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We have performed numerical simulations of the flow in a large-aspect-ratio
Couette–Taylor system with rotating inner cylinder and with a radial temperature
gradient. The aspect ratio was chosen in such a way that the base state is in the
conduction regime. Away from the endplates, the base flow is a superposition of an
azimuthal flow induced by rotation and an axial flow (large convective cell) induced
by the temperature gradient. For a fixed rotation rate of the inner cylinder in the
subcritical laminar regime, the increase of the temperature difference imposed on
the annulus destabilizes the convective cell to give rise to co-rotating vortices as
primary instability modes and to counter-rotating vortices as secondary instability
modes. The space–time properties of these vortices have been computed, together
with the momentum and heat transfer coefficients. The temperature gradient enhances
the momentum and heat transfer in the flow independently of its sign.
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1. Introduction
The problem of heat transfer in flows between two differentially rotating circular

cylinders has been the subject of intense studies for a long time because of their
importance in many industrial applications (Snyder & Karlsson 1964; Kreith 1968;
Sorour & Coney 1979; Ball & Farouk 1989; Ball, Farouk & Dixit 1989; Lee &
Minkowycz 1989; Ali & Weidman 1990; McFadden et al. 1990; Kedia, Hunt &
Colonius 1998; Mutabazi & Bahloul 2002; Fénot et al. 2011). One may cite the
cooling of electrical motor shafts and turbine rotors (Kreith 1968; Lee & Minkowycz
1989; Fénot et al. 2011) or the thermal stresses of the shaft and cover of boiling
water reactor pumps (Kedia et al. 1998) among many others. Annular flows between
two differentially rotating cylinders with a radial temperature gradient has also been
used as a model of geophysical and astrophysical systems, where both rotation and
temperature gradients are the main ingredients of the flows involved (Lopez, Marques
& Avila 2013).

We investigate the stability of the flow in a differentially rotating vertical cylindrical
annulus subject to a radial temperature gradient. A weak temperature gradient induces

† Email address for correspondence: innocent.mutabazi@univ-lehavre.fr
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a large convective cell with ascending flow near the hot surface and descending flow
near the cold one. This flow is superimposed onto the azimuthal flow induced by
rotation. The base flow, then, has two velocity components: the azimuthal velocity
due to rotation of the inner cylinder, and the axial component due to the temperature
gradient. The investigation of the stability of this two-velocity component flow is
therefore more complicated than the circular Couette flow (CCF) or the convective
flow in an annulus without rotation. The effect of a thermal gradient on the CCF in a
vertical cylindrical annulus has been investigated in few studies since the experimental
work of Snyder & Karlsson (1964) in an annulus with large aspect ratio and very
large radius ratio. Linear stability analysis has been performed by Chen & Kuo (1990)
for axisymmetric perturbations and by Ali & Weidman (1990) for non-axisymmetric
perturbations. It has been revisited recently by Yoshikawa, Nagata & Mutabazi
(2013), who included an energetic analysis and the effect of centrifugal buoyancy.
Lopez et al. (2013) made a critical analysis of the Boussinesq approximation and
investigated the effect of the centrifugal buoyancy in rapidly rotating flows and
its role in geophysical and astrophysical systems. A weakly nonlinear analysis of
this flow has been investigated by Auer, Busse & Gangler (1996) in the small-gap
approximation.

Numerical simulations of the air flow in the circular Couette system with a
radial temperature gradient have been realized by Ball & Farouk (1989) and Kuo &
Ball (1997) using a hybrid Chebyshev collocation–Fourier spectral method, i.e. the
flow field was represented by a Fourier series expansion in the periodic azimuthal
direction and by Chebyshev polynomial expansions in the radial and axial directions.
These authors neglected the centrifugal buoyancy term. Kedia et al. (1998) solved
the flow equations taking into account the centrifugal buoyancy term but using
periodic conditions; they used Fourier series in the azimuthal and axial directions
and a Chebyshev polynomial expansion in the radial direction. They investigated
the variation of heat transfer coefficient with temperature difference for air flow in
Couette–Taylor systems with three gap widths. They pointed out the sensitivity of
the heat transfer to the wavenumber, its asymmetry with the sign of the temperature
gradient, and the existence of stationary axisymmetric vortices for small values of
temperature difference, for which the heat transfer is weakened.

The present study aims to perform numerical simulations of the thermal effects
induced by a radial temperature gradient in a large-aspect-ratio Couette–Taylor
system using the no-slip conditions at the top and bottom endplates instead of
periodic boundary conditions. The flow system corresponds to the experimental
system of Lepiller et al. (2006, 2008). The choice of such a large aspect ratio is
motivated by the avoidance of the difficulties related to small aspect ratio, such as
vertical temperature gradient due to thermal boundary layers. In fact, the length of the
annulus must be chosen in such a way as to ensure that the base state is a conduction
regime for weak values of the temperature difference, which depends on the thermal
properties of the working fluids (de Vahl Davis & Thomas 1969). Moreover, Kuo
& Ball (1997) have pointed out that the small aspect ratio used in their numerical
simulations may be one reason for discrepancies with their experimental results.
The influence of the endplates on both the velocity and temperature fields has been
thoroughly characterized. The large aspect ratio allows the discrimination of these
endplate effects from the mechanisms driving the flow instabilities. We give a detailed
description of the spatio-temporal properties of flow patterns. The torque on the inner
cylinder, the radial heat transfer coefficient and the vertical heat flux induced by
thermo-convective structures have been computed for a fixed rotation rate and an
increase of the temperature difference imposed on cylindrical surfaces.
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FIGURE 1. (Colour online) (a) Schematic of flow geometry, (b) cylinder cross-section and
(c) a portion of a meridional section.

The paper is organized as follows. In § 2, we present the flow equations, the
derivation of the quantities to be computed and the numerical procedure. Results are
given in § 3 and discussed in § 4. The last section contains the conclusion.

2. Problem formulation
2.1. Flow equations

We consider the flow of a Newtonian fluid of kinematic viscosity ν, thermal diffusivity
κ and thermal expansion α in an annulus between two coaxial long cylinders, with
the inner one rotating at the angular speed Ω and the outer one fixed (figure 1a).
The two cylinders, of height L and radii a and b = a + d, are kept at different
temperatures T1 and T2, thus creating a temperature gradient acting on the fluid
in the annulus. The temperature difference 1T = T1 − T2 is assumed to be small,
so that the Boussinesq approximation is used, allowing the fluid density ρ to vary
linearly with the temperature (i.e. ρ(T) ≈ ρ0(1− αT) with ρ0 = ρ(T0)) only in the
Archimedean and centrifugal buoyancy terms (Kedia et al. 1998; Mutabazi & Bahloul
2002; Lopez et al. 2013). Here T denotes the difference between the fluid temperature
and a reference temperature T0.

The resulting flow equations are (we have used the ‘traditional’ Boussinesq
approximation according to Lopez et al. (2013)):

∇ · u= 0,
∂u
∂t
+ (u · ∇)u=−∇π+ ν∇2u− αTG,

∂T
∂t
+ (u · ∇)T = κ∇2T,

 (2.1)
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where the reduced pressure π is given by ρ0π = p + gz. We have introduced the
effective gravity G = g + gc, with g the gravitational acceleration and gc = (u2

ϕ/r)er
the centrifugal acceleration. The nonlinear term (u · ∇)u contains, when written in
cylindrical coordinates, the centrifugal and Coriolis accelerations. From the system of
equations (2.1), one can derive the equations for the vorticity ω=∇× u,

∂ω

∂t
+ (u · ∇)ω= (ω · ∇)u+ ν∇2ω− α∇T × Ḡ, (2.2)

and for the reduced pressure π

∇2π=ω2 − σ 2 − α∇T · G with ω2 =ω ·ω, σ 2 ≡ u · (∇×ω). (2.3)

The temperature gradient acts as a source of vorticity and it modifies the pressure
distribution in the flow. Lopez et al. (2013) have included the density variation in all
the nonlinear terms as they were investigating high rotation regimes.

We have chosen the gap width d as the scale for lengths, Ωa for velocity, d/aΩ for
time, ρ(Ωa)2 for pressure and 1T for temperature. The geometric flow parameters are
the radius ratio η= a/b and the aspect ratio Γ = L/d. The present problem contains
different time scales: the viscous diffusion time scale τν = d2/ν, the thermal diffusion
time scale τκ = d2/κ , the centrifugal time scale τc =

√
d/Ω2a and the Archimedean

time scale τA = √d/(α1Tg), where 1T = T1 − T2 is the temperature difference
between the cylinder surfaces. The ratio between these time scales determines the
physical flow control parameters: the Taylor number Ta = τν/τc = Re

√
d/a, where

the Reynolds number Re=Ωad/ν; the Grashof number Gr= (τν/τA)
2 = α1Tgd3/ν2;

and the Prandtl number Pr = τκ/τν = ν/κ , which is a fluid property and depends
only on the temperature. The Galileo number Ga = gd3/ν2 is characteristic of the
flow system, i.e. it takes a fixed value for a given flow system. The Grashof number
may be seen as the thermal Reynolds number Gr =Wthd/ν, where Wth = α1Tgd2/ν
is the thermal characteristic velocity. In the rest of the paper, all the quantities are
dimensionless (except in figure 1(a) where the flow geometry is illustrated with the
physical dimensions). In cylindrical coordinates (r, ϕ, z), the equations (2.1) read:

1
r
∂

∂r
(rur)+ 1

r
∂uϕ
∂ϕ
+ ∂uz

∂z
= 0, (2.4a)

∂ur

∂t
+ (u · ∇)ur −

[
1− Gr

Ga
T
]

u2
ϕ

r
=−∂P

∂r
+ 1

Re

[(
∇2 − 1

r2

)
ur − 2

r2

∂uϕ
∂ϕ

]
, (2.4b)

∂uϕ
∂t
+ (u · ∇)uϕ + uruϕ

r
=− ∂p

r∂ϕ
+ 1

Re

[(
∇2 − 1

r2

)
uϕ + 2

r2

∂ur

∂ϕ

]
, (2.4c)

∂uz

∂t
+ (u · ∇)uz =−∂P

∂z
+ 1

Re
∇2uz + Gr

Re2 T, (2.4d)

∂T
∂t
+ (u · ∇)T = 1

Pe
∇2T, (2.4e)

where ur, uϕ and uz denote the radial, azimuthal and axial velocity components,
respectively,

u · ∇≡ ur
∂

∂r
+ uϕ

r
∂

∂ϕ
+ uz

∂

∂z
, ∇2 ≡ 1

r
∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂ϕ2
+ ∂2

∂z2
, (2.5a,b)
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and Pe (=RePr) is the Péclet number. The significance of the centrifugal buoyancy
term in (2.4b) is determined by the ratio Gr/Ga. From the set of equations (2.4a–d),
using the technique recently developed by Eckhardt, Grossmann & Lohse (2007), one
can derive the equation for the rate variation of the kinetic energy as

dEk

dt
= ηCMz

2(1+ η) −
ε

Re
+ Gr

Re2 〈Tuz〉V + Gr
Ga

〈
T

uru2
ϕ

r

〉
V

, (2.6)

where CMz is the friction coefficient on the rotating cylinder given by (Landau &
Lifshitz 1986; Childs 2010)

CMz =
4

Re

[
r
∂

∂r

(uϕ
r

)
+ 1

r
∂ur

∂ϕ

]
, (2.7)

ε/Re is the rate of viscous energy dissipation and ε is given by (Bird, Stewart &
Lightfoot 1960)

ε = 2

[(
∂ur

∂r

)2

+
(

1
r
∂uϕ
∂ϕ
+ ur

r

)2

+
(
∂uz

∂z

)2
]

+
[

r
∂

∂r

(uϕ
r

)
+ 1

r
∂ur

∂ϕ

]2

+
[

1
r
∂uz

∂ϕ
+ ∂uϕ
∂z

]2

+
[
∂ur

∂z
+ ∂uz

∂r

]2

, (2.8)

with the average being taken over the volume

〈X〉V = 1
V

∫ b

a

∫ Γ

0

∫ 2π

0
Xrdϕdzdr. (2.9)

The first term on the right-hand side of (2.6) represents the power from the motor,
which is proportional to the torque, the second term is the power dissipated by the
fluid, the third term is the power input from the Archimedean buoyancy and the last
term is the contribution of the centrifugal buoyancy.

The temperature difference induces a new component of the momentum in the axial
direction and leads to a friction coefficient given by

CMϕ
= 4

Re

(
∂uz

∂r
+ ∂ur

∂z

)
. (2.10)

Thus the total friction coefficient on the inner cylinder is given by

CM =
√

C2
Mϕ
+C2

Mz
. (2.11)

To quantify the thermal effect, we need also to compute the radial and axial heat
fluxes in the flow. From the energy equation (2.4e), we derive the conservation of the
heat current density through the (r, ϕ) cross-section as〈

1
r
∂(rjr)

∂r

〉
A

+
〈
∂jz

∂z

〉
A

= 0, jr = Pe urT − ∂T
∂r
, jz = Pe uzT − ∂T

∂z
, (2.12)

where

〈X〉A = 1
A

∫∫
XdA, dA= rdϕdr and r ∈ [ā= η/(1− η), b̄= 1/(1− η)]. (2.13)
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The radial heat transfer across a cylindrical surface of radius r is given by the Nusselt
number

Nu= 〈Jr〉
〈Jcond

r 〉
, 〈Jcond

r 〉 =−
〈

1
r ln η

〉
r=ā

. (2.14)

At the inner and outer cylinder surfaces, the radial component vanishes (ur = 0) and
the Nusselt number is given by

Nui =−η ln η
1− η

〈(
∂T
∂r

)〉
r=ā

and Nuo =−η ln η
1− η

〈(
∂T
∂r

)〉
r=b̄

. (2.15a,b)

The vertical heat flux across the r–ϕ section can be computed as the integral of jz
from (2.12),

Qz =
〈

Pe uzT − ∂T
∂z

〉
A

. (2.16)

For time-dependent flows, the relations (2.6), (2.14) and (2.16) are also averaged in
time over the longest period.

2.2. Numerical methods: choice of parameters and boundary conditions
The governing equations were discretized on a cylindrical coordinate system by
using a finite-volume method. For the flow field, a second-order-accurate central
differencing was utilized for spatial discretization. For the temperature field, a
central difference scheme was employed for the diffusion terms, and the QUICK
(quadratic upstream interpolation for convective kinematics) scheme was used for
the convective terms. A hybrid scheme was used for time advancement; nonlinear
terms and cross-diffusion terms are explicitly advanced by a third-order Runge–Kutta
scheme, and the other terms except for the pressure gradient terms are implicitly
advanced by the Crank–Nicolson scheme. A fractional step method was employed to
decouple the continuity and momentum equations. The resulting Poisson equation was
solved by a multigrid method. Details of the numerical algorithm used in the current
code are described in Kim & Moin (1985) and Kang, Yang & Mutabazi (2009).
Figure 1 shows a schematic of the flow geometry and the grid system employed
in this study. The grid is a body-fitted O-grid system (i.e. the computational axes
conform to the shape of the flow body), which is the most suitable for the present flow
configuration. More resolution is allocated near the cylinder walls where gradients
are steep. The numerical resolution employed, 32× 64× 1024 in the radial, azimuthal
and axial directions, was determined based on the grid-refinement study conducted
for Ta = 50 and Gr = 2000. It turned out that doubling resolution in each direction
yields no change in the flow pattern, and incurs less than 1.0 % difference in the
mean velocity components. In the axial direction, the grid cells are uniform with
1z=0.11, which is fine enough to capture the boundary layers near the endplates. The
boundary conditions are the no-slip conditions on the cylindrical surfaces including
the endplates, with isothermal conditions on lateral surfaces and adiabatic conditions
on top and bottom endplates:

ur = 0, uϕ = Re, uz = 0, T = 1 at r= ā= η/(1− η),
ur = 0, uϕ = 0, uz = 0, T = 0 at r= b̄= 1/(1− η),
ur = 0, uϕ = 0, uz = 0, ∂T/∂z= 0 at z= 0,
ur = 0, uϕ = 0, uz = 0, ∂T/∂z= 0 at z= Γ.

 (2.17)
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To promote natural selection of dominant modes, we have chosen a long axial
domain with Γ = 114. A wide gap system with η = 0.8 and a fluid with Pr = 5.5
were selected corresponding to the experimental set-up (Lepiller et al. 2006, 2008).
For this experimental set-up, the centrifugal buoyancy parameter is very small
(Ga−1 = 5.3× 10−7) and, according to the recent results by Yoshikawa et al. (2013),
the flow is symmetric to the sign of the temperature gradient (i.e. of Gr) in agreement
with experimental data (Lepiller et al. 2008). The value of the aspect ratio was chosen
also to ensure that the base state is in the conduction regime according to the de Vahl
Davis & Thomas (1969) criterion: 400Γ >Gr Pr.

The starting state is the stationary CCF. The computation is done by imposing a
temperature difference between the cylinder surfaces. To validate the numerical code,
we first retrieved the Taylor vortices for isothermal flow for Ta = 48, which is just
above the critical value Tac(Gr= 0)= 47.4 for η= 0.8 predicted by the linear stability
analysis for an infinite-length annulus. In particular, we have found the classical result
that the perturbation of the azimuthal velocity component is almost 10 times larger
than the radial and axial components (Drazin & Reid 1981). After that, we computed
the velocity, vorticity and temperature fields for selected values of the Grashof number
and Ta< Tac(Gr= 0).

We will present the data on the flow and temperature fields either in a cross-section
(x, z) or in a plane (ϕ, z) where x ∈ [0; 1], z ∈ [0; 114] and ϕ ∈ [0; 2π].

3. Results
3.1. Base flow characterization

When Ta is less than the critical value (Tac), a CCF is established. However, if a
radial temperature gradient is additionally imposed, an axial flow develops on top of
the CCF due to buoyancy. Away from the endplates, the base flow is characterized
by two velocity components, which depend only on the radial coordinate r or x: the
azimuthal velocity component due to the rotation of the inner cylinder, and the axial
velocity component induced by the radial temperature gradient. The profiles of the
azimuthal and axial velocity components and the temperature of this base flow in
the radial direction can be analytically obtained (Ali & Weidman 1990; Lepiller et al.
2008; Lopez et al. 2013) as follows:

uϕ = η Re
1+ η

[
−r+ 1

(1− η)2r

]
, r= x+ η

1− η , (3.1a)

uz = Gr
Re

F(η, r), F(η, r)= A[B{(1− η)2(r2 + T(r))− 1} − 4{(1− η)2r2 − η2}T(r)],
(3.1b)

T(r)= ln[(1− η)r]
ln η

, (3.1c)

with the coefficients A and B given by

A= 1
16(1− η)2 , B= (1− η

2)(1− 3η2)− 4η4 ln η
(1− η2)2 + (1− η4) ln η

. (3.1d,e)

Figure 2 shows the profiles of the velocity components and temperature computed
at the mid-height (z=Γ/2) for Ta= 20 and Gr= 250. They fit the profiles computed
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FIGURE 2. (Colour online) Base flow profiles at the mid-height of the flow system (Ta=
20, Gr= 250): (a) azimuthal velocity; (b) axial velocity; and (c) temperature.

analytically assuming that the system has an infinite axial extension (Lepiller et al.
2008). From (2.2) and (2.3), one verifies that the radial temperature gradient both
generates the baroclinic component of the vorticity and modifies the pressure
distribution in the base flow (Lopez et al. 2013).

In the base flow, the friction coefficients on the inner cylinder surface are given by

CMz =
1

η(1+ η)
(

1− η
η

)1/2 8
Ta
, CMϕ

= 4Gr
Re2

dF
dr

∣∣∣∣
r=η/(1−η)

. (3.2a,b)

The radial and the vertical heat current densities are

Jcond
r =− 1

r ln η
, Jcond

z = Gr
Re

∫ b̄

ā
rF(η, r)T(r)dr= const. (3.3a,b)

Near the endplates, the temperature and velocity fields depend on both the radial
and the axial coordinates. For isothermal flow, the Ekman pumping (Czarny et al.
2003) results in two counter-rotating vortices near the top and bottom endplates
(figure 3a,b). The flow is symmetric with respect to the plane z = Γ/2. The
temperature gradient has a drastic effect on the Ekman pumping. For weak values
of Ta, the Ekman pumping is damped by the temperature gradient because of the
formation of the convective cell (figure 3c). The increase of Ta leads to the formation
of a corner vortex, which is superimposed on the convective cell (figure 3d). This
corner cell has a circulation that is opposite to that of the large convection cell; it
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FIGURE 3. Magnified view of streamlines near the top and bottom endplates: (a) Ta= 20,
Gr = 0; (b) Ta = 40, Gr = 0; (c) Ta = 0, Gr = 250; (d) Ta = 20, Gr = 250; (e) Ta = 40,
Gr= 250.

forms in the top corner of the hot surface for Gr> 0 and in the bottom of the cold
surface when Gr< 0. The Ekman pumping then becomes significant. The coupling of
radial temperature gradient and rotation induces an asymmetry of the base flow state,
which is responsible for the initiation of vortex generation near the bottom observed
in experiments (Lepiller et al. 2006, 2008). At the bottom, the Ekman pumping is
weakened by the thermal gradient, so that the instability develops there first, while
it is very active near the top endplate when Gr increases, and therefore retards the
development of instability in that zone. In the case of natural convection (i.e. when
Ta = 0), the base flow is symmetric and the pattern is formed in the central region
of the flow (Lepiller et al. 2007).

The secondary vortex, generated by centrifugal potential, grows in size and intensity
as Ta increases (figure 3e). The vortex is formed as a result of the axial variation of
the radial velocity component and of the temperature near the endplate (figure 4) and
their interaction with the axial vorticity component from the CCF. The top–bottom
asymmetry comes from the invariance of the axial Couette flow and of the axial
temperature gradient with the sign of Gr while the radial component changes its sign.
In the case of natural convection (Ta= 0), the velocity profile possesses a reflection
symmetry with respect of the planes x= 1/2 and z=Γ/2. The isotherms are straight
vertical lines in the central part. We computed the vertical temperature gradient in the
subcritical flow regime (Gr= 750, Ta= 20) on the central surface x= 1/2 (figure 4):
it is zero everywhere except near the endplates, where a thermal boundary layer must
exist to match the adiabatic conditions. The thickness of the thermal boundary layer
(the zone where dT/dz 6= 0) is δth≈ 0.10Γ , while that of the hydrodynamic boundary
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FIGURE 4. (Colour online) (a) Temperature gradient and (b) radial velocity component in
the base flow state for Ta= 20, Gr= 750 at x= 1/2. Insets are the magnified zone near
the bottom endplate. The symbols represent grid points.

layer (the zone where ur 6= 0) is δh≈ 0.07Γ . So the flow has sufficient length (≈0.8Γ )
to develop instabilities without being influenced by end effects.

3.2. Vortex formation and temperature field
The transition scenario from the base flow to the state with vortices depends on the
values of the control parameters Ta and Gr. The numerical protocol in this study was
to choose a value of Ta in the base state (i.e. without vortex structure) and then fix
the suitable value of Gr and wait for the occurrence of the pattern. The established
flow state is reached when the torque and heat transfer coefficient do not vary any
more in time. The same protocol was used by Kedia et al. (1998), while Kuo &
Ball (1997) fixed Gr and varied Ta. For the isothermal flow, i.e. Gr = 0, stationary
axisymmetric vortices appear at Tac = 48, which is almost the value predicted by
linear stability theory for an infinite-length annulus (Tac = 47.4). Compared to the
simulations of Kuo & Ball (1997) performed in a small-aspect-ratio system (Γ =31.5),
in which the bifurcation was imperfect for 65 < Ta < 70, in our flow system, the
imperfections induced by the Ekman cells into the bifurcation are negligible because
of the large aspect ratio. The influence of the aspect ratio on the threshold in the
isothermal Taylor–Couette flow has recently been revisited by different authors, and
it was shown that the characteristic time of the critical mode varies with the aspect
ratio as Γ −2 (Manneville & Czarny 2009). The stability of the non-rotating annulus
(Ta = 0) has been widely investigated by many authors (Choi & Korpela 1980; Le
Quéré & Pécheux 1989; Bahloul, Mutabazi & Ambari 2000; Lepiller et al. 2007) and
is not reproduced in the present study.

We performed computations for Ta< Tac and |Gr| ∈ [0, 2500]; but, for conciseness,
we will focus on the results obtained for Ta = 40. The patterns obtained for any
pair (Gr, −Gr) have opposite helicity, in accordance with the symmetry arguments
developed by Ali & Weidman (1990). We verified that the pattern orientation depends
on the sign of the product Gr Ta. As |Gr| increases from the base flow state, the large
convective cell becomes unstable and gives rise to the formation of co-rotating vortices
(figure 5b). For Ta= 40, they were obtained around Gr = 290. These vortices travel
along and around the inner cylinder with a velocity that depends on the values of Gr
and Ta. The circulation of the vortices is determined by the large convective cell: it
is positive when the inner cylinder is heated and negative when the outer is heated.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

15
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.151


Thermal effect on large-aspect-ratio Couette–Taylor system 67

0

0

–0.4

0.4

0

–0.4

0.4

0

–0.5

0.5

0

–0.5

0.5

0

–0.2

0.2

52

54

56

58

60

62

52

54

56

58

60

62

52

54

56

58

60

62

52

54

56

58

60

62

52

54

56

58

60

62

1 0 1 0 1 0 1 0 1

(a) (b) (c) (d) (e)

x

z

x x x x

FIGURE 5. Contours of azimuthal vorticity to show flow structures in the central part of
the annulus for Ta= 40 with different values of Gr: (a) Gr= 250; (b) Gr= 290; (c) Gr=
750; (d) Gr= 1000; (e) Gr= 1500.

Co-rotating vortices have been reported in previous numerical studies (Kuo & Ball
1997; Kedia et al. 1998). A further increase of Gr leads to the appearance of small
counter-rotating vortices (figure 5c) of uneven size (the new vortices have a smaller
size and a negative vorticity). The precise value of Gr for which the transition between
co-rotating and counter-rotating vortices occurs has not been determined accurately
because of the large CPU time needed for such a task. For Ta=40, they appear around
Gr= 690.

The alternation of positive and negative vortices of uneven size leads to modulation
in patterns for larger values of Gr. Their propagation also induces collisions that
accelerate the occurrence of the chaotic pattern (figure 5d,e). The strength of the
vortices increases with the increase of Gr.

The isotherms in the central part of the system are represented in figure 6. They are
straight lines in the base flow and are undulating lines for co-rotating vortices. When
counter-rotating vortices are formed (for Gr > 690), thermal plumes appear near the
hot cylindrical surface and penetrate into the cold zones. They are accompanied by
strong horizontal and vertical temperature gradients that enhance the vorticity and the
pressure, respectively.

Representation of pattern structure can be made by using either streamlines or
isovalues of any component of velocity or vorticity or the isotherms. Using the
isovalues of azimuthal vorticity, we represented the three-dimensional cores of
vortical structures (figure 7) and they compare well with the isovalues of the vorticity
(figure 5). Figure 7(a) illustrates the co-rotating vortices while figure 7(b) shows the
counter-rotating spirals. In figure 7(c,d), one observes the destruction or creation of
a vortex in the flow.

3.3. Spatio-temporal properties of convective flows
In order to determine the axial and azimuthal wavenumbers, we have plotted the
isovalues of the axial velocity computed at the central lateral surface x = 1/2
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FIGURE 6. Instantaneous temperature contours on r–z plane for Ta = 40: (a) Gr = 250;
(b) Gr= 290; (c) Gr= 750; (d) Gr= 1000; (e) Gr= 1500.
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FIGURE 7. Cores of the azimuthal vorticity in the central part of the flow system for
Ta= 40: (a) Gr = 290 (ωϕ = 0.13); (b) Gr = 750 (ωϕ = 0.3,−0.1); (c) Gr = 1000 (ωϕ =
0.35,−0.15); (d) Gr= 1500 (ωϕ = 0.4,−0.25) (red, positive; blue, negative).

(figure 8). We found that the azimuthal wavenumber m takes values from 2 to 5,
while the axial wavenumber varies between 1.652 and 2.701 depending on the values
of Ta and Gr (table 1). The sign change of Gr induces the inversion of the spiral
helicity. Figure 8(b–d) illustrates the splitting of one vortex into two vortices and
merging of two vortices into one vortex in the central part of the flow system. These
events lead to the low frequency in the power spectra (figure 9e, f ), which are not
observed for a pure periodic pattern for small values of Gr (figure 9d).

The variation in time and axial direction of the flow pattern is exhibited in the form
of a space–time diagram (figure 9a–c), from which we have extracted the frequency
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FIGURE 8. Instantaneous contours of axial velocity component on the centre surface of
the annulus (x=1/2, ϕ, z) for Ta=40: (a) Gr=290; (b) Gr=750; (c) Gr=1000; (d) Gr=
1500.

Gr f qz m

290 2.512 2.701 2
500 2.796 2.645 2
750 2.718 2.287 2–3

1000 4.258 2.149 3–4
2000 5.266 1.652 4–5

TABLE 1. Values of frequency and wavenumber for Ta= 40.

and axial wavenumber by a fast Fourier transform. For small values of Gr, the pattern
spectra exhibit only one peak corresponding to the oscillation frequency or to the
wavenumber of vortices (figure 9d). The corresponding phase portrait is a closed loop
(figure 9g) illustrating the mono-periodicity of the flow. For large values of Gr, the
spectra exhibit either bi-periodic character or chaotic behaviour (figure 9e, f ) coming
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FIGURE 9. (Colour online) (a–c) Space–time diagrams of the temperature and (d–f ) the
corresponding frequency spectra averaged over the spatial coordinate z for Ta = 40:
(a,d) Gr = 500; (b,e) Gr = 1000; (c, f ) Gr = 2000. (g–i) The phase portraits (ur, dur/dr)
during the time span of 1t = 6.0 at x = 1/2, ϕ = π and z = Γ/2 for the same values
of Gr.

from the propagation of vortices of uneven size and the presence of defects (figure 9h).
We identified in the spectra the peak of the fundamental frequency f0 and two side
peaks away from the fundamental one by 1f0. The main peak corresponds to the
co-rotating vortices while the side peaks correspond to the counter-rotating vortices of
uneven size. For Gr=2000, the spectrum (figure 9f ) exhibits a large background noise
due to the splitting and merging of vortices. The appearance of chaotic behaviour is
clearly identified by the dense phase portrait in figure 9(i). The frequencies ( f0 and
1f0) and the axial wavenumber do not vary significantly with the rotation rate (Ta),
while they do vary with Gr; this is a signature that they are induced by a buoyancy
effect (figure 10).

3.4. Torque and heat transfer
We computed the coefficient of the momentum transfer on the inner cylinder surface
for different values of Gr and Ta = 40; the data are plotted in figure 11(a) and
given in table 2. Here the overbar means averaging in time. For isothermal flow
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FIGURE 10. (Colour online) Variation with Ta of (a) the pattern dimensionless frequency
for Gr= 1000, and (b) the wavenumber for Gr= 1000 and Gr= 2000.

Gr −2000 −1500 −1000 −500 0 500 1000 1500 2000 2500

102C̄Mz 8.331 8.123 7.786 7.392 7.137 7.392 7.791 8.121 8.331 8.466
102C̄Mϕ

7.218 5.398 3.744 2.113 0 2.110 3.740 5.406 7.154 9.123
102C̄M 11.023 9.753 8.640 7.688 7.137 7.687 8.642 9.756 11.004 12.445
Nui 1.949 1.946 1.875 1.501 0 1.628 1.867 1.950 1.947 1.933

TABLE 2. Averaged values of the friction coefficients and Nusselt number at the inner
cylinder for Ta= 40.

(Gr = 0), the value of the momentum coefficient computed by direct numerical
simulations (DNS), CDNS

Mz
= 0.07137, compares well with the theoretical value obtained

for CCF (3.2a,b) with infinite-length cylinders (Dubrulle & Hersant 2002; Childs
2010), C∞Mz

= 0.06944. The discrepancy of 2.8 % between these values may arise from
endplate effects. The azimuthal torque for |Gr| = 250 is the same as the isothermal
value because the corresponding flow has no vortices except the large convective cell.
But as soon as the large convective cell becomes unstable for |Gr| ≈ 290 and gives
rise to secondary convective vortices, then the values of C̄Mz grow to approximately
17 % for |Gr| = 2500 compared to the isothermal torque in the base flow state. This
increase is associated with the appearance of secondary vortices in the convective
flow patterns.

The temperature difference creates a new component of the torque with a
corresponding friction coefficient C̄Mϕ

given by the formula (2.10) and plotted in
figure 11(a). This coefficient increases with Gr and becomes comparable with the
rotation torque for Gr> 1500.

The heat transfer at the inner cylinder surface was computed through the Nusselt
number defined by the relations (2.15a,b), and the transfer at the outer cylinder
is Nuo = ηNui because the slope of the temperature near the cylindrical surfaces
is almost the same. The mean Nusselt number increases as the Grashof number
increases up to |Gr| ≈ 1000 and then saturates (figure 11b). Some authors use the
equivalent conductivity (Kedia et al. 1998), which is related to the Nusselt number
by Keq= 2Nui. The mean values of momentum transport and heat transfer are almost
symmetric with respect to Gr = 0 (table 2), i.e. heating the inner or the outer
cylinder does not modify the value of the torque and the heat transfer on the inner
cylinder. This quasi-symmetric behaviour of the friction coefficients and of the heat
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FIGURE 11. (Colour online) Variation of time-averaged transfer coefficients at the inner
cylinder with Gr for Ta= 40: (a) friction coefficients; and (b) mean Nusselt number Nui.

transfer coefficient is due to the weak value of the centrifugal buoyancy parameter
(Ga−1 ∼ 10−7) for the flow investigated in this system (Yoshikawa et al. 2013).

The axial flow is accompanied by a vertical heat flux that was computed using the
relation (2.16). The results are plotted in figure 12 for Ta = 40 and three values of
Gr corresponding to the laminar state (Gr = 250), the regime of co-rotating vortices
(Gr = 290) and the regime of counter-rotating vortices (Gr = 1000). In the cases of
Gr= 250 and 290, the vertical heat flux is constant in the central part of the flow as
Q̄z = 8.793 and 9.837, respectively. However, for Gr= 1000, Q̄z varies in the central
part around a value much less than Qlam

z = 34.077 for an infinite-length annulus owing
to the counter-rotating vortices formed in the annulus. For each value of Gr, it drops
rapidly in the boundary layers and vanishes at the endplates because of the boundary
conditions (2.17). Near the top endplate for Gr= 250 and 290, there is a sign reversal
because of the presence of the recirculation cell with an anticlockwise circulation
opposite to the large cell circulation.

4. Discussion
4.1. Comparison with experiment

The present numerical results are compared with the experimental results of Lepiller
et al. (2007, 2008) keeping in mind that, in the experiment, the value of Gr was
fixed and the Taylor number was increased from the base state to states with vortices.
For Ta = 40, the bifurcated state occurred at Gr ∈ ]240, 300[ with 1Gr ≈ 60 and
was formed of spiral vortices occupying the lower part of the flow system near
the bottom end. The size of the pattern increased as the value of Ta was increased
until the spiral vortex pattern filled the whole system. Lepiller et al. (2008) reported
in their figure 4(b) that the patterns of spiral vortex flow for Gr = 390 have the
threshold Ta∗ = 38.5, which is close to Ta = 40. This pattern is closer to that
obtained in the numerical simulations (figure 5b here) for Gr = 290 corresponding
to co-rotating vortices. As seen from figure 3, increasing the value of Ta for a fixed
value of Gr induces an asymmetry between the bottom and the top. Therefore the
instability occurs first near the bottom endplate, while near the top endplate the corner
vortex delays instability formation. This is the situation encountered in experiments
(Lepiller et al. 2007, 2008; Guillerm 2010). In the present numerical simulations, the
protocol is different: Ta is fixed and Gr is increased from the base state to convective
states. Figure 3(b) shows that, for Ta = 40 and Gr = 0, the base flow contains two
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FIGURE 12. (Colour online) (a) Time-averaged total heat flux across the r–ϕ plane for
Ta= 40 for three values of Gr. (b,c) Enlarged views of the curve for Gr= 250 near the
bottom and the top, respectively.

similar Ekman cells (with opposite circulation) near the endplates so that the flow is
symmetric with respect to the mid-plane at z=Γ/2. Imposing a temperature gradient
introduces an asymmetry in the flow between the bottom and the top. However, the
transition line between the base state and the vortex regime is difficult to determine
numerically, as this requires a large amount of computing time.

As far as stationary or periodic patterns are concerned, the wavenumbers are related
to the flow geometry and are less sensitive to the protocol. A comparison between
experiments (Lepiller et al. 2008) and the present numerical simulations can be made
for data on the wavenumber q=

√
q2

z + q2
ϕ as a function of Ri=Gr/Re2, where qϕ =

2(1− η)m/(1+ η) is the non-dimensionalized azimuthal wavenumber. The agreement
between the available numerical values and those obtained in the experiment is very
good (figure 13). The frequencies obtained in DNS (figure 10a) compare well with
those obtained in the experiments (figure 8 of Lepiller et al. 2008) for the same values
of Ta= 40 and Gr= 1000 within the experimental precision.

Compared to the work of Kuo & Ball (1997) performed in a relatively short
system, the present study deals with an extended flow system in which thermal and
hydrodynamic boundary layers are confined near the endplates. Its central part has
a sufficient length to ensure that the base state is in the conduction regime and that
observed vortices result from the instability mechanism not polluted by end effects.
However, as mentioned in § 3.1, these end effects may have a great consequence on
the generation of vortices if one fixes Gr and varies Ta as in most of the experiments
(Snyder & Karlsson 1964; Sorour & Coney 1979; Ball & Farouk 1989; Lepiller et al.
2008).
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FIGURE 13. (Colour online) Variation of the wavenumber q with Ri from DNS
and experiments.

The formation of the co-rotating vortices is a consequence of the destabilization
of the large convective cell of the base flow by shear instability because the velocity
profile exhibits an inflection point near the central cylindrical surface (x = 0.5).
According to the Rayleigh–Förtoft criterion (Drazin & Reid 1981), the flow is
unstable to transverse perturbations, leading to Kelvin–Helmholtz instability, which
manifests itself in the form of travelling vortices. The phase velocity of the co-rotating
vortices along the axial direction increases with Gr (table 1).

The appearance of counter-rotating vortices when Gr increases is a signature of
a secondary instability mode. In the experiment of Guillerm (2010), the secondary
instability mode is described as a spiral vortex flow. Such an instability mode was
also detected in numerical simulations of natural convection in a vertical slot and was
attributed to a pressure gradient, which causes the imbalance between the buoyancy
and viscous forces (Choi & Korpela 1980). In fact, according to (2.3), the isotherms
of co-rotating vortices (figure 6) are deformed and generate a vertical temperature
gradient, which is a source of pressure, and a horizontal gradient, which is a source
of vorticity. These baroclinic sources of pressure and vorticity between two vortices
have to overcome the viscous dissipation in order to generate vortices rotating in
the opposite direction. Guillerm (2010) observed that, for fixed Ta ≈ 40 and values
of Gr > 1000, the spiral vortex becomes unstable to wavy spiral vortex flow and
then eventually bifurcates to a chaotic pattern with many defects. In our simulations,
defects were detected for Gr= 1000 and 2000 (figure 7).

4.2. Transfer and averaged integral values
The behaviour of the friction coefficient with the radial temperature gradient can be
analysed using (2.7). According to this equation, after time averaging over a period of
oscillations, and neglecting the contribution of the centrifugal buoyancy, we found that
the increase of the torque compared to the isothermal case is due to the Archimedean
buoyancy power production (〈Tuz〉V < 0) through the relation

CMz =
2(1+ η)

η

[
ε

Re
− Gr

Re2 〈Tuz〉V
]
. (4.1)

The transport of momentum along the axial direction is related to the azimuthal
vorticity; it vanishes in isothermal flow. This momentum transport is associated with
the vertical heat flux (figure 12). The existence of this momentum induced by the
temperature gradient was pointed out by Auer et al. (1996) using a weakly nonlinear
analysis.
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The heat transfer across the cylinder surface increases with Gr as long as the flow
is formed either of the large convective cell or of co-rotating vortices. In this case, the
heat transfer is ensured by the large convective cell. For |Gr|> 1000, counter-rotating
vortices of small size appear in the flow and they drive some of the heat in the
opposite direction (i.e. towards the inner cylinder) from the convective cell and then
impose the saturation of heat transfer. The results of Kedia et al. (1998) present
some differences with those obtained in our study: for η = 0.5 and 0.7 and fixed
values of axial wavenumber, they observed axisymmetric vortices for |Gr| < 1000,
while we have not detected any axisymmetric mode. The Nusselt number increases
with |Gr| for spiral vortices with m = 1 or 2 and then falls to weak values for
aperiodic flow (for |Gr|> 2400). These differences come from the fact that our flow
system has a large radius ratio, which allows values of m from 1 to 6, and has a
large aspect ratio, while Kedia et al. (1998) used periodic boundary conditions in
the axial direction. Moreover, their data exhibit an asymmetry with respect to the
sign of Gr, and this might be induced by the centrifugal buoyancy. In fact, in their
simulations, they used the flow parameters from the experiment of Ball et al. (1989),
for which we estimated the value of Ga and found that Ga−1 ≈ 2.56 × 10−5. For
that value, the effects of centrifugal buoyancy cannot be neglected according to the
theoretical analysis reported in Yoshikawa et al. (2013). For a fixed value of the
rotation rate, the vertical heat flux is determined by the temperature gradient: heat
flows from the bottom to the top except in the neighbourhood of the top endplate,
where there is a heat flow reversal because of the corner recirculation cell. The flow
in a rotating cylindrical annulus with a radial temperature gradient represents a very
complex thermohydrodynamic mechanism that cries out for a detailed investigation
from experimental, numerical and theoretical approaches. Its understanding may help
the design of more efficient rotating machinery (Lee & Minkowycz 1989) and the
research on astrophysical flows such as the mechanisms responsible for the accretion
of gas around a forming star (Balbus 2011).

5. Conclusion
The thermal effect on the flow confined in a large-aspect-ratio and wide-gap

Couette–Taylor system with a fixed rotation rate of the inner cylinder has been
investigated, by direct numerical simulations, increasing the radial temperature
difference. The temperature gradient introduces an asymmetry of the base flow and
weakens the Ekman pumping by generating a corner vortex only in the neighbourhood
of the hot cylindrical surface. For fixed values of rotation rate, the increase of the
temperature difference leads to the destabilization of the large convective cell, resulting
in the formation of co-rotating vortices, which in turn can pertain to a secondary
instability and bifurcate to counter-rotating vortices of uneven size. The Archimedean
buoyancy yields a significant contribution to the torque exerted on the inner cylinder
and generates radial and axial heat fluxes. The radial heat transfer increases with
Gr and saturates as soon as the secondary instability sets in, while the vertical heat
flux increases continuously with Gr. These numerical results are in good agreement
with the experimental data for the same range of parameters. They corroborate the
previous studies in systems with different flow parameters.
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Appendix A. Momentum transfer and axial heat flux
In this appendix, we give the derivation of the friction coefficients given by (2.7)

and (2.10). The stress constraint acting on a cylindrical surface of radius r is

t(r)= τrrer + τrϕeϕ + τrzez (A 1)

and the momentum transport on a cylindrical surface of radius r is

m= r × t(r)= rer × (τrrer + τrϕeϕ + τrzez)= rτrϕez − rτrzeϕ. (A 2)

Here, τrϕ and τrz are as follows:

τrϕ =−µ
(
∂uϕ
∂r
− uϕ

r
+ 1

r
∂ur

∂ϕ

)
, τrz =−µ

(
∂uz

∂r
+ ∂ur

∂z

)
. (A 3a,b)

The total momentum over the whole cylindrical surface is obtained by integration
over the lateral surface of length L:

M =
∫ L

0

∫ 2π

0
mrdϕdz=Mzez +Mϕeϕ. (A 4)

Thus, the momentum has two components, leading to two dimensionless friction
coefficients defined as follows:

CMz =
Mz

ρ0πa2L(Ωa)2/2
, CMϕ

= Mϕ

ρ0πa2L(Ωa)2/2
. (A 5a,b)

The vertical heat flux across the (r, ϕ) section of the annular flow is defined as

Qz = ρ0cp

∫ 2π

0

∫ b

a

(
uzT − κ ∂T

∂z

)
rdrdϕ, (A 6)

where cp is the thermal capacity per unit volume of the fluid. Introduction of the
length scale d, the velocity scale Ωa and 1T for the temperature leads to the relations
(2.7), (2.10) and (2.16).
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