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Abstract – The Grönhögen-2015 core drilling on southern Öland, Sweden, penetrated 50.15 m of
Cambrian Series 3, Furongian and Lower–Middle Ordovician strata. The Cambrian succession in-
cludes the Äleklinta Member (upper Stage 5) of the Borgholm Formation and the Alum Shale Forma-
tion (Guzhangian–Tremadocian). Agnostoids and trilobites allowed subdivision of the succession into
eight biozones, in ascending order: the uppermost Cambrian Series 3 (Guzhangian) Agnostus pisi-
formis Zone and the Furongian Olenus gibbosus, O. truncatus, Parabolina spinulosa, Sphaerophthal-
mus? flagellifer, Ctenopyge tumida, C. linnarssoni and Parabolina lobata zones. Conspicuous litholo-
gic unconformities and the biostratigraphy show that the succession is incomplete and that there are
several substantial gaps of variable magnitudes. Carbon isotope analyses (δ13Corg) through the Alum
Shale Formation revealed two globally significant excursions: the Steptoean Positive Carbon Isotope
Excursion (SPICE) in the lower–middle Paibian Stage, and the negative Top of Cambrian Excursion
(TOCE), previously referred to as the HERB Event, in Stage 10. The δ13Corg chemostratigraphy is tied
directly to the biostratigraphy and used for an improved integration of these excursions with the stand-
ard agnostoid and trilobite zonation of Scandinavia. Their relations to that of coeval successions in
Baltoscandia and elsewhere are discussed. The maximum amplitudes of the SPICE and TOCE in the
Grönhögen succession are comparable to those recorded in drill cores retrieved from Scania, southern
Sweden. The results of this study will be useful for assessing biostratigraphic relations between shale
successions and carbonate facies on a global scale.

Keywords: carbon isotope excursion, trilobites, agnostoids, Borgholm Formation, Alum Shale Form-
ation, Scandinavia

1. Introduction

Throughout most of Cambrian and Ordovician times,
Baltica was an isolated continent with distinctive and
largely endemic faunas different from those of con-
temporary palaeoplates elsewhere. This substantial ter-
rane encompasses much of northern Europe and is
bounded by the Ural Mountains in the east, the Cale-
donides in the northwest and the Trans-European Su-
ture Zone in the southwest (e.g. Cocks & Fortey, 1998;
Torsvik & Cocks, 2005, 2013). Palaeomagnetic data
indicate that Baltica was geographically inverted re-
lative to its present configuration and lay at temper-
ate to subtropical latitudes (35–65° south of the pa-
laeoequator) during Cambrian times (Torsvik & Rehn-
ström, 2001; Torsvik & Cocks, 2005, 2017; Cocks
& Torsvik, 2005; Álvaro et al. 2013). Much of the
craton was submerged under a shallow to moderately
deep epeiric sea for long periods of Early Palaeozoic
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time (e.g. Cocks & Torsvik, 2005; Calner et al. 2013;
Torsvik & Cocks, 2017). Extensive weathering and
erosion during late Neoproterozoic time resulted in
a low topography, and hence sediment starvation, for
most of Cambrian and Early–Middle Ordovician times.
The Cambrian through Middle Ordovician sediment-
ary cover of Baltoscandia (sensu Martinsson, 1974) is
therefore condensed and relatively thin, commonly less
than 300 m in total.

Outcrop areas with lower Palaeozoic sedimentary
successions are widely distributed in Baltoscandia,
from Finnmark in northernmost Norway to the island
of Bornholm, Denmark, in the south (Fig. 1a; Nielsen
& Schovsbo, 2007, fig. 1, 2011, fig. 1, 2015, fig. 1).
Most outcrops occur within the East European (or Rus-
sian) Platform or in scattered outliers in Norway, on
the mainland of Sweden, and on Bornholm. Numer-
ous outcrops are also present in a relatively narrow
belt with (par-)autochthonous and allochthonous rocks
along the Caledonian thrust front. The preserved de-
posits are erosional remnants of what originally was a
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Figure 1. (a) Map of southern Sweden and the surrounding Baltoscandian region showing the distribution of lower Palaeozoic rocks
(green shading). Modified from Lindskog & Eriksson (2017). (b) Simplified geological map of Öland, southern Sweden, showing the
location of the Grönhögen-2015 drill site and the location of other core drillings referred to in the text. Unbroken lines represent
isopachytes for the Cambrian Series 3 through Lower Ordovician (Tremadocian) Alum Shale Formation. Modified from Erlström
(2016, fig. 1).

broad sedimentary blanket that covered most of Balto-
scandia.

The Cambrian through lowermost Ordovician
(Tremadocian) succession of Scandinavia can be
broadly divided into two divisions: a lower division
dominated by Terreneuvian and Cambrian Series 2
coarse-grained siliciclastic rocks, generally resting on
Precambrian crystalline rocks, and an upper divi-
sion consisting predominantly of Cambrian Series 3
through lower Tremadocian mudstones and shales with
subordinate limestone beds and lenses. The boundary
between these broad divisions is marked by a prom-
inent unconformity ascribed to non-deposition and
erosion during a eustatic sea-level fall that at least par-
tially correlates with the regressive ‘Hawke Bay Event’
(Bergström & Ahlberg, 1981; Nielsen & Schovsbo,
2007, 2011, 2015). In western Baltica (Scandinavia)
this sea-level fall coincided with epeirogenic uplift
(Nielsen & Schovsbo, 2007, 2015). The upper di-
vision comprises the silt- and mudstone-dominated
Borgholm Formation (Cambrian Series 3) followed by
dark grey to black, organic-rich siliciclastic mudstones
and shales of the Alum Shale Formation (Nielsen &
Schovsbo, 2007). The latter formation ranges from the
upper part of Cambrian Series 3 through the lower
Tremadocian and contains subordinate limestone beds
and concretionary lenses, referred to as orsten or
stinkstone (for general reviews, see Martinsson, 1974;
Bergström & Gee, 1985; Andersson et al. 1985; Thick-
penny, 1987; Buchardt, Nielsen & Schovsbo, 1997).

The epeiric sea that covered the Baltoscandian
(or Baltic) palaeobasin was characterized by signi-
ficant spatial and temporal variations in the redox

state of the seafloor and water column. The Terren-
euvian and Cambrian Series 2 sandstone-dominated
succession was deposited in shallow marine and well-
oxygenated environments, whereas the kerogen-rich
strata of the Alum Shale Formation suggest deposition
under poorly oxygenated (dysoxic to anoxic) condi-
tions in a shallow to moderately deep sea (e.g. West-
ergård, 1922; Henningsmoen, 1957; Thickpenny, 1984,
1987; Buchardt, Nielsen & Schovsbo, 1997; Schovsbo,
2001, 2002; Nielsen & Schovsbo, 2013; Egenhoff et al.
2015).

This paper focuses on the Cambrian succession in
a new drill core, Grönhögen-2015, from the classical
geological outcrop area of the island of Öland, south-
ern Sweden. The purpose of the paper is to describe
the general stratigraphy of the Grönhögen-2015 core,
and to present a high-resolution biostratigraphy and a
δ13Corg isotope stratigraphy of its Cambrian portion.
The biostratigraphy is based on agnostoids and poly-
merid trilobites. The δ13Corg chemostratigraphy is tied
directly to the biostratigraphy, and its relations to that
of coeval successions in Baltoscandia and elsewhere
are discussed. This is one of the very few δ13Corg in-
vestigations in the Cambrian Series 3 through Lower
Ordovician (Tremadocian) successions in Baltoscan-
dia and also one of the few δ13Corg studies dealing with
this interval in the world.

2. Location and general remarks

In the spring of 2015, a core drilling, Grönhögen-2015,
was performed adjacent to Mörbylånga municipal-
ity’s groundwater wells at Grönhögen, southern Öland,
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Sweden (Erlström, 2016; Fig. 1b). The drilling penet-
rated a 50.15 m thick succession of Lower–Middle Or-
dovician (0– ∼ 19.0 m), Furongian (∼ 19.0−25.73 m)
and Cambrian Series 3 (25.73−50.15 m) strata. All
depths are measured from the ground level. The core,
which has a diameter of 83 mm down to 15.00 m and
61 mm between 15.00 and 50.15 m, is housed at the
Geological Survey of Sweden, Lund, Sweden. The re-
covery of the tectonically undisturbed, essentially ho-
rizontal, core rock succession is close to 100 %.

The drilling was made by the Engineering Geology
group of the Department of Measurement Technology
and Industrial Electrical Engineering, Lund University,
with an Atlas Copco CT20 drill rig (Riksriggen). The
purpose of the drilling was to obtain information on the
subsurface bedrock geology and to collect sample ma-
terial for a chemical characterization of the bedrock.
The core drilling included geophysical borehole log-
ging, for example gamma ray logging, and a detailed
XRF-scanning of the core (see Erlström 2016). The
XRF (X-ray fluorescence) concentrations of more than
30 elements were determined. These elements include
molybdenum and vanadium that are important proxies
for redox conditions during deposition (for Mo and V
logs, see Erlström 2016, fig. 11).

The major portion of the drill core is represented
by the Cambrian Series 3 (Stage 5) Borgholm Forma-
tion and the Cambrian Series 3 (Guzhangian) through
Lower Ordovician (Tremadocian) Alum Shale Form-
ation (Erlström, 2016; Fig. 2). The succession shows
no tectonic disturbances or major late diagenetic alter-
ation, and has most likely not been buried below the
oil window (cf. Buchardt, Nielsen & Schovsbo, 1997,
fig. 19).

3. Materials and methods

The core was split up and examined at the centimetre
scale in the laboratory. Fossils and macroscopic litho-
logical characteristics were recorded and examined un-
der a binocular light microscope. Subsequently, each
fossil was meticulously studied and identified, gener-
ally to species level. Selected diagnostic fossils were
painted with opaque matt black and then lightly coated
with a sublimate of ammonium chloride prior to be-
ing photographed using a digital camera (Canon 550D)
mounted on a table-set camera holder with four ex-
ternal light sources. Figured specimens are stored in
the type collections of the Department of Geology,
Lund University, Sweden (LO, which signifies Lund
Original).

A total of 73 samples were collected from a 41.16 m
thick rock interval (50.11–8.95 m) of the Grönhögen-
2015 drill core. All samples were subjected to pro-
cessing for δ13Corg following the procedure described
by Ahlberg et al. (2009) and Terfelt, Eriksson &
Schmitz (2014). Carbon isotope analyses of organic
carbon were performed with a Flash EA 2000 ele-
mental analyser connected online to a ThermoFinnigan
Delta V Plus mass spectrometer. All carbon isotope

values are reported in the conventional δ-notation in
per mil relative to the V-PDB (Vienna-Pee Dee Belem-
nite). Accuracy and reproducibility of the analyses
were checked by replicate analyses of laboratory stand-
ards calibrated to international standards USGS 40 and
41. Reproducibility was ± 0.05‰ (1σ). The obtained
δ13Corg values are listed in Table 1 and used for the iso-
tope curve described and discussed below.

4. Lithologic succession

The lowermost 18.45 m (50.15−31.70 m) of the
Grönhögen-2015 drill core consists of a relatively
uniform succession of alternating grey or reddish
grey siltstones and siliciclastic mudstones with thin
shale partings (Fig. 2). This succession represents the
Äleklinta Member of the Borgholm Formation (see
Nielsen & Schovsbo, 2007, 2015). Bioturbation and
small-scale cross-bedding occur frequently throughout
this interval, particularly in siltstone beds in the upper
part (cf. Erlström, 2016).

The Äleklinta Member is disconformably overlain
by the Cambrian Series 3 (Guzhangian) through Lower
Ordovician (Tremadocian) Alum Shale Formation,
which has a thickness of 22.30 m (31.70−9.40 m). The
lowermost part of the Alum Shale Formation is repres-
ented by a c. 7 cm thick basal conglomerate with mud-
stone clasts, the Exporrecta Conglomerate Bed. This
calcareous conglomerate rests with a distinct discon-
formity on the Äleklinta Member and is in turn dis-
conformably overlain by dark grey silt-rich mudstones
(31.63−30.42 m).

The remainder of the Alum Shale Formation
(30.42−9.40 m) consists of dark grey to black shales
and siliciclastic mudstones with several concretionary
limestone lenses and prominent limestone beds, in-
cluding the Kakeled Limestone Bed, which comprises
several beds separated by black shale (cf. Nielsen &
Schovsbo, 2007; Rasmussen, Rasmussen & Nielsen,
2017). Some of the limestone beds are conglomeratic
or brecciated, the most conspicuous of them between
20.38 and 20.12 m.

The upper 9.40 m of the core succession in-
cludes the Lower Ordovician Bjørkåsholmen
Formation (Tremadocian) and ‘Latorp Limestone’
(?Tremadocian−Floian, provisional topoformation),
which in turn are overlain by the Middle Ordovician
(Dapingian−Darriwilian) ‘Lanna’ and ‘Holen’ lime-
stones (topoformations; see Lindskog & Eriksson,
2017).

5. Biostratigraphy

Cambrian Series 3 and Furongian strata of Scandinavia
are generally richly fossiliferous. The faunas are com-
monly dominated by polymerid trilobites and agnost-
oid arthropods, which provide a firm basis for the
biostratigraphic classification (e.g. Westergård, 1922,
1946, 1947a; Henningsmoen, 1957; Ahlberg, 2003;
Axheimer & Ahlberg, 2003; Axheimer et al. 2006;
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Figure 2. Lithological succession and formation classification of the Grönhögen-2015 drill core, Öland, Sweden. The m-figures to the
left of the columns refer to drilling depth.
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Table 1. Stable isotope data from organic matter (δ13Corg) from the
Grönhögen-2015 drill core. All values are reported relative to
Vienna-Pee Dee Belemnite (V-PDB)

Sample (core
depth, m) δ13Corg (‰) Biozone Series

50.11 − 28.93 P. gibbus? Series 3
48.35 − 28.46 P. gibbus? Series 3
46.39 − 28.65 P. gibbus? Series 3
44.62 − 28.83 P. gibbus? Series 3
42.47 − 28.59 P. gibbus? Series 3
40.59 − 28.60 P. gibbus? Series 3
38.52 − 28.80 P. gibbus? Series 3
36.29 − 28.73 P. gibbus? Series 3
34.44 − 28.82 P. gibbus? Series 3
33.97 − 28.45 P. gibbus? Series 3
33.48 − 28.61 P. gibbus? Series 3
33.16 − 28.78 P. gibbus? Series 3
32.48 − 28.97 P. gibbus? Series 3
32.11 − 28.72 P. gibbus? Series 3
31.82 − 28.36 P. gibbus? Series 3
31.61 − 31.37 A. pisiformis? Series 3
31.50 − 30.39 A. pisiformis? Series 3
31.22 (I) − 30.74 A. pisiformis? Series 3
31.22 (II) − 30.70 A. pisiformis? Series 3
30.80 (I) − 30.19 A. pisiformis? Series 3
30.80 (II) − 30.03 A. pisiformis? Series 3
30.47 − 29.62 A. pisiformis? Series 3
29.82 − 29.88 A. pisiformis Series 3
29.53 − 29.68 A. pisiformis Series 3
29.24 − 29.44 A. pisiformis Series 3
28.85 − 29.74 A. pisiformis Series 3
28.81 − 29.32 A. pisiformis Series 3
28.48 − 29.58 A. pisiformis Series 3
28.10 − 29.18 A. pisiformis Series 3
27.70 − 29.21 A. pisiformis Series 3
27.45 − 28.94 A. pisiformis Series 3
27.10 − 29.14 A. pisiformis Series 3
26.80 − 29.03 A. pisiformis Series 3
26.62 − 29.03 A. pisiformis Series 3
26.55 − 29.20 A. pisiformis Series 3
26.43 − 29.12 A. pisiformis Series 3
26.30 − 28.94 A. pisiformis Series 3
26.00 − 28.93 A. pisiformis Series 3
25.69 − 28.66 O. gibbosus Furongian
25.50 − 28.08 O. gibbosus Furongian
25.03 − 27.62 Olenus? Furongian
24.70 − 27.27 Olenus? Furongian
24.51 − 28.03 Olenus? Furongian
24.41 − 28.33 Olenus? Furongian
24.28 − 27.98 Olenus? Furongian
24.08 − 27.92 Olenus? Furongian
23.91 (I) − 28.54 Olenus? Furongian
23.91 (II) − 28.41 Olenus? Furongian
23.38 − 28.64 P. spinulosa Furongian
23.08 − 29.53 P. spinulosa Furongian
22.85 − 29.40 P. spinulosa Furongian
22.57 − 29.56 P. spinulosa Furongian
22.42 − 29.67 ? Furongian
21.90 − 29.01 S.? flagellifer Furongian
21.59 − 28.81 C. tumida Furongian
21.35 − 28.88 C. tumida Furongian
21.01 − 28.74 C. tumida Furongian
20.75 − 29.20 C. tumida Furongian
20.61 − 29.30 C. linnarssoni Furongian
20.12 − 29.41 C. linnarssoni Furongian
19.87 − 29.48 C. linnarssoni Furongian
19.55 − 29.46 P. lobata Furongian
19.20 − 29.34 ? Furongian
18.95 − 29.23 ? Furongian?
18.72 − 29.54 ? Furongian?
18.70 − 29.85 ? Lower Ordovician?
18.49 − 29.85 ? Lower Ordovician?
17.65 − 30.02 ? Lower Ordovician
16.60 − 30.10 ? Lower Ordovician
15.60 − 30.05 ? Lower Ordovician
14.45 − 29.87 ? Lower Ordovician

Table 1. Continued

Sample (core
depth, m) δ13Corg (‰) Biozone Series

14.40 − 30.21 ? Lower Ordovician
12.60 − 29.81 ? Lower Ordovician
10.80 − 29.75 ? Lower Ordovician

9.90 − 30.12 ? Lower Ordovician
8.95 − 30.09 ? Lower Ordovician

Høyberget & Bruton, 2008). Recent efforts to pro-
duce a high-resolution trilobite zonation of the Series
3 and Furongian in Scandinavia, especially in south-
ern Sweden and southern Norway, have resulted in
new zonal nomenclature, and because of significant
differences in ecologic and geographic distributions,
separate zonal schemes are now being used for the
polymerid trilobites and the agnostoids of Scandinavia
(e.g. Terfelt et al. 2008; Terfelt, Ahlberg & Eriks-
son, 2011; Ahlberg & Terfelt, 2012; Nielsen et al.
2014; Rasmussen, Nielsen & Schovsbo, 2015; Bab-
cock, Peng & Ahlberg, 2017).

The succession and ranges of agnostoids and trilob-
ites in the Cambrian of Öland have been stud-
ied by, for example, Westergård (1922, 1936, 1944,
1947b), Wærn (1952), Weidner & Nielsen (2009) and
Rasmussen, Rasmussen & Nielsen (2017). Their stud-
ies have shown that there are several unconformities
and substantial gaps both in Series 3 and in the Fur-
ongian.

The preservation of fossils in the Grönhögen-2015
drill core is often excellent in the limestones, but less
good in the shales and mudstones. In addition to ag-
nostoids and polymerid trilobites, the Cambrian suc-
cession of the drill core also contains brachiopods,
phosphatocopine arthropods and trace fossils.

5.a. Cambrian Series 3

Cambrian Series 3 is currently subdivided into
three superzones (the Acadoparadoxides oelandicus,
Paradoxides paradoxissimus and Paradoxides forch-
hammeri superzones) and seven agnostoid zones
(Høyberget & Bruton, 2008; Nielsen et al. 2014; Bab-
cock, Peng & Ahlberg, 2017). The A. oelandicus Su-
perzone is well developed on Öland, whereas the P.
paradoxissimus and P. forchhammeri superzones are
incomplete (Westergård, 1946; Martinsson, 1974).

The Cambrian Series 3 succession is incomplete
in the Grönhögen-2015 drill core and only represen-
ted by upper Stage 5 and Guzhangian strata (Fig. 3).
Trace fossils occur in abundance in the thin-bedded
mudstones and siltstones of the Äleklinta Member, but
no body fossils were found. Elsewhere on Öland, the
Äleklinta Member has locally yielded a fairly diverse
fauna indicative of the Ptychagnostus gibbus Zone
(upper Stage 5; Weidner & Nielsen, 2009). The Ex-
porrecta Conglomerate is poorly constrained biostrati-
graphically, but generally considered equivalent to the
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Figure 3. (Colour online) Biostratigraphy and ranges of fossils in the Alum Shale Formation of the Grönhögen-2015 drill core, Öland,
Sweden.
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Andrarum Limestone Bed (Guzhangian Stage; lower
Lejopyge laevigata Zone) of Scania (Skåne), southern
Sweden. The interval between 31.63 m and 25.73 m
is assigned to the Agnostus pisiformis Zone (Fig. 3).
The lower boundary of the zone is, however, difficult to
firmly establish since the lowermost c. 1.6 m of this in-
terval is largely unfossiliferous, except for a few trace
fossils. The eponymous species (Fig. 4a) ranges from
30.00 m to 28.30 m and is abundant at some levels.
The upper part of the A. pisiformis Zone is barren of
body fossils, apart from a few phosphatocopine arth-
ropods (Cyclotron sp.) and linguliformean brachiopods
near the top of the zone.

5.b. Furongian

The Furongian biostratigraphy of Scandinavia is
largely based on the succession of olenid trilobites.
The rate of faunal turnover is very high, which en-
abled Westergård (1922, 1947a) and Henningsmoen
(1957) to establish a high-resolution biostratigraphy.
Their biostratigraphical scheme has subsequently been
slightly modified (Terfelt et al. 2008; Terfelt, Ahl-
berg & Eriksson, 2011; Høyberget & Bruton, 2012;
Weidner & Nielsen, 2013; Rasmussen, Nielsen &
Schovsbo, 2015) and the Furongian of Scandinavia
is now being subdivided into six superzones and 26
polymerid (olenid) trilobite zones that can be linked
to four parallel agnostoid zones (Nielsen et al. 2014;
Rasmussen, Rasmussen & Nielsen, 2017; Babcock,
Peng & Ahlberg, 2017, fig. 3). In ascending order,
the Furongian Series includes: the Olenus, Parabolina,
Leptoplastus, Protopeltura, Peltura and Acerocarina
superzones (Nielsen et al. 2014). All superzones have
been recorded on Öland but they are partially or
largely incomplete (Westergård, 1947a; Rasmussen,
Rasmussen & Nielsen, 2017).

Agnostoids and trilobites allowed subdivision of
the Furongian succession of the Grönhögen-2015 drill
core into seven biozones, in ascending order: the
Olenus gibbosus, O. truncatus, Parabolina spinulosa,
Sphaerophthalmus? flagellifer, Ctenopyge tumida, C.
linnarssoni and Parabolina lobata zones (Fig. 3). The
biostratigraphy and conspicuously developed uncon-
formities show that the Alum Shale Formation is in-
complete and that there are several substantial gaps of
variable magnitudes. The Leptoplastus (Jiangshanian)
and Acerocarina (uppermost Stage 10) superzones ap-
pear to be missing, and the Olenus (Paibian) and Pro-
topeltura (upper Jiangshanian) superzones are incom-
plete (Fig. 5).

The base of the Furongian Series and the Paibian
Stage is placed at the lowest occurrence Olenus gib-
bosus (Fig. 4e). This species occurs at 25.73–25.35 m
and is indicative of the O. gibbosus Zone, the base of
which coincides with the first appearance datum (FAD)
of Glyptagnostus reticulatus (see Peng et al. 2004;
Ahlberg & Terfelt, 2012; Nielsen et al. 2014). The
O. gibbosus Zone is succeeded by a 20 cm thick suc-
cession with O. truncatus (Fig. 4b–d), Agnostus (Ho-

magnostus) obesus (Fig. 4g, h) and the phosphatocop-
ine Cyclotron cf. angelini (Fig. 4f).

The base of the Parabolina Superzone, which
roughly coincides with the base of the Jiangshanian
Stage (Ahlberg & Terfelt, 2012), cannot be positively
identified in the drill core, as there is a barren inter-
val between the lower Paibian O. truncatus Zone and
the Jiangshanian Parabolina spinulosa Zone. However,
the orthid brachiopod Orusia lenticularis (Fig. 4i) is
most commonly associated with Parabolina spinulosa
(Westergård, 1922; Terfelt, 2003) and its presence in
the 23.65–22.49 m interval is suggestive of the P. spin-
ulosa Zone. Following the Parabolina Superzone there
is a substantial hiatus and the Leptoplastus Super-
zone and most of the Protopeltura Superzone are miss-
ing; only the Sphaerophthalmus? flagellifer Zone has
been positively identified in the middle and upper Ji-
angshanian, with the eponymous species occurring at
22.10 m.

Cambrian Stage 10 strata are represented by the
Ctenopyge tumida, C. linnarssoni and Parabolina lob-
ata zones. The base of the C. tumida Zone is placed
at the first occurrence of a species of Sphaerophthal-
mus at 21.88 m (Fig. 4k; cf. Terfelt, Ahlberg & Eriks-
son, 2011). The lower and middle part of this zone
has yielded S. alatus (Fig. 4l–n) and Peltura cf. minor.
The Ctenopyge bisulcata Zone appears to be missing
and the C. tumida Zone is followed by the C. lin-
narssoni Zone, the base of which is placed at 20.70 m
and at the lowest occurrences of Triangulopyge humilis
(Fig. 4o), Ctenopyge directa (Fig. 4j) and C. cf. pecten.
The first occurrence of Peltura scarabaeoides wester-
gaardi (Fig. 4r) and Parabolina cf. lobata (Fig. 4s) at
19.92–19.90 m is indicative of the base of the P. lob-
ata Zone. The top of this zone is placed at the last oc-
currence of P. scarabaeoides westergaardi (Fig. 4q) at
19.65 m. The Parabolina lobata Zone is overlain by a
thin (0.4 m) succession of unfossiliferous shales that
may represent the Peltura paradoxa Zone. A prom-
inent hiatus, probably comprising the uppermost four
zones in the Furongian (the Acerocarina granulata
Zone through the Acerocare ecorne Zone), is present
between the top of the Parabolina lobata/Peltura para-
doxa Zone and the lowermost Ordovician (Tremado-
cian) succession (Fig. 5). The base of the Ordovician
is poorly constrained biostratigraphically but is tent-
atively placed at c. 19.0 m, below the first graptolite
(Adelograptus? sp. at 17.95 m) and where there is a
distinctive negative jump in the carbon isotopic curve.

6. δ13Corg chemostratigraphy

During the last three decades, the potential of carbon
isotopes for global stratigraphical correlation of Cam-
brian strata has attracted a great deal of international
interest (e.g. Brasier 1993; Montañez et al. 2000;
Saltzman et al. 2000, 2004; Zhu et al. 2004; Zhu,
Babcock & Peng, 2006; Peng, Babcock & Cooper,
2012 and references therein). Although many studies
on Cambrian chemostratigraphy have been carried
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Figure 4. Fossils from Cambrian Series 3 and the Furongian in the Grönhögen-2015 drill core. Scale bars correspond to 1 mm.
(a) Agnostus pisiformis (Wahlenberg, 1818), cephala and pygidia from the A. pisiformis Zone (29.90 m), LO 12418t. (b–d) Olenus
truncatus (Brünnich, 1781) from the O. truncatus Zone: (b) cranidium (25.15–25.18 m), LO 12419t; (c) cranidium (25.25 m), LO
12420t; (d) cranidia and librigenae (25.15–25.18 m), LO 12421t. (e) Olenus gibbosus (Wahlenberg, 1818), pygidium from the O.
gibbosus Zone (25.73 m), LO 12422t. (f) Cyclotron cf. angelini (Linnarsson, 1875) from the O. truncatus Zone (25.18–25.20 m), LO
12423t. (g, h) Agnostus (Homagnostus) obesus (Belt, 1867) from the O. truncatus Zone (25.15–25.18 m): (g) cephalon, LO 12424t;
(h) pygidium, LO 12425t. (i) Orusia lenticularis (Wahlenberg, 1818), abundant specimens from the P. spinulosa Zone (23.65 m),
LO 12426t. (j) Ctenopyge directa Lake, 1919, cranidium from the base of the C. linnarssoni Zone (20.65–20.70 m), LO 12427t. (k)
Sphaerophthalmus sp., cranidium from the base of the Ctenopyge tumida Zone (21.88 m), LO 12428t. (l–n) Sphaerophthalmus alatus
(Boeck, 1838) from the Ctenopyge tumida Zone (21.05–21.10 m): (l) cranidium, LO 12429t; (m) cranidium, LO 12430t; (n) cranidium,
LO 12431t. (o) Triangulopyge humilis (Phillips, 1848), cranidium from the base of the C. linnarssoni Zone (20.65–20.70 m), LO
12432t. (p) Peltura sp., cranidium from the base of the C. linnarssoni Zone (20.65–20.70 m), LO 12433t. (q, r) Peltura scarabaeoides
westergaardi Henningsmoen, 1957 from the Parabolina lobata Zone: (q) pygidium (19.65 m), 12434t; (r) pygidium (19.90–19.92 m),
LO 12435t. (s) Parabolina cf. lobata, cranidium from the base of the P. lobata Zone (19.90–19.92 m), LO 12436t.
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Figure 5. Stratigraphical subdivision of the Cambrian succession in the Grönhögen-2015 drill core, Öland, Sweden. Grey shading
indicates unconformities. Biostratigraphy based on Axheimer et al. (2006), Høyberget & Bruton (2008), Terfelt et al. (2008), Terfelt,
Ahlberg & Eriksson (2011), Nielsen et al. (2014), Rasmussen, Nielsen & Schovsbo (2015) and Babcock, Peng & Ahlberg (2017).

out, most investigations focused on δ13Ccarb using
samples from carbonate-dominated or carbonate-rich
successions. The Cambrian Series 3 through Furong-
ian succession of Scandinavia is dominated by shales
and siliciclastic mudstones. δ13Corg has previously
been used in the Cambrian of Scandinavia by Ahlberg
et al. (2009), Lehnert et al. (2013), Terfelt, Eriksson &
Schmitz (2014), Lundberg et al. (2016) and Hammer
& Svensen (2017). These studies and the present
one show that δ13Corg chemostratigraphy is useful
for correlations between the siliciclastic-dominated
successions of Scandinavia and carbonate successions
elsewhere in the world.

The 15 stratigraphically lowest samples from the
Grönhögen-2015 drill are from the Äleklinta Member
(upper Stage 5) and show δ13Corg values between –29.1
and –28.4‰ (Fig. 6). At the base of the Agnostus pisi-
formis Zone (31.6 m), there is a significant negative
shift in δ13Corg of c. −2.5‰. This is followed by a pos-
itive trend with minor fluctuations in the A. pisiformis
Zone (Fig. 6).

The carbon isotopic curve through the Furongian
shows a distinctive positive excursion in the Paibian
(core depth 25.7−23.6 m), which is tied closely to
the biostratigraphy (Fig. 6). The amplitude and strati-
graphic position of this excursion strongly suggests
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Figure 6. (Colour online) Lithologic log and plot of δ13Corg val-
ues through the Cambrian and Lower Ordovician (Tremadocian)
of the Grönhögen-2015 drill core. Note the positions of the
SPICE and TOCE excursions recognized in the present study.
Jiangsh. – Jiangshanian.

that it is the Steptoean Positive Carbon Isotopic Ex-
cursion (SPICE; e.g. Saltzman et al. 2000; Kouchin-
sky et al. 2008; Ahlberg et al. 2009; Gill et al. 2011;
Wotte & Strauss, 2015; Schiffbauer et al. 2017). It has
an amplitude of nearly +2‰, begins near the first ap-
pearance of Olenus gibbosus (base of the Paibian), and
extends upward into the O. truncatus Zone and slightly
younger beds (?upper Olenus Superzone). A relatively
minor (c. −0.5‰) but consistent trend to more negat-
ive δ13Corg values near the top of the Cambrian is seen
near the base of the Ctenopyge linnarssoni Zone. It
displays nadir values just below and above the Para-
bolina lobata Zone. Based on its stratigraphic posi-
tion, we interpret this interval (21.0−∼ 19.0 m) as an
equivalent to the Top of Cambrian Excursion (TOCE;
Zhu, Babcock & Peng, 2006). The end of the pu-
tative TOCE cannot be precisely recognized because
there is likely a gap between the Parabolina lobata/
Peltura paradoxa Zone and the basal Ordovician. The
transition between the Cambrian and the Ordovician is
marked by a c. −0.6‰ shift in the carbon isotope val-
ues. In the lowermost Ordovician (lower Tremadocian)
part of the drill core, δ13Corg values are around –30‰
(Fig. 6).

7. Discussion

The Cambrian succession in the Grönhögen-2015
drill core is lithologically and stratigraphically sim-
ilar to coeval intervals in other drill cores from south-
ern Öland (see, e.g., Westergård, 1944, 1947b; Erl-
ström, 2016). The Äleklinta Member is generally
barren of body fossils and hence biostratigraphic-
ally poorly constrained. However, recent studies show
that it should be assigned to the Ptychagnostus gib-
bus Zone (Weidner & Nielsen, 2009; Nielsen &
Schovsbo, 2015). The Äleklinta Member is discon-
formably overlain by the Exporrecta Conglomerate
(Guzhangian Stage, probably lower Lejopyge laevigata
Zone; Axheimer et al. 2006), which in turn is overlain
by the upper Guzhangian Agnostus pisiformis Zone.
Thus, the entire Drumian Stage seems to be miss-
ing in the Grönhögen-2015 drill core (Fig. 5). The
Alum Shale Formation has a thickness of 22.3 m.
This figure is closely comparable to the thickness of
this formation at Ottenby, 8 km south of Grönhögen
(23.3 m; Westergård, 1944) and Gammalsby, 18 km
northeast of Grönhögen (18.8 m; Westergård, 1944).
The Alum Shale Formation gradually thins out towards
the NNW of Öland (Westergård, 1944, 1947b; Erl-
ström, 2016). On southernmost Öland, the top of the
Cambrian is generally formed by a thin, less than 0.6 m
thick, succession assigned to the Acerocarina granu-
lata Zone of Weidner & Nielsen (2013) (Westergård
1944, 1947a,b). This zone and the underlying Peltura
paradoxa Zone cannot be positively identified in the
Grönhögen-2015 drill core owing to lack of fossils in
the 19.6−19.0 m interval overlying the Parabolina lob-
ata Zone. At the Degerhamn quarry, 15 km north of
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Figure 7. (Colour online) Comparison of the δ13Corg curve from the Grönhögen-2015 drill core with δ13Corg curves from the apparently
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Grönhögen, the top of the Cambrian consists of strata
assigned to the P. lobata Zone (Rasmussen, Rasmussen
& Nielsen, 2017).

Despite some scatter in the δ13Corg values (Fig. 6) in
parts of the drill core succession, two globally signi-
ficant excursions can be identified, the SPICE and a
subdued TOCE (previously referred to as the HERB
Event; Ripperdan, 2002), both of which are generally
considered as large and rapid excursions indicative of
perturbations in the oceanic carbon cycle (e.g. Rip-
perdan et al. 1992; Saltzman et al. 2000, 2004; Miller
et al. 2015). The onset of the SPICE is associated with
the base of the Furongian Series (Peng et al. 2004),
whereas the TOCE occurs in the lower Eoconodon-
tus Conodont Zone near the top of the Cambrian (e.g.
Miller et al. 2014, 2015). The SPICE and TOCE ex-
cursions have been recorded from most Cambrian pa-
laeocontinents and have great potential for global cor-
relation in the Paibian and Cambrian Stage 10, respect-
ively (e.g. Saltzman et al. 2000; Sial et al. 2008, 2013;
Landing, Westrop & Adrain, 2011; Woods et al. 2011;
Gill et al. 2011; Miller et al. 2011, 2014, 2015; Ng,
Yuan & Lin, 2014; Lim et al. 2016; Azmy, 2018). Al-
though it has been argued (e.g. Landing, Westrop &
Adrain, 2011) that the HERB Event is different from
the TOCE excursion of Zhu, Babcock & Peng, (2006),
we follow Peng, Babcock & Cooper (2012), Terfelt,
Eriksson & Schmitz (2014), Miller et al. (2015) and Li

et al. (2017) in considering them as the same carbon
isotopic excursion.

The magnitude of the SPICE and TOCE in the
Grönhögen-2015 succession is comparable to δ13Corg

curves from drill cores retrieved from Scania, south-
ern Sweden (SPICE from the Andrarum-3 drill core
and TOCE from the Håslöv-1 drill core; Ahlberg et al.
2009; Terfelt, Eriksson & Schmitz, 2014; Fig. 7) and
at Krekling, southern Norway (SPICE; Hammer &
Svensen, 2017). However, the amplitude and expres-
sion of the identified isotopic excursions, especially
the TOCE, in Swedish successions are typically quite
subdued compared to equivalents recorded in other
areas (see below). In our drill core, the SPICE be-
gins near the first appearance of Olenus gibbosus,
which is considered to coincide with the first ap-
pearance of Glyptagnostus reticulatus and the base of
the Furongian Series and the Paibian Stage (Terfelt
et al. 2008; Terfelt, Ahlberg & Eriksson, 2011). It ex-
tends upward into the O. truncatus Zone and through
unfossiliferous shales that may represent the middle
and upper Olenus Superzone of Nielsen et al. (2014).
Hence, the SPICE from the Grönhögen-2015 drill core
spans a biostratigraphical interval approximately equi-
valent to that recorded in the Alum Shale of Scand-
inavia (Andrarum-3 drill core, southern Sweden, and
at Krekling, southern Norway; Ahlberg et al. 2009;
Hammer & Svensen, 2017) and the Outwoods Shale
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Formation in Warwickshire, England (Woods et al.
2011). This biostratigraphical interval can be assigned
to the lower−middle Paibian Stage. In the Grönhögen-
2015 core, the putative TOCE begins near the base
of the Ctenopyge linnarssoni Zone and has its nadir
immediately below and above the Parabolina lobata
Zone. In the Håslöv-1 drill core, the TOCE interval
displays two peaks, a lower one in the upper P. lob-
ata Zone and an upper one straddling the Parabolina
lobata−Peltura paradoxa zonal boundary (Fig. 7; Ter-
felt, Eriksson & Schmitz, 2014). A double peak has
also been recognized in, e.g., western Newfoundland
(Stouge, Bagnoli & Azmi, 2016). The TOCE seem-
ingly begins slightly earlier in our drill core and two
peaks cannot be identified, probably because of con-
densation and/or too few data points. In terms of the
Baltoscandian conodont biostratigraphy, the TOCE ex-
cursion spans the upper Proconodontus muelleri Zone
and the Cordylodus? andresi Zone, i.e. an interval that
can be correlated with the lower Eoconodontus Con-
odont Zone in Laurentia and elsewhere (Bagnoli &
Stouge, 2014).

The negative −2.5‰ shift at the base of the Alum
Shale Formation coincides with a substantial hiatus
and a shift in lithology from mudstones and siltstones
in the Äleklinta Member (upper Stage 5) to dark grey
mudstone and shales in the lower Alum Shale Form-
ation (upper Guzhangian). Throughout the overlying
Agnostus pisiformis Zone (upper Guzhangian), δ13Corg

values increase until the base of the SPICE (Fig. 6).
This positive trend has also been recorded from the
pre-SPICE interval in the Andrarum-3 drill core from
Scania, southern Sweden (Ahlberg et al. 2009), and
elsewhere in the world, notably in South China, Kaza-
khstan and Australia (e.g. Saltzman et al. 2000; Wotte
& Strauss, 2015). The post-SPICE and pre-TOCE
δ13Corg curve in the Grönhögen-2015 drill core dis-
plays variable values (between –28.8 and –29.7‰),
with two ‘cycles’ in δ13C being apparent. It is, how-
ever, worth noting that significant parts of the post-
SPICE and pre-TOCE isotope curve are cut out by
gaps in the Furongian succession, the most prom-
inent one being in the middle−upper Jiangshanian
Stage.

The overall trends in the presented isotope curve
are similar to those present in some published δ13Ccarb

curves through coeval stratigraphic intervals in other
parts of the world. The shift of the δ13Corg in the ex-
cursions recorded in the Grönhögen-2015 drill core
is approximately half (SPICE) or less than one-
fourth (TOCE) the magnitude of coeval δ13Ccarb ex-
cursions documented from other regions (see also
Terfelt, Eriksson & Schmitz, 2014). This difference
may be related to spatial and temporal variations in
the origin, composition, alteration and diagenesis of
the organic matter analysed (Ahlberg et al. 2009),
with different geographic areas hosting unique geo-
chemical conditions that influence and partly over-
print the global δ13C signal. Still, the present study
shows that the SPICE and TOCE are useful for long-

distance correlations in both shaly and carbonate
successions.

8. Conclusions

The Grönhögen-2015 core drilling penetrated 50.15 m
of Cambrian Series 3, Furongian and Lower–Middle
Ordovician strata. The lower part of the drill core
succession belongs to the upper Äleklinta Mem-
ber (Borgholm Formation; Cambrian Series 3),
which is disconformably overlain by the Cambrian
Series 3 (Guzhangian) through Lower Ordovician
(Tremadocian) Alum Shale Formation. The upper
part of the drill core includes the Lower Ordovician
Bjørkåsholmen Formation (Tremadocian) and ‘Lat-
orp Limestone’ (?Tremadocian−Floian, topoforma-
tion), which in turn are overlain by the Middle Ordovi-
cian (Dapingian−Darriwilian) ‘Lanna’ and ‘Holen’
limestones (topoformations).

Agnostoids and trilobites allowed subdivision of the
succession into eight biozones (in ascending order):
the uppermost Cambrian Series 3 (Guzhangian) Ag-
nostus pisiformis Zone and the Furongian Olenus gib-
bosus, O. truncatus, Parabolina spinulosa, Sphaeroph-
thalmus? flagellifer, Ctenopyge tumida, C. lin-
narssoni and Parabolina lobata zones. The biostrati-
graphy and conspicuous unconformities show that
the Alum Shale Formation is incomplete and that
there are several substantial gaps of variable mag-
nitudes. The Furongian Leptoplastus Superzone (Ji-
angshanian) and Acerocarina Superzone (Stage 10)
appear to be missing, and the Paibian Olenus
and upper Jiangshanian Protopeltura superzones are
incomplete.

The Grönhögen-2015 drill core offers an excel-
lent opportunity to calibrate the Furongian δ13Corg

curve with the Furongian standard trilobite and ag-
nostoid zone succession of Baltoscandia. Carbon iso-
topic analyses (δ13Corg) through the Alum Shale Form-
ation show two globally significant excursions, the
Steptoean Positive Carbon Isotopic Excursion (SPICE)
and the Top of Cambrian Carbon isotopic Excursion
(TOCE), previously referred to as the HERB Event.
The SPICE has an amplitude of c. +1.5−2‰, begins
near the first appearance of Olenus gibbosus (base of
the Furongian Series and the Paibian Stage), and ex-
tends upward into the O. truncatus Zone and slightly
younger beds (middle and ?upper Olenus Superzone).
The negative TOCE, which is poorly expressed in
the studied succession (net shift c. −0.5‰), occurs
in Stage 10, begins near the base of the Ctenopyge
linnarssoni Zone and displays nadir values immedi-
ately below and above the Parabolina lobata Zone.
The net shifts of the excursions are comparable to
those recorded in drill cores retrieved from Scania,
southern Sweden (SPICE from the Andrarum-3 drill
core and TOCE from the Håslöv-1 drill core), but
they are subdued compared to international counter-
parts. The occurrence of the TOCE δ13Corg excur-
sion in Stage 10 in southern Sweden has potential
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for global correlation of the uppermost Cambrian in
Baltoscandia with coeval successions elsewhere in the
world.
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