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We present some comparison results for solutions to certain non-local elliptic and
parabolic problems that involve the fractional Laplacian operator and mixed
boundary conditions, given by a zero Dirichlet datum on part of the complementary
of the domain and zero Neumann data on the rest. These results represent a
non-local generalization of a Hopf’s lemma for elliptic and parabolic problems with
mixed conditions. In particular we prove the non-local version of the results obtained
by Dávila and Dávila and Dupaigne for the classical case s = 1 in [23,24]
respectively.
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1. Introduction

The aim of this work is to study some comparison results for a class of elliptic and
parabolic problems that involve the fractional Laplacian operator. More precisely
we will consider the following non-local, elliptic and parabolic, mixed problems,

⎧⎪⎪⎨
⎪⎪⎩

(−Δ)su = f in Ω,
u � 0 in RN ,
u = 0 in Σ1,
Nsu = 0 in Σ2,

(1.1)
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut + (−Δ)su = 0 in Ω × (0,+∞),
u � 0 in RN ,
u = 0 in Σ1 × (0,+∞),
Nsu = 0 in Σ2 × (0,+∞),
u(x, 0) = u0(x) in Ω.

(1.2)

Here Ω is a bounded domain of RN , Σ1 and Σ2 are two open sets of positive measure
satisfying

Σ1 ∩ Σ2 = ∅, Σ1 ∪ Σ2 = RN \ Ω, (1.3)

f ∈ C∞
0 (Ω), f � 0 and u0 � 0, u0 ∈ L2(Ω). The operator (−Δ)s, 0 < s < 1, is the

well-known fractional laplacian, which is defined on smooth functions as

(−Δ)su(x) = aN,s

∫
RN

u(x) − u(y)
|x − y|N+2s

dy, (1.4)

where aN,s is a normalization constant that is usually omitted for brevity. The
integral in (1.4) has to be understood in the principal value sense, that is, as the
limit as ε → 0 of the same integral taken in RN \ Bε(x), i.e., the complementary
of the ball of centre x and radius ε. See for instance [25,35,37] for the basic
properties of the operator and the normalization constant. Problems with non-
local diffusion that involve the fractional Laplacian operator, and other integro-
differential operators, have been intensively studied in the last years since they
appear when we try to model different physical situations as anomalous diffusion
and quasi-geostrophic flows, turbulence and water waves, molecular dynamics and
relativistic quantum mechanics of stars (see [13,16,20] and references). They also
appear in mathematical finance (cf. [3,10,21]), elasticity problems [34], obstacle
problems [8,9,15], phase transition [2,36] and crystal dislocation [26,38] among
others.

By Ns we denote the non-local normal derivative, defined as

Nsu(x) := aN,s

∫
Ω

u(x) − u(y)
|x − y|N+2s

dy, x ∈ RN \ Ω. (1.5)

This function was introduced by Dipierro, Ros-Oton and Valdinoci in [27] where
the authors proved that, when s → 1−, the classical Neumann boundary condi-
tion ((∂u)/(∂ν)) is recovered in some sense. Moreover they established a complete
description of the eigenvalues of (−Δ)s with zero non-local Neumann boundary
condition, an existence and uniqueness result for the elliptic problem and the main
properties of the fractional heat equation (preservation of mass, decreasing energy
and convergence to a constant when t → ∞) with this type of boundary condition.
It is fair to mention here that other Neumann-type boundary conditions for the
non-local problems, which recover the classical one when the fractional parameter
s goes to 1, have been considered in the literature (see for instance [4,11,22]).

Nevertheless the one given by (1.5) allows us to work in a variational framework
and, as the authors described in [27, § 2], also has a natural probabilistic inter-
pretation that we summarize here to motivate the study of the elliptic problem
(1.1) for a general Dirichlet condition: let Ω ⊆ RN be a bounded domain whose
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complementary is divided in two parts, satisfying (1.3), such that in Σ1 there is
a Dirichlet condition h and one of Neumann type in Σ2. Let us now consider a
particle that is randomly moving starting at a point x0 ∈ Ω. There are two pos-
sibilities; if the particle goes to x1 ∈ Σ1 then a payoff is obtained, established by
the Dirichlet condition h, and if it goes to x2 ∈ Σ2 then immediately comes back
to some y ∈ Ω with a probability that is proportional to |x2 − y|−N−2s. It is clear
that the previous situation can be written as follows

u(x) = h(x), x ∈ Σ1,

u(x) = c(x)
∫

Ω

u(y)|x − y|−N−2s dy, x ∈ Σ2.

Choosing c(x) in order to normalize the probability measure, that is,

c(x)
∫

Ω

|x − y|−N−2s dy = 1,

we finally get this behavior can be written as

Nsu(x) = 0, x ∈ Σ2,

where Ns was given in (1.5).
Our motivation to study problem (1.1) comes also from the fact that, as in the

local case, by comparison one easily gets that there exists C = maxΩ f such that

u(x) � Cv(x), x ∈ Ω,

where v is the solution of (1.1) with f = 1. However, it is not clear whether the
opposite inequality

v(x) � C̃u(x), x ∈ Ω, (1.6)

is also true. We point out here that in the case of the Dirichlet problem (Σ1 = RN \
Ω), the previous estimate is obtained using the Hopf’s lemma and the Cs regularity
of the solutions up to the boundary (see [33]). In the local case (s = 1) in [23]
Dávila proved that (1.6) also holds for the mixed problem with a constant C̃ that
depends on ‖fv‖L1(Ω). Here, adapting the arguments to the non-local framework,
we obtain the same type of result for the fractional elliptic problem with mixed
boundary conditions (see theorem 1.1 below). Moreover, generalizing some results
of [24], we also get the desired inequality in the parabolic case (see theorem 1.2
below). It is remarkable to point out that an inequality like (1.6) would be very
useful, for example, in the study of certain non-linear problems such as, for instance,
mixed problems with concave–convex nonlinearities with critical growth because,
due to the lack of regularity up to the boundary of the domain, a suitable space to
separate solutions is needed (see [19] and the references therein for the case s = 1).

To conclude this section, let us state the main two results of this paper, which are
the non-local counterpart of [23, theorem 1] and [24, theorem 2.15] respectively.
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Consider ξ0 the solution to ⎧⎨
⎩

(−Δ)sξ0 = 1 in Ω,

ξ0 = 0 in Σ1,

Nsξ0 = 0 in Σ2.

(1.7)

Thus, the following maximum principles hold:

Theorem 1.1. Let u be the solution to (1.1) with f ∈ C∞
0 (Ω), f � 0, and let ξ0 be

the solution to (1.7). Then there exists a constant c = c(N, s,Ω,Σ1,Σ2) > 0 such
that

u(x) � c

(∫
Ω

f(y)ξ0(y) dy

)
ξ0(x), x ∈ Ω.

Theorem 1.2. Let u be the solution to (1.2) with u0 ∈ L2(Ω), u0 � 0, and let ξ0

solve (1.7). Then,

u(x, t) � c(t)
(∫

Ω

u0(y)ξ0(y) dy

)
ξ0(x), (x, t) ∈ Ω × (0,+∞), (1.8)

where c(t) depends on N , s, Ω, Σ1 and Σ2, and is positive for t > 0.

The rest of the paper is organized as follows: in § 2 we give some preliminar-
ies related to the functional framework associated to problems (1.1)–(1.2) and we
introduce the notion of solutions that will be used along the work. Section 3 deals
with the proof of Theorem 1.1. Finally in § 4 we obtain the proof of Theorem 1.2.

We remark here that along the work we will denote by C a positive constant that
may change from line to line.

2. Functional Setting and Main Results

Let u, v : RN → R be measurable functions and denote Q := R2N \ (CΩ)2. Consider
the scalar product

〈u, v〉Es
Σ1

:=
∫

Ω

uv dx +
∫∫

Q

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dxdy, (2.1)

and the associated norm

‖u‖2
Es

Σ1
:=

∫
Ω

u2 dx +
∫∫

Q

|u(x) − u(y)|2
|x − y|N+2s

dxdy.

Thus, we define the space

Es
Σ1

:= {u : RN → R measurable s.t. ‖u‖Es
Σ1

< +∞ and u = 0 in Σ1}.

Proposition 2.1. Es
Σ1

is a Hilbert space with the scalar product defined in (2.1).
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Definition 2.2. Let f ∈ L2(Ω). We say that u ∈ Es
Σ1

is a weak solution of (1.1) if

aN,s

2

∫∫
Q

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+2s

dxdy =
∫

Ω

fϕdx,

for every ϕ ∈ Es
Σ1

.

Remark 2.3. Notice that the domain of integration in the left-hand side naturally
arises from the problem, even when u does not vanish in the whole RN \ Ω. Indeed,
multiplying in (1.1) by a smooth function ϕ ∈ Es

Σ1
and integrating in Ω we get

aN,s

2

∫∫
Q

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|N+2s

dxdy

=
∫

Ω

ϕ(−Δ)su dx +
∫

RN\Ω
ϕNsu dx

=
∫

Ω

fϕdx.

We can also establish a Poincaré type inequality for this space with mixed
conditions.

Proposition 2.4 (Poincaré inequality). There exists a constant C = C(Ω, N, s) >
0 such that ∫

Ω

u2 dx � C

∫∫
Q

|u(x) − u(y)|2
|x − y|N+2s

dxdy,

for every u ∈ Es
Σ1

. In particular, this implies the positivity of the first eigenvalue of
the elliptic problem with zero mixed conditions, that is, λ1 > 0 with⎧⎨

⎩
(−Δ)sχ1 = λ1χ1 in Ω,
χ1 = 0 in Σ1,
Nsχ1 = 0 in Σ2.

(2.2)

Proof. Let us denote

〈ϕ, φ〉Xs(Ω) :=
aN,s

2

∫∫
Q

(ϕ(x) − ϕ(y))(φ(x) − φ(y))
|x − y|N+2s

,

and [ϕ]Xs(Ω) := 〈ϕ,ϕ〉1/2
Xs(Ω), where ϕ, φ ∈ Es

Σ1
.

With this notation, it is clear that ‖ · ‖2
Es

Σ1
= ‖ · ‖2

L2(Ω) + [·]2Xs(Ω), and thus, we
want to prove that

λ1 := inf
u∈Es

Σ1

[u]2Xs(Ω)

‖u‖2
L2(Ω)

= inf
u∈Es

Σ1
, ‖u‖L2(Ω)=1

[u]2Xs(Ω) > 0.

We proceed by contradiction. Suppose λ1 = 0. Hence, one can find a sequence
{uk}k∈N ∈ Es

Σ1
such that

‖uk‖L2(Ω) = 1, [uk]Xs(Ω) → 0 as k → +∞. (2.3)
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In particular, for k large enough there exists a constant such that ‖uk‖Es
Σ1

� C.
Thus, by [25, theorem 7.1],

uk ⇀ u in Es
Σ1

, uk → u in L2(Ω),

and hence 〈uk − u, ϕ〉Xs(Ω) → 0 for every ϕ ∈ Es
Σ1

and

‖u‖L2(Ω) = 1. (2.4)

Taking ϕ = u we obtain

〈uk − u, u〉Xs(Ω) → 0, i.e. 〈uk, u〉Xs(Ω) → 〈u, u〉Xs(Ω).

Therefore, by the Cauchy–Schwartz inequality and (2.3)

[u]2Xs(Ω) = lim
k→∞

〈uk, u〉Xs(Ω) � [u]Xs(Ω)

(
lim

k→∞
[uk]Xs(Ω)

)
= 0.

Thus according to the definition of [·]Xs(Ω), this implies that u is constant in RN .
But we know that u = 0 in Σ1, and hence u = 0 in the whole RN , which contradicts
(2.4). �

It worths to point out here that the seminorm given by the double integral∫∫
Q

|u(x) − u(y)|
|x − y|N+2s

dxdy, (2.5)

is actually a norm when we impose zero mixed boundary conditions. Indeed, as we
used in the previous proof, if this integral vanishes then necessarily u has to be
constant in the whole RN and, since we know that u = 0 in Σ1, we conclude that
it vanishes a.e. in RN . In this sense, our boundary conditions behave as Dirichlet
conditions and, thanks to proposition 2.4, we have the analogous between the norms
‖ · ‖Es

Σ1
and ‖ · ‖Hs

0 (Ω), defined as the double integral given in (2.5), when one
imposes u = 0 in RN \ Ω to the functions in Hs(Ω). See for instance [25] for more
details about these fractional Sobolev spaces.

As a consequence of proposition 2.4, the coercivity of the operator in Es
Σ1

holds
and Lax–Milgram theorem can be applied to guarantee the existence and uniqueness
of solution of (1.1) when f ∈ L2(Ω). Likewise, one can assure the solvability of (1.2)
when u0 ∈ L2(Ω). Moreover, to be consistent with the notation and the concept of
solution introduced by Dávila and Dupaigne in [24], we will use the notion of
analytic semigroup to give the precise definition of solutions to problem (1.2).

Definition 2.5. Let {S(t)}t�0 be the analytic semigroup in L2(Ω) for the heat
fractional equation with mixed boundary conditions. Then for every u0 ∈ L2(Ω)
there exists a unique

u := S(t)u0 ∈ C([0,∞);L2(Ω)) ∩ C((0,∞);Es
Σ1

) ∩ C1((0,∞);L2(Ω)),

solving (1.2). In particular, u satisfies∫
Ω

ut(x, τ)ϕ(x, τ) dx +
aN,s

2

∫∫
Q

(u(x, τ) − u(y, τ))(ϕ(x, τ) − ϕ(y, τ))
|x − y|N+2s

dxdy = 0

for every τ > 0 and ϕ ∈ C((0,∞);Es
Σ1

).
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Notice that the regularity properties follow in a standard way from the hilbertian
structure of the space Es

Σ1
(see for instance [32, theorem 2.3 and proposition 2.20]

or [28, § 5.9.2, theorem 3]).

Remark 2.6. Comparison results can be proved in both elliptic and parabolic cases
with standard arguments, so we omit the proofs and the precise statements, but
they will be often used along the work. Furthermore, we will frequently use the fact
that if u is a positive solution to a mixed problem, and ũ is a positive solution to the
analogous Dirichlet problem, then necessarily u � ũ, which follows straightforward
from the comparison results for Dirichlet problems. This in particular implies that
(see [5])

u(z) � C

(∫
Ω

f(x)δs(x) dx

)
δs(z), C > 0,

where δs(x) := dist (x, ∂Ω). It is worthy to mention here that, as far as we know, by
the lack of regularity, the previous inequality does not directly imply the statement
of theorem 1.1 as occurs in the case of zero Dirichlet condition.

Finally, along with this work, we will need to make use of the following Hardy-type
inequality, which can be found in, for example, [29].

Proposition 2.7. There exists a constant C = C(N, s) > 0 such that for every
ϕ ∈ Hs

0(Ω) the following inequality holds,

∫
Ω

ϕ2(x)
δ2s(x)

dx � C

∫∫
Q

(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy,

where δ(x) = dist(x, ∂Ω) denotes the Euclidean distance in RN to the boundary.

3. Elliptic Maximum Principle

The aim of this section is to prove theorem 1.1 but, before that, we will need some
auxiliary results as the following one that can be seen as a kind of weighted Sobolev
inequality:

Lemma 3.1. Let u be the solution of (1.1) with f ∈ L∞(Ω), f � 0. Then, there
exists C > 0 such that for every ϕ ∈ Es

Σ1

(∫
Ω

ur|ϕ|q dx

)1/q

� C

(∫∫
Q

u(x)u(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy +

∫
Ω

u2ϕ2 dx

)1/2

,

where 0 � r � 2∗s, q/2 = 1 + r s/N and the constant C depends on Ω, N , s,
‖u‖L∞(Ω), ‖f‖L∞(Ω) and 1/(

∫
Ω

f(y)δs(y) dy).

Remark 3.2. Lemma 3.1 is crucial in the proofs of Theorem 1.1 and Theorem 1.2,
and can be seen as the non-local version of [23, lemma 3]. Notice that the term
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Ω

u2|∇ϕ|2 dx appearing there is replaced in this case by the non-local term

∫∫
Q

u(x)u(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy, (3.1)

whose precise form is way less clear than in the local case. Indeed, in the local
problem this term naturally comes from testing in a problem where the main oper-
ator has the divergence form −div(u2|∇w|) for some concrete w. However, in the
fractional case one cannot explicitly compute the problem satisfied by this w, so at
the begining it is not evident at all how the estimate in lemma 3.1 has to be. During
the proof, it will become clear that (3.1) is the appropriate term in this case.

Proof. We proceed as in the proof of [23, lemma 3], i.e., we first prove the inequality
for r = 0, then for r = 2∗s and finally we interpolate to obtain the result.
Step 1: Case r = 0.
Let χ1 > 0 be the first eigenfunction of the fractional Laplacian with zero Dirichlet
conditions, that is, the solution of

{
(−Δ)sχ1 = λ1χ1 in Ω,
χ1 = 0 in RN \ Ω,

(3.2)

which, by the regularity result obtained in [33, proposition 1.1] and the Hopf’s
lemma given in [33, lemma 3.2] (see also [17, proposition 2.7]), satisfies c1δ

s � χ1 �
c2δ

s for positive constants c1 and c2, with δ(x) := dist(x, ∂Ω). Thus by proposition
2.7 and (3.2) we obtain

∫
Ω

ϕ2 dx � C

∫
Ω

ϕ2χ2
1

δ2s
dx � C

∫∫
Q

(ϕ(x)χ1(x) − ϕ(y)χ1(y))2

|x − y|N+2s
dxdy

= C

(∫∫
Q

(χ1(x) − χ1(y))(χ1(x)ϕ2(x) − χ1(y)ϕ2(y))
|x − y|N+2s

dxdy

+
∫∫

Q

χ1(x)χ1(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy

)

= C

(
λ1

∫
Ω

χ2
1ϕ

2 dx +
∫∫

Q

χ1(x)χ1(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy

)

� C

(
λ1

∫
Ω

δ2sϕ2 dx +
∫∫

Q

δs(x)δs(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy

)
.

Applying now that, by the Hopf’s lemma, u � Cδs, C > 0, it follows that

∫
Ω

ϕ2 dx � C

(∫
Ω

u2ϕ2 dx +
∫∫

Q

u(x)u(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy

)
, (3.3)

as wanted.
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Step 2: Case r = 2∗s. Using the Sobolev inequality and the fact that u solves (1.1)
it follows that(∫

Ω

|uϕ|2∗
s dx

)2/2∗
s

� C

(∫∫
Q

(u(x)ϕ(x) − u(y)ϕ(y))2

|x − y|N+2s
dxdy +

∫
Ω

u2ϕ2 dx

)

= C

(∫∫
Q

(u(x) − u(y))(u(x)ϕ2(x) − u(y)ϕ2(y))
|x − y|N+2s

dxdy

+
∫∫

Q

u(x)u(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy +

∫
Ω

u2ϕ2 dx

)

= C

(∫
Ω

fuϕ2 dx +
∫∫

Q

u(x)u(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy

+
∫

Ω

u2ϕ2 dx

)
.

Since by hypothesis f ∈ L∞(Ω) repeating verbatim the Moser’s type proof done for
fractional elliptic problems with zero boundary conditions (see [30] for the linear
case and [7] for the non-linear one) we get that u ∈ L∞(Ω). Thus, by the inequality
(3.3) obtained in step 1 and the previous estimate it follows(∫

Ω

|uϕ|2∗
s dx

)2/2∗
s

� C

(∫
Ω

ϕ2 dx +
∫∫

Q

u(x)u(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy

+
∫

Ω

u2ϕ2 dx

)

� C

(∫∫
Q

u(x)u(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy +

∫
Ω

u2ϕ2 dx

)
,

(3.4)

and we conclude.
Step 3: Interpolation.
Let be 0 < λ < 1. By Hölder’s inequality,∫

Ω

ur|ϕ|q dx �
(∫

Ω

ϕ2 dx

)1−λ (∫
Ω

ur/λ|ϕ|(q−2(1−λ))/λ dx

)λ

.

Fixing now λ so that

r

λ
=

q − 2(1 − λ)
λ

= 2∗s,

applying inequalities (3.3) and (3.4) we obtain that(∫
Ω

ur|ϕ|q dx

)1/q

� C

(∫∫
Q

u(x)u(y)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy+

∫
Ω

u2ϕ2 dx

)((1−λ+λ((2∗
s)/(2))/(q)).

Noticing that (1 − λ + λ((2∗s)/(2)))1/q = 1/2 we conclude. �
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Remark 3.3. It can be easily seen that in the particular case of u = χ1, the solution
to (2.2), the proof simplifies and the constant depends only on Ω, N , s and λ1.

We introduce now the fundamental auxiliary result to prove theorem 1.1:

Lemma 3.4. Let v be the solution to the problem⎧⎨
⎩

(−Δ)sv = g in Ω,
v = 0 in Σ1,
Nsv = 0 in Σ2,

(3.5)

with g ∈ Lp(Ω), p > N/s, and let u be the solution of (1.1) with f ∈ L∞(Ω), f � 0.
Then there exists a constant C > 0 such that∥∥∥v

u

∥∥∥
L∞(Ω)

� C‖g‖Lp(Ω),

with C depending on Ω, Σ1, Σ2, N , p, ‖u‖L∞(Ω), ‖f‖L∞(Ω) and ‖fδs‖−1
L1(Ω).

Proof. First of all we point out here that, since p > N/s > N/(2s), as we com-
mented before, following the ideas developed in [30], the function v belongs to
L∞(Ω). Let us now consider ϕ ∈ Es

Σ1
∩ L∞(Ω). Thus, using uϕ, vϕ, that belong to

Es
Σ1

, as test functions in (3.5) and (1.1) respectively, it follows that∫
Ω

(gu − fv)ϕ dx

=
aN,s

2

∫∫
Q

(v(x) − v(y))(u(x)ϕ(x) − u(y)ϕ(y))
|x − y|N+2s

dxdy

− aN,s

2

∫∫
Q

(u(x) − u(y))(v(x)ϕ(x) − v(y)ϕ(y))
|x − y|N+2s

dxdy

=
aN,s

2

∫∫
Q

u(x)v(y)ϕ(y) + u(y)v(x)ϕ(x) − v(x)u(y)ϕ(y) − v(y)u(x)ϕ(x)
|x − y|N+2s

dxdy

=
aN,s

2

∫∫
Q

v(x)u(y) − u(x)v(y)
|x − y|N+2s

(ϕ(x) − ϕ(y)) dxdy

=
aN,s

2

∫∫
Q

u(y)(v(x) − v(y)) − v(y)(u(x) − u(y))
|x − y|N+2s

(ϕ(x) − ϕ(y)) dxdy.

(3.6)

We take now ε > 0 and k � 0 and we set

ϕε :=
(

v

u + ε
− k

)
+

∈ Es
Σ1

∩ L∞(Ω).

We want to see that

(u + ε)(x)(u + ε)(y)(ϕε(x) − ϕε(y))2

� [u(y)(v(x) − v(y)) − v(y)(u(x) − u(y))] (ϕε(x) − ϕε(y))

+ ε(v(x) − v(y))(ϕε(x) − ϕε(y)),

(3.7)
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for x, y in RN . If x, y ∈ {v � k(u + ε)} or x, y ∈ {v < k(u + ε)} the inequality easily
follows (it is an identity indeed). Consider now the case x ∈ {v � k(u + ε)} and
y ∈ {v < k(u + ε)}. Thus,

ϕε(x) =
v(x)

(u + ε)(x)
− k, ϕε(y) = 0, and k � v(y)

(u + ε)(y)
.

Therefore,

(u + ε)(x)(u + ε)(y)(ϕε(x))2 = (u + ε)(x)(u + ε)(y)
(

v(x)
(u + ε)(x)

− k

)
ϕε(x)

= {(u + ε)(y)v(x) − k(u + ε)(x)(u + ε)(y)}ϕε(x)

� {(u + ε)(y)v(x) − (u + ε)(x)v(y)}ϕε(x)

= {u(y)(v(x) − v(y)) − v(y)(u(x) − u(y)) + ε(v(x) − v(y))}ϕε(x),

and (3.7) follows. Likewise, it holds whenever y ∈ {v � k(u + ε)} and x ∈ {v <
k(u + ε)}.

Hence, substituting in (3.6) with ϕ = ϕε, by (3.7) we obtain

aN,s

2

∫∫
Q

(u + ε)(x)(u + ε)(y)
(ϕε(x) − ϕε(y))2

|x − y|N+2s
dxdy

� ε
aN,s

2

∫∫
Q

(v(x) − v(y))(ϕε(x) − ϕε(y))
|x − y|N+2s

dxdy +
∫

Ω

(gu − fv)ϕε dx,

and using the positivity of f , v and ϕε, and the fact that v solves (3.5), it yields

aN,s

2

∫∫
Q

(u + ε)(x)(u + ε)(y)
(ϕε(x) − ϕε(y))2

|x − y|N+2s
dxdy �

∫
Ω

g(u + ε)ϕε dx

Combining now this estimate with lemma 3.1 we get(∫
Ω

(u + ε)r|ϕε|q dx

)2/q

� C

(∫
Ω

g(u + ε)ϕε dx +
∫

Ω

(u + ε)2ϕ2
ε dx

)
, (3.8)

where q = 2 + 2rs/N . Denoting w := v/u, since

(u + ε)ϕε = (v − k(u + ε))+ → (v − ku)+ = u(w − k)+,

when ε → 0, from (3.8) we obtain, by monotone convergence,

(∫
Ω

ur(w − k)q
+ dx

)2/q

� C

(∫
Ω

gu(w − k)+ dx +
∫

Ω

u2(w − k)2+ dx

)
.

We choose now R = ((p)/(p − 1)) ∈ (1, 2∗s). Notice that in this case q > 2 and
2((q − r)/(q − 2)) > 0. Thanks to this, the fact that the previous integral inequal-
ity is purely local allows us to conclude the proof exactly as in [23, lemma 2]
using an iterative Stampacchia method. We mention here that the necessity of
requiring g ∈ Lp(Ω) with p > N/s comes from this iterative method. In fact, to
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obtain the conclusion of the theorem is important to be able to affirm that the
solution of some Bernoulli-type differential inequality A(k) � C‖g‖Lp(Ω)(−A′(k))γ ,
γ = 2 − 2/q − 1/p, is equal to zero for some k(‖g‖1/γ

Lp(Ω)), bigger than a fixed quan-
tity that depends on ‖v‖L∞(Ω). For that γ > 1 is needed, so the condition over p
comes out. �

Using the previous result and following some ideas developed in [14, lemma 3.2],
we are now able to give the

Proof of Theorem 1.1. Let K ⊂ Ω be a fixed but arbitrary compact set strictly
contained in Ω. Then, there exists r > 0 such that r � dist(x0, ∂Ω) for every x0 ∈ K
so, by [35, propositions 2.2.6 and 2.2.2], it follows that

u(x0) �
∫

RN

u(z)γr(z − x0) dz�
∫

Ω

u(z)γr(z − x0) dz > 0, x0 ∈ K.

Here γr := (−Δ)sΓr where Γr is a C1,1 function that matches outside the ball B(0, r)
with the fundamental solution Φ := C|x|2s−N and that is a paraboloid inside this
ball. Then there exists a positive constant c > 0 such that u(x0) > c for every
x0 ∈ K. That is

u(x0) > M

∫
Ω

u(z) dz, x0 ∈ K, (3.9)

where

M = c

(∫
Ω

u(z) dz

)−1

> 0.

Consider now the solution w of⎧⎨
⎩

(−Δ)sw = f0 in Ω,
w = 0 in Σ1,
Nsw = 0 in Σ2,

where 0 � f0 � 1, f0 ∈ C∞
0 (K). Therefore, by (3.9) and lemma 3.4, for every x ∈ K

we get that

u(x) � M

∫
Ω

u(z)f0(z) dz =
aN,s

2

∫∫
Q

(u(x) − u(y))(w(x) − w(y))
|x − y|N+2s

dxdy

= M

∫
Ω

w(z)f(z) dz � C0

∫
Ω

f(z)ξ0(z) dz � λw(x),
(3.10)

where

λ :=
C0

‖w‖L∞(Ω)

∫
Ω

f(z)ξ0(z) dz.

Then it is clear that⎧⎨
⎩

(−Δ)s(u − λw) = f � 0 in Ω \ K,
u − λw � 0 in Σ1 ∪ K,
Ns(u − λw) = 0 in Σ2,
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and therefore, by comparison (see remark 2.6), it follows that

u − λw � 0 in Ω \ K. (3.11)

Thus, by lemma 3.4, (3.10) and (3.11) we conclude that

u(x) � C

(∫
Ω

f(z)ξ0(z) dz

)
ξ0(x), x ∈ Ω,

as desired.

4. Parabolic Maximum Principle

As happened in the elliptic case, before proving theorem 1.2 we need to estab-
lish some comparison results. The first one will provide us a pointwise comparison
between the first eigenfunction of the fractional Laplacian and the solution of the
elliptic mixed problem with right-hand side equal to one:

Proposition 4.1. Let χ1 be the first eigenfunction of (−Δ)s with mixed boundary
conditions in Ω, i.e., the solution to (2.2) with L2(Ω)-norm equal to one. Then,
there exists a positive constant C = C(Ω, N, s,Σ1,Σ2) such that

C−1ξ0 � χ1 � Cξ0 in Ω, (4.1)

where ξ0 is the solution to (1.7).

Proof. To prove that there exists C > 0 such that χ1 � Cξ0, we consider the
function

w :=
χ1

ξ0

. (4.2)

Thus, taking, for j � 1, ξ0w
2j−1 and χ1w

2j−1 as test functions in (2.2) and (1.7)
respectively, and proceeding as in (3.6) we obtain

λ1

∫
Ω

χ1ξ0w
2j−1 dx �

∫
Ω

(λ1χ1ξ0 − χ1)w
2j−1 dx

=
aN,s

2

∫∫
Q

ξ0(y)(χ1(x) − χ1(y))
|x − y|N+2s

(w2j−1(x) − w2j−1(y)) dxdy

− aN,s

2

∫∫
Q

χ1(y)(ξ0(x) − ξ0(y))
|x − y|N+2s

(w2j−1(x) − w2j−1(y)) dxdy

=
aN,s

2

∫∫
Q

ξ0(x)ξ0(y)
(w(x) − w(y))(w2j−1(x) − w2j−1(y))

|x − y|N+2s
dxdy.

Applying now the numerical lemma [1, lemma 2.22] with s1 := w(x), s2 := w(y)
and a := 2j − 1 it yields

λ1

∫
Ω

χ1ξ0w
2j−1 dx �

(
2j − 1

j2

)
aN,s

2

∫∫
Q

ξ0(x)ξ0(y)
(wj(x) − wj(y))2

|x − y|N+2s
dxdy.
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Then, choosing now u := ξ0 and r := 2 in lemma 3.1, we conclude the existence of
q := 2(1 + ((2s)/(N))) and C > 0 such that

C

(∫
Ω

ξ0
2
wqj dx

)2/q

� λ1

∫
Ω

χ1ξ0w
2j−1 dx + C̃j

∫
Ω

ξ0
2
w2j dx

� Cj

∫
Ω

ξ0
2
w2j dx.

(4.3)

If we define

μ =
q

2
, jk := 2μk, θk :=

(∫
Ω

ξ0
2
wjk

)1/jk

, k = 0, 1, . . .

thus, (4.3) can be rewritten as

θk+1 � (Cμk)1/μk

θk,

and iterating we obtain that

sup
Ω

w = lim
k→∞

θk � Cθ0 = C

(∫
Ω

χ2
1 dx

)1/2

= C < +∞.

Therefore,

χ1 � Cξ0. (4.4)

We notice here that to justify the computations above we can consider

wε :=
χ1

ξ0 + ε
,

that is well defined in Ω. Thus we can repeat the previous proof for the functions
wε obtaining that supΩ wε � C and passing to the limit when ε → 0 to conclude.

To prove that ξ0 � Cχ1 we consider

w :=
ξ0

χ1
. (4.5)

Proceeding as before, and applying again [1, lemma 2.22] we obtain

(
2j − 1

j2

)
aN,s

2

∫∫
Q

χ1(x)χ1(y)
(wj(x) − wj(y))2

|x − y|N+2s
dxdy �

∫
Ω

χ1w
2j−1 dx.

Thus, (4.4) implies

aN,s

2

∫∫
Q

χ1(x)χ1(y)
(wj(x) − wj(y))2

|x − y|N+2s
dxdy � Cj

∫
Ω

χ1w
2j dx.
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Applying Hölder’s inequality, lemma 3.1 and Young’s inequality on the right-hand
side of the previous inequality, we get that

aN,s

2

∫∫
Q

χ1(x)χ1(y)
(wj(x) − wj(y))2

|x − y|N+2s
dxdy

� Cj

(∫
Ω

χ1
2w2j dx

)1/2 (∫
Ω

w2j dx

)1/2

� Cj2

2

(∫
Ω

χ1
2w2j dx

)1/2

+
aN,s

4

∫∫
Q

χ1(x)χ1(y)
(wj(x) − wj(y))2

|x − y|N+2s
dxdy

+
1
2

∫
Ω

χ1
2w2j dx.

Therefore,

aN,s

2

∫∫
Q

χ1(x)χ1(y)
(wj(x) − wj(y))2

|x − y|N+2s
dxdy � Cj2

∫
Ω

χ1
2w2j dx.

Using this estimate together with lemma 3.1 we obtain(∫
Ω

χ1
2wqj dx

)2/q

� Cj2

∫
Ω

χ1
2w2j dx, (4.6)

with q := 2(1 + ((2s)/(N))). Iterating as it was done in the proof of (4.4), we can
conclude that supΩ w � C and therefore

ξ0 � Cχ1. (4.7)

We conclude noticing that, as in the proof of (4.4), the computations done to prove
(4.7) can be justified considering

wε :=
ξ0

χ1,ε
,

that is well defined in Ω, with χ1,ε := χ1 + ε. Repeating the previous estimates for
the function wε we will get that(∫

Ω

χ1,ε
2wqj

ε dx

)2/q

� Cj2

∫
Ω

χ1,ε
2w2j

ε dx + Cjε

∫
Ω

χ1,ε

ξ0

dx.

Thus, by the monotone convergence theorem, we can pass to the limit when ε → 0
achieving (4.6). The integrals that appear here are well defined due to theorem
1.1. �

Remark 4.2. The inequality (4.4) can be proved by a simple comparison argument
just by noticing that χ1 ∈ L∞(Ω) (that follows exactly as in [6, Propostition 2.2]).
We notice that in this case the inequality will be obtained with a constant depending
on ‖χ1‖L∞(Ω) . However, we keep the iterative proof since it can be applied to more
general eigenvalue problems (for instance with unbounded potentials like in [24]).
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Now we are able to prove the next

Theorem 4.3. Let u and ξ0 be the solutions to (1.2) and (1.7) respectively. Then,

u(t) � c(t)ξ0,

for some c(t) > 0 depending also on N , s and Ω.

Proof. First of all we notice that, since by proposition 4.1 we know ξ0 � Cχ1 (where
χ1 is the normalized solution of (2.2) and C = C(Ω, N, s,Σ1,Σ2)), the result holds
if we prove

u(t) � c(t)χ1. (4.8)

Let T > 0 and consider

v(x, t) := e−λ1tχ1(x), x ∈ Ω, 0 < t < T,

that clearly satisfies

⎧⎨
⎩

vt + (−Δ)sv = 0 in Ω × (0, T ),
v = 0 in Σ1 × (0, T ),
Nsv = 0 in Σ2 × (0, T ),

(4.9)

We define now

w(x, t) :=
v

u
and θj(x, t) :=

∫
Ω

u2(x, t)wj(x, t) dx, j � 1, t ∈ (0, T ).

In order to get (4.8) our next goal is, using an iterative argument that involve the
functions θj(x, t), to prove that

w(x, t) � C0t
−β , 0 � t � T, (4.10)

for some C0 > 0, β > 0 independent of t. From now on, when there is no possible
confusion, we will omit the dependence of every function on the variable t to simplify
the notation. To obtain (4.10) we notice that, by definition,

wt =
vtu − vut

u2
,

and from here, since u and v solve (1.2) and (4.9) respectively, it can be seen that

∫
Ω

u2ϕwt dx +
∫

RN

uϕ(−Δ)sv dx −
∫

RN

vϕ(−Δ)su dx = 0.
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Choosing ϕ = w2j−1 and writing the weak formulation, this implies

0 =
1
2j

∫
Ω

u2(w2j)t dx

+
aN,s

2

∫∫
Q

u(x)w2j−1(x) − u(y)w2j−1(y))(v(x) − v(y))
|x − y|N+2s

dxdy

−
∫∫

Q

(v(x)w2j−1(x) − v(y)w2j−1(y))(u(x) − u(y))
|x − y|N+2s

dxdy

=
1
2j

∫
Ω

u2(w2j)t dx +
aN,s

2

∫∫
Q

u(x)v(y)(w2j−1(y) − w2j−1(x))
|x − y|N+2s

dxdy

+
aN,s

2

∫∫
Q

v(x)u(y)(w2j−1(x) − w2j−1(y))
|x − y|N+2s

dxdy

=
1
2j

∫
Ω

u2(w2j)t dx

+
aN,s

2

∫∫
Q

u(x)u(y)
(w2j−1(x) − w2j−1(y))(w(x) − w(y))

|x − y|N+2s
dxdy.

Applying once again [1, lemma 2.22], it follows that

∫
Ω

u2(w2j)t dx +
aN,s(2j − 1)

j

∫∫
Q

u(x)u(y)
(wj(x) − wj(y))2

|x − y|N+2s
dxdy � 0. (4.11)

Moreover, since

θ′2j(t) = 2
∫

Ω

uutw
2j dx +

∫
Ω

u2(w2j)t dx,

plugging this equality into (4.11), we get that

θ′2j − 2
∫

Ω

uutw
2j dx +

aN,s(2j − 1)
j

∫∫
Q

u(x)u(y)
(wj(x) − wj(y))2

|x − y|N+2s
dxdy � 0.

(4.12)
Furthermore, since testing in (1.2) with uw2j one gets

∫
Ω

uutw
2j dx = −aN,s

2

∫∫
Q

(u(x) − u(y))(u(x)w2j(x) − u(y)w2j(y))
|x − y|N+2s

dxdy

= −aN,s

2

∫∫
Q

(u(x)wj(x) − u(y)wj(y))2

|x − y|N+2s
dxdy

+
aN,s

2

∫∫
Q

u(x)u(y)
(wj(x) − wj(y))2

|x − y|N+2s
dxdy,
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by (4.12) we conclude

θ′2j + aN,s

∫∫
Q

(u(x)wj(x) − u(y)wj(y))2

|x − y|N+2s
dxdy

+
aN,s(2j − 1)

j

∫∫
Q

u(x)u(y)
(wj(x) − wj(y))2

|x − y|N+2s
dxdy � 0.

Therefore, we have obtained that θ′2j(t) � 0, j � 1, 0 < t < T , and this in particular
implies

θj(t) � θj(0) for all t ∈ [0, T ] and j � 2. (4.13)

On the other hand, by comparison with the solution of the fractional heat
equation with zero Dirichlet condition and the Hopf’s lemma (see [12,18]) we
have that

u(t) � c(t)δs,

for some positive function c(t). Thus, we can assume

u(t) � cδs for t ∈ [0, T ],

with c > 0 independent of t in this range, and we can proceed as in the proof of
Lemma 3.1 (see (3.3)) to get

∫
Ω

ϕ2 dx � C

(∫∫
Q

u(x, t)u(y, t)
(ϕ(x) − ϕ(y))2

|x − y|N+2s
dxdy+

∫
Ω

u2ϕ2 dx

)
(4.14)

for every ϕ ∈ Es
Σ1

, t ∈ [0, T ] and C > 0 independent of t.
Therefore, using (4.13) and (4.14) we can follow analogously to the proof of [24,

Claim 5.3] to get

1
C

θ1+γ
2j (t)

θ2γ
j (0)

+ θ′2j(t) � θ2j(t)

with γ := ((2s)/(N + 2s)); and from here

θ2j(t) � t−1/γθ2
j (0), t ∈ [0, T ]. (4.15)

Iterating (4.15), as in [24, Claim 5.5], we conclude

sup
Ω

w(x, t) � Ct−1/2γ‖χ1‖L2(Ω),

that is, we have obtained (4.10) with β = 1/2γ and C0 = C0(‖χ1‖L2(Ω)). Therefore,
(4.8) holds with c(t) = C0e

λ1tt−1/2γ . �

Following the ideas developed in [31, lemma 2] we present now the last result
needed to prove theorem 1.2.
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Proposition 4.4. Let u be the solution to (1.2). Then,

u(x, t) � c(t)
(∫

Ω

u0(x)δs(x)
)

δs(x), x ∈ Ω, t ∈ [0, T ],

where δ(x) := dist(x, ∂Ω) and c(t) > 0.

Proof. Let {S(t)}t�0 be the analytic heat semigroup with zero mixed conditions.
Therefore, for every x0 ∈ B ⊆ Ω by Hopf’s lemma, for every t ∈ [0, T ] we get that

u(x0, t/2) = S(t/2)u0(x0)=
∫

Ω

u0(x)S(t/2)δx0(x) dx�c0(t)
∫

Ω

u0(x)δs(x) dx,

where δx0 is the Dirac distribution in x0. That is,

u(x, t/2) � c0(t)‖u0δ
s‖L1(Ω)χB , (4.16)

where χB is the characteristic function of the ball B. Consider now

ũ(x, t) the solution of (1.2) with initial datum equal to u(x, t/2)

and

ū(x, t) the solution of (1.2) with initial datum equal to χB.

Then by (4.16) and the comparison principle it follows that

ũ(x, t/2) � c(t)‖u0δ
s‖L1(Ω)ū(x, t/2), x ∈ Ω, t ∈ [0, T ], c(t)>0.

Thus, since by the property of semigroup we have that

u(x, t) = S(t)u0(x) = S(t/2)u(x, t/2) = ũ(x, t/2),

the previous inequality and the Hopf’s lemma imply

u(x, t) � c(t)‖u0δ
s‖L1(Ω)δ

s(x),

for every x ∈ Ω and t ∈ [0, T ] as desired. �

We can now conclude the

Proof of Theorem 1.2. Looking carefully at the proof of Theorem 4.3, we deduce
that if u � 0 solves (1.2) and satisfies u(t) � c(t)δs(x) for 0 < t < T then

u(x, t) � C0e
λ1tt−1/2γξ0.

Thus following verbatim the proof of [24, corollary 2.8], by proposition 4.4, the
estimate (1.8) follows.
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