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Determining characteristic growth rates for water waves travelling more slowly than
the wind has continued to be a key unresolved problem of air–sea interaction for over
half a century. Analysis of previously reported and recently acquired laboratory wave
data shows a systematic decline in normalized wave growth with increasing mean wave
steepness that has not previously been identified. The normalized growth dynamic
range is comparable with previously observed scatter amongst other laboratory data
gathered in the slow wave range. Strong normalized growth rates are observed at low
wave steepnesses, implying an efficient wave-coherent tangential stress contribution.
Data obtained during this study show quantitative agreement with the predictions of
others of the interactions between short wind waves and the longer lower-frequency
waves. Measured normalized wave growth rates are consistent with numerically
predicted growth due to wave drag augmented by significant wave-coherent tangential
stress.

1. Introduction
An intriguing feature of all open water surfaces, subject to any but the lightest

of winds, are the wind waves that form with lengths ranging from millimetres to
hundreds of metres, given sufficient fetch and duration. Detailed investigations over
at least 50 years have revealed the key role that waves play in the physical and
constituent coupling between air and water (Jähne & Haußecker 1998; Janssen 2004).
A particularly important class of waves within the field of air–sea interaction are
what are termed slow waves.

Slow waves propagate at a speed c that is much lower than the prevailing wind
velocity Uz specified at a height z above the mean surface (in terms of wind measured
at the customary reference height of 10 m, the slow spectral component will consist
of waves with c/U10 < 0.2). Present evidence is that it is the slow portion of the
wave spectrum that supports a significant proportion of the wave-induced stress
(Donelan 1990, p. 267; Makin & Kudryavtsev 2002; Janssen 2004, p. 214); is the
primary contributor to enhanced air–water gas exchange and global geochemical
cycling (Jähne & Haußecker 1998); and that plays a dominant role in many of the
techniques used to sense sea surface and oceanic wind behaviour remotely (Robinson
& Guymer 1996).
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In spite of the widespread occurrence and the significant role of slow wind waves
in the coupling of the atmosphere to open water, there is also a significant lack
of fundamental understanding of key aspects of their behaviour. Perhaps the most
important of these is the discrepancy between theoretical predictions of the wind-
induced growth of slow non-breaking gravity waves forced by wind (Belcher & Hunt
1998) and available physical measurements. Van Duin (1996) concluded that ‘present
theories for wave generation by turbulent air flow do not take into account an (as
yet unknown) essential wave growth mechanism, which enhances the growth rate
significantly.’

Peirson, Garcia & Pells (2003) found strong wave attenuation when the wind is
in the direction opposite to that of the waves. Also, a systematic relationship was
observed between the mean wave steepness and energy fluxes from the wave field. This
suggests that for the condition of wind aligned with slow waves and their consequent
growth, further investigation is warranted into the significance of wave steepness in
wind-forced wave behaviour.

The numerical study of Mastenbroek (1996) demonstrated a much stronger increase
in the normalized growth rates of slow waves of finite steepness (0.05 <ak < 0.3) in
response to mean steepness than occurred in response to wave age – the conventional
normalizing parameter. Belcher (1999) found theoretically that by including a wave-
coherent tangential stress contribution, the normalized growth of very low steepness
waves decreases with increasing steepness. Donelan et al. (2006) found steepness to
be an important factor in determining measured form drag levels above waves in the
field.

This contribution examines the significance of mean steepness in determining
wave growth rates, using previously and recently acquired experimental data. Mean
wave steepness is shown to be an important factor determining the normalized
growth rates of slow waves. In this paper, we review previous relevant investigations;
describe new measurements obtained to resolve key outstanding issues; interpret these
observations in the context of available theoretical models of wave growth; summarize
the implications; and, identify key strategic future investigations.

2. Background
2.1. A qualitative description of wind-forced slow wave behaviour

As intrinsic wave frequency f increases within the slow wave domain, there are
important transitions in wind-forced slow wave behaviour according to wavelength λ
and mean steepness ak (a being wave amplitude and k = 2π/λ). Here, we provide a
brief summary of the present understanding of the key transitions that occur within
this complex domain (Kinsman 1984, pp. 46, 47).

The action of wind injects energy into the water surface via variations in pressure
and surface shear. Viscous shear and propagating surface curvature in the presence
of viscosity induces vorticity and a consequent energy dissipation (Longuet-Higgins
1992). Consequently, when wind forcing is weak (<3 m s−1), viscous dissipation in the
water is the dominant process and open water surfaces appear glassy and dominated
by any pre-existing gravity wave fields.

When the winds exceed approximately 5m s−1 (except at very short fetches ∼ < 3 m),
the surface becomes dominated by the microscale waves, accompanied by their
attendant capillaries and lapsing in and out of a microscale breaking state (Katsaros
& Atatürk 1992). It is unusual to observe fields of freely propagating capillary ripples,
except at very short fetch, prior to gravity-wave formation. At approximately the
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same wind speed threshold but at longer fetches, air entraining breaking commences
(Holthuijsen & Herbers 1986, figure 7).

This paper discusses the response of slow waves to wind forcing. Whilst the role
of surface tension in determining the dispersion of very short (slow) waves is widely
appreciated (Phillips 1977, p. 37ff), surface tension and viscosity both indirectly play
a key role in the appearance, behaviour and interactions of slow waves.

For very short waves (<50 mm approximately), surface tension effects are so strong
and viscous dissipation is so high that they are rarely observed to break, either owing
to direct wind-induced growth or long-wave modulation. Waves of slightly longer
scale (approximately 50 mm to 500 mm) can break, but they can do so with negligible
air entrainment – a process termed microscale breaking (Banner & Phillips 1974).
Waves with lengths greater than approximately 0.5 m, break with air entrainment as
popularly appreciated.

Another peculiar feature of waves with lengths of approximately 50–100 mm is
that as they steepen, small parasitic capillary waves develop on their downwind
faces. Parasitic capillary waves derive their energy from the underlying gravity wave.
The details of parasitic wave formation have been described theoretically (Longuet-
Higgins 1995). Blockage of capillary waves on short steep gravity waves (Shyu &
Phillips 1990) contributes to parasitic capillary occurrence and the smooth appearance
of the windward face and crests of steep short gravity waves.

In spectral systems, longer waves modulate shorter waves (Longuet-Higgins &
Stewart 1960) and the modulation of short-wave surface curvature produces an
uneven distribution of viscous dissipation along the long waves. Steeper short waves
can break, thereby inducing two significant changes in wind–wave interaction: first,
there is a significant increase in the momentum flux from wind to the waves (Banner
1990), and secondly, breaking induces a strong flux of momentum from the waves
to the subsurface current (Duncan 1983; Rapp & Melville 1990; Banner & Peirson
2007).

2.2. Wave growth theory

Development of a wave field in response to wind forcing is expressed conventionally
as an interaction of multiple processes, all of which have proved difficult to quantify.
Using the notation of Komen et al. 1994 (§ I.2.5, p. 25ff), the local total energy density
E of a spectrum surface wave propagating past a point can be evaluated as:

E = ρwg〈η2〉 = ρwg

∫ ∫
Φ(ω, θ) dω dθ, (1)

where ρw is the density of water, g is the acceleration due to gravity, Φ is the spectral
energy density as a function of wave direction θ and wave angular frequency ω = 2πf

and:

Φ(ω, θ) = 1
2
a(ω, θ )2. (2)

The development of the wave field is usually described by the wave energy balance
equation (Komen et al. 1994, pp. 33, 47):

ρwg
dΦ(ω, θ)

dt
= Sin(ω, θ) + Snl(ω, θ) + Sdiss(ω, θ), (3)

where Sin is energy input to the wave field by the wind, Snl are energy transfers
between wave frequencies due to nonlinear wave–wave interactions, and Sdiss

(a negative quantity) is the loss of energy from the wave field. The left-hand side of
(3) uses the total derivative and therefore considers changes moving with the group
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velocity of the spectral components. Direct measurement of any of the three terms
on the right-hand side of (3) has proved extremely difficult. The subject of this
investigation is the first term on the right-hand side of (3) for unidirectional wave
fields co-aligned with the prevailing wind and, unless explicitly stated, directional
effects will be neglected.

The action of wind induces both momentum and energy fluxes to open water
surfaces. The total momentum flux or the wind stress τ is the sum of the tangential
stress (τtang) and the form drag (τform):

τ = τtang + τform = 〈τvisc/
√

1 + (∂η/∂x)2〉 + 〈ps∂η/∂x〉, (4)

where τvisc is the local interfacial viscous shear stress and ps is the pressure at the
interface, ∂η/∂x is the local interface slope and the angle brackets denote temporal
or spatial averaging.

There is wind-induced energy flux to both the waves and the surface currents.
Assuming linear spectral decomposition of the wave field, the source term in (3)
becomes:

Sin(ω) = 〈τviscus(ω)〉 + 〈ps∂η/∂x(ω)〉c(ω), (5)

where us(ω) is the surface velocity coherent with frequency component ω,
∂η/∂x(ω) = −a(ω)k(ω) sin(k(ω)x − ωt) and c(ω) is the wave speed. When normalized
by wave speed, the first term of (5) is termed the wave-coherent tangential stress
τwc(ω) (see Longuet-Higgins 1969), and (5) becomes:

Sin(ω) = (τwc(ω) + τform(ω))c(ω) = τwave(ω)c(ω). (6)

Consequently, the momentum flux leading to wave growth τwave(ω) has two
components, the entire form drag and the wave coherent tangential stress.

Theoretical analysis of wave growth has primarily been led by the critical-layer
theory developed by Miles (1957, 1962, 1993, 1996). Miles developed an analytical
expression for the energy flux induced by airflow over a surface wave of small
amplitude in the presence of a vertical logarithmic variation wind velocity above the
surface. His expression takes the form:

Sin

ωE
= β

ρa

ρw

(
ua

∗
c

)2

, (7)

where Sin is the energy input from the wind, β is a normalized growth coefficient, ρa

is the density of air and the friction velocity is ua
∗ =

√
τ/ρa .

Miles’ (1996) theory yields estimates of wind-wave growth as a function of wave age
that are approximately 70% of the mean of assembled measurements (Plant 1982) by
analysis of the air flow behaviour at the critical layer (where the wind speed is equal
to the wave speed). This is a remarkable accomplishment given that the complexity
of surface behaviour summarized in (4) to (6) is not considered. Van Gastel, Janssen
& Komen (1985) improved the Miles (1962) analysis of the initial growth of gravity–
capillary waves and obtained growth rates in reasonable agreement with the available
measurements. Application of low-Reynolds-number turbulence models by Meirink
& Makin (2000) yielded similar growth rates, and no further detailed consideration
of the initial growth problem will be made here.

Further detailed analysis of the Miles theory, when applied to slow gravity waves,
has shown that the critical height is too close to the wave surface for the Miles
mechanism to be the primary contributor to finite-amplitude wave growth (Belcher
& Hunt 1993; Miles 1996).
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2.3. Wave growth due to form drag

Belcher & Hunt (1993) made theoretical estimates of other potentially significant
interactions and found that the most significant contributor to low-steepness slow-
wave growth was asymmetric surface pressure distribution which could be induced by
non-separated airflow over the wave (so-called non-separated sheltering). This analysis
reinvigorated interest in the work of Jeffreys (1925), who had previously developed
an alternative theoretical expression for wave growth in the presence of separated
airflow over the waveforms:

Sin = 1
2
ρair sz(ak)2c3

∣∣∣∣Uz

c
− 1

∣∣∣∣
(

Uz

c
− 1

)
, (8)

where Uz and sz are the wind speed and sheltering coefficient referenced at an elevation
z above the mean surface.

However, Belcher & Hunt’s theoretically predicted slow-wave growth rates were
only approximately 50 % of the values measured experimentally. Belcher & Hunt
(1993) also exposed a weakness of earlier numerical modelling of this problem: that
the advection of turbulence over the undulating surface cannot be neglected, otherwise
overestimates of wave growth rates are obtained. Subsequent detailed numerical model
investigations (Mastenbroek 1996; Li, Xu & Taylor 2000) confirmed the findings of
Belcher & Hunt and the significant difference between theoretical and measured
growth rates of slow gravity waves remains (van Duin 1996).

2.4. Wave-coherent tangential stress

Longuet-Higgins (1969) developed a theory whereby energy could be imparted to
surface waves by surface tangential stresses to form a wave-coherent tangential stress
(equation (6)). He identified three methods by which surface tangential tangential
stresses could be mediated and contribute to wave generation.

(i) Direct wind-induced surface shear
Investigations by Okuda, Kawai & Toba (1977) indicated the potential for

direct wind-induced shear to be a significant wave-generation mechanism for short
gravity waves. Their measurements using relatively large buoyant tracers yielded local
tangential stress values at the wave crests to be up to 7 times larger than the total
stress. However, measurements of wind shear within the viscous sublayer along the
surfaces of microscale breaking waves obtained by Banner & Peirson (1998) yielded
wave-coherent tangential stresses of approximately 10 % of the wind stress.

(ii) Generation of surface shear by preferential viscous dissipation of capillary and
gravity–capillary waves near the long-wave crests

Theoretical studies by Longuet-Higgins (1992, for example) have shown that
short waves are able to generate levels of viscous stress adjacent to their troughs that
diffuse into the interior. This theoretical approach had been verified at larger scale by
Longuet-Higgins (1960). Longuet-Higgins (1992) found that parasitic capillary waves
of sufficient steepness have the potential to generate local viscous stresses that can be
significantly larger that the wind stress.

(iii) Generation of shear very close to the surface of longer waves but beneath the
spilling regions of shorter breaking waves

Modulation of the short-wave radiation stress has the potential to attenuate the
long waves (Phillips 1963; Hasselmann 1971) but is negligible, provided that there is
a sufficient separation in the frequency (speed) scales of the waves (Garrett & Smith
1976). Longuet-Higgins (1969) proposed that the higher speed of the long waves
enables them to sweep beneath the short waves, the consequent orbital straining of
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the short waves promoting injections of short-wave momentum which are strongly
wave-coherent with the long waves. Garrett & Smith (1976) concluded that the long-
wave modulation would promote a coherent modulation in the wave drag to the short
waves that would be mediated locally to the long waves. The alternative models can
be distinguished by whether the maximum short-wave energy is observed downwind
or upwind (respectively) of the wave crests.

A complementary contribution has been made by Phillips & Banner (1974) who
developed a model for short-wave breaking due to long waves. Their model predicts
the reduction in short-wave energy that occurs owing to a combination of wind drift
and the long-wave orbital motion. Their model was verified against their own data
and that previously recorded by Mitsuyasu (1966). The Phillips–Banner model has
been questioned by Wright (1976) who tested it against a broader range of wind
speeds and monitored changes in short-wave energy using Doppler radar. Wright
observed that the model was very effective at a single wind speed, but the predicted
wave energy response due to long waves was inconsistent at higher and lower wind
speeds. He postulated that this was because the Phillips–Banner contains no direct
coupling to the wind.

The primary objection to a significant role for the wave-coherent tangential stress
in Sin is that the wave orbital velocities require that the tangential stress be given
a coefficient of order ak whereas there is no such requirement for the form drag
(compare equations (13) and (14) in Peirson et al. 2003). As gravity wave steepnesses
are of order 0.1, the magnitude of the wave coherent tangential stress estimated by
Mastenbroek (1996) and measured by Banner & Peirson (1998) are in accord with
this figure.

3. Measurements of slow wave growth
The conventional measurement benchmark for theoretical analysis was established

by Plant (1982) from four data sets gathered in the field and the laboratory. The
energy growth rates conformed to the quadratic dependence on inverse wave age
(u∗

a/c) anticipated by Miles yet with normalized growth rates equivalent to β =32 ± 16,
approximately a factor of 2 higher than that estimated by Miles (1957). Mitsuyasu &
Honda (1982) concurrently published another set of data showing similar dependency
on (u∗

a/c), but the growth rates measured by Mitsuyasu & Honda were approximately
50 % larger than those assembled by Plant.

3.1. Measurement techniques

There are four methods of measuring wave growth rates. These are reviewed briefly.
(i) Electromagnetic Microwave Scattering

There is a linear relationship between wave amplitude and Bragg scattered radar
return from water surfaces (Larson & Wright 1975, p. 418) where the water wavelength
matches the radar microwavelength. Consequently, radar can measure normalized net
wave growth rates at very small wave steepnesses, with an accuracy that is difficult
to achieve with other techniques. The primary application of this technique has been
the initial growth of gravity–capillary waves, resolved by van Gastel et al. (1985) as
discussed earlier.

(ii) Pressure measurement in the air
If the wave-coherent tangential stress is negligible and the surface static pressure

can be extrapolated from pressure measurements above the interface, Sin can be
obtained directly from surface pressure/slope correlation (Shemdin & Hsu 1967;
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Donelan et al. 2006). The primary weakness of this technique is that the near-surface
air flow is complex (clearly illustrated by Reul, Branger & Govanangeli 2007) and
surface pressure extrapolations to the surfaces of steep, freely propagating waves are
subject to unknown errors.

(iii) Spatial changes of wave energy
Conventional nonlinear wave interactions (Janssen 2004, chap. 4) are suppressed

for monochromatic non-breaking wave fields subject to mild wind forcing (Bliven,
Hwang & Long 1986; Peirson et al. 2003). In the absence of breaking, Sin can be
obtained from (3) by measuring the net increase in wave energy along the fetch and
correcting for viscous losses from the wave field (Wilson et al. 1973; Mitsuyasu &
Honda 1982). If there are also losses due to turbulent effects (Teixeira & Belcher
2002; Peirson et al. 2003) such measurements will underestimate the magnitude of Sin.
Such measurements cannot be undertaken in the presence of wave breaking because
of a lack of precision in present estimates of energy loss from actively breaking waves
(Rapp & Melville 1990; Banner & Peirson 2007).

(iv) Tangential stress measurement
Measurements of the viscous stress at the interface by Banner & Peirson

(1998) yielded both the tangential stress and the wave coherent tangential stress
measurements for microscale breaking waves. Deriving the form drag from (4), Sin

can be obtained from (6). This technique has not been applied to longer gravity wave
systems to date.

3.2. Measurements of wave growth in relation to wave steepness
available from the literature

To investigate the potential role of wave steepness in determining slow wave growth,
we undertook an extensive literature review to assemble measurements reported in
the literature (table 1). Four of these studies were analysed by Plant (1982). The entire
set is briefly described with our assessment of the availability of mean steepness data.
Many investigators gathered the necessary information but, with the historical focus
on the adequacy of Miles’ theory (which does not anticipate a growth dependence on
wave amplitude), wave steepness values have not been reported. Other investigators
have reported wave steepness values at the point of initial wave generation, but did
not report local representative values of ak, thereby excluding their data from further
consideration. Where possible, errors have been computed and are presented for each
data set.

Shemdin & Hsu (1967) and Bole & Hsu (1969)

These complementary studies were undertaken in the same facility. Their objective
was to determine wave growth rates from near-surface pressure measurements
(Shemdin & Hsu 1967) or spatial development of wave energy (Bole 1967,
subsequently published as Bole & Hsu 1969). The wave growth rates implied by
Shemdin & Hsu’s pressure measurements were (on average) a factor of 3 less than
the variation of spatial energy measurements of Bole & Hsu (1969). Resolution of
the disparity between these studies has not been reported, to our knowledge.

Mean wave steepness values could not be derived from Shemdin & Hsu (1967),
but by carefully reprocessing data from the original data of Bole (1967), we were
able to obtain friction velocities and wave amplitudes. Bole’s measurements were
obtained prior to the wide availability of spectral filtering techniques and he obtained
his estimates of wave amplitude by fitting an analytical streamfunction to his wave
data using least-squares techniques. Such an approach has potential problems as it
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is unable to distinguish between long-wave and shorter-wind wave fields which are
usually developing simultaneously with the fetch.

Wilson et al. (1973)

Wilson et al. (1973) completed a delicate set of spatial development of wave energy
measurements under very light wind conditions. To relate their net (observed +
corrections for viscous decay) amplitude growth rates as a function of wave frequency
and wind forcing to mean wave steepness, the data used in this present study were
obtained by reprocessing the data presented in their figures 5 to 9. Wilson et al. (1973)
showed that attenuation rates approached viscous estimates as the wind forcing was
reduced. Their data spanned the capillary–gravity into the gravity wave range of
frequencies.

Larson & Wright (1975)

Larson & Wright (1975) employed radar to measure the initial growth rates of
waves with wavelengths ranging from 7.2 mm to 70 mm in response to impulsively
applied wind forcing. There is some uncertainty regarding surface forcing during these
experiments (see Donelan & Pierson 1987, p. 4975) and no direct determination of
the mean wave steepnesses is possible.

Wu, Hsu & Street (1979)

Wu et al. (1979) used similar techniques to those used by Shemdin & Hsu (1967), but
applied them to rapidly growing wind-generated waves. These laboratory experiments
were designed to examine the development of wind-wave spectra.

Wu et al. (1979) is a summary of the results presented in Wu et al. (1977). The
original data contained in Wu et al. (1977) were carefully re-examined by Peirson &
Belcher (2005) but they were unable to obtain mean steepness values nor reproduce
their normalized wind input values during reanalysis.

Snyder et al. (1981)

Snyder et al. (1981) describe data gathered under field conditions using an array of
fixed and wave-following air-pressure sensors in the Bight of Abaco. They reported
that waves of higher frequency than could be monitored with their instrumentation
were supporting a significant proportion of the total stress. The signal processing
undertaken was complex and could not be reviewed in detail during this study. A
similar investigation by Hasselmann & Bösenberg (1991) found similar wave growth
rates to Snyder et al. but the results of this later study also could not be reprocessed.

Mitsuyasu & Honda (1982)

Using spectral filtering of surface elevation records, Mitsuyasu & Honda (1982)
investigated the growth of monochromatic, mechanically generated waves by wind for
water surfaces in the presence and absence of a surfactant. Unfortunately, it was not
possible to reprocess the Mitsuyasu & Honda data to obtain mean steepness values
at mid-fetch for only the five measurements obtained from their figure 9.

Bliven et al. (1986)

Bliven et al. (1986) showed that wind forcing suppresses the formation of Benjamin
& Feir (1967) sidebands on mechanically generated monochromatic waves monitored
using surface elevation probes. Eight measurement results for non-breaking wind-
forced monochromatic mechanically generated waves could be extracted from their
table 3 and appropriate corrections for viscous attenuation were applied.
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Banner (1990)

Banner (1990) investigated the changes in total drag and form drag over short
mechanically generated waves at the transition from incipient to microscale breaking.
The form drag was obtained from air pressure/wave slope correlations. It was
observed that the form drag and total drag both approximately doubled with the
transition to the breaking condition. However, the ratio of form drag to total drag
remained approximately the same for steep non-breaking and continuous breaking
wave conditions.

Mastenbroek et al. (1996)

Air flow measurements were taken above monochromatic mechanically generated
waves in the large wind-wave tank in Marseille. The specific objectives of this
investigation were to verify theories regarding rapid distortion of turbulence in the
air flow above the waves. However, from the air pressure/slope measurements, two
estimates of form drag can be obtained by extrapolating their pressure data to the
mean water level and thereby yielding estimates of wind-induced wave growth rates.

Banner & Peirson (1998)

Banner & Peirson (1998) quantified the magnitude of the tangential stress and the
wave coherent tangential stress at the surfaces of wind-forced microscale breaking
waves using particle-image velocimetry at very high resolution, as discussed earlier.

Donelan (1999)

Donelan (1999) used a surface-following pressure probe tracing the wind-forced
surface of waves generated with a JONSWAP spectral distribution by a paddle in a
laboratory tank. Experiments were undertaken with the wind and the waves aligned in
the same direction and with the wind opposed to the direction of wave propagation.
The Jeffreys (1925) growth sheltering coefficient of sλ/2 was found to be 0.28. Very
limited supporting data was available within this paper and the growth data could
not be reprocessed in terms of wave steepness.

Donelan et al. (2006)

Donelan et al. (2006) used a wave follower to measure near-surface static pressure in
the field. The measurements were undertaken above waves in transitional water under
moderate wind forcing (U10 = 7 to 10 m s−1) with slow-wave conditions at the spectral
peak. They reported that incorporating a parameterization of air-flow separation was
important to collapsing their data set. Their expression is:

Sin

ωE
=

ρa

ρw

Gak

(
Uλ/2

c
− 1

)2

, (9)

where the coefficient G takes different values according to whether air-flow separation
has been initiated:

G =

{
4.91; ak(Uλ/2/c − 1)2 < 1,

0.93; ak(Uλ/2/c − 1)2 � 1,
(10)

although this threshold predicts air-flow separation at steepnesses that are much lower
that observed during laboratory experiments (Banner 1990; Reul et al. 2007).

Donelan et al. (2006) also proposed a possible revision of the value of 0.28 found
by Donelan (1999) down to 0.17 based on a re-examination of the spectral definitions
previously used to process the laboratory data.
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Figure 1. Layout of the facility; dimension in metres.

4. Measurements undertaken during this investigation
Phillips (1985, p. 510) observed that the growth coefficients obtained by Mitsuyasu

& Honda (1982) seem implausibly high. Yet, to date, no quantitative reconciliation
of the Mitsuyasu & Honda results to other measurements (e.g. Plant 1982) has been
undertaken, even though the normalized growth rates obtained by Mitsuyasu &
Honda are a factor of 1.5 higher, on average. Definitively resolving this issue required
that new measurements be taken in a similar manner. Measuring the spatial rate of
change of wave energy was used to determine wave growth rates during this present
study.

From this point, we must distinguish carefully between the characteristic properties
of mechanically generated low-frequency (so-called long) waves and the accompanying
short wind-generated waves. We do this by using lower case variables to denote
short-wave characteristics (a amplitude, f intrinsic frequency, c wave speed and k

wavenumber) and upper case for those of the long waves (A amplitude, F intrinsic
frequency, C wave speed and K wavenumber).

4.1. Wind-wave facility

A test facility of appropriate size and dimension was selected to carefully re-
examine the Bole & Hsu (1969) and Mitsuyasu & Honda (1982) growth rates
for monochromatic mechanically generated (so-called long) waves in the absence
of surfactants. This present study was undertaken in the 0.9 m wide wave tank at the
Water Research Laboratory (length 30.6 m, water depth 1.0 m) in the configuration
shown in figure 1. This facility was used previously for the wind-induced wave attenu-
ation study of Peirson et al. (2003) in a slightly different configuration.

Waves are generated by a controlled random generator at one end of the tank.
During the present investigation, only monochromatic waves were investigated. At
the far end of the tank from the generator, a dissipating beach was installed. It had
been previously shown that the waves reflected from the beach had amplitudes less
than 2 % of the incident mechanically generated waves (Peirson et al. 2003).

On each day of testing, prior to any measurements being obtained in the facility,
a steady wind of 6.8 m s−1 was applied to the tank for a duration of one hour. This
had the effect of ensuring that any floating material was either subducted and mixed
down into the water column by the wind-generated microscale breaking waves or
deposited on the beach at the downwind end of the tank. Visual inspection confirmed
that this process was effective in removing films from the tank surface.
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Nominal Long-wave Long-wave Air friction Aerodynamic
windspeed frequency mean steepness velocity roughness
U (m s−1) F (Hz) AK u∗

a ± 5% (m s−1) z0 ± 25% (mm) U10 (m s−1)

5.4 1.67 0 0.309 0.340 7.96
5.4 1.67 0.055 0.267 0.167 7.34
5.4 1.67 0.112 0.277 0.179 7.56
5.4 1.67 0.178 0.293 0.294 7.65

5.4 1.17 0 0.309 0.340 7.96
5.4 1.17 0.020 0.275 0.228 7.35
5.4 1.17 0.045 0.256 0.154 7.11
5.4 1.17 0.068 0.248 0.114 7.06

6.8 1.67 0 0.365 0.279 8.49
6.8 1.67 0.071 0.347* 0.170 8.46
6.8 1.67 0.141 0.333* 0.122 8.35
6.8 1.67 0.208 0.327* 0.109 8.28

6.8 1.17 0 0.365 0.279 8.49
6.8 1.17 0.018 0.352 0.278 9.23
6.8 1.17 0.044 0.335 0.164 9.22
6.8 1.17 0.070 0.332 0.146 9.23

*See note in text.

Table 2. Summary of measured wind forcing and long wave characteristics obtained during
the present experimental study.

4.2. Wind stress measurements

Air flow in the facility was from left to right in figure 1. Flow guides were installed
at the inlet to ensure that the incoming air flow transitioned smoothly to the water
surface at the commencement of the test section.

The wind stress was measured mid-way along the test section (figure 1). However,
Peirson et al. (2004, referred to in Makin et al. 2007) found a significant response in
the measured wind stress to the steepness of long waves. To minimize uncertainty in
the wind stress, the indirect logarithmic profile method was avoided and the stress
was determined directly via the eddy-correlation method using constant-temperature
wire anemometers in a cross-configuration.

The vertical dimension of a laboratory tank constant stress layer is determined by
the total air cavity depth, which was increased to the maximum feasible in this facility
(1.0 m). The roof was profiled to achieve a zero pressure gradient along the test section
and these modifications yielded a constant stress layer to a height of 45 mm above
the still water surface for centreline wind speeds up to 6.8 m s−1. The expensive high-
resolution wire anemometers are destroyed by contact with water, thereby applying
a practical limit to the wave heights (and therefore wave steepnesses) that could be
investigated. For each wind speed and wave period case, four measurements of the
turbulent stress across each steepness range were obtained and intermediate values
of stress obtained by linear interpolation. The primary measurements obtained are
summarized in table 2.

A minor problem with the wind forcing measurements for U = 5.4m s−1,
F =1.67 Hz is that the friction velocities measured in the absence of the long waves
were found to be 9 % less than reference measurements obtained during the early
stages of the study. Unfortunately, this problem did not become apparent until well
after the experiments were completed (and the wind tunnel dismantled). As the
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steepness-dependent measurements for this condition were all systematically 10 %
lower than those obtained at the same wind speed and F = 1.17Hz, all friction
velocities in the presence of long waves at U =5.4 m s−1, F = 1.67 Hz have been
increased by a constant factor of 9 % to obtain the most accurate estimates of
friction velocity in this case.

4.3. Wave measurements

Water surface elevation was monitored using capacitance wave gauges fitted with
fine (∼200 μm diameter) wire filaments with a water level range of approximately
200 mm. These were regularly calibrated and, over the period of testing, showed a
gain repeatability better than 2%. Probes were located at distances of 2.25, 3.75,
4.65, 6.10, 8.05, 11.10 and 12.150 m from the first probe within the roofed section
which was located 0.25 m downwind of the entrance to the wind-wave tunnel (see
figure 1). Outputs were digitised at 333 Hz per probe by a computer with an analogue
to digital converter and the results stored for subsequent processing. Visual inspection
confirmed that no long-wave breaking occurred within the test section.

4.4. Data processing

Peirson et al. (2003) had previously used wave energy measurement and filtering
techniques very similar to those used by Mitsuyasu & Honda (1982). During the
present study, the sample size was increased to 8192 data points which were processed
from each record using fast Fourier transforms (FFTs) to determine the local wave
energy. The higher digitization rate and larger sample size used in the present study
enabled more accurate characterization of the long-wave spectral peak (figure 2).
The entire long-wave energy is captured within the spectral band of the long-wave
frequency and the immediately adjacent frequency bands. These values were added
to obtain the local long-wave energy. Note that there is negligible (<1 %) leakage
during spectral analysis to other frequency bands.

The sensitivity of these measurements is illustrated in figure 2(a). Although the
mean steepness of the long waves is only 0.018, the spectral peak associated with the
long waves is clearly defined in the spectrum. Figure 2 also exhibits the behaviour
associated with increasing the steepness of the long waves as observed by many
previous investigators: wind-wave energy is suppressed; and, long-wave nonlinearity
increases and side bands develop with fetch (figure 2b). These features were neglected
when computing the long-wave energy, resulting in a potential underestimation of
wave energy by up to 5 % at the longest fetches and for the steepest conditions
investigated. However, any reduction in measured growth rate will remain less than a
few per cent.

Wave growth is a very delicate process in comparison with attenuation by opposing
wind (Peirson et al. 2003, figure 6). Nonetheless, consistent growth rates were obtained
amongst the repeat experiments undertaken within the facility and, notably, systematic
behaviour was observed as a function of wave steepness. This is illustrated in figure 3,
where the measured energy variation with fetch is shown across a range of long-wave
steepness values. For the lowest steepness case, four independent measurements are
shown with the computed mean to illustrate their repeatability.

To determine Sin, a spatial dimensional growth rate Δ was determined from the
measured data by a least-squares fit of the equation:

E = E0e
Δx, (11)
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Figure 2. Spectra obtained at three fetches during the investigation. Line styles indicate fetch.
F = 1.67Hz, U = 6.8 m s−1 (a) AK = 0.018. Note the clearly defined spectral peak and wind
wave spectra that develop with fetch. (b) AK = 0.208. Note the clearly defined spectral peak,
side bands and harmonic as well as the greatly reduced wind-wave spectral energy relative to
that shown in (a).

where E is the extracted long-wave energy and x is the distance along the fetch. The
wind input to the wave field was determined from:

Sin = τwaveC = (Δ + Δvisc)Cg〈E〉, (12)
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Figure 3. Development of long-wave energy with fetch for the case F =1.67 Hz, U = 6.8 m s−1

of the present study. Large symbols show mean energy values obtained from measurement
ensembles. For the lowest mean long-wave steepness case, variation within the repeat
measurements are shown as solid circles. Net wave growth was determined numerically from
the best-fit lines shown.

where 〈E〉 is the long-wave energy at the mid-point of the fetch, Cg is the long-wave
group velocity and Δvisc is the estimated attenuation rate due to viscosity at the
surface and the walls of the tank (the expression developed by Van Dorn 1966 was
previously verified in the absence of wind by Wilson et al. 1973 and Mitsuyasu &
Honda 1982).

5. Data analysis
5.1. Wave drag and normalized growth

Figure 4 is a collation of normalized growth rates of the data assembled by Plant
(1982) with the additional growth data obtained from the literature and the growth
measurements of this present investigation. Assembling the additional data in this
fashion does not yield a satisfactory collapse although some data sets are clearly very
noisy. The following observations can be made.

1. In spite of the systematic behaviour observed in the raw measurements obtained
during this investigation, this normalization does not provide a systematic means of
collapsing the data.

2. The five points that could be reprocessed from Mitsuyasu & Honda (1982)
yield values in the vicinity of the upper Plant bound, but at the lower bound of the
Mitsuyasu & Honda data envelope.

3. Regression re-analysis yielded 90 % confidence limits from measurements of the
development of wave energy along the fetch (cf. Peirson et al. 2003). However, taking
these into account still does not yield a deterministic mean value. Significant scatter
remains about the mean value obtained by Plant that cannot be accounted for in
terms of experimental error.
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Figure 4. Normalized wave growth data assembled by Plant (1982) supplemented with data
extracted from other investigations. Error bars indicating 90 % confidence as shown where
these could be computed. Grey asterixes, Larson & Wright, 1974; grey x, data from Wu, Hsu &
Street 1977; grey diamonds, Shemdin & Hsu 1967; grey triangles to right, Snyder et al. 1981;
black diamonds, Bole 1967; black open squares, Wilson et al. 1973; black open circles, Banner
1990; black open triangles to left, Bliven et al. 1986; upright triangles, Mitsuyasu & Honda
1982; downward pointing triangles, Mastenbroek et al. 1996; solid squares, Banner & Peirson
1998; solid circles, present study. The second-order turbulence closure results computed by
Mastenbroek (1996) are shown as a solid line.

4. The data of Wilson et al. (1973) exhibit an apparent systematic increase in
normalized growth rate with increasing wave age.

5. Additional assembled data reinforces the disparity between the measured data
and theoretical estimates of wave growth as represented by the results of Mastenbroek
(1996).

Combining equations (6) and (7) with first-order Stokes approximations yields
(Townsend 1972):

Sin

Cτ
=

τwave

τ
=

1

2
β(AK)2. (13)

With the Plant mean value of β = 32, equation (13) yields the light solid curve shown
in figure 5 in comparison with those data for which steepness could be computed.
When presented in this manner, a number of features in the data become apparent.

1. The data measured in this study collapse systematically around a common curve
from zero steepness up to the maximum mean steepness value that could be measured
without wave breaking commencing within the test section. Notably, even for the very
low steepnesses shown in the inset panel, there is good data collapse.

2. Therefore, analysis of slow-wave data in terms of steepness is useful in ordering
the data that is not possible in terms of wave age. As shown by more recent
numerical modelling, normalized growth of slow waves is weakly related to wave age,
but strongly influenced by wave steepness (compare the results of Mastenbroek 1996
shown in figures 4 and 5).
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Figure 5. Computed wave drag plotted as a proportion of total stress and as a function
of long-wave steepness. Error bars indicating 90 % confidence as shown where these could
be computed. Black diamonds, Bole 1967; black open squares, Wilson et al. 1972; black
open circles, Banner 1990; black open triangles to left, Bliven et al. 1986; upright triangles,
Mitsuyasu & Honda, 1982; downward pointing triangles, Mastenbroek et al. 1996; solid
squares, Banner & Peirson 1998; solid circles, present study. The second-order turbulence
closure results computed by Mastenbroek (1996) are shown as open diamonds. The light solid
line is equation (11) with β = 32 and the light dashed line is equation (12) with βf = 20 and
βt = 12. The heavy dot-dash line indicates linear dependence of wave drag on mean steepness,
the light dotted line shows the best fit to data with AK < 0.06. The triple dotted light lines in
the inset panel show the Donelan et al. (2006) results (equations (9) and (10)).

3. The streamfunction technique used by Bole (1967) did not record any values
of AK less than 0.08 and the drag ratios shown in figure 5 within the window
0.08 <ak < 0.11 are highly scattered, therefore we will regard 0.11 as the reliable
threshold steepness for his data set from this point.

4. Mitsuyasu & Honda’s data are consistently greater by a factor of two than other
data gathered using the same technique and, at higher steepnesses, yield wave drag
substantially in excess of the total stress. Juxtaposing Mitsuyasu & Honda’s data in
this manner with data gathered under similar conditions confirms the conclusion of
Phillips (1985, p. 510) that the growth rates implied by this data set are too high –
indeed, the growth rates appear to be exactly double those indicated by the other
data sets. In spite of careful re-examination of the entire data set, we were unable to
develop a defensible corrective scheme for their observations and will not use them
further to develop quantitative conclusions.

5. The Plant normalization captures the overall trends in the data well across
a steepness range 0.05 < AK < 0.12, but degrades at very low and very high mean
steepnesses.

6. The consistency of the remaining data sets is extremely encouraging. Of special
note is the computed development of wave drag at very low steepnesses shown in the
inset panel. Very different wind and wave conditions prevailed during the Wilson et al.
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(1973, very short waves, smooth surfaces) and this present study (longer waves, surface
populated by microscale breaking waves). For reference, the wave drag predicted by a
linear dependence on mean steepness (heavy dash-dot line) is also shown. The best-fit
line to the data with AK < 0.06 is shown as a dotted line and the best fit is obtained
with an exponent of 1.8.

7. The Donelan et al. (2006) data can only be compared approximately with the
results of this study. Their field data were obtained with steepness levels of the peak
waves in the range 0.015 to 0.060 (their figure 3) and wind forcing and peak spectral
frequency levels that can be obtained from their table 1. Assuming Uλ/2 ≈ 0.7U10

yields values (Uλ/2 − c)/ua
∗ very close to 12.1. Their growth formula (equation (9)) can

be transformed to:

τwave

τ
=

G(AK)3

2

(
Uλ/2 − c

ua
∗

)2

, (14)

with G taking the values shown in (10). As shown in the inset panel in figure 5, this
is very benign normalized forcing in comparison with the data assembled during this
study.

Belcher (1999) developed a theoretical framework that incorporated a wave coherent
tangential stress contribution as well as a modification to the turbulent stress adjacent
to the interface. This yielded an expression equivalent to:

Sin(ω)

c(ω)τ
=

τwave

τ
=

(βf + βt )(AK)2

2 + βf (AK)2
, (15)

where the subscripts f and t denote the contributions to the normalized growth
rate of form drag and tangential stress, respectively. Unfortunately, he was unable to
obtain direct estimates of these factors analytically. Using (15) and attributing 37.5 %
of the Plant growth rate to the wave coherent tangential stress (to best represent
the overall data trend at higher steepnesses) yields the light dashed line shown in
figure 5. At very low steepnesses, the differences between (13) and (15) are negligible
and therefore this curve is not visible in the inset panel.

Shown also in figure 5 is the numerically predicted behaviour of Mastenbroek
(1996) for c/u∗

a = 5. In this normalization, it is apparent that the primary source of
disparity between theory and measurement occurs for AK less than 0.25.

With these promising developments, we return to examine the normalized growth
rates as a function of steepness (figure 6). For the reasons stated above, the Mitsuyasu
& Honda and lower-steepness Bole data have been eliminated from the ensemble.
From this emerges an orderly picture of slow wave growth.

1. The data gathered during this present study collapse reasonably across the entire
range of measured mean steepness. A common curve could be fitted which would be
encompassed by the computed error bars.

2. Below AK =0.10, normalized growth rates are approximately equal to or greater
than the Plant mean value indicated as a light solid line in figure 6.

3. Equation (15) with 37.5 % of normalized growth attributed to wave-coherent
tangential stress (shown as a dashed line) provides a reasonable representation of the
data at high steepnesses but poor representation of the data at low steepnesses. As
the Belcher (1999) analysis is weakly nonlinear, this agreement is encouraging, but
not anticipated.

4. For AK > 0.10, normalized growth rates are approximately equal to or less than
the Plant mean value except for the data of Mastenbroek et al. (1996). Potentially,
a smooth curve could be drawn which follows the dashed line at higher steepnesses,
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Figure 6. Normalized growth plotted as a function of long-wave steepness. Annotations are
as in figure 5. The solid vertical bars indicate the total growth obtained if the numerical values
of Mastenbroek (1996) are supplemented by a wave-coherent tangential stress obtained from
(22).

but rises to a value of approximately β = 55 at very low slope. Such a curve would
be close to being encompassed by the error bars of almost all the data except that of
Wilson et al. (1973) and Mastenbroek et al. (1996).

5. Mastenbroek et al. (1996) and Banner (1990) were the only data sets obtained
from near-surface pressure measurements. There are two plausible interpretations
of the inconsistency between the Mastenbroek et al. (1996) measurements and the
other data: either their extrapolations to the surface have over-estimated the surface
pressure, or, turbulent dissipation of the wave field is a relatively strong process
(Teixeira & Belcher 2002; Peirson et al. 2003). Stronger turbulent dissipation would be
anticipated for the Banner (1990) conditions, yet his data are in good agreement with
the rest of the data set. More detailed examination of the static pressure measurements
at lower mean steepness levels, accompanied by a critical re-examination of the growth
measurements of Mastenbroek et al. (1996), will be required to resolve this question.

5.2. Sheltering

These data could potentially be interpreted in terms of the Jeffreys (1925) and Belcher
& Hunt (1993) concepts of separated and non-separated sheltering. Wind speeds at
appropriate reference levels must be computed. Unfortunately, neither roughness
lengths in the air nor velocity profiles are presented in Bliven et al. (1986) and no
further analysis with this data set can be accomplished.

Wave-induced pressure fluctuations are negligible at a distance approximately half
a wavelength (λ/2) above the mean water level (e.g. Mastenbroek et al. 1996, figure 8
indicates ∼λ/π) and this has been selected as an appropriate reference level by some
investigators. In figure 7, sheltering coefficients (equation (8)) are determined from the
available data. In spite of the systematic collapse that is obtained from the present data
set, this is not a promising normalization when reconciled against the limited other
available data. The Banner (1990) data suggest a significant increase in sheltering
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Figure 7. Sheltering coefficient at half-wavelength elevation plotted as a function of long-wave
steepness. Annotations are as in figure 5. The growth coefficients obtained by Donelan &
Pierson (1987) and Donelan (1999) are indicated.

coefficient with the onset of microscale breaking (at approximately, AK =0.26) which
may explain the significant differences in sheltering coefficient indicated by the other
data sets and the value determined by Donelan (1999). Donelan & Pierson (1987)
obtained their value from electromagnetic microwave-scattering techniques and it is
in good agreement with the equivalent sheltering coefficient computed from low mean
steepness data obtained during this present study.

Figure 8 shows the sheltering coefficients computed from the data when referenced
against U10, the customary field reference height. This normalization appears
more promising. A constant sheltering coefficient s10 = 0.050 comes close to being
encompassed by the error bars of all available data above a mean steepness of 0.10.
Of significance is that a single sheltering coefficient is able to characterize the Banner
(1990) data for the both the unbroken (non-separated airflow) and actively breaking
(separated airflow) states.

Jeffreys (1925) originally posited his growth formulation on the assumption of
fully separated air flow and, by implication, negligible tangential stress. The apparent
clustering of the sheltering coefficient in figure 8 includes the Banner & Peirson
(1998) data which explicitly has a wave-coherent tangential component with the long-
wave data of Bole and this present study wherein the conditions of wave breaking
(and therefore air flow separation, Banner 1990) were explicitly avoided. These data
provide indirect support for Belcher & Hunt’s conclusion that non-separated sheltering
is important.

In view of the findings of van Gastel et al. (1985) and Meirink & Makin (2002), that
the wave Reynolds number is the appropriate normalization for considering wave
growth rates of very short waves, we compare their results with relevant collated data
in figure 9. The measurements of Banner (1990) and Banner & Peirson (1998) appear
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Figure 8. Sheltering coefficient at 10 m elevation plotted as a function of long-wave steepness.
Annotations are as in figure 5. The heavy line is a best fit to the data of steepness greater than
0.10 and has a value of 0.05.

to be in accord with the modelling studies although it is not immediately apparent why
each data set seems to be better represented by the low- or high-Reynolds-number
models, respectively.

Of greater significance is the gap between the theoretical/numerical growth rates
and the measurements of Wilson et al. (1973). The measurements show systematic
wave drag development as a function of AK (figure 5) whereas Meirink & Makin
(2002, p. 158) found that their computed normalized growth rates were independent
of AK (AK< 0.1). This implies that the model results would produce a family of
quadratic curves in figure 5, each curve determined by its wave Reynolds number.
Van Gastel et al. (1985) found agreement within 20 % with Miles (1962) but Wilson
et al. (1973) concluded that Miles (1962) significantly over-estimated their observed
growth rates. The findings of these studies must be carefully re-examined, but this is
beyond the scope of this investigation.

6. Discussion
6.1. Wave-coherent tangential stress

The measurements of Wilson et al. (1973) and this present study both indicate very
similar normalized wave drag development at very low wave steepnesses (figure 5).
With the present understanding of wave growth, this should not be regarded as
having more than parametric value. The surface conditions of these two experiments
are very different: the Wilson et al. waves would have had very close to smooth
surfaces whereas the long waves in the present study emerged from a field of steep
actively breaking microscale wind waves.
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Figure 9. Comparison of normalized growth rates computed from the data assembled
during this investigation with the findings Meirink & Makin (2000). Their low-Reynolds-
number-model results are shown as a solid line and their high-Reynolds-number-model values
are shown as a dashed line. The theoretical results of van Gastel et al. (1985) are shown as
dash-dotted line. The data assembled by Meirink & Makin (2000) are shown as open triangles.
Data assembled during this investigation are as follows: black open squares, Wilson et al.
1973; black open circles, Banner 1990; solid squares, Banner & Peirson 1998.

If the surface of the waves is smooth, only modulation of the tangential stress
by the wave forms can create a wave-coherent tangential stress. The only direct
measurements are those of Banner & Peirson (1998) which show that the phase-
averaged maximum tangential stress is approximately twice the mean tangential
stress (their figure 5). Assuming the notional model of Garrett & Smith (1976) as an
approximation to the Banner & Peirson data:

τtang = 〈τtang〉(1 + b cos θ) (16)

would yield:
τtang,wc

τ
= 0.5AK; b = 1, (17)

which would significantly over-estimate the measured growth rates of Wilson et al.
at their lowest steepness values (inset figure 5). Alternatively, the microscale breaking
waves of Banner & Peirson had mean steepnesses in the vicinity of 0.25. Assuming
that b increases linearly with mean steepness yields:

τtang,wc

τ
= 2(AK)2; b = 4AK, (18)

which would significantly underestimate the measured values by an order of magnitude
(inset figure 5).
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This issue will not be resolved without direct measurements. Such a study should
be straightforward using the techniques of Peirson (1997). The above argument shows
that it is not impossible that the wave-coherent tangential stress generates sufficiently
high growth rates, but the tangential stress would have to be very strongly modulated
by these small waves and in a nonlinear manner.

6.2. Short-wave breaking coherent with long waves

A potential mechanism for the strong normalized growth of long waves at low
steepnesses is the maser-like behaviour suggested by Longuet-Higgins (1969). We now
critically examine these proposals using the data measured during this investigation.
Longuet-Higgins (1969, equation (6.2)) predicts a ratio r of the quantity ω(ak)2

between the crests and troughs of the long waves. Longuet-Higgins’s equation (6.2) is
dependent on his equation (6.1) and using our capacitance-wave-probe measurements,
we have been able to compare predicted values of:

√
r =

(
1 + AK

1 − AK

)2

, (19)

with the ratio of the measured short-wave energy levels at the crest and trough:

√
r =

(
a2

crest

a2
trough

)
. (20)

We undertook this as follows.
1. The mean water-surface elevation was computed and deducted from each wave

record.
2. The spectral peak energy associated with the fundamental mode of the long

waves was extracted from conventional wave spectra. Only the immediately adjacent
spectral frequency bins were included with the peak, to account for potential leakage.

3. The inverse transforms of both the extracted long-wave contribution and the
remainder of the spectrum were computed.

4. The sequential −90◦ phase points were identified by consecutive zero
downcrossings in the extracted long-wave time series.

5. Using 60◦ phase bins, the instantaneous energy density of each point in the short-
wave time series was binned according to its corresponding phase in the long-wave
record.

6. The mean energy density within each phase bin was calculated as the mean
square water-surface elevation relative to the long-wave water-surface record.

7. The quantity
√

r was computed as the ratio of the energy in the crest and trough
bins for each wave record.

The measured values of
√

r and those predicted from the corresponding
measurement of long-wave steepness (equation (19)) are shown in figure 10. Values
above AK =0.10 should be treated with caution as the fundamental sidebands and the
long-wave harmonics have the potential to contaminate this measurement (figure 2b).
Figure 10 shows that the model assumed by Longuet-Higgins (1969) is encompassed
by the error bars of almost all the short-wave data up to a long-wave steepness of
approximately 0.17.

We endeavoured to test the different predictions of an asymmetry in the short-
wave energy about the long-wave crests provided by Longuet-Higgins and Garrett
& Smith. Apart from observing that the distributions of short-wave energy were
approximately sinusoidal (Garrett & Smith 1976, p. 929), further examination of the
data did not prove fruitful. Much longer data ensembles will be required to resolve
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Figure 10. Comparison of the ratio of short-wave energy at the crest and troughs of long
waves measured during this investigation (open circles) and the predictions of Longuet-Higgins
(1969).

the precise distribution of short-wave energy along monochromatic long waves. A
complementary investigation by Miller et al. (1991) found that the modulation of
short-wave energy by low-frequency (0.5 Hz) long waves was in agreement with the
predictions of Longuet-Higgins & Stewart (1960) provided that the wind forcing was
not too strong.

Having extracted the short-wave energy from the long waves, it was a relatively
straightforward process to examine the predictions of Phillips & Banner (1974), as
shown in figure 11. Very poor correlations were obtained at the first wave probe,
possibly because there was insufficient fetch to develop microscale breaking waves
in the absence of long waves. For AK > 0.10, the predictions deteriorated owing
to spectral leakages associated with side band development and nonlinearity. An
unknown parameter in the Phillips/Banner model is the ratio b of the magnitude
of the wind drift to the friction velocity in the air. Phillips & Banner (1974)
quote b =0.55 based on punch card measurements, Wright (1976) quotes values
declining from b = 0.73 to 0.50 with increasing wind speed based on thin paraffin
disks, and Peirson & Banner (2003) found b = 0.30 ± 0.10 from extrapolations of
particle image velocimetry (PIV) measurements within the aqueous viscous sublayer
to the instantaneous surface along wind-forced microscale breaking waves. No direct
measurements were undertaken during this study. The predictions shown in figure 11
were obtained assuming a constant value of b = 0.58.

The Longuet-Higgins model of short-wave modulation and the Phillips/Banner
model of short-wave energy reduction due to the presence of the long waves provide
good representations of the measured data. Why then, did Wright (1976) find such
poor agreement with the Phillips/Banner model? The answer to this can be found
by considering the wind-induced growth rate as suggested by Wright in his closing
remarks and the conclusions of Miller et al. (1991). We have extended Miller et al.’s
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Figure 11. Ratio of short-wave energy measured during this investigation compared with the
predictions of Phillips & Banner (1974) using a single value of b = 0.058. Data from the wave
probe of shortest fetch have not been included. Two other data points from the entire data set
are not encompassed within the graph limits.

work by quantitatively summarizing the important time scales in figure 12, and use it
to interpret the findings of other investigators.

There are at least two critical time scales that characterize interactions between
long and short waves in the presence of wind.

1. The period of the long waves (T =1/F ), which is approximately the time taken
for a full long-wave cycle to pass beneath a short-wave (assuming sufficient separation
of wave scales).

2. A characteristic growth time scale for the wind waves due to the action of the
wind.

If wind-wave growth can be normalized in the form of (7), we can define a time
scale for a wind wave to increase in energy by a factor e:

te =
ρwg2

8π3βτf 3
. (21)

In figure 12, a sequence of diagonal lines show te as a function of f for various values
of τ selecting β = 20 as a representative value from figure 6, with other variables
taking their conventional values. The selected values of τ correspond approximately
to moderate wind forcing and to experimental investigations undertaken in the
literature.

Neither air-entraining nor microscale breaking waves occur when the total stress
falls below 0.05 Pa (approximately U10 = 5 m s−1) and beyond f = 6Hz, very strong
wind forcing is required to force microscale waves into the microscale breaking state.
At the right-hand side of figure 12, these conditions are indicated by the shaded area.
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Figure 12. Schematic diagram showing interactions between wind-induced growth of short
waves and their modulation by long waves. The horizontal axis is the peak frequency of the
short waves. The vertical axis shows corresponding time scales. Oblique lines indicate the time
scales for short waves to increase their energy by a factor of e at the corresponding wind stress
values indicated at the top of the diagram. The shaded region to the right indicates wind stress
values and wave frequencies at which small-scale breaking does not occur. The lower left-hand
shaded region indicates time scales less than 1/f . Colours and line styles have been used to
indicate correspondence between different levels of wind forcing on this diagram. Light grey
‘1’, Wright 1976, τ = 0.033 Pa. Mid-grey indicates data gathered at approximately τ = 0.12Pa
‘2’, Wright 1976; ‘P’, Phillips & Banner 1974; solid circles, present study; Black ‘3’, Wright
1976, τ = 0.50 Pa; Black ‘M’, Mitsuyasu, 1966, τ = 0.71 Pa, cited in Phillips & Banner 1974.

The shaded lower left-hand side corner of figure 12 indicates the region in which the
time scale = 1/f .

In figure 12, a number of data sets are shown. The data measured during this study
is shown as solid circles and indicates that the period of the long waves is significantly
less than the time scale of the short-wave growth. This is consistent with the results
shown in figures 10 and 11. The data of Phillips & Banner (1974) were gathered for
a similar scale of wave and wind forcing as this study. The long-wave period used by
Mitsuyasu (1966) is similar to the estimated short-wave growth time scale as shown
in figure 12. Phillips & Banner (1974) found good agreement between his data and
their model.
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Wright (1976) examined three levels of wind forcing. The lowest (shown as ‘W’ in
light grey in figure 12), was gathered at a modest fetch (1 m, see remarks by Peirson
& Banner 2003, p. 7) at a wind stress significantly less than 0.05 Pa. No microscale
breaking waves would be anticipated under these conditions. His moderate wind-
forcing case showed good agreement with the Phillips & Banner (1974) model,
as figure 12 would anticipate. His highest wind case, shows an anticipated short-
wave growth time scale less than the period of his long waves. In this case, wind-
wave behaviour would be primarily determined by the wind forcing rather than the
modulations of the long waves. We concur with his closing remark that the Phillips
& Banner theory ‘neglects the direct coupling with the wind’ and figure 12 is a first
step towards determining those regimes in which direct wind forcing or long-wave
modulation control the energy levels of shorter waves.

Chen & Belcher (2000) have produced an alternative model of short-wave
attenuation in the presence of long waves based on a model of reduced available
wave drag to the short waves owing to the presence of the long waves. They do this
by considering the wave growth rates of Mitsuyasu & Honda (1982) which have been
shown to be implausibly high during this present study. Also, significant short-wave
attenuation (>50 %) occurs prior to the long-wave steepness reaching a value of 0.10,
at which point the wave drag absorbed by the long waves is less than 20% of the
total stress (figure 4). Consequently, the significant levels of short-wave attenuation
observed during this study cannot be explained in terms of the modest reductions
observed in the total stress.

6.3. Long-wave coherent tangential stress contribution

The Phillips/Banner mechanism provides very efficient triggering of strong fluxes from
the short-wave field local to the crest of the long waves where the long-wave coherent
effects are greatest. Assuming negligible direct energy flux to the long waves at very
low steepnesses and that approximately 40 ± 10% of the total stress is supported
directly via tangential stress that is not coherent with any part of the wave field at
this level of wind forcing (Banner & Peirson 1998, figure 11), the ceiling energy input
to a field of uniform long waves mediated by wave drag captured by the short-wave
field is (Longuet-Higgins 1969, equation (7.6)):

Sin = (0.6 ± 0.1)τAKC, (22)

or,
τwave

τ
= (0.6 ± 0.1)AK, (23)

or,

β =
(1.2 ± 0.2)

AK
. (24)

The mean value curves have been added to figures 5 and 6 as heavy dash-dotted
lines. At very low steepnesses (AK ∼ 0.005), the expressions substantially overestimate
the wave drag and the normalized growth rate. This may be because the modulations
induced by the long waves are weaker than those inherent to the short-wave groups
themselves (Banner & Peirson 2007). However, in the range 0.02 <AK< 0.04, the
curves produce a reasonable approximation of the observed wave drag. The singularity
in normalized growth at zero steepness makes more detailed comparison at low long-
wave steepness more difficult in figure 6. However, it does permit comparison at
higher steepness levels.
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If the form drag estimates of the numerical modelling are accepted as correct,
the data suggest that the form drag of the long waves becomes more significant
than the wave-coherent tangential contribution at AK= 0.07. Nonetheless, the wave-
coherent tangential contribution remains significant at steepnesses greater than 0.10
(the nominated limit to which the present data could be analysed).

Further, note that if the estimates of total normalized growth rate obtained from
the numerical modelling of Mastenbroek (1996) have the present estimates of the
long wave-coherent tangential contribution added to them, the total is a good
approximation of the measured data, as indicated by the vertical bars in figure 5.
We note also that the variations in surface roughness implied by modulated short
waves with preferential breaking at the crest will further augment the form drag
(Mastenbroek 1996, p. 63), placing the diamonds approximately 5 units higher on
figure 5.

It should be noted that during this discussion, we have assumed the strongest
possible contribution of the short waves to long-wave growth. The cosine variation
of the key quantities in relation to the long waves means that shifts in the phase of
the short-wave breaking up to approximately 25◦ will have negligible impact on the
results.

To explain their radar observations of wave growth, Plant & Wright (1977,
p. 790, 792) hypothesized that short (λ< 0.1m) gravity waves grow directly owing to
wind input but longer waves received energy flux from shorter, wave components.
Their conclusion provides independent support for the quantitative findings of this
investigation.

In summary, the observed growth cannot be accounted for by present numerical
estimates of wave drag alone. By quantifying the short-wave energy relative to the
underlying long waves, short-wave energy levels consistent with Longuet-Higgins
(1969) and Phillips & Banner (1974) are found. The measured normalized growth
rates are consistent with numerically predicted wave drag (Mastenbroek 1996)
supplemented by a significant long-wave-coherent tangential stress as proposed by
Longuet-Higgins (1969) and triggered by selective breaking of the short waves at the
long-wave crests as proposed by Phillips & Banner (1974).

6.4. Implications for wave growth in the open ocean

No measurements of wave growth in the open ocean have been considered during
this investigation. Numerical prediction of storm waves requires an integration in
both time and space in which the antecedent effects of modest swell steepnesses are
important. This study shows that lower-frequency wave growth can be significantly
augmented by a systematic response in the shorter scales. Longuet-Higgins (1969)
concluded that these mechanisms deserved serious consideration at field scale, but we
are not aware of more contemporary comparisons of his ideas with field data sets.

Further, figure 12 has been scaled to indicate the swell time scales of interest along
the left-hand axis. The figure indicates that time scales of growth of the higher-
frequency components of the spectrum are sufficiently slow to enable modulation
and acquisition of shorter-wave energy by the swell to be effective. At very high
wind speeds (τ > 1.0 Pa ∼ U10 > 20 m s−1), the range of higher-frequency waves able to
contribute to swell growth significantly reduces with wind speed, suggesting reduced
levels of short-wave input to longer waves within intense storms.

Measurement techniques to test these ideas quantitatively has become available.
Major studies have been undertaken in which large-scale (Melville & Matusov 2002)
breaking has been directly monitored and characterized. Further development of
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infrared techniques (Jessup & Phadnis 2005) may enable microscale breaking to be
directly quantified under field conditions. To our knowledge, long-wave phase-related
measurements of short-wave breaking have not been reported to date, but application
of these techniques should make it possible to assess the potential for enhanced growth
of longer waves due to short-wave breaking under field conditions.

An ongoing difficulty for work on air–sea interaction has been distinguishing
between the defined components contributing to the development of wave spectra
under field conditions (equation (3)). This present investigation has resolved some
important and long-standing questions regarding the disparity between measured
and predicted growth rates of slow waves. In this paper, discussion has been
focused around the wind input term (equation (3) right-hand side, term 1). However,
the Longuet-Higgins (1969) growth mechanism is a nonlinear spectral interaction
(equation (3) right-hand side, term 2) with a cascade of energy from shorter-
wave breaking (equation (3) right-hand side, term 3) to lower-frequency waves.
Consequently, coupling all three spectral development processes in this manner
requires careful re-examination of this particular nonlinear spectral interaction,
especially its impact within the high-frequency tail. This process is not explicitly
incorporated within present operational wave-prediction models.

7. Conclusions and recommendations
A systematic response of the wind-induced growth of slow waves to their mean

steepness can be observed across a range of reported data sets. By carefully examining
the normalized wave drag in terms of mean wave steepness, we have been able to
clearly identify and eliminate problems with some data sets. However, the input levels
measured by Mastenbroek et al. (1996) remain to be reconciled with other reliable
data.

A systematic decline in normalized growth as a function of steepness can be
observed in slow-wave growth data. For mean steepnesses less than 0.3, the normalized
growth values span the stated uncertainty in the Plant (1982) data assembly. Very high
normalized growth rates have been observed at low mean steepnesses. The collapse
of the data as a function of AK yields a potentially-useful parameterization of slow
wave normalized wave drag and growth due to wind.

At mean steepnesses greater than 0.13, Jeffreys’ sheltering coefficients computed
from the data cluster around 0.050 ± 0.005 when using the 10 m elevation wind
speed as the reference. This finding lends indirect support for the Belcher & Hunt
(1993) concept of non-separated sheltering, but air-sided measurements incorporating
separation detection will be required to confirm this result.

Data obtained during this study show quantitative agreement with the predictions
of Longuet-Higgins (1969) and Phillips & Banner (1974) of the interactions between
short wind waves and longer monochromatic waves. The measured normalized long-
wave growth rates are consistent with numerically predicted wave drag (Mastenbroek
1996) augmented by a significant wave-coherent tangential stress as proposed by
Longuet-Higgins (1969).

Detailed consideration of the time scales associated with slow long-wave growth
shows that there are specific long-wave frequencies that are predicted to exhibit
enhanced growth due to wave-coherent short-wave breaking. Beyond the wind input
threshold for breaking wave generation, the range of long-wave scales exhibiting
enhanced growth due to short-wave breaking reduces with increased wave forcing.
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To our knowledge, a key objective of Shemdin & Hsu (1967) and Bole & Hsu
(1969) still remains unfulfilled: measurements of form drag in the air have not
been reconciled against measurements of net wave growth, except indirectly during
this study. Such an investigation remains a high priority for the air–sea interaction
community particularly if form drag measurements in the field are to be pursued.

The Longuet-Higgins (1969) mechanism deserves careful re-examination as a
significant nonlinear spectral interaction in the open ocean, particularly within
the high-frequency tail. With the wave-monitoring techniques presently available,
quantitative assessment of these predictions should be possible.
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