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Abstract

We consider the Birman–Hilden inclusion ϕ : Br2g+1 → �g,1 of the braid group into the
mapping class group of an orientable surface with boundary, and prove that ϕ is stably
trivial in homology with twisted coefficients in the symplectic representation H1(�g,1) of
the mapping class group; this generalises a result of Song and Tillmann regarding homology
with constant coefficients. Furthermore we show that the stable homology of the braid group
with coefficients in ϕ∗(H1(�g,1)) has only 4-torsion.

2020 Mathematics Subject Classification: 55R20, 55R35, 55R37, 55R40, 55R80 (Primary);
20F36, 55N25 (Secondary).

1. Introduction

A theorem of Birman and Hilden [3, theorem 1] shows that the braid group Br2g+1 on
2g + 1 strands can be identified with the hyperelliptic mapping class group �g,1 ⊂ �g,1: this
is a certain subgroup of the mapping class group �g,1 of an orientable surface �g,1 of genus
g with one parametrised boundary component (see Subsection 2·4).
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250 ANDREA BIANCHI

It is natural to study the behaviour of the Birman–Hilden inclusion ϕ : Br2g+1 → �g,1 in
homology. Song and Tillmann [14], show that the map ϕ∗ is stably trivial in homology with
constant coefficients.

THEOREM 1·1 (Song–Tillmann). For any abelian group A the map

ϕ∗ : Hk(Br2g+1; A)→ Hk(�g,1; A)

is trivial in the range k ≤ 2g/3 − 2/3.

The range k ≤ 2g/3 − 2/3 is the best known stable range for the homology with constant
coefficients of the mapping class group (see Theorem 2·1).

Segal and Tillmann [13] give an alternative and more geometric proof of Theorem
1·1; Bödigheimer and Tillmann [4] generalise Theorem 1·1 to other non-hyperelliptic
embeddings of braid groups into mapping class groups.

In this article we prove an analogue of Theorem 1·1 for homology with symplectic twisted
coefficients.

THEOREM 1·2. Consider the symplectic representation H := H1(�g,1) of the mapping
class group �g,1, and its pullback ϕ∗H, which is a representation of Br2g+1. The induced
map in homology with twisted coefficients

ϕ∗ : Hk(Br2g+1; ϕ∗H)−→ Hk(�g,1;H)
is trivial for k ≤ 2g/3 − 2/3 − 1.

Our proof of Theorem 1·2 relies on a weak version of Harer’s stability theorem: in particular
we will not need to stabilise the mapping class groups with respect to the genus, but only
with respect to the number of boundary components.

We expect Theorems 1·1 and 1·2 to be particular cases of a more general phenomenon:
we conjecture that there are constants A, B ≥ 0 such that for all r ≥ 0 the map

ϕ∗ : Hk(Br2g+1; ϕ∗H⊗r )−→ Hk(�g,1;H⊗r )

is trivial in the range k ≤ 2g/3 − 2/3 − Ar − B.
We also obtain a result concerning the homology H∗(Br2g+1; ϕ∗H) on its own:

THEOREM 1·3. The homology H∗(Br2g+1; ϕ∗H) is 4-torsion, i.e. every homology class
vanishes when multiplied by 4.

The homology H∗(Br2g+1; ϕ∗H) arises naturally as a direct summand of H∗(ϕ∗Eg,1). Here
Eg,1 denotes the total space of the tautological�g,1-bundle Eg,1 → B�g,1 over the classifying
space of the mapping class group, and ϕ∗Eg,1 is its pullback over the classifying space of the
braid group. Note indeed that ϕ∗Eg,1, as every �g,1-bundle, admits a section at the boundary
(see Subection 2·2).

This paper contains the main results of my Master’s thesis [2]. Recently Callegaro and
Salvetti [6] have computed explicitly the homology H∗(Br2g+1; ϕ∗H), showing that it has
only 2-torsion; the same authors [7] have also studied the analogue problem for totally
ramified d-fold branched coverings of the disc. Their results are partially based on results of
my Master’s thesis, which are discussed in this paper.
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2. Preliminaries

We recall some classical facts about braid groups and mapping class groups.

2·1. Braid groups

Let D= {z : |z|< 1} ⊂C denote the open unit disc, and let

Fn(D)=
{
(z1, . . . , zn) ∈D

n : zi �= z j ∀i �= j
}

denote the ordered configuration space of n points in D. The symmetric group Sn acts on
Fn(D) by permuting the labels; the quotient space is the unordered configuration space of n
points in D, denoted

Cn(D)= Fn(D)/Sn.

Artin’s braid group Brn is defined as the fundamental group π1(Cn(D)); we recall that
Cn(D) is aspherical [9], and hence a classifying space for Brn .

The braid group Brn has a presentation [1] with standard generators σ1, . . . , σn−1 and
relations:

(i) σiσ j = σ jσi for |i − j | ≥ 2;
(ii) σiσ jσi = σ jσiσ j for |i − j | = 1.

The space Cn(D) has a natural structure of complex manifold, with local coordinates given
by the positions z1, . . . , zn of the points in the configuration.

2·2. Mapping class groups and surface bundles

Let �g,m be a smooth, oriented, compact surface of genus g with m ≥ 1 parametrised
boundary components.

A parametrisation of the boundary is a diffeomorphism ∂�g,m
∼= {1, . . . ,m} × S

1, where
S

1 ⊂C is the unit circle; the parametrisation must be compatible with the orientation
induced by �g,m on the boundary. We choose as basepoint for �g,m the point ∗ ∈ ∂�g,m

corresponding to (1, 1) ∈ {1, . . . ,m} × S
1.

We consider the group Diffg,m of diffeomorphisms f : �g,m →�g,m fixing some small
collar neighbourhood of ∂�g,m in �g,m . This is a topological group with the Whitney C∞-
topology. A result by Earle and Schatz [8] ensures that Diffg,m has contractible connected
components for all g ≥ 0 and m ≥ 1. In particular the tautological map Diffg,m → π0(Diffg,m)

is a homotopy equivalence.
The discrete group π0(Diffg,m) is called the mapping class group of �g,m and is denoted

by �g,m . Applying the bar construction we obtain a homotopy equivalence

B Diffg,m
�−→ B�g,m .

The canonical action of Diffg,m on �g,m yields, through the Borel construction, the map

E Diffg,m ×Diffg,m�g,m −→ B Diffg,m = E Diffg,m /Diffg,m .

This is a fibre bundle map with fibre �g,m . The pullback bundle along the inverse homotopy
equivalence B�g,m → B Diffg,m is denoted by

p : Eg,m −→ B�g,m .

The bundle p is a universal �g,m-bundle: if p : E → X is a �g,m-bundle over a paracompact
space X (in particular its fibres are oriented surfaces and have parametrised boundary), then
p arises as pullback of p along a map ψ : X → B�g,m which is unique up to homotopy.
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The bundle p admits a global section at the boundary s0 : B�g,m → Eg,m , obtained by
choosing the basepoint of each fibre (i.e. the point corresponding to (1, 1) ∈ {1, . . . ,m} × S

1

under the parametrisation). By abuse of notation, we will also regard

B�g,m = s0(B�g,m)⊂ Eg,m

as a subspace of Eg,m .
Fibres of p are smooth surfaces, and we can assemble together their tangent bundles to

obtain a vector bundle p̄v : Vg,m → Eg,m with fibre R
2, called the vertical tangent bundle.

Choosing a Riemannian metric on p̄v and considering on each vector space its unit circle,
we define an S

1-bundle over Eg,m , called the unit vertical tangent bundle and denoted

pv : UV g,m −→ Eg,m .

We denote by ∂Eg,m
∼= B�g,m × ({1, . . . ,m} × S

1
)

the subspace of Eg,m formed by all
boundaries of fibres of p. We can define a section of pv over ∂Eg,m as follows: we assign to
each point on the boundary of a fibre of p the unit vector which is tangent to that fibre, is
orthogonal to the boundary of that fibre and points outwards. We restrict this section of pv

to B�g,m = s0(B�g,m)⊂ ∂Eg,m , obtaining a section sv0 : B�g,m = s0(B�g,m)→UV g,m ; again
we regard

B�g,m = sv0(s0(B�g,m))⊂UV g,m

as a subspace of UV g,m . See the following diagram

sv0(B�g,m) UV g,m

s0(B�g,m) Eg,m

B�g,m .

pv

p

The previous constructions are natural with respect to pullbacks. Let p : E → X be
a �g,m-bundle over a paracompact space X , obtained as a pullback of p along a map
ψ : X → B�g,m . We have a section s0 =ψ∗s0 : X → E , a unit vertical tangent bundle
pv =ψ∗pv : ψ∗UV → E and a section sv0 =ψ∗sv0 : X = s0(X)→ψ∗UV .

2·3. Stabilisation maps

We recall now the construction of the stabilisation maps

α : �g,2 −→ �g+1,1, β : �g,1 −→ �g,2, γ : �g,2 −→ �g,1

between different mapping class groups.
The map β : �g,1 → �g,2 is constructed as follows. First we decompose �g,2 as the union

of �g,1 and a pair of pants �0,3 along a boundary component. Each diffeomorphism of �g,1

fixing a collar neighbourhood of ∂�g,1 extends to a diffeomorphism of �g,2, by prescrib-
ing the identity map on �0,3: we obtain a homomorphism β̄ : Diffg,1 → Diffg,2, inducing a
homomorphism β on mapping class groups. See Figure 1.
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Fig. 1. Glueing surfaces in different ways yields homomorphisms α,β and γ between mapping class
groups.

The map γ : �g,2 → �g,1 is constructed as follows. First, we decompose �g,1 as the union
of �g,2 and a disc �0,1 along a boundary component. Each diffeomorphism of �g,2 fix-
ing a neighbourhood of ∂�g,2 extends to �g,1 by prescribing the identity on �0,1: we
obtain a homomorphism γ̄ : Diffg,2 → Diffg,1, inducing γ on mapping class groups. The
composition γ ◦ β : �g,1 → �g,1 is the identity.

Finally, the map α : �g,2 → �g+1,1 is constructed as follows. We decompose �g+1,1 as
the union of �g,1 and a pair of pants �0,3 along two boundary components. We extend
diffeomorphisms of �g,1 with the identity on �0,3, obtaining a homomorphism Diffg,2 →
Diffg+1,1, inducing a homomorphism α between mapping class groups.

We will state Harer’s stability theorem in a form that suffices for our purposes, i.e. without
mentioning mapping class groups of closed surfaces (see [11] for the original theorem and
[5, 12] for the improved stability ranges).

THEOREM 2·1 (Harer). Let A be an abelian group. The maps α, β, γ described above
induce isomorphisms in homology in a certain range:

α∗ : Hk(�g,2; A)∼= Hk(�g+1,1; A) for k ≤ 2

3
g − 2

3
;

β∗ : Hk(�g,1; A)∼= Hk(�g,2; A) for k ≤ 2

3
g;

γ∗ : Hk(�g,2; A)∼= Hk(�g,1; A) for k ≤ 2

3
g.

The proof of Theorem 1·1 uses the full statement of Theorem 2·1, in particular homology
stability with respect to α. Conversely, we will only need homological stability for the maps
β and γ to prove Theorem 1·2: these are the stabilisation maps that change the number of
boundary components but not the genus.

We will also need the following classical result [10, propositions 3·19 and 4·6].

THEOREM 2·2. The space UV g,1 is a classifying space for �g,2, i.e. it is homotopy
equivalent to B�g,2.

The map sv0 ◦ s0 : B�g,1 →UV g,1 induces the map β on fundamental groups.
The map p ◦ pv : UV g,1 → B�g,1 induces the map γ on fundamental groups.

2·4. Hyperelliptic mapping class groups

Fix a diffeomorphism J of �g,1 with the following properites:

(i) J 2 is the identity of �g,1;
(ii) J acts on ∂�g,1

∼= S
1 as the rotation by an angle π ;

(iii) J has exactly 2g + 1 fixed points in the interior of �.
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Fig. 2. A chain of 2g simple closed curves on �g,1.

The quotient space �g,1/J is a disc and the map �g,1 →�g,1/J is a 2-fold branched
covering with 2g + 1 branching points. We say that J is a hyperelliptic involution of �g,1.

Consider the group DiffJ
g,1 of diffeomorphisms f : �g,1 →�g,1 that preserve the orienta-

tion and restrict on a neighbourhood of ∂�g,1 either to the identity or to J . The corresponding
group of connected components, denoted � J

g,1 = π0(DiffJ
g,1), is the J -extended mapping

class group: it is a split extension of Z2 = 〈[J ]〉 with kernel �g,1.
The hyperelliptic mapping class group �g,1 ⊂ �g,1 is defined as the intersection in � J

g,1

between �g,1 and the centraliser of [J ]. By [3, theorem 1], the group �g,1 is also isomorphic
to the group of connected components of the centralizer of J in DiffJ

g,1; see also [10, theorem
9·2].

3. Definition of the map ϕ

We consider on �g,1 a chain of 2g simple closed curves c1, . . . , c2g, such that ci ∩ c j = ∅
for |i − j | ≥ 2, whereas ci and c j intersect transversely in one point if |i − j | = 1. Note that
a small neighbourhood in �g,1 of the union of these curves is itself diffeomorphic to �g,1.
See Figure 2.

Denote by Di ∈ �g,1 the Dehn twist about the curve ci ; then the following relations hold
in �g,1 [10, fact 3·9 and proposition 3·11]:

(i) Di D j = D j Di for |i − j | ≥ 2;
(ii) Di D j Di = D j Di D j for |i − j | = 1.

Therefore there is an induced morphism of groups

ϕ : Br2g+1 −→ �g,1

which is defined by sending the generator σi ∈Br2g+1 to the Dehn twist Di ∈ �g,1. This
map is called the Birman–Hilden inclusion: it is injective and its image is the hyperelliptic
mapping class group (see [3, theorem 1] and [10, theorem 9·2]).

From now on let n denote the number 2g + 1, in particular n is odd. We give now a
geometric description of the �g,1-bundle ϕ∗Eg,1 over Cn(D)� BBrn (see also [13]).

Consider, in the complex manifold with boundary Cn(D)×D×C, the subspace

Vn =
{
({z1, . . . , zn} , x, y) : y2 =

n∏
i=1

(x − zi )

}
.

Here D is the closed unit disc in C.
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LEMMA 3·1. The space Vn is a smooth manifold with boundary, and is transverse to
Cn(D)× ∂D×C inside Cn(D)×D×C. The natural map

π : Vn −→ Cn(D), ({z1, . . . , zn} , x, y) �−→ {z1, . . . , zn}
is a submersion; in particular its fibres are smooth.

Proof. Consider on Cn(D)×D×C the holomorphic function

f ({zi } , x, y)= y2 −
∏

i

(x − zi),

and note that Vn is the zero locus of f . The partial derivatives of f with respect to x and y
are given by the formulas:

d f

dx
({z1, . . . , zn} , x, y)= −

n∑
i=1

∏
j �=i

(x − z j );

d f

dy
({z1, . . . , zn} , x, y)= 2y.

We claim that for each point v = (
{
ẑ1, . . . , ẑn

}
, x̂, ŷ) ∈ Vn ⊂ Cn(D)×D×C at least one

of the partial derivatives d f (v)/dx and d f (v)/dx does not vanish. For this, suppose that
d f (v)/dy vanishes: then ŷ = 0. Since f (v)= 0, we have that x̂ = ẑi for exactly one value
of i . Then all the summands but exactly one in the sum for d f (v)/dx vanish, and there-
fore d f (v)/dx �= 0. We have thus shown that Vn is smooth, as d f never vanishes on Vn .
Moreover, since at least one of the partial derivatives d f (v)/dx and d f (v)/dx does not
vanish, d f is not in the image of the map pi∗ : T ∗

π(v)(Cn(D))→ T ∗
v (Cn(D)×D×C): this

image is spanned by dz1, . . . , dzn . Therefore π∗ : Tv(Cn(D)×D×C)→ Tπ(v)(Cn(D)) is
surjective, i.e. π is a submersion.

To see that Vn is transverse to Cn(D)× ∂D×C, note that if |x̂ | = 1 then x̂ �= ẑi for all i
and we can rewrite

d f

dx
(v)= −

(
n∏

i=1

(x̂ − ẑi)

)(
n∑

i=1

1

x̂ − ẑi

)
�= 0,

where the sum in the second factor is non-zero because each summand has a non-trivial
component in the direction of 1/x̂ .

Since π : Vn → Cn(D) is surjective, it is a fibre bundle with smooth Riemann surfaces as
fibres.

LEMMA 3·2. The fibres of π are diffeomorphic to �g,1. The boundaries of the fibres can
be parametrised continuously with respect to Cn(D).

Proof. Let q = {
ẑ1, . . . , ẑn

} ∈ Cn(D). The projection (q, x, y) �→ x exhibits π−1(q) as
a double covering of D, branched over n points. Thus the Euler characteristic of
π−1(q) is 2 · χ(D)− n = 1 − 2g. The boundary of π−1(q) is naturally identified with{
(x, y) ∈C

2 : |x | = 1, y2 =∏n
i=1(x − ẑi )

}
, and the projection π restricts to a double cov-

ering ∂π−1(q)→ S
1. Since n is odd the total space ∂π−1(q) of the covering is connected.

Therefore π−1(q) is diffeomorphic to �g,1.
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We want now to parametrise the boundary of each fibre of π . For any q = {
ẑ1, . . . , ẑn

}
we can consider the equation y2 =∏g

i=1(1 − t ẑi), for t ranging in [0, 1]. If t = 1 the two
solutions for y give rise to two points p1, p2 ∈ ∂π−1(q), by setting x = 1; if t = 0 the two
solutions for y are ±1. Since

∏g
i=1(1 − t ẑi) �= 0 for all t , the two values of y are always

different and change continuously while t ranges from 0 to 1. This gives a bijection between
the sets {p1, p2} and {±1}. Assume that p1 corresponds to +1; then we parametrise ∂π−1(q)
with the unique continuous function λ : ∂π−1(q)→ S

1 ⊂C taking the value +1 on p1, and
satisfying the equality

λ(q, x, y)2 = x

for all points (q, x, y) of ∂π−1(q). The existence and uniqueness of the function λ is granted
by the fact that ∂π−1(q) is a connected double covering of S1 = ∂D, and x is the coordinate
of D. The construction is continuous in q ∈ Cn(D).

We have therefore constructed a �g,1-bundle over Cn(D), and this yields a classifying
map Cn(D)→ B�g,1 which in turn gives a map Brn → �g,1 between fundamental groups:
the induced map is precisely ϕ [13, proposition 2·1].

The construction above can be generalised by fixing a natural number d ≥ 3 and replacing
the equation y2 =∏n

i=1(x − zi) by the equation yd =∏n
i=1(x − zi) when defining Vn: one

obtains the universal family of superelliptic curves of degree d.
A superelliptic curve of degree d is a d-fold covering of D branched over n points

z1, . . . , zn ∈D, which satisfies the following properites:

(i) the group of deck transformations is cyclic of order d, in particular it acts transitively
on all fibres;

(ii) the fibre over each branching point consists of only one point, and all other fibres
consist of d points;

(iii) for every regular point z ∈ D, every 1 ≤ i < j ≤ n and every couple of small, simple
loops ωi , ω j ⊂ D \ {z1, . . . , zn} based at z and spinning clockwise around zi and z j

respectively, the monodromies along ωi and ω j are the same permutation of the fibre
over z.

The boundary of a superelliptic curve is in general disconnected, but it admits a canonical
parametrisation, similarly as in the case d = 2 described above. The family of superelliptic
curves was studied by Callegaro and Salvetti in [7].

4. Unit vertical vector fields

Our next aim is to construct on the�g,1-bundle Vn → Cn(D) a unit vertical vector field, i.e.
a section of the S1-bundle ϕ∗UV g,1 → Vn = ϕ∗Eg,1. To do so consider on the entire manifold
Cn(D)×D×C the holomorphic vector field

�v({z1, . . . , zn} , x, y)= d f

dy
· ∂
∂x

− d f

dx
· ∂
∂y

= 2y · ∂
∂x

−
⎛
⎝ n∑

i=1

∏
j �=i

(x − z j )

⎞
⎠ · ∂

∂y
.

LEMMA 4·1. For v ∈ Vn the vector �v(v) is tangent to Vn, does not vanish and is vertical
with respect to π .
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Fig. 3. The vector field �v.

Proof. We have already seen in the proof of Lemma 3·1 that for each v ∈ Vn at least one
of the x- and y-partial derivatives of y2 −∏n

i=1(x − zi) does not vanish: this implies that
�v(v) �= 0. Moreover �v is tangent to Vn , since it annihilates d f ; and �v is vertical, as it is a
linear combination of ∂/∂x and ∂/∂y, i.e. it vanishes under the differential of π .

Up to the canonical identification between the holomorphic tangent bundle and the real
tangent bundle of a smooth complex manifold, and up to normalisation, we have found a
unit vertical vector field on Vn , i.e. a section of the S

1-bundle ϕ∗UV g,1 → ϕ∗Eg,1. By abuse
of notation we will denote by �v also this unit vertical vector field on Vn .

On the subspace Cn(D)= ϕ∗s0(Cn(D))⊂ ϕ∗Eg,1 we already had a unit vertical vector
field, namely ϕ∗sv0; the ratio (ϕ∗sv0)/�v (in the sense of ratio between sections of a principal
S

1-bundle) is given by a map θ : Cn(D)→ S
1. We can then consider the unit vertical vector

field �w := (θ ◦ π) · �v on Vn , which restricts to ϕ∗sv0 over the subspace ϕ∗s0(Cn(D))⊂ Vn . We
obtain the following theorem.

THEOREM 4·1. There is a unit vertical vector field �w on Vn which restricts to ϕ∗sv0 over
ϕ∗s0(Cn(D))⊂ Vn.

In the rest of the section we present an alternative argument to prove Theorem 4·1. Let �v
be a vector field on �g,1 as in Figure 3: it is orthogonal to the curve c1, parallel to c2, again
orthogonal to c3 and so on; moreover if ∗ ∈�g,1 denotes the basepoint, then �v(∗) is exactly
the unit tangent vector at ∗ that is orthogonal to ∂�g,1 and points outwards.

Let V be the space of all vector fields �w on �g,1 that satisfy �w(∗)= �v(∗) and that have no
zeroes on �g,1 (we say briefly that they are non-vanishing).

LEMMA 4·2. The space V is homotopy equivalent to Map∗(�g,1; S1), and is thus a
disjoint union contractible components; π0(V) is a H 1(�g,1)-torsor.

Proof. Fix a Riemannian metric on �g,1; then normalisation of vector fields gives a defor-
mation retraction of V onto its subspace UV of sections of the unit tangent bundle of �g,1

with value �v(∗) on ∗. Since �g,1 is a surface with boundary, its unit tangent bundle is a
trivial S1-bundle, hence UV∼= Map∗(�g,1, S

1), where the homeomorphism is neither canon-
ical nor unique, but respect the action of Map∗(�g,1, S

1) by pointwise multiplication (in
other words, it is a homeomorphism of Map∗(�g,1, S

1)-torsors). It follows that π0(V) is a
H 1(�g,1)-torsor, since π0(Map∗(�g,1, S

1)) is canonically isomorphic, as abelian group, to
H 1(�g,1).

https://doi.org/10.1017/S0305004121000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000219


258 ANDREA BIANCHI

The group Diffg,1 acts on V through differentials of diffeomorphisms: this action is well-
defined thanks to the hypothesis that differomorphisms in Diffg,1 restrict to the identity on a
neighbourhood of ∂�g,1, so that in particular their differential fixes the vector �v(∗).

There is an induced action of the mapping class group �g,1 on π0(V), and the framed
mapping class group associated with �v, denoted � f r

g,1(�v), is by definition the stabiliser of
[�v] ∈ π0(V).

Consider the pullback i∗Eg,1 → B� f r
g,1(�v) of the universal �g,1-bundle p : Eg,1 → B�g,1

along the inclusion i : B� f r
g,1(�v)→ B�g,1. Using that connected components of V are

contractible one can construct a unit vertical vector field v on i∗Eg,1 that restricts to i∗sv0 on
the section at the boundary i∗s0(B�

f r
g,1(�v)).

The key remark is that the image of the Birman–Hilden inclusion ϕ : Br2g+1 → �g,1 lies
inside � f r

g,1(v0): it suffices to note that �v is preserved, up to isotopy through vector fields in
V, by the differential of all Dehn twists about the curves ci .

Therefore the map ϕ : Cn(D)→ B�g,1 factors up to homotopy through B� f r
g,1(�v), and we

can now pull back the unit vertical vector field v over i∗Eg,1 to a unit vertical vector field �w
over ϕ∗Eg,1 with all the desired properties.

5. Stable vanishing of ϕ∗
The proof of Theorem 1·2 consists of two steps. In the first step we formulate the problem

in an alternative way, namely we replace the map

ϕ∗ : Hk(Br2g+1; ϕ∗H)−→ Hk(�g,1;H)
with the map

ϕ∗ : Hk+1(ϕ
∗Eg,1, BBr2g+1)−→ Hk+1(Eg,1, B�g,1).

Recall that BBr2g+1 can be regarded as a subspace of ϕ∗Eg,1 through the section at the
boundary. The second map has the advantage of dealing only with homology with constant
coefficients, although we have now more complicated spaces.

In the second step we factor the map ϕ∗ through the homology group

Hk+1(UV g,1, B�g,1)

which is the trivial group for k ≤ 2/3g − 2/3 − 1. This will conclude the proof that ϕ∗ is
trivial in the stable range.

The strategy of the proof is summarized in the following diagram

Hk(Br2g+1; ϕ∗H) Hk(�g,1;H)

Hk+1(ϕ
∗Eg,1, BBr2g+1) Hk+1(Eg,1, B�g,1)

Hk+1(UV g,1, B�g,1)= 0.

ϕ∗

∼= ∼=

ϕ∗

pv∗
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5·1. The reformulation of the problem

The bundle Eg,1 → B�g,1, together with the global section s0, can be regarded as a pair
of bundles (Eg,1, B�g,1)→ B�g.1 with fibre the pair (�g,1, ∗). There is an associated Serre
spectral sequence whose second page contains the homology groups

E2
p,q = Hp(B�g,1; Hq(�g,1, ∗))

and whose limit is the homology of the pair (Eg,1, B�g,1). Note that the homology group
Hq(�g,1, ∗) is non-trivial only for q = 1, in which case it is exactly the symplectic represen-
tation H of �g,1. So the second page of the spectral sequence has only one non-vanishing
row and therefore coincides with its limit, i.e.

Hp+1(Eg,1, B�g,1)= Hp(B�g,1;H).
The entire construction is natural with respect to pullbacks. Again let n = 2g + 1: the natural
map ϕ : (ϕ∗Eg,1, BBrn)→ (Eg,1, B�g,1) is a map of pairs of bundles, i.e. it covers the map
ϕ : BBrn → B�g,1. The fibre of the pair of bundles (ϕ∗Eg,1, BBrn)→ BBrn is still the
pair (�g,1, ∗), so its homology is concentrated in degree one and the corresponding spectral
sequence gives again an isomorphism

Hp+1(ϕ
∗Eg,1, BBrn)= Hp(BBrn; ϕ∗H).

The induced map between the second pages of the spectral sequences is the map

ϕ∗ : Hk(Brn; ϕ∗H)−→ Hk(�g,1;H),
appearing in Theorem 1·2; the induced map on the limit is the map

ϕ∗ : Hk+1(ϕ
∗Eg,1, BBrn)−→ Hk+1(Eg,1, B�g,1).

Hence we can study the latter map, thus reducing the problem to understanding the behaviour
of the map of pairs ϕ : (ϕ∗Eg,1, BBrn)→ (Eg,1, B�g,1) in homology with constant coeffi-
cients.

5·2. The factorisation through Hk+1(UV g,1, B�g,1).

By Theorem 4·1 there is a unit vertical vector field �w on Vn = ϕ∗Eg,1 extending the
canonical vector field ϕ∗sv0 S on the subspace BBrn ⊂ ϕ∗Eg,1.

This means that in the following diagram

(ϕ∗UV, BBrn)
(
UV, B�g,1

)

(
ϕ∗Eg,1, BBrn

) (
Eg,1, B�g,1

)

ϕ

ϕ∗pv pv

ϕ

there is a dashed diagonal arrow lifting the bottom horizontal map, so that the lower right
triangle commutes. In particular the map

ϕ∗ : Hk+1(ϕ
∗Eg,1, BBrn)−→ Hk+1(Eg,1, B�g,1)
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factors through the homology group Hk+1

(
UV, B�g,1

)
. Since by Theorem 2·1 the inclu-

sion sv0 ◦ s0 : B�g,1 →UV g,1 is a homology-isomorphism in degree ≤ 2g/3, we deduce that
Hk+1

(
UV, B�g,1

)= 0 for k + 1 ≤ 2g/3, and therefore for k ≤ 2g/3 − 1 the map

ϕ∗ : Hk+1(ϕ
∗Eg,1, BBrn)−→ Hk+1(Eg,1, B�g,1)

is the zero map. This completes the proof of Theorem 1·2.

6. Torsion property of H∗(Brn; ϕ∗H).
The aim of this section is to prove Theorem 1·3. Using the isomorphism

Hk(Brn; ϕ∗H)� Hk+1(Vn,Cn(D))

we reduce to proving that the second group is 4-torsion. We will define a submanifold
Zn ⊂ Vn disjoint from Cn(D)⊂ Vn , and use a Mayer-Vietoris argument on a splitting of
the pair (Vn,Cn(D)) as union of (Vn \Zn,Cn(D)) and a tubular neighbourhood N (Zn)

of Zn .
On the complex manifold Vn we consider the coordinate function y, which is a

holomorphic function. We denote by Zn ⊂ Vn the zero locus of y.

LEMMA 6·1. The subspace Zn ⊂ Vn is a smooth complex manifold. The normal bundle
NVn (Zn) of Zn in Vn is trivial.

Proof. Recall the vector field �v already considered at the beginning of Section 4, given on
Vn by the formula

�v({z1, . . . , zn} , x, y)= 2y · ∂
∂x

−
⎛
⎝ n∑

i=1

∏
j �=i

(x − z j )

⎞
⎠ · ∂

∂y
,

and recall that for all v ∈ Vn we have �v(v) �= 0. If v ∈Zn the ∂/∂x-component of �v(v) is
zero, hence the ∂/∂y-component of �v(v)must be non-zero; this witnesses the non-vanishing
of dy|Vn on Zn .

Note now that dy gives a non-vanishing section of the dual N∗
Vn
(Zn) of the C-bundle

NVn (Zn): therefore N∗
Vn
(Zn) is a trivial C-bundle over Zn , and hence also N∗

Vn
(Zn) is a

trivial C-bundle over Zn .

We define the configuration space of n − 1 black and one white points in the disc as

Cn−1,1(D)= {({z1, . . . , zn−1} , x) ∈ Cn−1(D)×D : x �= zi ∀1 ≤ i ≤ n − 1}.
LEMMA 6·2. The spaces Zn and Cn−1,1(D) are homeomorphic.

Proof. Let v= (
{
ẑ1, . . . , ẑn

}
, x̂, ŷ) ∈Zn . Since ŷ = 0, the equation y2 =∏n

i=1(x − zi)

defining Vn tells us that x̂ must coincide with one, and exactly one, of the numbers ẑi ;
hence a point v ∈Zn can be recovered from an unordered configuration

{
ẑ1, . . . , ẑn

}
of n

points in D, one of which is special (and we say, it is white) because it coincides with x̂ .

We denote by Tn the (open) complement of Zn in Vn . We fix a small, closed tubular
neighbourhood N (Zn) of Zn in Vn . Since the normal bundle of Zn in Vn is trivial, we
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have N (Zn)∼=Zn ×D, and N (Zn)∩ Tn � ∂N (Zn)∼=Zn × S
1. By construction the copy of

Cn(D) contained in Vn , i.e. the image of the section ϕ∗s0, is also contained in Vn \ N (Zn)=
Tn \ N (Zn). We have a Mayer–Vietoris sequence

. . .−→ Hk (N (Zn)∩ Tn)−→ Hk (Zn)⊕ Hk (Tn,Cn(D))−→ Hk (Vn,Cn(D))−→ . . .

from which we derive the following lemma, after an application of the Künneth formula for
the homology of Zn × S

1.

LEMMA 6·3. There is a long exact sequence

· · · −→ Hk

(
Cn−1,1(D)

)⊕ Hk−1

(
Cn−1,1(D)

)⊗ H1(S
1)

ι−→
ι−→ Hk

(
Cn−1,1(D)

)⊕ Hk (Tn,Cn(D))−→ Hk (Vn,Cn(D))−→ · · ·
Our goal is to obtain information about the homology of (Vn,Cn(D)) by knowing the

other homologies and the behaviour of the maps in the previous sequence. In particular we
need some results about the space Tn .

There is a double convering map Sq : Tn → Cn,1(D), where

Cn,1(D) :=
{
({z1, . . . , zn} , x) ∈ Cn(D)×D : x �= zi ∀1 ≤ i ≤ n

}
is the configuration space of n − 1 black points in D and one white point in D. The map
Sq is given by forgetting the value of y and interpreting x as the white, distinguished point.
We have introduced Cn,1(D) because for a configuration (

{
ẑ1, . . . , ẑn

}
, x̂, ŷ) ∈ Tn it may

happen that x̂ ∈ S
1, whereas the numbers ẑi are always in the interior of the unit disc;

nevertheless note that the inclusion Cn,1(D)⊂ Cn,1(D) is a homotopy equivalence.
The 2-fold covering Sq : Tn → Cn,1(D) has a nontrivial deck transformation ε : Tn → Tn ,

which corresponds to changing the sign of y.

LEMMA 6·4. The map ε is homotopic to the identity of Tn.

Proof. First we define a homotopy Hε : Cn,1(D)× [0, 1] → Cn,1(D). For q ∈ Cn,1(D) and
t ∈ [0, 1] we set Hε(q, t)= e2π i t · q: that is, at time t we rotate the configuration q by an
angle 2π t counterclockwise. Thus Hε is a homotopy from the identity of Cn,1(D) to the
identity of Cn,1(D).

We lift this homotopy to a homotopy H̃ε : Tn × [0, 1] → Tn , starting from the identity of
Tn at time t = 0. At time t = 1 any point v ∈ Tn is mapped to a point v′ lying over the same
point q ∈ Cn,1(D), i.e., Sq(v)= Sq(v′).

For fixed v= (
{
ẑ1, . . . , ẑn

}
, x̂, ŷ) ∈ Tn , the y-coordinate of H̃ε(v, t) changes continu-

ously in t ∈ [0, 1] and its square equals e2π t ŷ2 �= 0: it follows that the y-coordinate of
H̃ε(v, t) is equal to e2π int/2 ŷ. In particular, for t = 1, the y-coordinate of H̃ε(v, 1) is −ŷ �= ŷ,
therefore v′ = ε(v). In the argument we have used that n is odd.

We obtain the following corollary in homology:

COROLLARY 6·5. The map Sq∗ : H∗(Tn)→ H∗
(

Cn,1(D)
)

has the following properties:

(i) every element in the kernel of Sq∗ has order 2 in H∗ (Tn);

(ii) every element of the form 2c with c ∈ H∗
(

Cn,1(D)
)

is in the image of Sq∗.
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Similarly, the map Sq! : Hn(Cn,1(D))→ Hn(Tn) has the following properties:

(iii) every element in the kernel of Sq! has order 2 in H∗
(

Cn,1(D)
)

;

(iv) every element of the form 2c with c ∈ H∗ (Tn) is in the image of Sq!.

Proof. Note that the composition Sq∗ ◦ Sq! is multiplication by 2 on H∗
(

Cn,1(D)
)

, since 2

is the degree of the covering Sq. Note also that since Sq is a normal covering (it has degree
2), the composition Sq! ◦ Sq∗ is the sum of the maps induced by the deck transformations of
Sq, i.e. it is the sum of the identity of H∗ (Tn) and ε∗. By Lemma 6·4 we know that ε∗ is the
identity on H∗ (Tn); hence the composition Sq! ◦ Sq∗ is also multiplication by 2 on H∗ (Tn).
The result follows immediately.

There is a copy of Cn(D) embedded in Cn,1(D), given by selecting 1 ∈ S
1 as white point: this

is exactly the image under Sq of the copy of Cn(D) embedded in Tn along ϕ∗s0. We denote
by s : Cn(D)→ Cn,1(D) this inclusion.

LEMMA 6·6. For all k ≥ 0 there is a diagram of split short exact sequences

Hk(Cn(D)) Hk(Tn) Hk(Tn,Cn(D))

Hk(Cn(D)) Hk(Cn,1(D)) Hk(Cn,1(D),Cn(D)).

(ϕ∗s0)∗

Sq∗ Sq∗

s∗

Moreover there is a map Sq! : Hk(Cn,1(D),Cn(D))→ Hk(Tn,Cn(D)) such that the following
diagram commutes:

Hk(Cn(D)) Hk(Cn,1(D)) Hk(Cn,1(D),Cn(D))

Hk(Cn(D)) Hk(Tn) Hk(Tn,Cn(D)).

s∗

·2 Sq! Sq!

(ϕ∗s0)∗

Proof. Both Tn and Cn,1(D) retract onto Cn(D): the retraction is given in both cases by
forgetting all data but the position of the points zi . Note in particular that the map Sq : Tn →
Cn,1(D) is compatible with these retractions. This implies that the long exact homology
sequences associated with the couples (Tn,Cn(D)) and (Cn,1(D),Cn(D)) give rise to split
exact sequences as in the statement of the lemma. The splittings are compatible with the
vertical maps in the left square of the first diagram.

For the second diagram, we first prove commutativity of the left square. Note that
the covering Sq is trivial over the subspace Cn(D)= s(Cn(D)⊂ Cn,1(D): the two sec-
tions of this covering are ϕ∗s0 and ε ◦ ϕ∗s0. It follows that Sq! ◦s∗ = (ϕ∗s0)∗ + (ε ◦
ϕ∗s0)∗, as maps Hk(Cn(D))→ Hk(Tn), and the second map can be rewritten by Lemma
6·4 as 2 · (ϕ∗s0)∗. We can now define Sq! : Hk(Cn,1(D),Cn(D))→ Hk(Tn,Cn(D)) as the
map Hk(Cn,1(D))/Hk(Cn(D))→ Hk(Tn)/Hk(Cn(D)) induced from the left square on the
quotients.
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It follows that the properties listed in Corollary 6·5 hold also for Sq∗ : H∗(Tn,Cn)→
H∗(Cn,1(D),Cn(D)) and Sq! : H∗(Cn,1(D),Cn(D))→ H∗(Tn,Cn).

Let μ : Cn−1,1(D)× S
1 → Cn,1(D) be the following map:

μ (({z1, . . . , zn−1} , x) , θ)= ({z1, . . . , zn−1, x + δθ} , x) ,

where

δ = δ({z1, . . . , zn−1} , x)= 1

2
min ({1 − |x |} ∪ {|zi − x | : 1 ≤ i ≤ n − 1}) > 0.

Roughly speaking, μ transforms a configuration of one white point x and n − 1 black points
z1, . . . , zn−1 into a configuration with one more black point, by adding a new black point
near x , in the direction of θ . Note that if we regard S

1 as a homotopy equivalent replacement
of C1,1, then μ is up to homotopy a special case of the multiplication μ : C1,h × C1,k →
C1,h+k making

∐
k≥0 C1,k into a H -space; this general construction was described in [16].

We recall also the following result, that can be found in [15]

LEMMA 6·7. Let ν be the composition

Hk−1

(
Cn−1,1(D)

)⊗ H1(S
1)⊂ Hk(Cn−1,1(D)× S

1)
μ∗−→ Hk(Cn,1(D))� Hk(Cn,1(D))

Then ν is an isomorphism of Hk−1

(
Cn−1,1(D)

)⊗ H1(S
1) with the kernel of the retraction

Hk(Cn,1(D))→ Hk(Cn(D)); this kernel is also isomorphic to Hk(Cn,1(D),Cn(D)).

The following lemma analyses the behaviour of the map ι appearing in the Mayer–Vietoris
sequence of Lemma 6·3.

LEMMA 6·8. Let ι be the map in the Mayer Vietoris sequence of Lemma 6·3. We consider
the restriction of ι to the two summands of its domain, and its projection to the two summands
of its codomain:

(i) ι induces an isomorphism Hk(Cn−1,1(D))→ Hk(Cn−1,1(D));
(ii) ι induces the zero map Hk−1(Cn−1,1(D))⊗ H1(S

1)→ Hk(Cn−1,1(D));
(iii) ι induces the following map Hk−1(Cn−1,1(D))⊗ H1(S

1)→ Hk(Tn,Cn(D))

Hk−1(Cn−1,1(D))⊗ H1(S
1)

ν−→ Hk(Cn,1(D))
Sq!

−→ Hk(Tn)−→ Hk(Tn,Cn(D)).

Proof. The first two points of the statement come from the behaviour of the map
ι : Hk(Cn−1,1(D)× S

1)→ Hk(Cn−1,1(D)×D) on Künneth summands.
For the third point, recall that Cn−1,1(D)× S

1 represents ∂N (Zn), where N (Zn)∼=Zn ×D

is a tubular neighbourhood of Zn
∼= Cn−1,1(D) in Vn . Note that the map Sq : Tn → Cn,1(D)

extends to a map (which is no longer a covering) Sq : Vn → Cn(D)×D: this map still con-
sists in forgetting y. Let Z ′

n ⊂ Cn ×D be the subspace of configurations for which the white
point coincides with one of the n black points; then again Z ′

n � Cn−1,1(D) and Z ′
n has a

small, closed tubular neighbourhood N (Z ′
n)�Z ′

n ×D⊂ Cn(D)×D.
We can assume to have chosen N (Zn) to be Sq−1(N (Z ′

n))⊂ Vn; the map Sq : N (Zn)→
N (Z ′

n) is a 2-fold branched covering, and it is branched exactly over Z ′
n , which is home-

omorphically covered by Zn . The restriction Sq : ∂N (Zn)→ ∂N (Z ′
n) is a genuine 2-fold

covering. Let πN ′ : N (Z ′
n)→Z ′

n be a projection of the tubular neighbourhood N (Z ′
n)
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onto Z ′
n , i.e. πN ′ exhibits N (Z ′

n) as a D-bundle over Z ′
n; then the composition πN =

πN ′ ◦ Sq : N (Z ′
n)→Z ′

n
∼=Zn is a projection of the tubular neighbourhood N (Zn) onto Zn .

We have a commutative diagram

∂N (Zn)∼=Zn × S
1 Zn

∼= Cn−1,1(D)

∂N (Z ′
n)

∼=Z ′
n × S

1 Z ′
n
∼= Cn−1,1(D).

πN

Sq

πN ′

In particular in homology we can express the Gysin map π !
N as Sq! ◦π !

N ′ .
We now observe that π !

N : Hk−1(Zn)→ Hk(∂N (Zn)) is injective, and its image is the
summand Hk−1(Cn−1,1)⊗ H1(S

1)⊂ Hk(∂N (Zn)), where we use the Künneth formula for
Zn × S

1 and identify Cn−1,1
∼=Zn by Lemma 6·2. The restriction of ι to Hk−1(Cn−1,1)⊗

H1(S
1) can thus be identified with the composition

Hk−1(Zn)
π !

N−→ Hk(∂N (Zn))−→ Hk(Tn),

where the second map is induced by the inclusion ∂N (Zn) ↪→ Tn .
On the other hand, the map π !

N ′ : Hk−1(Z ′
n)→ Hk(∂N (Z ′

n)) is injective, and its image is
the summand Hk−1(Cn−1,1(D))⊗ H1(S

1)⊂ Hk(∂N (Z ′
n)), were again we use the Künneth

formula for Z ′
n × S

1 and identify Cn−1,1
∼=Zn

∼=Z ′
n .

Therefore the composition

Hk−1(Cn−1,1(D))⊗ H1(S
1)

ν−→ Hk(Cn,1(D))
Sq!

−→ Hk(Tn).

can be identified with the composition

Hk−1(Z ′
n)

π !
N ′−→ Hk(∂N (Z ′

n))−→ Hk(Cn,1(D))
Sq!

−→ Hk(Tn),

where the middle map is induced by the inclusion ∂N (Z ′
n) ↪→ Cn,1(D).

The statement is now a consequence of the following commutative diagram

Hk−1(Z ′
n) Hk(∂N (Z ′

n)) Hk(Cn,1(D))

Hk−1(Zn) Hk(∂N (Zn)) Hk(Tn).

π !
N ′

Sq! Sq!

π !
N

Proof of Theorem 1·3. We fix a class a ∈ Hk(Vn,Cn(D)), and map it to Hk−1(∂N (Zn)) along
the long exact sequence of Lemma 6·3; we obtain a class of the form b + c, where b ∈
Hk−1(Cn−1,1(D)) and c ∈ Hk−2(Cn−1,1(D))⊗ H1(S

1). Then ι(b + c) must be zero, hence its
first component, lying in Hk−1(Cn−1,1(D)), must be zero; therefore b = 0 by the first two
points of Lemma 6·8.

We deduce that ι(c)= 0, and in particular the second component of ι(c) is 0 ∈
Hk−1(Tn,Cn(D)). This implies by the third point of Lemma 6·8 that c is mapped to 0 also
under the following composition

Hk−2(Cn−1,1(D))⊗ H1(S
1)

ν−→ Hk−1(Cn,1(D))
Sq!

−→ Hk−1(Tn)

−→ Hk−1(Tn,Cn(D))
Sq∗−→ Hk−1(Cn,1(D),Cn(D)).
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Note that we have added the map Sq∗ : Hk−1(Tn,Cn(D))→ Hk−1(Cn,1(D),Cn(D)) at the
end of the composition from Lemma 6·8. We can rewrite the last composition of maps as
follows, using Lemma 6·6

Hk−2(Cn−1,1(D))⊗ H1(S
1)

ν−→ Hk−1(Cn,1(D))−→
−→ Hk−1(Cn,1(D),Cn(D))

Sq!
−→ Hk−1(Tn,Cn(D))

Sq∗−→ Hk−1(Cn,1(D),Cn(D))

As observed in the proof of Corollary 6·5, the composition Sq∗ ◦ Sq! is multiplication by 2;
on the other hand, the first two maps compose to an isomorphism by Lemma 6·7. Since we
know that c is mapped to 0 along the entire composition, we obtain 2c = 0.

It follows that 2a is in the kernel of the map Hk(Vn,Cn(D))→ Hk−1(∂N (Zn)), so it is in
the image of the map Hk(Cn−1,1(D))⊕ Hk(Tn,Cn(D))→ Hk(Vn,Cn(D)).

Let d + e �→ 2a, where d ∈ Hk(Cn−1,1(D)) and e ∈ Hk(Tn,Cn(D)): we want now to show
that 2d + 2e is in the image of ι. By Lemma 6·8 we have that ι(d + 0)= d + h for some
h ∈ Hk(Tn,Cn(D)); as a consequence we have ι(2d + 0)= 2d + 2h, so it suffices to find
i ∈ Hk−1(Cn−1,1(D))⊗ H1(S

1) such that ι(i) has second component equal to 2e − 2h (the
first component of ι(i) is automatically 0 by the second point of Lemma 6·8).

Since 2e − 2h = 2(e − h) is twice a homology class, by Lemmas 6·6 and Corollary
6·5 there is j ∈ Hk(Cn,1(D),Cn(D)) with Sq!( j)= 2e − 2h ∈ Hk(Tn,Cn(D)). By Lemma
6·7 there is i ∈ Hk−1(Cn−1,1(D))⊗ H1(S

1) such that ν(i) is mapped to j along the map
Hk(Cn−1,1(D))→ Hk(Cn−1,1(D),Cn(D)). It follows from the second point of Lemma 6·8
that ι(i)= 2e − 2h.

In particular the class 2d + 2e is in the image of ι and must therefore also be in the ker-
nel of the map Hk(Cn−1,1(D))⊕ Hk(Tn,Cn(D))→ Hk(Vn,Cn(D)): this exactly means that
4a = 0 ∈ Hk(Vn,Cn(D)), and Theorem 1·3 follows from the isomorphism Hk(Vn,Cn(D))�
Hk−1(Brn; ϕ∗H).
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