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On the formation of sand waves and sand banks
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(Received 7 October 2004 and in revised form 1 November 2005)

A fully three-dimensional model is proposed for the generation of tidal sand waves
and sand banks from small bottom perturbations of a flat seabed subject to tidal
currents. The model predicts the conditions leading to the appearance of both tidal
sand waves and sand banks and determines their main geometrical characteristics. A
finite wavelength of both sand waves and sand banks is found around the critical
conditions, thus opening the possibility of performing a weakly nonlinear stability
analysis able to predict the equilibrium amplitude of the bottom forms. As shown by
previous works on the subject, the sand wave crests turn out to be orthogonal to the
direction of the main tidal current. The present results also show that in the Northern
Hemisphere sand bank crests are clockwise or counter-clockwise rotated with respect
to the main tidal current depending on the counter-clockwise or clockwise rotation of
the velocity vector induced by the tide. Only for unidirectional or quasi-unidirectional
tidal currents are sand banks always counter-clockwise rotated. The predictions of
the model are supported by comparisons with field data. Finally, the mechanisms
leading to the appearance of sand waves and sand banks are discussed in the light
of the model findings. In particular, it is shown that the growth of sand banks is
not only induced by the depth-averaged residual circulation which is present around
the bedforms and is parallel to the crests of the bottom forms: a steady drift of the
sediment from the troughs towards the crests is also driven by the steady velocity
component orthogonal to the crests which is present close to the bottom and can be
quantified only by a three-dimensional model. While the former mechanism appears
to trigger the formation of counter-clockwise sand banks only, the latter mechanism
can give rise to both counter-clockwise and clockwise rotated sand banks.

1. Introduction
The bottom of shallow seas characterized by the presence of tidal currents and

large deposits of sand exhibits a variety of regular morphological patterns of different
length scales. The largest bedforms are the tidal sand banks recently described in
general terms by Dyer & Huntley (1999). Sand banks are periodic morphological
patterns with wavelengths ranging a few kilometres and heights which can be even
comparable with the water depth. In the Northern Hemisphere, usually the crests of
sand banks are slightly counter-clockwise rotated with respect to the principal axis of
the tidal ellipse and they hardly move. However, in the North Sea numerous examples
do exist of sand banks with crests clockwise rotated with respect to the principal axis
of the tidal ellipse, the Sandettie bank and the Zeeland banks being typical examples
(Johnson et al. 1982; Hommes 2004). At some locations smaller bedforms are present
which are called sand waves. The wavelengths of these rhythmic features are of a few
hundred metres and they are a few metres high (Belderson, Johnson & Kenyon 1982).
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2 G. Besio, P. Blondeaux and G. Vittori

The profile of sand waves is symmetric unless either significant residual currents are
present or the tidal wave is asymmetric. In these cases, sand waves migrate, with their
crests almost orthogonal to the direction of tide propagation, at a typical rate of
about one to some tens of metres per year (Fenster et al. 1990) either in the direction
of the residual current (Németh, Hulscher & de Vriend 2002) or against it (Besio
et al. 2004). At some locations, field surveys (Le Bot 2001; Idier 2002; Idier, Astruc &
Hulscher 2003; Le Bot & Trenteseaux 2004) show systems of coexisting sand banks
and sand waves and provide data on the effects of storms and residual currents on
their dynamics.

Previous studies of the processes which lead to the formation of sand banks and
sand waves (Huthnance 1982a; Hulscher, De Swart & De Vriend 1993; Hulscher
1996) have shown that these regular features arise as free instabilities of the system
describing the interaction between the cohesionless sea bottom and the water motions
induced by tide propagation.

A possible physical mechanism leading to the formation of tidal sand banks was first
suggested by Huthnance (1982a, b): because of the Coriolis force and bottom frictional
effects, the oscillatory tidal flow interacting with bottom forms characterized by crests
that are counter-clockwise rotated (in the Northern Hemisphere) with respect to the
direction of the main tidal current causes the formation of a clockwise horizontal
residual circulation around the crests. Consequently, flow velocities on the upstream
side of the crests are slightly higher than those on the downstream side. Since sediment
transport increases with increasing velocities, it follows that sediment accumulates at
the crests of the bottom waviness. Hulscher et al. (1993) tackled the problem using
the shallow-water approximation and considering the depth-averaged velocity field.
The fastest growing mode determined by Hulscher et al. (1993), who in particular
considered a unidirectional tide, is characterized by crests almost aligned with the
tidal current but slightly counter-clockwise rotated, and the predicted wavelengths
are in agreement with the field values. Since the depth-averaged equations cannot
describe the vertical recirculating cells which are the driving mechanism of sand
wave formation, Hulscher et al. (1993) did not look at the conditions leading to sand
wave appearance, even though their approach could be extended by an appropriate
parametrization of the secondary currents in the vertical plane (see De Swart &
Hulscher (1995) where the possible existence of clockwise rotated sand banks is also
mentioned).

A more refined model able to describe the formation of both sand waves and sand
banks was proposed by Hulscher (1996), who used the shallow-water approximation
but did not average along the vertical direction, thus obtaining a description of the
vertical recirculating cells which trigger the formation of sand waves. Good predictions
of the bedform characteristics were obtained by Hulscher (1996) (see also Hulscher &
Van den Brink 2001), even though the model predicts ultra-long wavelengths of the
sand banks around the critical conditions and the crests of the sand banks turn out to
be always counter-clockwise rotated with respect to the direction of the tidal current.
Moreover, the parameters of the model should be tuned as functions of tide and
sediment characteristics (Hulscher & Van den Brinks 2001).

Although significant progress has been made both in the prediction of tidal sand
banks and sand waves appearance and in the prediction of their characteristics (see
De Vriend 1990; Fredsøe & Deigaard 1992; De Swart & Hulscher 1995; Gerkema
2000; Komarova & Hulscher 2000; Komarova & Newell 2000; Besio, Blondeaux &
Frisina 2003; Besio et al. 2004) much remains to be done. One of the main flaws of
the existing models comes from the very simple representation of the flow close to the
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The formation of sand waves and sand banks 3

bottom: to describe the formation of sand banks, the shallow-water approximation
and the depth-averaged velocity have been employed. In the studies of sand wave
appearance, turbulent stresses are accounted for by using the Boussinesq hypothesis
and by introducing an eddy viscosity which is assumed to be constant over the water
depth. In actual flows, turbulent mixing tends to vanish close to a rigid wall, as pointed
out by Richards (1980) in his study of ripples and dunes in fluvial environments. In
the previous models of tidal sand waves and sand banks, the wall layer is neglected
and a partial slip condition at the bottom is introduced for the velocity. It follows
that the velocity gradients, which are present close to the bottom and are the main
contributions driving the time development of the perturbations (see (3.11a)), are
greatly underestimated.

In the present contribution, a new model is described which provides both a more
reliable description of the processes which lead to the formation of tidal sand banks
and sand waves and more accurate predictions of their geometrical characteristics.
The model is based on the study of the stability of the flat bottom configuration:
small bottom perturbations are considered and a linear analysis of their growth is
performed. To describe the hydrodynamics and the morphodynamics of shallow tidal
seas, the model proposed by Blondeaux & Vittori (2005a, b) is used but modified
to take into account the local time derivatives of the perturbed velocity field which
play an important role in the time development of the sand banks. In fact, the local
acceleration terms in the momentum equations, neglected by Blondeaux & Vittori
(2005a, b), have the same order of magnitude as the Coriolis terms which are already
known to play a fundamental role in sand bank appearance. In particular, turbulence
generated by tidal currents is described by introducing an eddy viscosity which is
assumed to depend on the distance from the bottom. Comparisons of the theoretical
results with field observations support the model findings.

The procedure used in the rest of the paper is as follows. In the next section
we formulate the hydrodynamic problem and we introduce the sediment transport
parameterization. In § 3, we determine the basic flow, i.e. the solution describing
both the tidal wave propagation over a flat bottom and the sediment transport. We
also study the interaction of the tidal current with an arbitrary bottom perturbation.
Finally, the results are described in § 4 where a qualitative and quantitative comparison
of the theoretical predictions with field observations is also given. A discussion of the
physical mechanisms leading to the appearance of sand waves and sand banks is given
in § 5. Some conclusions are drawn in § 6 where both ongoing and future research are
also outlined.

2. Formulation of the problem
The problem formulation is similar to that described in Blondeaux & Vittori

(2005a, b). We briefly summarize it and refer the interested reader to these papers for
more details. A shallow sea of small depth h∗ is considered and a Cartesian coordinate
system is introduced such that the x∗-axis is along the parallels pointing east, the y∗-
axis points north along the meridian line and the z∗-axis is vertical pointing upwards.
The seabed is assumed to be made of a cohesionless sediment of uniform size d∗

and density ρ∗
s (hereinafter a star denotes dimensional quantities). As pointed out

in the Introduction, the aim of the work is to determine the time development of
perturbations of the flat bottom configuration forced by tidal currents.

By using the f -plane approximation (see for example LeBlond & Mysak 1978), the
problem of flow determination is posed by the continuity and momentum equations
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4 G. Besio, P. Blondeaux and G. Vittori

where the Coriolis contributions related to the Earth’s rotation (Ω∗ is the angular
velocity of the Earth’s rotation and φ0 is the local latitude) are taken into account
because they affect the tidal current. The flow regime is assumed to be turbulent and
viscous effects are neglected. An exhaustive analysis of turbulence properties in tidal
currents is provided in the review paper of Soulsby (1983). The field measurements of
Heathershaw (1979), Bowden & Ferguson (1980), Soulsby (1980, 1981) and Soulsby &
Dyer (1981) show that the turbulence can be safely assumed isotropic. Hence, using the
Boussinesq hypothesis to model Reynolds stresses, a scalar kinematic eddy viscosity
ν∗

T can be introduced.
On defining the following dimensionless variables:

(x, y, z) = (x∗, y∗, z∗)/h∗
0, t = t∗ω∗, (2.1a)

(u, v, w) = (u∗, v∗, w∗)/U ∗
0 , p = p∗/�∗ω∗h∗

0U
∗
0 , (2.1b)

(ρ∗ is the sea water density, t∗ is time, (u∗, v∗, w∗) are the velocity components along
the x∗-, y∗- and z∗-axes, p∗ is pressure, h∗

0 is the average water depth, ω∗ is the angular
frequency of the tide, U ∗

0 is the maximum value of the depth-averaged fluid velocity
during the tidal cycle), the flow equations become

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.2)

∂u

∂t
+ r̂

[
u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
= −∂p

∂x
+ δ̂2

{
∂

∂x

[
2νT

∂u

∂x

]

+
∂

∂y

[
νT

(
∂u

∂y
+

∂v

∂x

)]
+

∂

∂z

[
νT

(
∂u

∂z
+

∂w

∂x

)]}
− 2Ω[cos(φ0)w − sin(φ0)v], (2.3)

∂v

∂t
+ r̂

[
u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
= −∂p

∂y
+ δ̂2

{
∂

∂x

[
νT

(
∂u

∂y
+

∂v

∂x

)]

+
∂

∂y

[
2νT

∂v

∂y

]
+

∂

∂z

[
νT

(
∂v

∂z
+

∂w

∂y

)]}
− 2Ω sin(φ0)u, (2.4)

∂w

∂t
+ r̂

[
u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]
=− g∗

U ∗
0 ω∗ − ∂p

∂z
+ δ̂2

{
∂

∂x

[
νT

(
∂u

∂z
+

∂w

∂x

)]

+
∂

∂y

[
νT

(
∂v

∂z
+

∂w

∂y

)]
+

∂

∂z

[
2νT

∂w

∂z

]}
+ 2Ω cos(φ0)u, (2.5)

where the kinematic eddy viscosity ν∗
T is written as the product ν∗

T 0νT : the constant
ν∗

T 0 is dimensional and provides the order of magnitude of the eddy viscosity while
νT = νT (x, y, z, t) is a dimensionless function (of order 1) describing the spatial
and temporal variations of the turbulence structure. In (2.3)–(2.5), two dimensionless
parameters appear which are denoted by r̂ and δ̂ respectively:

r̂ =
U ∗

0

ω∗h∗
0

, δ̂ =

√
ν∗

T 0/ω
∗

h∗
0

. (2.6)

The parameter r̂ is the ratio between the amplitude of horizontal fluid displacement
oscillations and the local depth. Values of r̂ are of order 102. The parameter δ̂ is the
ratio between the thickness of the viscous bottom boundary layer and the local depth.
A rough estimate of δ̂ shows that it is of order one. Finally, Ω is the ratio between
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The formation of sand waves and sand banks 5

the angular velocity of the Earth’s rotation and the angular frequency of the tidal
wave. For a semidiurnal tide Ω ≈ 0.5 while for the diurnal tide component Ω ≈ 1.

The hydrodynamic problem is then closed by appropriate boundary conditions. At
the free surface, described by z = η(x, y, t), the dynamic boundary condition forces
the vanishing of the stresses. Moreover, the kinematic boundary condition is forced.
Finally, the velocity is forced to vanish at a distance from the seabed equal to a
fraction of the dimensionless roughness zr equal to z∗

r /h∗
0, z∗

r being the size of the
bottom roughness.

For later convenience, the dynamic pressure P is introduced

p = P − g∗

U ∗
0 ω∗ (z − η). (2.7)

The time development of the bottom configuration is provided by the sediment
continuity equation, which in dimensionless form is

∂h

∂T
=

∂qx

∂x
+

∂qy

∂y
(2.8)

where h = h∗/h∗
0 is the dimensionless local water depth and (q∗

x , q
∗
y ), (qx, qy) are the

dimensional and dimensionless volumetric sediment transport rates per unit width in
the x- and y-directions respectively, such that (qx, qy) = (q∗

x , q
∗
y )/

√
(ρ∗

s /ρ
∗ − 1)g∗(d∗)3.

The slow time scale

T =
td

(1 − por )

√
ψ̂d

(2.9)

is introduced. In (2.9) por is the sediment porosity and d is the dimensionless
sediment size which, along with the mobility number ψ̂d and the Reynolds number
Rp characterize the sediment particles

d =
d∗

h∗
0

, ψ̂d =
(ω∗h∗

0)
2

(ρ∗
s /ρ

∗ − 1)g∗d∗ , Rp =

√
(ρ∗

s /ρ
∗ − 1)g∗d∗3

ν
. (2.10)

The sediment Reynolds number Rp is introduced because it appears in the sediment
transport predictors.

The problem can be closed once a model for the eddy viscosity ν∗
T is given and

relationships for (q∗
x , q

∗
y ) are provided. The eddy viscosity ν∗

T is assumed to be time-
independent and given by

ν∗
T = k

U ∗
0 h∗

0

C F (ξ ). (2.11)

In (2.11) k is the von Kármán constant (k = 0.4) and the eddy viscosity is assumed
to be proportional to the time average of the local friction velocity and to the local
depth h∗

0. The average friction velocity is then related to U ∗
0 by introducing the friction

factor C, which only depends on the dimensionless roughness zr , since the Reynolds
number of the flow is assumed to be large. Standard formulae for steady currents can
be used to evaluate C. Finally, the function F (ξ ) (ξ = (z∗ − η∗)/(h∗ + η∗)) describes
the vertical structure of the eddy viscosity and has been chosen, as suggested by Dean
(1974), such that the eddy viscosity grows linearly with the distance from the bed,
when a region close to the bottom is considered, and then decreases achieving a finite
small value at the free surface. A time-independent eddy viscosity model provides a
fair description of the phenomenon because it mainly fails only at flow reversal, when
tidal currents are very weak and the transport of any quantity, and in particular of
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6 G. Besio, P. Blondeaux and G. Vittori

sediment particles, tends to vanish (Gerkema 2000). Therefore, the morphodynamic
consequences of this assumption are negligible. Finally, the eddy viscosity is written
in the form ν∗

T = ν∗
T 0νT (ξ ) where

ν∗
T 0 = kU ∗

0 h∗
0

∫ 0

−1

F (ξ ) dξ/C and νT (ξ ) = F (ξ )/

∫ 0

−1

F (ξ ) dξ.

These definitions of ν∗
T 0 and νT have been chosen in such a way that the depth-

averaged value of νT (ξ ) is equal to one. Since ν∗
T 0 is proportional to U ∗

0 , for later
convenience, it is useful to introduce the new viscous parameter

∆̂ =

k

∫ 0

−1

F (ξ ) dξ

C =
δ̂2

r̂
(2.12)

which does not depend on the strength of the tidal current.
Sediment transport is usually split into two components. One is due to sediment

moving close to the bottom (the ‘bed load’) and the other is due to sediment which
is carried into suspension (the ‘suspended load’). Here, the approach proposed by
Van Rijn (1991) is used to evaluate the two contributions. In particular, his empirical
formula is used to quantify the bed-load components (qBx, qBy) which turn out to
depend on the x- and y-components of the dimensionless bed shear stress θ

(θx, θy) =
(τ ∗

x , τ ∗
y )

(ρ∗
s − ρ∗)g∗d∗ (2.13)

where (τ ∗
x , τ ∗

y ) are the dimensional shear stress components, which can be easily
evaluated by means of the constitutive law.

To complete the description of the sediment transport which takes place close to the
sea bed, it is necessary to account for the weak effects associated with a slow spatial
variation of the bottom topography, which affect the bed-load sediment transport.
Assuming that the bottom slope ∇h is small, simple dimensional arguments coupled
with linearization lead to the following contribution

(qPx, qPy) = −qBG∇h (2.14)

where G is a dimensionless second-order two-dimensional tensor. Experimental
observations of various authors (Talmon, Struiksma & Van Meirlo 1995) provide
estimates for the components of G (Seminara 1998).

To evaluate the suspended sediment transport (qSx, qSy), it is necessary to compute
the concentration c = c(x∗, y∗, z∗, t∗) by solving a standard convection–diffusion
equation:

1

r̂

∂c

∂t
+u

∂c

∂x
+v

∂c

∂y
+w

∂c

∂z
− ws

r̂

√
ψ̂d

∂c

∂z
= ∆̂

{
∂

∂x

[
νT

∂c

∂x

]
+

∂

∂y

[
νT

∂c

∂y

]
+

∂

∂z

[
νT

∂c

∂z

]}

(2.15)
where ws is the dimensionless particle fall velocity defined by

ws = w∗
s /

√(
�∗

s

�∗ − 1

)
g∗d∗.

Suitable boundary conditions are forced at the seabed and at the free surface. The
free-surface boundary condition states that the sediment flux in the normal-to-surface
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The formation of sand waves and sand banks 7

direction n̂ must vanish. Then, following Van Rijn (1991), a reference concentration
cζ ∗ is forced at a distance ζ ∗ = 0.01h∗ off the seabed.

Once the concentration c is obtained by solving (2.15), the suspended sediment
transport qS can be found as the flux of concentration over the water column:

(qSx, qSy) =
r̂

√
ψ̂d

d

∫ η

−h+ζ

[
(u, v)c + ∆̂νT

(
∂c

∂x
,
∂c

∂y

)]
dz. (2.16)

However, as suggested by Van Rijn (1991), the suspended load is evaluated neglecting
the diffusive part of (2.16) because of the small values usually assumed by the
parameter ∆̂ for field conditions, and some numerical experiments suggest that
∆̂νT (∂c/∂x, ∂c/∂y) provides a negligible contribution to the suspended load.

3. The time development of arbitrary bottom perturbations of small amplitude
Small perturbations of the flat bottom are considered so that the bottom confi-

guration differs from the flat one by a small (strictly infinitesimal) amount proportional
to ε. Hence, the bottom profile can be thought of as given by the superposition of
different spatial components which evolve independently from each other. A normal
mode analysis can be performed and the problem can be solved for the generic spatial
component

h = 1 − εA(t)ei(αxx+αyy) + c.c. + O(ε2) (3.1)

where εA(t) is the amplitude of the generic component which is periodic in the x- and
y-directions with wavenumbers αx and αy respectively and ε � 1. The small value of
ε allows the solution to be expanded in terms of ε:

[u, v, w, p, η, c] =

[
u0, v0,

h∗
0

L∗ w0,
L∗

h∗
0

P0,
a∗

h∗
0

e0, c0

]

+ ε

[
u1, v1, w1, r̂P1,

(
a∗

h∗
0

)2

e1, c1

]
A(t)ei(αxx+αyy) + c.c. + O(ε2). (3.2)

The scaling introduced by (2.1) is appropriate to study the flow induced by the
interaction of a tidal wave with bedforms which are characterized by an amplitude
and a length of the same order of magnitude as the water depth h∗

0. In this case, the
continuity equation suggests that the three velocity components have the same order
of magnitude. When a tidal wave propagating over a flat bottom is considered, the
most appropriate horizontal length scale turns out to be

L∗ =

√
g∗h∗

0

ω∗ . (3.3)

Since the ratio h∗
0/L

∗ is much smaller than one, an analysis of the order of magnitude
of the different terms in the continuity equation suggests that the vertical velocity
component is of order h∗

0U
∗
0 /L∗. Similarly, the kinematic condition at the free surface

suggests that η∗ is of order a∗, where a∗ = U ∗
0 h∗

0/(ω
∗L∗) is related to the amplitude of

the tidal wave. Also, momentum equation shows that the dynamic pressure P ∗ is of
order ρ∗U ∗

0 ω∗L∗. Finally, when a bottom waviness of small amplitude εh∗
0 (ε � 1) is

considered and the flow field is expanded as a power series in ε, at the leading order of
approximation the balances previously described occur. Then, at the following order
of approximation, because of the boundary conditions and continuity equation, the
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8 G. Besio, P. Blondeaux and G. Vittori

three velocity components turn out to be of order εU ∗
0 . The above order of magnitude

analysis, along with the assumptions

h∗
0

L∗ � 1,
a∗

h∗
0

� 1, (3.4)

justifies (3.2).
At the leading order of approximation, i.e. O(ε0), the problem is reduced to the

determination of both the flow and sediment transport induced by tide propagation
over a flat seabed. Here, the solution at the leading order of approximation is
assumed to be dominated by the main tide constituent which is indicated by the
superscript (1):

(u, v, w, P, η) =

(
u

(1)
0 , v

(1)
0 ,

h∗
0

L∗ w
(1)
0 ,

L∗

h∗
0

P
(1)
0 ,

a∗

h∗
0

e
(1)
0

)
e−it + c.c. (3.5)

where the functions u
(1)
0 , v

(1)
0 , w

(1)
0 , P

(1)
0 depend on z and on the slow spatial coordinates

X =
h∗

0

L∗ x, Y =
h∗

0

L∗ y. (3.6)

By substituting (3.5) and (3.6) into equations (2.2)–(2.5), a set of ordinary differential
equations is obtained which can be numerically solved with a shooting procedure to
determine the vertical structure of the velocity field for given characteristics of the
tidal ellipse (orientation with respect to the x-axis, ratio ecc between the minor and
major axes, etc). The details of the solution procedure are described in Blondeaux &
Vittori (2005a).

Let us only point out that two solutions exist: one describes a clockwise rotating
tidal velocity vector, the other describes a counter-clockwise rotating tidal velocity
vector. The choice of the former or the latter depends on the propagation of the
tidal wave and its interaction with the horizontal boundaries and cannot be made
on the basis of this local model. Only field surveys can provide this information as
well as the value of ecc. Once the local flow is known, the vertical distribution of
sediment concentration can be computed using (2.15) and the appropriate boundary
conditions. The fair agreement between the predicted quantities and the data of
Knight & Ridgway (1977), who measured the velocity profile in laboratory simulations
of oscillatory tidal flows, and the field measurements of Van Rijn, Van Rossum &
Ternes (1990) and Chapalain & Thais (2000), who measured both the tidal currents
and the sediment concentration, supports the model (see Blondeaux & Vittori 2005a).

When (3.2) is substituted into the flow problem formulated in § 2 and terms of
order ε2 are neglected, the following set of linear equations for u1, v1, w1, p1 and e1 is
derived:

iαxu1 + iαyv1 +
∂w1

∂z
= 0, (3.7)

1

r̂A

dA

dt
u1 +

1

r̂

∂u1

∂t
+

[
iαxu0u1 + iαyv0u1 + w1

∂u0

∂z

]

= −iαxP1 − iαxe1 + ∆̂

[
νT 0

(
∂2u1

∂z2
− α2

xu1 − α2
yu1

)
+

∂νT 0

∂z

(
∂u1

∂z
+ iαxw1

)

+ νT 1

∂2u0

∂z2
+

∂νT 1

∂z

∂u0

∂z

]
− 2Ω

r̂
[cos(φ0)w1 − sin(φ0)v1], (3.8)
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The formation of sand waves and sand banks 9

1

r̂A

dA

dt
v1 +

1

r̂

∂v1

∂t
+

[
iαxu0v1 + iαyv0v1 + w1

∂v0

∂z

]

= −iαyP1 − iαye1 + ∆̂

[
νT 0

(
∂2v1

∂z2
− α2

xv1 − α2
yv1

)
+

∂νT 0

∂z

(
∂v1

∂z
+ iαyw1

)

+ νT 1

∂2v0

∂z2
+

∂νT 1

∂z

∂v0

∂z

]
− 2Ω

r̂
sin(φ0)u1, (3.9)

1

r̂A

dA

dt
w1 +

1

r̂

∂w1

∂t
+ [iαxu0w1 + iαyv0w1]

= −∂P1

∂z
+ ∆̂

[
νT 0

(
∂2w1

∂z2
− α2

xw1 − α2
yw1

)
+ iνT 1

(
αx

∂u0

∂z
+ αy

∂v0

∂z

)

+ 2
∂νT 0

∂z

∂w1

∂z

]
+

2Ω

r̂
cos(φ0)u1, (3.10)

subject to the following boundary conditions,

u1 = −∂u0

∂z
, v1 = −∂v0

∂z
, w1 = 0 at z = −1 +

zr

29.8
, (3.11a)

∂u1

∂z
= 0,

∂v1

∂z
= 0, −P1 + 2∆̂νT 0

∂w1

∂z
= 0, w1 = 0 at z = 0, (3.11b)

where the eddy viscosity νT has been split into a contribution of order one and a
contribution of order ε which is induced by the bottom perturbation:

νT = νT 0 + ενT 1Aei(αxx+αyy) + c.c. + O(ε2). (3.12)

The functions νT 0 and νT 1 can be easily computed by expanding the adopted empirical
relationships.

The form of (3.7)–(3.11) suggests solving the problem with respect to u1, v1, w1

and the unknown P1 + e1 (the reader should note that e1 does not depend on z and
the term ∂e1/∂z can be added to (3.10)). Then, the value of e1 can be obtained by
means of the boundary condition (3.11b) involving the pressure P1. This solution
procedure shows that the rigid-lid approximation, used in previous works on the
subject (Hulscher 1996; Gerkema 2000; Besio et al. 2003, 2004) does not introduce
any approximation in the evaluation of u1, v1, w1 but does not allow the determination
of e1.

Equation (2.8) shows that dA(t)/dt is proportional to A(t) through the ratio
between the hydrodynamic and the morphodynamic time scales, which turns out to

be proportional to (1 − por )

√
ψ̂d/d and hence much smaller than one. Therefore,

the terms appearing in (3.8)–(3.10), which are proportional to dA(t)/dt , have been
neglected.

In Blondeaux & Vittori (2005b), where bottom features smaller than sand banks
have been considered, the problem has been solved neglecting the local time derivatives
and the Coriolis terms, because of the large values assumed by the parameter r̂ for
field conditions. However, here, Coriolis effects are important in the process leading to
the formation of sand banks and they are of the same order of magnitude as the local
time derivatives which, thus, cannot be neglected. Therefore, a solution procedure
different from that used by Blondeaux & Vittori (2005b) is required because the time
t is no longera parameter as in Blondeaux & Vittori (2005b). The periodicity of the
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10 G. Besio, P. Blondeaux and G. Vittori

basic flow suggests writing the unknown functions u1, v1, w1, p1 as Fourier series in
time

(u1, v1, w1, p1) =

∞∑
n=−∞

(
u

(n)
1 , v

(n)
1 , w

(n)
1 , p

(n)
1

)
eint . (3.13)

By substituting (3.13) into (3.7)–(3.10), a linear system of coupled ordinary
differential equations for the unknown functions (u(n)

1 , v
(n)
1 , w

(n)
1 , p

(n)
1 ) is derived. The

solution is numerically obtained with a shooting procedure similar to that described
in Vittori (1989). Starting from the free surface (z = 0), a set of linearly independent
numerical solutions is determined by forcing the boundary conditions (3.11b) and
by fixing linearly independent values for the free variables at the free surface. The
numerical procedure makes use of a coordinate stretching to increase the number
of grid points close to the bottom where the velocity gradients are larger and
employs a standard Runge–Kutta method of the second order. The final solution
is then determined as a linear combination of the above solutions which satisfies
the boundary conditions at the sea bottom. Numerical experiments, with successive
grid refinements, suggest the number of grid points which are required to ensure the
reliability and the accuracy of the results.

Once the velocity perturbations are computed, the perturbed concentration can be
evaluated by solving the differential problem

1

r̂A

dA

dt
c1 +

1

r̂

∂c1

∂t
+

[
iαxu0c1 + iαyv0c1 + w1

∂c0

∂z

]
− ws

r̂

√
ψ̂d

∂c1

∂z

= ∆̂

[
νT 0

(
∂2c1

∂z2
− α2

xc1 − α2
yc1

)
+

νT 0

∂z

(
∂c1

∂z

)
+ νT 1

∂2c0

∂z2
+

∂νT 1

∂z

∂c0

∂z

]
, (3.14)

c1+
∂c0

∂z
− cζ1

= 0 at z = −1+0.01,
ws

r̂

√
ψ̂d

c1+∆̂

[
νT 0

∂c1

∂z
+ νT 1

∂c0

∂z

]
= 0 at z = 0,

(3.15)

where cζ1
is a term of O(ε) for the reference concentration at the bottom. The solution

of (3.14) subject to (3.15) is determined by writing

c1 =

∞∑
n=−∞

c
(n)
1 eint (3.16)

and using a procedure similar to that previously described.
Then perturbations of the bottom shear stresses and of the sediment transport rates

(qBx, qBy, qSx, qSy, . . .) = (qBx0, qBy0, qSx0, qSy0, . . .)

+ εA(t)(qBx1, qBy1, qSx1, qSy1, . . .)e
i(αxx+αyy) + c.c. + O(ε2) (3.17)

can be readily evaluated. Since the algebra, though straightforward, is lengthy and
tedious, we omit the details.

The equation which provides the time development of the amplitude of the bottom
perturbation follows from the sediment continuity equation:

dA(T )

dT
= γ (t)A(T ) (3.18)
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The formation of sand waves and sand banks 11

Figure 1. Bottom topography measured at 52◦ 21′ N and 3◦ 9′ E showing the presence
of sand waves. The grid size is 500m. Courtesy of SNAM PROGETTI.

where γ is a periodic, complex function of t which depends on the parameters of the
problem and can be decomposed as

γ (t) = {i(αxqBx1 + αyqBy1) + i(αxqSx1 + αyqSy1) + i(αxqPx1 + αyqPy1)}. (3.19)

The solution of (3.18)

A(T ) = A0 exp

[∫ T

0

γ (t ′) dt ′
]

(3.20)

shows that the growth or the decay of the bottom perturbation is controlled by the
real part γ R of the time average γ of γ , while the imaginary part γ I is related to the
migration speed of the perturbations. Because of the symmetry of the forcing flow,
no migration of the bottom forms is expected and indeed γ I vanishes. The remaining
periodic parts of γ (γ − γ ) describe the oscillations of the bottom forms around their
average configuration. These oscillations turn out to be quite small since the tide
period is much smaller than the morphodynamic time scale. Different contributions
to the amplification rate γ of the bottom perturbation can be identified according
to the mechanisms of sediment transport. The largest contributions (the first and
third terms on the right-hand side of (3.19)) are related to the bed load and to the
slope effects, the latter being always real and negative and tending to stabilize any
bottom waviness. The value of γ is also affected by the suspended load even though
it becomes important only when the mobility number is large.

4. Discussion of the results
Because of the large number of parameters controlling the phenomenon, we start

by comparing the theoretical results with some field observations. Subsequently, we
investigate the role of the main parameters (tide characteristics, sediment parameters,
etc.) involved in the formation of sand wave and sand bank.

4.1. Prediction of the sand wave characteristics

The bathymetric data of the first site which we analyse are those measured at 52◦ 21′

N and 3◦ 9′ E by SNAM PROGETTI S.p.A. and shown in figure 1. The average water
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αx̂
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αŷ

Figure 2. Growth rate γ R plotted versus αx̂ and αŷ for r̂ = 72, ecc = 0.17, ∆̂ =0.00325, Rp =

15.90, ψ̂d = 0.0083, d = 6.25 × 10−6. Only positive isolines are displayed with �γ R =0.003.
The maximum value of γ R is located at (αx̂, αŷ) � (0.79, 0).

depth is about 40 m and a wavy bed (sand waves) characterized by a wavelength
of about 285 ± 85 m and heights ranging between 3.5 m and 5.5m is present. The
harmonic analysis of the tidal currentmeasured at two nearby locations shows that
the tide is mainly semi-diurnal with M2 as the dominant constituent. The amplitude
of the velocity oscillations induced by the M2 constituent during the measuring
period (15 October 1988–31 March 1989) is about 0.41 m s−1 and the direction of the
velocity is almost orthogonal to the crests of the sand waves. The ratio between the
minor and major axes of the tidal ellipse, denoted in the following ecc, is about 0.17
and the tidal velocity vector is counter-clockwise rotating. The sediment turns out to
have d∗

50 = 0.25mm. Unfortunately, no information was available about the bottom
roughness which is supposed to be due to seabed ripples 0.3m long and 5 cm high.

To show the capability of the model to predict the appearance of sand waves, the
real part γ R of the time average of the function γ is obtained as function of αx̂ and
αŷ for values of the parameters chosen in order to reproduce the local climate and
sediment characteristics. The x̂- and ŷ-axes are horizontal such that x̂ is aligned with
the major axis of the tidal ellipse.

The results obtained (figure 2) show that the bedforms which tend to appear are
characterized by crests almost orthogonal to the major axis of the tidal ellipse, as
observed in the field, since the maximum value of γ R is reached for practically
vanishing values of αŷ . The perturbation component characterized by the maximum
amplification rate, i.e. the component which will dominate the bottom configuration
for long times, is characterized by (αx̂, αŷ) � (0.79, 0). These wavenumbers correspond
to a dimensional wavelength of about 320 m, a value similar to the observed
wavelengths that fall between 200 m and 370 m.

The second field site (51◦ 35′ N and 3◦ 2′ E) has an average water depth (20 m)
smaller than the previous case and the observed sand waves are characterized by a
wavelength equal to 210±45 m (see figure 3). The amplitude of the velocity oscillations
induced by the dominant M2 constituent is about 0.43 m s−1 and the tidal velocity
vector is counter-clockwise rotating. The value of ecc is equal to 0.42. The sediment
is coarser than the previous case and characterized by d∗

50 = 0.60 mm. Figure 4 shows
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The formation of sand waves and sand banks 13

Figure 3. Bottom topography measured at 51◦ 35′ N and 3◦ 2′ showing the presence of sand
waves. The grid size is 500m. Courtesy of SNAMPROGETTI.

0 0.2 0.30.1 0.4 0.5 0.6 0.7 0.8
αx̂

–0.3

–0.2

–0.1

0

0.2

0.1

0.3

αŷ

Figure 4. Growth rate γ R plotted versus αx̂ and αŷ for r̂ = 148, ecc = 0.42, ∆̂ = 0.00347,
Rp = 59, ψ̂d = 0.00087, d = 3.0×10−5. Only positive isolines are displayed with �γ R = 0.0005.
The maximum value of γ R is located at (αx̂, αŷ) �= (0.39, 0).

that the most unstable bottom perturbation turns out to have the crests orthogonal
to the main tidal axis and a wavelength of about 320 m, a value which is not far from
the observed sand wave spacing. At this stage, it is important to emphasize that the
present model has no parameter which can be tuned to make the theoretical results
fit the field data.

In order to efficiently investigate the effect of the main parameters of the model on
the sand wave formation, a one-dimensional investigation has been made by fixing
αŷ = 0. Figure 5 shows γ R versus αx̂ for the same values of the parameters as in
figure 4 but for different values of r̂ . For a semidiurnal tide at a particular site, where
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Figure 5. Growth rate γ R plotted versus αx̂ , fixing αŷ = 0 for ecc = 0.42, ∆̂ = 0.00347,

Rp = 59, ψ̂d = 0.00087, d = 3.0 × 10−5 and different values of r̂ .

αx̂

 80

 90

 100

 110

 120

 130

 140

 150

 160

0 0.2 0.4 0.6 0.8 1.0 1.2

r̂

Stable

Unstable

Figure 6. Marginal stability conditions plotted in the plane (αx̂, r̂) for the same values of the
parameters as figure 5. Dash-dotted line represents the location of the relative maximum of
the amplification rate γ R(αx̂).

the water depth and sediment characteristics are fixed, different values of r̂ imply
different amplitudes of the depth-averaged velocity oscillations induced by the tide
and hence different values of the bed shear stress. For constant values of ω∗ and h∗

0, the
variations of r̂ are linked to variations of U ∗

0 which in turn induce variations of (τ ∗
x , τ ∗

y )
and then of (θx, θy). When the strength of the tide is increased, the values of γ R grow
showing that the flat bottom configuration is more unstable. Moreover, the value of
αx̂ , which gives rise to the maximum value of γ R , increases thus showing that stronger
tidal currents generate shorter sand waves. On the other hand, when r̂ is decreased,
smaller values of γ R are found till, for r̂ smaller than a critical value r̂CW , which in the
site under consideration is about 110, no sediment motion takes place. Therefore, the
model suggests that, in the North Sea site considered, the flat bottom configuration
is stable only when the Shields parameter is smaller than its critical value and no
sediment is moved during the tidal cycle. In figure 6 the marginal stability conditions
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The formation of sand waves and sand banks 15

are shown in the plane (αx̂, r̂) for the same values of the parameters as those of
figure 5. The critical value r̂CW of r̂ , below which sand waves do not appear, can be
easily estimated from the figure, which also shows that a finite range of αx̂ becomes
unstable once r̂ becomes larger than its critical value. The maximum amplification
rate for a fixed value of r̂ takes place for the value of αx̂ which is indicated by a
dash-dotted line in figure 6 and tends to a finite value αx̂C

(αx̂C
= 0.17) as r̂ tends to

r̂CW .
An extensive investigation of the effects of sediment size has shown that, for a coarse

sand and a moderate tidal current (see for example the data of figure 2), the real part
of γ S vanishes and the growth/decay of the bottom perturbations is controlled by a
balance between the destabilizing effect due to the bed load and the stabilizing one
due to the bottom slope. When fine sand and a strong tidal current are considered,
the suspended load provides a relevant contribution to the time development of the
bottom. In particular, in the range of the paramenters analysed here, the real part of
γ S turns out to be always negative and therefore the sediment carried into suspension
provides a stabilizing contribution to γ R .

The stability analysis described in § § 3 and 4 is linear and, hence, unable to provide
any information on the equilibrium amplitude attained by the growing perturbation
for long times. Indeed, once the amplitude A(t) of the bottom waviness grows and
reaches large values, nonlinear effects become strong and the analysis fails. However,
the present model can be extended to cover the weakly nonlinear regime by considering
a neighbourhood of the critical conditions and the perturbation characterized by the
largest amplification rate, which the present results show to have a finite wavelength.

4.2. Prediction of the sand bank characteristics

The present linear analysis provides further information on the configuration of the
sea bottom forced by a tidal wave: since the model is based on the full three-
dimensional momentum equations, it can describe the processes leading to both sand
waves and sand banks.

To ascertain the capability of the model to predict the appearance of sand banks
and their characteristics, the amplification rate γ R of bottom perturbations has been
computed for values of the parameters chosen to reproduce the coastal region of the
Norfolk banks and in particular of the Well Bank, Broken Bank and Swarte Bank
system described by Collins et al. (1995) (see figure 7). The average water depth is
about 30 m and the sea bed consists of well-sorted fine-graded sand (the grain size is
assumed to be equal to 0.15 mm). On the basis of the current measurements described
in Collins et al. (1995), the system is assumed to be forced by a semidiurnal tide
constituent with amplitude of the velocity oscillations equal to 0.7 m s−1. Moreover,
the tidal ellipse has been assumed to be characterized by a value of ecc equal to 0.2
and the major axis to form an angle equal to 140◦ with the north direction. The seabed
roughness is fixed equal to 5 cm (seabed ripples are assumed to be present). Finally,
numerical models of tide propagation and the data described in Collins et al. (1995)
suggest that the tide velocity is clockwise rotating. Figure 8, where the amplification
rate γ R of bottom perturbations is plotted as function of αx̂ and αŷ , shows that the
most unstable perturbation is characterized by (αx̂, αŷ) ≈ (0.012, −0.031), i.e. it is a
two-dimensional waviness with crests almost aligned with the direction of the mean
tidal current but forming an angle of about 20◦ and being counter-clockwise rotated.
Moreover, the predicted wavelength turns out to be about 5.5 km. These predicted
geometrical characteristics are in good agreement with field data, as the observed sand
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Figure 7. Bathymetry (in metres) of the Well Bank, Broken Bank and Swarte Bank system.
Adapted from Collins et al. (1995).

banks are slightly counter-clockwise rotated with respect to the main tidal current
and are characterized by a wavelength ranging between 4 and 10 km.

Next, a coastal region, where tidal sand banks are characterized by crests clockwise
rotated with respect to the direction of the major axis of the tidal ellipse, has been
considered. The region is located in front of the coast of the Dutch provinces Zeeland
and Zuid-Holland, seaward of the −20 m depth contour, where many tidal ridges can
be detected: Bollen Van Goeree (1), Steenbanken (2), Middelbank (3), Schouwenbank
(4), Buitenbanken (5), Schaar (6), Rasbank (7) and Thorntonbank (8) (see figure 9
adapted from Hommes 2004). The average spacing of the banks is between 2 and
3 km. The whole area, except for a nearshore region of 5–14 km, is also covered with
sand waves with wavelengths between 100 and 800 m (Hommes 2004). The local sand
has a diameter ranging between moderate coarse sand (210–300 µm) and very coarse
sand (300–420 µm). To evaluate the tidal current the measurement carried out at
(51◦ 30′N , 3◦ 2′E) by SNAM PROGETTI S.p.A., between 15 October 1988 and 31
March 1989, have been used: the tide is dominated by the semidiurnal constituent,
with the maximum amplitude of the depth-averaged velocity oscillations equal to
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Figure 8. Growth rate γ R plotted versus αx̂ and αŷ for r̂ = 160, ecc = 0.20, ∆̂ = 0.00288,
Rp = 7.39, ψ̂d = 0.00779, d = 5.0 × 10−5 and a clockwise rotating tidal velocity vector. Only
positive isolines are displayed with �γ R = 0.002. The maximum value of γ R is located at
(αx̂, αŷ) � (0.012, −0.031).
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Figure 9. Bathymetry of Zeeland ridges. Adapted from Hommes (2004).

0.43 m s−1. The value of ecc is 0.4 and the tidal vector is counter-clockwise rotating.
Figure 10 shows the amplification rate γ R of bottom perturbations plotted versus
(αx̂, αŷ). A relative maximum is present for (αx̂, αŷ) ≈ (0.013, 0.030), i.e. for ridges
characterised by a wavelength of about 3.8 km and by crests clockwise rotated with
respect to the major axis of the tidal ellipse (23◦). Also in this case, the geometrical
characteristics of the tidal sand banks predicted by the theory are in fair agreement
with those observed in the field which, in particular, have crests clockwise rotated
with respect to the main tidal current direction (Hommes 2004).
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Figure 10. Growth rate γ R plotted versus αx̂ and αŷ for r̂ = 119, ecc = 0.4, ∆̂ = 0.00321,
Rp = 15.90, ψ̂d = 0.0032, d = 1 × 10−5 and a counter-clockwise rotating tidal velocity vector.
Only positive isolines are displayed with �γ R = 0.00008. The maximum value of γ R is located
at (αx̂, αŷ) �= (0.013, 0.030).
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Figure 11. Growth rate γ R plotted versus αx̂ and αŷ for r̂ = 119, ecc = 0.4, ∆̂ = 0.00321,
Rp = 15.90, ψ̂d = 0.0032, d = 1×10−5. Only positive isolines are displayed with �γ R = 0.002.
The maximum value of γ R is located at (αx̂, αŷ) ≈ (0.38, 0).

Figure 11 shows the amplification rate γ R plotted for the same values of the
parameters as in figure 10, but considering a different range of the wavenumbers of
the bottom perturbations. From the results plotted in figure 11, it appears that a
second relative maximum of the amplification rate is present for (αx̂, αŷ) ≈ (0.38, 0.0).
Hence, the theory predicts the simultaneous appearance of sand waves (bedforms with
crests orthogonal to the major axis of the tidal ellipse) characterized by a wavelength
of about 330 m, a value falling within the range of the observed wavelengths.

The results described so far seem to indicate that a clockwise rotating tidal ellipse
gives rise to sand banks with crests counter-clockwise rotated with respect to the main
tidal current, while a counter-clockwise rotating tidal ellipse gives rise to clockwise
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(a) (b)

Figure 12. (a) Patches of tidal sand banks present in the North Sea. Adapted from Dyer &
Huntley (1999). (b) Ratio of the counter-clockwise to the clockwise rotary component of
depth-averaged velocity of the mean spring tide in the seas around the British Isles. Shaded
regions have a net clockwise rotation of the current vector. Results from the numerical model
of Flather (1976). Adapted from Soulsby (1983).

rotated bedforms. Further runs not reported here support this general finding, even
though the large number of parameters involved in the problem has not allowed a
fully exhaustive investigation of the phenomenon. Figure 12(a), adapted from Dyer &
Huntley (1999), shows the main sand banks observed in the North Sea between
England and the continental part of Europe. These sand banks have been grouped
into six groups: group A is offshore of the Thames estuary, group B is offshore of the
Norfolk coast, groups C and D are located offshore of the coast of The Netherlands,
group D being closer to the coast, the fifth and sixth groups (groups E and F) are
between England and France. Sand banks of groups A, B and C have crests counter-
clockwise rotated with respect to the main tidal current. Analogously, with a few
exceptions, sand banks of groups D, E and F have their crests clockwise rotated with
respect to the main tidal current. In figure 12(b), the North Sea is split into regions
where the tide has a net clockwise rotation of the current vector (shaded regions) and
a net counter-clockwise rotation of the current vector (white regions). As predicted
by the model, a high correlation between clockwise rotating tidal velocity vectors
and counter-clockwise rotated sand banks and vice versa clearly appears. However,
it is worth pointing out that for small values of ecc, i.e. for almost unidirectional
tidal currents, no difference is present in the morphological patterns generated by
a clockwise rotating tidal velocity and a counter-clockwise rotating tidal velocity.
Indeed, the present results show that in the limit of vanishing values of ecc, the
growth of counter-clockwise rotated sand banks is always triggered. In the literature,
other hypotheses have been made to explain the clockwise/counter-clockwise rotation
of the sand banks with respect to the direction of the tidal current. In particular, it
has been suggested that the average slope of the seabed could induce a rotation of
the sand bank crests just as a transverse variation of the water depth can induce the
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Figure 13. Growth rate γ R plotted versus αx̂ and αŷ for ecc = 0.4, ∆̂= 0.00321, Rp =15.90,
ψ̂d = 0.0032, d =1 × 10−5, and (a) r̂ = 80, (b) r̂ = 90, (c) r̂ =100 and (d) r̂ = 110. Only positive
isolines are displayed with ∆γ R = 0.00001 for r̂ = 80 and �γ R = 0.000015 for r̂ = 90 and
�γ R = 0.00005 for r̂ = 100, 110.

growth of oblique dunes in alluvial channels (Engelund 1974). However, no accurate
comparison between model predictions and field data has been made.

If the parameter r̂ is varied, it can be seen that, on decreasing r̂ , a critical value
r̂CB is encountered below which sand banks no longer form, even though the growth
of sand waves is still triggered (see figure 13). In the site described by figure 13,
only when r̂ is smaller than a second critical value r̂CW (r̂CW < r̂CB), does the flat
bottom configuration turn out to be stable and neither sand wave nor sand bank
are triggered. Moreover, when r̂ becomes larger than r̂CB , the most unstable large-
scale perturbation has a finite wavelength. Hence, the present model allows a weakly
nonlinear stability analysis of sand banks growth to be developed.

5. Comments on the physical mechanisms leading to the formation of sand
waves and sand banks

As already pointed out in the Introduction, the mechanism which gives rise to
the formation of sand waves is due to the appearance of steady and superharmonic
velocity components generated by the interaction of the forcing oscillatory tidal
current with the bottom waviness. When the hydrodynamic and morphodynamic
parameters (in particular the wavelength of the bottom waviness) are such that the
sediment is steadily dragged by these velocity components from the troughs towards
the crests of the bottom perturbation, the latter grow and gives rise to sand waves.
The appearance of a steady streaming and velocity oscillations in all overtones of
the basic frequency by an oscillatory flow interacting with curved boundaries is a
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Figure 14. Moduli of u
(1)
0 and du

(1)
0 /dz versus z for a unidirectional tide and r̂ = 72, ∆̂=

0.00325, Ω = 0.5, φ =52◦ 21′ N. (Present model: continuous line, Besio et al.’s (2003) model:

broken line). The value of du
(1)
0 /dz at the bottom predicted by the present model is of order

103 and the figure has been cut for the sake of clearness.

well-known phenomenon (see e.g. Schlichting 1932; Stuart 1966). Also, in coastal
morphodynamics the mechanism is well known since Sleath (1976) pointed out that
the appearance of ripples under sea waves is related to the steady streaming induced
by the interaction of the oscillatory flow in the viscous boundary layer with bottom
perturbations. However, even though the mechanism was qualitatively well known,
accurate quantitative predictions of the steady recirculating cells induced by tidal
currents over a wavy bottom were not available. Hulscher (1996) was the first to
tackle the problem and solved it using the shallow-water approximation. However,
Gerkema (2000) pointed out that the approach used by Hulscher (1996) implicitly
assumes that the ratio K between the amplitude of the fluid displacement oscillations
in the horizontal direction and the wavelength of the bottom forms is much smaller
than one. In the field, K turns out to be much larger than one and Gerkema (2000)
improved Hulscher’s (1996) solution by determining the steady streaming by means
of a perturbation approach which considers large values of K . However, to obtain
the solution in closed form, Gerkema (2000) used a constant-eddy-viscosity model
and considered large values of the stress parameter s appearing in the partial slip
condition at the bottom. Such large values of s make the velocity profile of the
basic tidal current more similar to that found in the laminar regime rather than
to the velocity profile observed in actual turbulent flows. Besio et al. (2003) solved
the problem for any finite values of K and s but they still used a constant-eddy-
viscosity model. In actual flows, turbulent mixing tends to vanish close to the bottom
and hence in Besio et al.’s (2003) analysis, the wall layer is neglected and the flow
perturbations assume unrealistic small values at the bottom. In figure 14, the moduli
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Figure 15. Steady streaming generated by an oscillatory unidirectional tidal current over

a two-dimensional wavy wall for r̂ = 72, ∆̂ = 0.00325, Ω = 0.5, φ = 52◦ 21′ N and αx̂ = 0.8.
(Present model: continuous line, Besio et al.’s (2003) model: broken line). (a) Imaginary part

of u
(0)
1 , (b) real part of w

(0)
1 . (The real part of u

(0)
1 and the imaginary part of w

(0)
1 vanish both

in the present model and in Besio et al.’s (2003) model.)

of u
(1)
0 and du

(1)
0 /dz obtained by means of the present model and those provided by

the constant-eddy-viscosity model of Besio et al. (2003) are plotted versus z for a
unidirectional tide aligned with the x-axis. The velocity profiles fairly agree but the
vertical velocity gradients close to the bottom differ by orders of magnitude. The two
models provide similar shear stresses but the present model has much larger values
of du

(1)
0 /dz at the bottom because of the vanishing values of the eddy viscosity at

the wall. Since du
(1)
0 /dz is the forcing term of the problem at O(ε) (see (3.11)), large

differences are expected between the results of the constant-eddy-viscosity model and
those of the present model. Indeed, figure 15, which shows a comparison between
the steady streaming predicted on the basis of the present model and that computed
using Besio et al.’s (2003) model for the same hydrodynamic parameters, provides
evidence of such differences. In fact, the imaginary part of u

(0)
1 predicted by the present

model rapidly increases in a thin layer close to the bottom and then steadily decreases
to reach an almost constant value, thus displaying a two-layer structure which is
not predicted by Besio et al. (2003). Therefore, the present model and the solution
procedure described in § 3 greatly improve the description of the flow field and in turn
the predictions of sand wave characteristics compared to those obtained by means of
previous models which appear to be more postdictive, in the sense of Saffman (1989),
than predictive. In fact, previous approaches often require a long tuning procedure
of the model parameters to give results in agreement with field surveys.

Since the wavelength of the sand banks is much larger than the local water
depth, the process which leads to the formation of sand banks is often analysed by
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considering the depth-averaged velocity field

(U, V ) =
1

h

∫ aη

−h

(u, v) dz (5.1)

and by using a simple sediment transport predictor such that the sediment transport
rate (qx, qy) is proportional to the b-power of the depth-averaged velocity field
(Hulscher et al. 1993):

(qx, qy) ∼ [
√

U 2 + V 2]b
[

(U, V )√
U 2 + V 2

]
. (5.2)

The first term on the right of (5.2) quantifies the amount of sand moved by the tidal
current and the second one provides the direction.

Because of the presence of a bottom waviness of small amplitude ε, it is possible
to write

(U, V ) = (U0, V0) + ε
[
(U1, V1)A(t)ei(αxx+αyy) + c.c.

]
+ O(ε2). (5.3)

Then, using a Cartesian coordinate system (x̃, ỹ), with the x̃-axis parallel to the crests
of the bottom forms, and introducing the velocity components (Ũ , Ṽ ), it can be easily
verified (Besio et al. 2005) that the depth-averaged continuity equation at order ε

leads to

Ṽ1 = Ṽ0, (5.4)

i.e. no steady velocity component at O(ε) is generated in the direction orthogonal
to the crests of the bottom forms but only an oscillatory velocity component
characterized by the same frequency as the basic tidal current. Then, the momentum
equation shows the existence of a velocity component parallel to the bedform crests
(Ũ1) with a steady part and all the overtones of the basic tidal frequency which are
generated by a cascade process.

In the literature (Huthnance 1982a, b; Hulscher et al. 1993), it is assumed that
sand banks start to appear because of the presence of the residual depth-averaged
circulation around the bedform crests (steady component of Ũ1). In the Northern
Hemisphere, an anticyclonic residual circulation is indeed generated around the crest.
Hence, when the orientation of the bank is slightly cyclonic with respect to the flow
direction, the total flow velocity is slightly increased upstream of the crest whereas
it is decreased downstream of the crest, during both the flood and ebb phases of the
tide. Since the sediment flux is proportional to some power of the velocity, there is
a net convergence of the sediment at the crest which tends to cause the growth of
the bank. When the orientation of the bank is anticyclonic, the total flow velocity
is slightly decreased upstream of the crest whereas it is increased downstream of the
crest and, hence, the bottom waviness is damped. Therefore, this physical mechanism
can only explain the appearance of sand banks characterized by crests which are
counter-clockwise oriented with respect to the direction of the tidal current, and in
the literature it is usually stated that, in the Northern Hemisphere, sand banks should
be counter-clockwise rotated. However, field surveys and the present model show
the existence of clockwise oriented sand banks, too. Thus, other effects must play an
important role in the growth of sand banks. A relevant effect, already pointed out by
De Swart & Hulscher (1995), is the deviation, induced by the Coriolis terms, of the
direction of the velocity close to the bottom from the direction of the depth-averaged
velocity. This phenomenon,which cannot be described by means of a depth-averaged
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Figure 16. Time development of the x- and y-components of the dimensionless sediment
transport rate (dashed line) and dimensionless depth-averaged velocity (continous line)
calculated for values of the parameters representing the Zeeland Ridges. The value of the
sediment transport rate is multiplied by 10 for the sake of clarity.

approach, changes the sediment transport rate (qx0, qy0) from the vector (U0, V0) as
clearly appears in figure 16, which shows the depth-averaged velocity ellipse and the
sediment transport rate predicted by the present three-dimensional model for the
Zeeland Bank case. Because of the different direction of the sediment transport rate
with respect to the depth-averaged velocity, a net sediment transport component
orthogonal to the bedform crests exists which is not accounted for in the models
of Huthnance (1982a, b) and Hulscher et al. (1993) and can induce the growth of
clockwise rotated sand banks.

Even though a depth-averaged approach cannot predict the deviation of the
sediment transport rate from the direction of the depth-averaged velocity, a heuristic
correction can be added to the sediment transport predictor to account for this
three-dimensional effect (see also De Swart & Hulscher 1995):

(qx, qy) ∼ [
√

U 2 + V 2]b
(U cosϕ − V sinϕ, V cos ϕ + U sin ϕ)√

U 2 + V 2
. (5.5)

The relevance of the angle ϕ in the process which leads to the appearance of sand
banks clearly appears if the growth rate γ of the bottom perturbations is predicted by
means of the shallow-water approximation and the use of (5.5), modified to account
for the effects associated to the bottom slope, as made by Besio, Blondeaux &
Vittori (2005). Indeed, in Besio et al. (2005) it is shown that the sand banks are
predicted to be always counter-clockwise rotated if ϕ is set equal to zero. However, if
appropriate values of ϕ are chosen, the sand banks turn out to be counter-clockwise
rotated for a unidirectional tidal current (no difference can exist between clockwise
and counter-clowise rotating velocity vectors when ecc is equal to zero), but they are
clockwise/counter-clockwise rotated for counter-clockwise/clockwise rotating velocity
vectors once ecc assumes significant values. The main advantage of the present three-
dimensional model consists in the correct estimate of ϕ which does not require any
heuristic assumption.
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6. Conclusions
In this paper, we reinforce the idea that a model, based on the study of the time

development of small bottom perturbations of a shallow tidal sea, can explain the
formation of both sand waves and sand banks and can also give reliable quantitative
predictions of their geometrical characteristics, as shown by the comparison of
the theoretical results with field data from different sites obtained without tuning
any parameters. The model predictions appear to be good when compared with
the results provided by other morphodynamic stability analyses which are used
to predict the characteristics of coastal bedforms (Blondeaux 2001). Quite often,
comparisons between theoretical predictions and laboratory and/or field data are
made just by considering the order of magnitude of the results or looking at their
qualitative behaviour (e.g. Trowbridge 1995; Vittori, De Swart & Blondeaux 1999;
Coco, Huntley & O’Hare 2000; Komarova & Hulscher 2000; Komarova & Newell
2000; Gerkema 2000; Calvete et al. 2001, etc.). In particular, the model predicts a
finite wavelength for both sand waves and sand banks at the critical conditions,
thus enabling a weakly nonlinear analysis of the phenomenon. This possible analysis
should also allow the investigation of the interaction between different modes and the
prediction of the final complex configuration of the sea bottom when different types
of bedforms coexist. Moreover, the sand banks predicted by the model turn out to be
clockwise/counter-clockwise rotated with respect to the main tidal current for counter-
clockwise/clockwise rotating tidal velocity vector as shown by field surveys. Only for
a unidirectional tidal current are sand banks always counter-clockwise rotated.

The model formulated in the paper provides a simplified description of the actual
phenomenon, but it takes into account all the main processes affecting the growth of
bottom forms (e.g. oscillating tidal currents, bed load, suspended load, longitudinal
and transverse bottom slope effects on sediment transport). Of course some aspects
could be improved. For example, a better turbulence model capable of describing the
time variation of the turbulence structure during the tidal cycle could be introduced
and the effects of wind waves could be taken into account. However, we feel that only
minor changes of currently obtainable quantitative predictions would be induced at
the expenses of a major effort in the analysis.
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