)| ≤ K|x|α for some constants K > 0 and
arbitrary power α > 0 [33], in their higher-dimensional set-up. Furthermore, as in the
one-dimensional case, for the aforementioned d-dimensional infinite KG lattices, we
prove not only existence but establish directly a requested degree of spatial localization
[51, 52, 65]. Other important differences with [33] are the following: First, we provide, to
our knowledge, a novel and general argument (compared to the one applied for the system
of [33] which combined the conditions the nonlinearity and phonon-spectrum properties),
in order to justify that solutions are non-trivial. Second, we not only consider breathers
which are exponentially localized, but we also cover the case of superexponential localiza-
tion [10] (i.e. the so-called single-site breathers). To this aim, suitable weighted function
spaces will be introduced, as in [33].

We also demonstrate that the above approach may cover the problem of the existence
of breathers for other examples of physically significant systems: systems of N coupled,
d-dimensional KG lattices and systems with long-range harmonic and/or anharmonic
interaction potentials. It may also apply to the existence of multi-site breathers arising
in the limit for unity weight function, that is, in the limit of the standard l2 sequence
spaces.

The presentation of the paper has as follows. In § 2, we discuss the nonlinear discrete
KG systems and the main assumptions on their interaction potentials. Section 3 con-
tains the description and properties of the functional setting which essentially involves
weighted sequence spaces and the proof of the main result. The proof combines Schauder’s
fixed-point theorem, with a contradiction argument based on the non-invertibility of
the involved compact operator (defined by the fixed-point map), which establishes the
existence of at least one non-trivial solution.

The proof also demonstrates that Schauder’s fixed-point theorem approach gives rise to
physically relevant and consistent restrictions on the frequency of the time-periodic solu-
tions. For example, in the case of hard on-site potential, the amplitude of the breathers
tends to zero when their frequency approaches the upper edge of the frequency band of
linear oscillations. In addition, the approach, if combined with an investigation of the

https://doi.org/10.1017/S0013091522000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000189


482 Dirk Hennig and Nikos I. Karachalios

contraction regime for the nonlinear map, may provide physically meaningful upper and
lower bounds for the norms of the existing breather solutions. An extension of the above
results is discussed in § 4, for the existence of breathers for systems of coupled KG lat-
tices. Section 5 deals with the existence of superexponentially localized breathers for the
important example of higher-dimensional KG lattices with purely anharmonic interac-
tion forces. In this type of system, the linearized system has no continuous spectrum. All
these examples suggest the potential wide applicability of the aforementioned combined
method. Section 6 summarizes the main findings and highlights further extensions for
future studies.

2. Description of the system

The nonlinear Klein–Gordon systems on d-dimensional infinite lattices are given by the
following set of coupled oscillator equations

d2un

dt2
= κ (Δdu)n − (U ′(u))n, n ∈ Z

d, (2.1)

where un is the displacement of an oscillator from its equilibrium position. The operator
(Δdu)n is the d-dimensional discrete Laplacian

(Δdu)n∈Zd =
∑

j

(un+j − 2un + un−j),

where j are the d unit vectors belonging to the d axes of Z
d. The function U(x) is the

on-site potential and prime ′ stands for the derivative with respect to the argument x.
Each oscillator interacts with all of its next neighbours and the strength of the interaction
is determined by the value of the parameter κ.

This system has a Hamiltonian structure related to the energy

H =
∑

n∈Zd

(
1
2
p2

n + (U(u))n

)
+

κ

2

∑
n∈Zd

∑
j

(un+j − un)2,

and it is time-reversible with respect to the involution p �→ −p.
Discrete breathers can be characterized as follows:

un(t + T ) = un(t), pn(t + T ) = pn(t), n ∈ Z
d, (2.2)

lim
|n|→∞

un = 0, lim
|n|→∞

pn = 0, (2.3)

Furthermore, un(t) has zero time average, i.e.

∫ T

0

un(t) dt = 0, n ∈ Z
d. (2.4)

The existence theorem will be proved under the following assumption:
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• A: The anharmonic on-site potential U : R → R possesses a minimum at x = 0 and
is at least twice continuously differentiable with

U(0) = U ′(0) = 0, U ′′(0) = ω2
0 ≥ 0. (2.5)

The solutions of the system obtained when linearizing equations (2.1) around the
equilibrium un = 0 are superpositions of plane wave solutions (phonons)

un(t) = exp(i(kn − ωt)), k ∈ [−π, π]d,

with frequencies

ω2(k) = ω2
0 + 4κ

d∑
j=1

sin2

(
kj

2

)
, kj ∈ [−π, π], j = 1, . . . , d.

Note that U ′′(0) = ω0 can be zero. An example is U(x) = (1/β)xβ , β > 2. The
(extended) plane wave solutions disperse. Therefore, the frequency Ω of a localized time-
periodic solution must satisfy the non-resonance condition Ω �= |ω(k)|/m for any integer
m ≥ 1. This requires Ω2 > ω2

0 + 4κd as a necessary condition for the existence of localized
time-periodic solutions of system (2.1).

We write for the anharmonic part of the on-site potential:

V (x) = U(x) − ω2
0

2
x2, (2.6)

and assume

|V ′(x)| ≤ K|x|1+α, |V ′′(x)| ≤ K0|x|α, ∀x ∈ R, (2.7)

and that the function V ′(x) is one-to-one on R.

3. Existence of exponentially localized breathers

a. Functional setting and proof of the main result.
In the following, we prove the existence of localized periodic solutions of system (2.1)

on the infinite d-dimensional lattice. To this end, some appropriate function spaces are
introduced, on which, the original problem is presented as a fixed-point problem for
a corresponding operator. Utilizing Schauder’s Fixed-Point Theorem, we establish the
existence of exponentially localized solutions, extending the approach followed in [33] to
the higher-dimensional systems.

In order to obtain the required spatial localization of the solutions, we introduce suit-
able weighted function spaces. First, we consider the exponentially weighted Hilbert space
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of square-summable sequences, l2w(Zd), defined as

l2w =

{
un ∈ R : ||u||2l2w :=

∑
n

wn|un|2
}

, (3.1)

with exponential weight wn = exp(λ|n|) and λ ≥ 0. Then, we denote by

X0 =

{
u ∈ L2

per([0, T ]; l2w) :
∫ T

0

un(t) dt = 0, n ∈ Z
d

}
,

the space of T−periodic square-integrable functions in time with zero time average, with
values in l2w. Evidently, X0 is a closed convex subspace of L2

per([0, T ]; l2w). We also consider
the Sobolev space

X2 =

{
u ∈ H2

per([0, T ]; l2w) :
∫ T

0

un(t) dt = 0, n ∈ Z
d

}
,

containing T−periodic functions of time assuming values in l2w which, together with their
weak derivatives up to second order are in X0. The above spaces are endowed with the
following norms:

||u||2X0
=

1
T

∫ T

0

||u(t)||2l2w dt,

||u||2X2
=

1
T

∫ T

0

(||u(t)||2l2w + ||Du(t)||2lw2 + ||D2u(t)||2l2w) dt.

For an element u ∈ X2, we consider the Fourier-series expansion of un(t) with respect to
time t and space variable n, determined by

un(t) =
∑

m∈Z\{0}
ûn,m exp(iΩmt), t ∈ [0, T ], ûn,m =

1
T

∫ T

0

un(t) exp(−iΩmt) dt, (3.2)

ûn,m = ûn,−m, (3.3)

and

un(t) =
1

(2π)d

∫ 2π

0

·· ·
∫ 2π

0

ũk(t) exp(ikn) dk1 · · · dkd, ũk(t) =
∑

n∈Zd

un(t) exp(−i k n),

(3.4)

ũk = ũ−k. (3.5)

Then, using (3.2)–(3.5), we have the following representation of u:

un(t) =
∑

m∈Z\{0}

1
(2π)d

∫ 2π

0

·· ·
∫ 2π

0

ˆ̃uk,m exp(ikn) dk1 · · · dkd exp(iΩmt). (3.6)

In the following, we facilitate two versions of Schauder’s fixed-point Theorem [58] given
by
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Theorem III.1. 1. (First version): Let G be a closed bounded convex subset of
a Banach space X. Assume that f : G �→ G is compact. Then, f has at least one
fixed-point in G.

2. (Second version): Let G be a closed convex subset of a Banach space X and f
a continuous map of G into a compact subset of G. Then, f has at least one
fixed-point.

We need the following results for compact operators on infinite-dimensional Banach
spaces which can be either linear or nonlinear (see [64]). The proofs generalize the corre-
sponding results for linear compact operators (see [16, 63]), to the nonlinear ones, as it is
evident that the linearity or nonlinearity of the operator is not involved in the arguments.

Lemma III.2. Let f : X �→ X be a compact operator on an infinite-dimensional
normed linear space X. Suppose g : X �→ X is bounded and continuous. Then fg and
gf are compact too.

Proof. First, consider the operator fg. Let {xn}n∈N be a bounded sequence in X.
Then by assumption {gxn}n∈N is bounded. Since f is compact, there exists a subsequence
{fgxnk

}k∈N that converges in X. Hence, fg is compact. In order to show that gf is
compact, take again a bounded sequence {xn}n∈N ∈ X. Then by the compactness of f
there exists a subsequence {fxnk

}k∈N of {fxn}n∈N that converges in X: fxnk
→ y as

k → ∞. Continuity of g implies gfxnk
→ g(y) which means that gfxnk

converges in X
and thus, gf is compact. �

Lemma III.3. A compact operator on an infinite-dimensional normed linear space
does not possess a bounded and continuous inverse.

Proof. Suppose f : X �→ X possesses an inverse f−1 that is bounded and continu-
ous. Then, by Lemma III.2, I = ff−1 = f−1f is also compact implying that the closed
unit ball in X is compact. However, then by the Riesz theorem X must be finite dimen-
sional, contradicting the hypothesis that X is infinite dimensional. Therefore, f is not
invertible. �

We now present the statement and proof of the main result.

Theorem III.4. Let condition A hold and suppose

|Ω| >
√

ω2
0 + 4dκ. (3.7)

Then, there exists at least one non-zero sequence x ≡ {xn}n∈Zd ∈ X2 and ||x||X0 ≤ R,
where

R ≤
[
Ω2 − (ω2

0 + 4dκ)
K

]1/α

:= Rmax. (3.8)

The sequence x is an exponentially localized, time-periodic solution of system (2.1) with
period T = 2π

Ω .
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Proof. We shall provide two alternatives of the proof by applying the two versions of
the Schauder’s fixed- point Theorem III.1. For this purpose, it is convenient to rewrite
Equation (2.1) using (2.6) as:

ün + ω2
0un − κ (Δdu)n = −(V ′(u))n. (3.9)

Thus, only the right-hand side of (3.9) features terms nonlinear in u. Ultimately, we shall
express (3.9) as a fixed-point equation in u.

I. First version of the proof:
We relate the left-hand side of (3.9) to the linear mapping: M : X2 → X0:

M(un) = ün + ω2
0un − κ (Δdu)n.

Then, applying the operator M to the Fourier elements exp(ikn) exp(iΩmt) in the
representation (3.6), we get that

M exp(ikn) exp(iΩmt) = νm(k) exp(ikn) exp(iΩmt),

where

νm(k) = −Ω2 m2 + ω2
0 + 4κ

d∑
j=1

sin2

(
kj

2

)
, m ∈ Z\{0}.

Since by assumption (3.7), Ω2 > ω2
0 + 4dκ, it is guaranteed that νm(k) �= 0, for all

m ∈ Z\{0} and for all k ∈ [0, 2π]d, and that the mapping M possesses an inverse M−1

obeying M−1 exp(i (Ωmt + kn)) = (1/νm(k)) exp(i (Ωmt + kn)). First, we write the norm
of the linear operator M−1 : X0 → X2,

||M−1||2X0,X2 = sup
||u||X0

=1

||M−1 u||2X2

= sup
||u||X0

=1

1

T

∫ T

0
[||M−1u(t)||2l2w + ||DM−1u(t)||2l2w + ||D2M−1u(t)||2l2w ] dt

= sup
||u||X0=1

1

T

∫ T

0

∑
n∈Zd

wn

(∣∣∣∣∣
∑
m′

1

(2π)d

∫ 2π

0
··

·
∫ 2π

0

ˆ̃uk,m

νm(k)
exp(ikn) exp(iΩmt) dk1 · · · dkd

∣∣∣∣∣
2

+

∣∣∣∣∣
∑
m′

1

(2π)d

∫ 2π

0
·· ·
∫ 2π

0

iΩmˆ̃uk,m

νm(k)
exp(ikn) exp(iΩmt) dk1 · · · dkd

∣∣∣∣∣
2

+

∣∣∣∣∣
∑
m′

1

(2π)d

∫ 2π

0
·· ·
∫ 2π

0

(iΩm)2 ˆ̃uk,m

νm(k)
exp(ikn) exp(iΩmt) dk1 · · · dkd

∣∣∣∣∣
2
⎞
⎠ dt.

(3.10)
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Then, by using (3.10), ||M−1||2X0, X2
can be estimated from above, as follows:

||M−1||2X0,X2
≤ sup

m∈Z\{0}
sup

k∈[0,2π]d

1 + (Ωm)2 + (Ωm)4

|νm(k)|2

· sup
||u||X0=1

1
T

∫ T

0

∑
n∈Zd

wn

∣∣∣∣∣
∑
m′

1
(2π)d

∫ 2π

0

···

∫ 2π

0

ˆ̃uk,m exp(ikn) exp(iΩmt) dk1 · · · dkd

∣∣∣∣
2

dt

≤ 1 + Ω2 + Ω4

(Ω2 − (ω2
0 + 4dκ))2

sup
||u||X0=1

||u||2X0
=

1 + Ω2 + Ω4

(Ω2 − (ω2
0 + 4dκ))2

≤ (1 + Ω2)2

(Ω2 − (ω2
0 + 4dκ))2

< ∞, (3.11)

verifying the boundedness of M−1. Note that we have used the notation
∑

l′ =
∑

l∈Z\{0}.
For later use, we note that

||M−1||X0,X0 ≤ 1
Ω2 − (ω2

0 + 4dκ)
. (3.12)

For the treatment of the nonlinear terms, we assign the nonlinear operator N : X0 → X0

given by
(N(u))n = −(V ′(u))n,

to the right-hand side of (3.9). We demonstrate that the operator N is continuous on X0.
To this end, we prove that N is Frechet differentiable at any u, with bounded derivative.
We have that

N ′(u) : h ∈ X0 �→ N ′(u)[h] = −V ′′(u)h ∈ X0,

and by using condition (2.7), we may derive the estimate

||N ′(u)[h]||2X0
=

1
T

∫ T

0

∑
n∈Zd

wn |(V ′′(u))n(t))hn(t)|2 dt

≤ 1
T

∫ T

0

∑
n∈Zd

wnK
2

0|un(t)|2α |hn(t)|2 dt

≤ K
2

0 sup
n∈Zd

max
t∈[0,T ]

|un(t)|2α ||h||2X0
= A2||h||2X0

,

where A2 = K
2

0 supn∈Zd maxt∈[0,T ] |un(t)|2α. Hence,

||N ′(u)||L(X0,X0) ≤ A, (3.13)

implying the (uniform) boundedness of the differential. Let us now use as the closed
convex subset Y0 of X0, its closed ball centred at 0 of radius R,

Y0 = {u ∈ X0 : ||u||X0 ≤ R} .
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Using again assumption (2.7), for the range of N on Y0, we get the bound

||N(u)||2X0
=

1
T

∫ T

0

∑
n∈Zd

wn|(V ′(u))n(t))|2 dt

≤ K
2 1
T

∫ T

0

∑
n∈Zd

wn|un(t)|2(α+1) dt

≤ K
2||u||2(α+1)

X0
≤ K

2
R2(α+1), ∀u ∈ Y0. (3.14)

For the application of Theorem III.1, our final step is to express problem (3.9) as a
fixed-point equation in terms of a mapping S : Y0 → Y0:

x = M−1 ◦ N(x) ≡ S(x). (3.15)

Clearly, S is continuous on X0, as relations (3.11) and (3.13) establish that its constituents
M−1 and N are continuous. Next, we show that S(Y0) ⊆ Y0. Using (3.11) and (3.14), we
have

||S(x)||X0 = ||M−1(N(x))||X0 ≤ ||M−1||X0,X2 · ||N(x)||X0

≤ K

Ω2 − (ω2
0 + 4dκ)

||x||α+1
x0

, ∀x ∈ X0, (3.16)

which implies that S is bounded on X0. Then, for all x ∈ Y0, estimate (3.16) implies that

||S(x)||X0 ≤ K

Ω2 − (ω2
0 + 4dκ)

Rα+1 ≤ R, ∀x ∈ Y0, (3.17)

assuring by assumption (3.8), that indeed

S(Y0) ⊆ Y0.

As M−1 maps X0 to X2 � X0 (compactly embedded), is compact, while N : X0 → X0

is bounded and continuous. We also have that S(Y0) ⊆ Y0 ∩ X2. Therefore, Lemma III.2
implies that the map S = M−1 ◦ N , viewed as a map S : Y0 ⊆ X0 �→ Y0 ⊆ X0, is compact.
The first version of Schauder’s fixed point theorem implies then, that the fixed-point
equation x = S(x) has at least one solution.

It remains to show the existence of at least one non-trivial fixed-point solution.
Consider the operator S. Suppose that the kernel of the operator S − I is trivial. Then,

for every x ∈ Y0\ {0} ⊆ X0\ {0}, there is y �= 0, y ∈ X0 solving the inhomogeneous system

S(x) − x = y �= 0. (3.18)

This is equivalent to S(x) = x + y for all x ∈ Y0\ {0} ⊆ X0\ {0}. Since ||S(x)||X0 = ||x +
y||X0 and S : Y0 ⊆ X0 �→ Y0 ⊆ X0, we have that x + y in Y0.

Recall that S(x) = M−1(N(x)) where M−1 is linear and N is nonlinear. Since the
function −V ′(x) is one-to-one on R, the operator N is one-to-one also, implying, in
conjunction with M−1(x) �= 0 for x �= 0, that the compact operator S = M−1N is one-
to-one on Y0. Let Z0 = S(Y0) ⊂ Y0. Then T : Y0 �→ Z0, T (x) = S(x) is bijective, that is,
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invertible. But as Y0 is infinite dimensional and T : Y0 ⊆ X0 �→ Z0 ⊆ Y0 is compact, from
Lemma III.3 follows that T is not invertible. Conclusively, the kernel of S − I is not
trivial, so that there is x �= 0 solving S(x) − x = 0. Hence, the fixed-point equation (3.15)
possesses at least one non-trivial solution. �

II. Second version of the proof:
For the application of the second version of Schauder’s fixed-point theorem, we verify

that the range of S is contained in a compact subset of Y0. We consider the space

X0,0 =

{
u ∈ L2

per([0, T ]; l2) |
∫ T

0

un(t) dt = 0, n ∈ Z
d

}
.

Representing N(u) ∈ Y0 in terms of its spatial and temporal Fourier-transforms as

(N(u))n(t) =
∑

m∈Z\{0}

1
(2π)d

∫ 2π

0

·· ·
∫ 2π

0

ˆ̃Nk,m exp(ikn) dk1 · · · dkd exp(iΩmt), (3.19)

the Fourier coefficients of M−1(N(u)) fulfil for all u ∈ Y0, for all k ∈ [0, 2π]d, and for all
m ∈ Z\{0}, the estimate∣∣∣∣∣∣∣∣∣∣∣

ˆ̃Nk,m

−Ω2 m2 + ω2
0 + 4κ

d∑
j=1

sin2

(
kj

2

)

∣∣∣∣∣∣∣∣∣∣∣

2

≤
∑

m∈Z\{0}
1

(2π)d

∫ 2π

0

·· ·
∫ 2π

0

∣∣∣ ˆ̃Nk,m

∣∣∣2 dk1 · · · dkd

m4(Ω2 − (ω2
0 + 4dκ))2

=
‖ N(u) ‖2

X0,0

m4(Ω2 − (ω2
0 + 4dκ))2

. (3.20)

Since l2w ⊂ l2 and the inequality ||u||l2 ≤ ||u||l2w holds, we get∣∣∣∣∣∣∣∣∣∣∣
ˆ̃Nk,m

−Ω2 m2 + ω2
0 + 4κ

d∑
j=1

sin2

(
kj

2

)

∣∣∣∣∣∣∣∣∣∣∣

2

≤ K
2
R2(α+1)

m4(Ω2 − (ω2
0 + 4dκ))2

≤
(

R

m2(1 + Ω2)2

)2

.

(3.21)
Hence, we conclude that S maps Y0 into the subset

Y0,c =

⎧⎨
⎩u = {u}n∈Zd ∈ Y0, un(t) =

∑
m∈Z\{0}

1
(2π)d

∫ 2π

0

···

∫ 2π

0

ˆ̃uk,m exp(ikn) dk1 · · · dkd exp(iΩmt) :

∣∣∣ˆ̃uk,m

∣∣∣ ≤ R

m2(1 + Ω2)

}
,
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which is compact in Y0. That is, the operator S maps closed convex subsets Y0 ⊂ X0 ⊂
L2

per((0, T ); l2) into compact subsets Y0,c of Y0. The second version of Schauder’s fixed-
point theorem implies then, that the fixed-point equation u = S(u) has at least one
non-trivial solution, and the proof is finished. �

b. A localization ring in X0: upper and lower bounds for the norms of non-trivial
solutions.

The proof of Theorem III.4 provides an upper bound for the norm of the breather
solution. Strengthening the condition (3.7) to

Ω2 > ω2
0 + 4dκ + K, (3.22)

enables for the identification of a ring in X0 containing non-trivial solutions with fre-
quencies satisfying (3.22). As in [33], we re-examine the definition of the map S in (3.15)
and estimate (3.17) in order to derive a contraction regime for the map S. It follows that
if we require

K

Ω2 − (ω2
0 + 4dκ)

Rα+1 < 1,

then, we get that when

R ≤
[
Ω2 − (ω2

0 + 4dκ)
K

] 1
1+α

:= Rcrit, (3.23)

there exists as the unique solution, only the trivial one, u = 0. To be consistent with the
bound Rmax defined in (3.8), and in order to exclude the trivial solution, we need to
assume the enhanced condition on the frequency (3.22). Then, under the extra condition
(3.22), it holds that Rcrit < Rmax and non-trivial solutions with frequencies satisfying
(3.22) are located in the ring RE of X0, determined by

RX0 = {u ∈ X0 : Rcrit ≤ ||u||X0 ≤ Rmax} . (3.24)

Remark III.5. 1. From (3.8) we infer that the amplitude of the breathers in sys-
tems with hard on-site potential goes to zero as their frequency approaches the
upper edge of the phonon band, i.e. Ω → (

√
(ω2

0 + 4dκ)+. On the other hand, we
observe that for fixed d and κ, in the limit K → 0,

lim
K→0

Rcrit = ∞, lim
K→0

Rmax = ∞. (3.25)

The limits (3.25) are physically relevant (see also [33] for the one-dimensional case):
since for K → 0, the system approximates its linear limit, spatially extended ‘almost
harmonic’ modes result instead of localized ones, implying the ‘unboundness’ of the
weighted norms.
We also observe that for fixed K, d and κ,

lim
Ω→∞

Rcrit = lim
Ω→∞

Rmax = ∞. (3.26)

Yet the limits (3.26) are physically relevant in the following context: at least for hard
interaction potentials, in the limit of arbitrary large frequency, a type of ’energy’
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of the solution, measured herein in the norm of X0, should become also arbitrarily
large. This growth of the weighted norm can be also associated with energy con-
centration phenomena due to enhanced localization, which may lead accordingly
to phenomena of quasi-collapse. The quasi-collapse phenomenon is particularly
relevant in higher-dimensional nonlinear lattices [15].
Both of the limiting examples (3.25) and (3.26) suggest a coherent dependence of
Ω on R and the other parameters, as a result of the functional dependence of R
on all the parameters in the inequality (3.17) which leads to the derivation of the
upper and lower bounds in X0.

2. The localized solutions on the infinite lattice Z
d are represented by (infinite) square-

summable sequences, i.e. exponential decay of the solutions for |n| → ∞ takes place
in the sense of the exponentially weighted l2 norm. Notably, for weight function
wn ∼ 1, i.e. λ → 0, our proof establishes the existence of general higher-dimensional
localized patterns (e.g. multi-site breathers) [20, 23, 42, 43].

3. Since the obtained time-periodic H2 fixed-point-solutions are by Sobolev embed-
dings C1 in time and since the operator x �→ V ′(x) maps C1 into itself, one
concludes from Equation (3.9) that ẍ ∈ C1 are classical solutions.

4. Breathers in systems of coupled KG lattices

The fixed-point method can also be extended to prove the existence of (exponentially
localized) breather solutions in systems of N diffusively coupled nonlinear KG lattices,
of the form

d2ul
n

dt2
= κ (Δdu

l)n − U ′(ul
n) + η(ul+1

n + ul−1
n − 2ul

n), n ∈ Z
d, 1 ≤ l ≤ N, (4.1)

where η is the strength of the linear (diffusive) lattice-lattice interaction. For η = 0 system
(4.1) decomposes into N , d−dimensional KG lattices each of them determined by (2.1).

We have the following statement:

Theorem IV.1. Let condition A hold and suppose

|Ω| >
√

ω2
0 + 4dκ + 4η. (4.2)

Then, there exist N non-zero sequences xl ≡ {xl
n}n∈Zd ∈ X2, 1 ≤ l ≤ N , and ||xl||X0 ≤ R,

where

R ≤
(

Ω2 − 4dκ − 4η

K

)1/α

.

The sequences xl are solutions of system (4.1). They are exponentially localized along
the N KG lattices, and time-periodic with period T = 2π

Ω .

We use the notation from § 3 and denote by XN
0 and XN

2 the extended function
spaces XN

0 = X0 × . . . × X0, XN
2 = X2 × . . . × X2 on which we express system (4.1) as
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an operator equation Mcu = N(u). The linear and nonlinear operator is determined by

Mcu
l
n = ül

n + ω2
0 − κ (Δdu

l)n − η(ul+1
n + ul−1

n − 2ul
n), n ∈ Z

d, 1 ≤ l ≤ N, (4.3)

and
(N(u))l

n = −U ′(ul
n), n ∈ Z

d, 1 ≤ l ≤ N, (4.4)

respectively. We use the Fourier representation

ul
n(t) =

∑
m �=0

1
(2π)1+d

∫ 2π

0

∫ 2π

0

·· ·
∫ 2π

0

ǔj
k,m exp(i kn) exp(i jl) dk1 · · · dkddj exp(imΩt).

(4.5)
Applying the linear operator Mc to the Fourier elements exp(i kn) exp(i jl) exp(imΩt),
gives

Mc exp(i kn) exp(i jl) exp(imΩt) =

(
−(mΩ)2 − 4κ

d∑
p=1

sin2

(
kp

2

)
− 4η sin2

(
j

2

))

exp(i kn) exp(i jl) exp(imΩt). (4.6)

By hypothesis (4.2), it is assured that Mc possesses a left inverse M−1
c , determined by

M−1
c exp(i kn) exp(i jl) exp(imΩt) =

1
ν l

m(k)
exp(i kn) exp(i jl) exp(imΩt), (4.7)

with

ν l
m(k) = (mΩ)2 − 4κ

d∑
p=1

sin2

(
kp

2

)
− 4η sin2

(
j

2

)
. (4.8)

Then, the remainder of the proof of Theorem IV.1 follows the lines in the proof of
Theorem III.4.

Remark IV.2. In the case of system (4.1), a localization ring similar to (3.24) can
be identified in X0 for exponentially breathers solutions with frequencies satisfying Ω2 >
4dκ + 4η + K.

5. Nonlinear interactions and superexponential localization

In this section, we treat higher-dimensional KG lattices with purely nonlinear interaction
terms, of the form

d2un

dt2
=
∑

j

W ′(un+j − un) −
∑

j

W ′(un − un−j), n ∈ Z
d, (5.1)

The function W (x) describes the anharmonic interaction potential between nearest
neighbours. In the case d = 1, examples of discrete KG systems for which superexpo-
nentially localized breathers (i.e. solutions decaying faster than any exponential) exist,
involve anharmonic interaction forces of the form (xn+1 − xn)3 − (xn − xn−1)3 [30, 41].
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Superexponentially localized travelling (solitary) waves for DGK systems with anhar-
monic interaction forces |xn+1 − xn|m sign(xn+1 − xn) − |xn − xn−1|m sign(xn − xn−1)
with m ≥ 1, were found in [3].

Concerning the interaction potential, we make the following assumption:

• B: The anharmonic interaction potential W (x) has a minimum at x = 0 and is at
least twice continuously differentiable on R, with W (0) = W ′(0) = W ′′(0) = 0. We
further assume that W satisfies for some constant Ks > 0 and γ > 0, the relation

|W ′(x)| ≤ Ks|x|1+γ , ∀x ∈ R. (5.2)

As a consequence of the absence of linear interaction terms, plane wave (phonon) solutions
to the linearized system do not exist. That is, the linearized system has no continuous
spectrum. This fact excludes resonances with the internal breather frequency, allowing
for the occurrence of superexponential localization. Therefore, what used to be the non-
resonance condition in the presence of a continuous spectrum in the previous sections,
namely (3.7) and (4.2) for the existence of breather solutions with frequency Ω, changes
here to |Ω| �= 0.

We use the same functional analysis set-up as in § 3, except for

l2s =

{
un ∈ R : ||u||2l2s :=

∑
n

sn|un − un−1|2
}

, (5.3)

with the superexponential weight

sn = exp(λ|n| ln(1 + μ|n|)), λ ≥ 0, μ ≥ 0. (5.4)

We use the spaces

Xs
0 =

{
u ∈ L2

per([0, T ]; l2s) :
∫ T

0

un(t) dt = 0, n ∈ Z

}
,

and

Xs
2 =

{
u ∈ H2

per([0, T ]; l2s) :
∫ T

0

un(t) dt = 0, n ∈ Z

}
.

Regarding the existence of superexponentially localized breather solutions in system (5.1),
we have the following theorem:

Theorem V.1. Let conditions A and B hold, and suppose

|Ω| �= 0. (5.5)

System (5.1) possesses at least one superexponentially localized time-periodic solution,
represented by a non-zero sequence x ≡ {xn}n∈Zd ∈ Xs

2 and ||x||Xs
0
≤ R, where

R ≤
(

Ω2

22+γ d Ks

)1/γ

(5.6)

and period T = 2π
Ω .
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Proof. The proof utilizes the first version of Schauder’s fixed-point theorem and pro-
ceeds analogously to the proof of Theorem III.4, so that we only present the essential
steps. We cast system (5.1) in the from:

ün =
∑

j

W ′(un+j − un) −
∑

j

W ′(un − un−j), (5.7)

so that the left-hand side of (5.7) is related to the linear mapping: Ms : Xs
2 → Xs

0 :

Ms(un) = ün.

Then, applying the operator Ms to the Fourier elements exp(iΩmt) of the representation
(3.2), (3.3), we get that

Ms exp(iΩmt) = νm exp(iΩmt), νm = −Ω2 m2, m ∈ Z\{0}.

The operator Ms possesses an inverse M−1
s , obeying M−1

s exp(iΩmt) = (1/νm) exp(iΩmt).
For the norm of the linear operator M−1

s : Xs
0 → Xs

2 one derives the upper bound:

||M−1
s ||2Xs

0 ,Xs
2
≤=

1 + Ω2 + Ω4

Ω4
≤ (1 + Ω2)2

Ω4
< ∞, (5.8)

verifying the boundedness of M−1
s . When we consider M−1

s as a map M−1
s : Xs

0 → Xs
0 ,

we have the estimate

||M−1
s ||Xs

0 ,Xs
0
≤ 1

Ω2
. (5.9)

We associate with the right-hand side of (5.7) the nonlinear operator N : Xs
0 → Xs

0 ,
as

(N(u))n =
∑

j

W ′(un+j − un) −
∑

j

W ′(un − un−j).

Continuity of the operator N on X0 is proven in an analogous vein as in the proof of
Theorem III.4.

We proceed by considering the closed convex subset Y s
0 of Xs

0 determined by its closed
ball centred at 0 of radius R,

Y s
0 = {u ∈ Xs

0 : ||u||X0 ≤ R} .

With the aid of the continuous embeddings

lps ⊂ lqs , ||x||lqs ≤ ||x||lps , 1 ≤ p ≤ q ≤ ∞,

the Banach algebra property of l2s , i.e. ||xy||l2s ≤ ||y||l2s ||y||l2s for all x, y ∈ l2s , and the
monotonicity exp(λ|n| ln(1 + μ|n|)) < exp(λ|n + 1| ln(1 + μ|n + 1|)), we obtain for the
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range of N on Y s
0 , the estimate

||N(u)||Xs
0
=

⎛
⎝ 1

T

∫ T

0

∑
n∈Z

wn

∑
j

|W ′(un+j(t)−un(t)

⎞
⎠−

∑
j

W ′(un(t) − un−j(t))|2 dt)1/2

≤ 2dKs(2R)γ ||u||Xs
0
≤ 2dKs(2R)1+γ , ∀u ∈ Y s

0 . (5.10)

The final step of the proof is to express problem (5.7) as a fixed-point equation, in
terms of a mapping Y s

0 → Y s
0 :

x = M−1
s ◦ N(x) ≡ S(x).

S is continuous on Xs
0 as its ingredients M−1

s and N are continuous. Now we confirm
that S(Y s

0 ) ⊆ Y s
0 . With the help of (5.9) and (5.10), one gets

||S(x)||Xs
0

= ||M−1
s (N(x))||Xs

0
≤ ||M−1

s ||Xs
0 ,Xs

0
· ||N(x)||Xs

0

≤ 2dKs(2R)1+γ

Ω2
≤ R, ∀x ∈ Y s

0 , (5.11)

affirming by assumption (5.6), that

S(Y s
0 ) ⊆ Y s

0 .

Since M−1
s maps Xs

0 to Xs
2 � Xs

0 , it follows that S(Y s
0 ) ⊆ Y s

0 ∩ Xs
2 . Thus, when consid-

ered as a map S : Y s
0 ⊆ Xs

0 �→ Y s
0 ⊆ Xs

0 , S = M−1
s ◦ N is compact. By the first version

of Schauder’s fixed-point theorem and the argumentation regarding the existence of non-
trivial solutions in the proof of Theorem III.4, the fixed-point equation x = S(x) has at
least one non-zero solution. �

Remark V.2. In contrast to the superexponential decay of the breather solutions in
this section, in the previous § 3 and § 4, where the linearized system possesses a continuous
spectrum (phonon band), the breather solutions decay ‘only’ exponentially because their
frequencies are situated in the discrete (point) spectrum outside the continuous spectrum.
Solutions associated with frequencies in the discrete spectrum are exponentially localized.
Hence, the superexponential weight (5.4) does not work in § 3 and § 4.

Remark V.3. We remark that a localization ring similar to (3.24) can be identified in
Xs

0 for superexponentially breathers solutions with frequencies satisfying Ω2 > 22+γdKs.

6. Conclusions

In summary, we have proved the existence of non-trivial, exponentially and superexponen-
tially breather solutions for general nonlinear KG systems on the infinite lattice Z

d, d ≥ 1.
The existence problem has been reformulated as a fixed-point equation (involving the rel-
evant linear and nonlinear operators associated with the system), on weighted sequence
spaces. This fixed-point problem has been solved utilizing two versions of Schauder’s
Fixed-Point Theorem, combined with a contradiction argument for the invertibility of the
‘fixed-point map’, in order to prove the existence of at least one non-zero solution. The
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method provides under meaningful non-resonant conditions, physically relevant energy
bounds for the solutions. The class of systems on which the method was implemented
in the present paper suggests its potential wide applicability. For example, it can also
be applied to establish the existence of breather solutions in systems with linear and/or
nonlinear long-range interactions

d2un

dt2
=
∑
m>0

κm(W ′(un+m − un) + W ′(un−m − un)) − (U ′(u))n, n ∈ Z
d.

For further use of our methods, one may consider Fermi–Pasta–Ulam systems and Dis-
crete Nonlinear Schrödinger models with various types of nonlinearities, other degrees of
localization such as algebraic (which can be relevant for the existence of discrete rational
solutions [4, 5]) lattices in more complicated geometries [8, 9, 17, 45, 46], as well as, the
existence of compact-like discrete breathers [3, 30, 41]. Such investigations are in progress
and will be reported elsewhere.
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González and P. G. Kevrekidis, Nonlinear localized modes in two-dimensional
electrical lattices, Phys. Rev. E 88 (2013), 022912.

28. S. Flach and A. V. Gorbach, Discrete breathers – Advances in theory and applications,
Phys. Rep. 467 (2008), 1–116.

29. J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observa-
tion of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,
Nature 422 (2003), 147.

30. A. V. Gorbach and S. Flach, Compactlike discrete breathers in systems with nonlinear
and nonlocal dispersive terms, Phys. Rev. E 72 (2005), 056607.

31. D. Hennig, Existence and non-existence of breather solutions in damped and driven
nonlinear lattices, AIP Advances 3 (2013), 102127.

32. D. Hennig, Localised time-periodic solutions of discrete nonlinear Klein-Gordon systems
with convex on-site potentials, J. Fixed Point Theory Appl. 23 (2021), 31.

https://doi.org/10.1017/S0013091522000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000189


498 Dirk Hennig and Nikos I. Karachalios

33. D. Hennig and N. I. Karachalios, Existence of exponentially spatially localized
breather solutions for lattices of nonlinearly coupled particles: Schauder’s fixed-point
theorem approach, J. Math. Phys. 62 (2021), 123506.

34. G. James, Centre manifold reduction for quasilinear discrete systems, J. Nonlinear Sci.
13 (2003), 27–63.

35. G. James, B. Sánchez-Rey and J. Cuevas, Breathers in inhomogeneous nonlinear
lattices: an analysis via center manifold reduction, Rev. Math. Phys. 21 (2009), 1–59.

36. G. James, P. G. Kevrekidis and J. Cuevas, Breathers in oscillator chains with Hertzian
interactions, Physica D 251 (2013), 39–59.

37. M. Kastner and J.-A. Sepulchre, Effective Hamiltonian for traveling discrete breathers
in the FPU chain, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), 719–734.

38. P. G. Kevrekidis, Non-linear waves in lattices: past, present, future, IMA J. Appl. Math.
76 (2011), 389–423.

39. P. G. Kevrekidis, D. E. Pelinovsky and A. Saxena, When linear stability does not
exclude nonlinear instability, Phys. Rev. Lett. 114 (2015), 214101.

40. P. G. Kevrekidis, J. Cuevas-Maraver and D. E. Pelinovsky, Energy criterion for
the spectral stability of discrete breathers, Phys. Rev. Lett. 119 (2016), 094101.

41. Y. Kivshar, Intrinsic localized modes as solitons with a compact support, Phys. Rev. E
48 (1993), R43(R).

42. V. Koukouloyannis and R. S. MacKay, Existence and stability of 3-site breathers in
a triangular lattice, J. Phys. A: Math. Gen. 38 (2005), 1021.

43. V. Koukouloyannis, P. G. Kevrekidis, J. Cuevas and V. Rothos, Multibreathers in
Klein–Gordon chains with interactions beyond nearest neighbors, Physica D 242 (2013),
16–29.

44. R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or
Hamiltonian networks of weakly coupled oscillators, Nonlinearity 7 (1994), 1623–1643.
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