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Abstract

The developmental origin of health and disease highlights the importance of the period of the
first 1000 days (from the conception to the 2 years of life). The process of the gut microbiota
establishment is included in this time window. Various perinatal determinants, such as
cesarean section delivery, type of feeding, antibiotics treatment, gestational age or environment,
can affect the pattern of bacterial colonization and result in dysbiosis. The alteration of the early
bacterial gut pattern can persist over several months and may have long-lasting functional
effects with an impact on disease risk later in life. As for example, early gut dysbiosis has been
involved in allergic diseases and obesity occurrence. Besides, while it was thought that the fetus
developed under sterile conditions, recent data suggested the presence of a microbiota in utero,
particularly in the placenta. Even if the origin of this microbiota and its eventual transfer to the
infant are nowadays unknown, this placental microbiota could trigger immune responses in the
fetus and would program the infant’s immune development during fetal life, earlier than
previously considered. Moreover, several studies demonstrated a link between the composition
of placental microbiota and some pathological conditions of the pregnancy. All these data show
the evidence of relationships between the neonatal gut establishment and future health
outcomes. Hence, the use of pre- and/or probiotics to prevent or repair any early dysbiosis is
increasingly attractive to avoid long-term health consequences.

The human gut microbiota

The human microbiome

The human microbiome has emerged as an area of utmost interest, and since the last two
decades, numerous studies have highlighted its impact on the physiology leading to impact on
health and diseases. The microbiota considered to outnumber by 10 the number of eukaryotic
cells has been recently reevaluated at 3.8 1013, showing that the number of bacteria is actually
of the same order of human cells with a ratio close to 1/1.1 Nevertheless, it does not decreased
the major importance of the microbiome. The most heavily inhabited organ with micro-
organisms is the gastrointestinal tract, harboring a huge diversity with more than 500 bacterial
species that represent about 25 times more genes than the human genome.2,3 Of particular
interest is the gut microbiome, now regarded as an organ. Indeed, this microbiota displays
various vital functions.4 Protection against colonization by pathogens is a well-known function
mediated by several mechanisms involving direct mechanisms such as production of bac-
teriocins or bacterial metabolites, or competition for nutrients, or indirect mechanisms such as
stimulation of the host innate immunity via the recognition of microbe-associated molecular
patterns by cell receptors such as Toll-like receptors. The gut microbiota has also important
metabolic functions through fermentation of indigestible carbohydrates responsible for energy
harvest and storage, and trophic effect on the intestinal mucosa as well as systemic effects via
short-chain fatty-acid (SCFA) production. Finally, gut microbiota is involved in a cross-talk
with the immune cells providing major immune roles with modulation of the innate immunity
and maturation and development of cell-mediates immunity.

Hence, the gut microbiota interacts extensively with the host, and there are accumulating
data linking many human diseases – such as inflammatory bowel disease, obesity, diabetes,
asthma and allergies – with dysbiosis, that is, alteration in its composition.5,6 However, it
remains challenging to identify the precise changes in the microbiota that are responsible for
mediating diseases development and when they occur. However, there is currently growing
evidence of the importance of the early gut microbiota.

Early life programming

It is becoming an established concept stating that there is a critical window for later health early
in life. This concept called the developmental origin of health and disease (DOHaD) is increas-
ingly supported by the scientific community.7 It highlights the importance of the period from the
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conception to the 2 years of life, the so-called ‘first thousand days’
recognized to be a crucial period in the infant development. These
1000 days, according to the motto of the World Health Organiza-
tion, constitute a unique window of sensitivity in which the envir-
onment in all its forms (nutritional, ecological, socio-economical,
lifestyles) creates marks on the genome, programming health and
the future risk of illness of an individual for life. Hence, under-
standing how our gut microbial community is shaped and what
their determinants are is of great interest.

The gut microbiota establishment in neonates

The bacterial establishment process

It is a complex phenomenon, which in terms of kinetics of
acquisition of the microbiota is currently relatively well known.
The formation of the gut microbiota starts rapidly from the
rupture of membranes. At birth, neonates are suddenly immersed
in a rich and varied bacterial environment, and they will be
rapidly colonized by an initially simple microbiota mainly origi-
nating from mother’s microbiota, in particular from vagina and
feces.8,9 In case of breastfeeding, breast milk can also participate
in the neonatal bacterial establishment.10,11 Infants are then
continually exposed to new bacteria from the environment, food
and adult skin bacteria via feeding, physical contact or kisses. This
leads to a high interindividual variability in both composition and
patterns of bacterial colonization during the first weeks of life.
During the infant stage of life, numerous bacteria are encountered
in the environment and gut microbiota develops with increased
diversity toward the adult pattern by age 3 years.12

Perinatal determinants

Various perinatal determinants can affect the pattern of bacterial
colonization, that is, gestational age, mode of delivery, mode of
infant feeding, maternal, intrapartum and neonatal antibiotic
courses, as well as familial environment, geographical and cultural
traditions (Figs 1 and 2).

The mode of birth affects the initial bacterial establishment
since bacteria encountered by the infant vaginally delivered are
very different from those experienced through cesarean deliveries.
Indeed, infants born by cesarean section are mainly faced with

bacteria from their environment: air and medical staff, and a
delayed colonization by maternal bacteria is observed in numer-
ous studies.13–16 Interestingly, although throughout the first year
of life bacterial profiles become more similar whatever the mode
of birth, differences in bacterial profiles can persist throughout
the first year of life.15,17,18 Differences linked to cesarean birth has
been reported later in life in an American cohort of adults;
however, whether it was acquired during birth is unknown.19 In a
recent study, Chu et al. did not observed any effect of the mode of
delivery on the neonatal and infant microbiota at 6 weeks.20

However, at birth they analyzed the meconium which reflects
rather the in utero environment than colonization at birth.
Nevertheless, their findings on the meconium microbiota, which
appears specific compared with other neonates’ body sites and not
affected by the mode of birth, suggest a maternal origin that seeds
the neonate earlier than previously thought.

Type of feeding has a great influence on the bacterial
establishment. Breastfed infants have a microbiota profile with a
specific high amount of Bifidobacterium, a genus known for its
potential health benefits, whereas formula fed infants have a more
diverse profile.17,21 This influence is linked to the unique com-
position of human breast milk, rich in complex non-digestible
oligosaccharides with more than 200 different molecules.22 These
aspects make breast milk a special feature in the world of living
organisms with a very specific level and composition, in particular
compared with cow milk, which is the basis of infant formulas.
Due to their structure (β-glycosidic bonds), these oligosaccharides
are not hydrolyzable by human digestive enzymes and therefore
not assimilated in the small intestine. Hence, they will be sub-
strates for micro-organisms in the large intestine, promoting the
growth of specific bacteria. Nowadays, most infant formulas are
supplemented with oligosaccharides, in particular fructo- and
galacto-oligosaccharides with the aim to improve the intestinal
microbiota in early life.23 In addition, recent studies based on
culture and molecular techniques have shown that breast milk
could contain commensal bacteria with beneficial potentialities
such as lactobacilli and bifidobacteria at levels ranging between
101 and 105 colony forming units/ml.11 Their origin remains
unclear, either from the mother’s skin suggesting a contamination
or from bacterial translocation from the maternal digestive tract
to the mammary gland after internalization into leukocytes.10

Nevertheless, this microbiota could participate in the bacterial

Fig. 1. Influence of perinatal determinants on the neonatal gut microbiota.
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establishment in newborns as shown by studies that demonstrated
similarities between breast milk bacteria and neonatal fecal
microbiota.22

The impact of antibiotics has first been examined in terms of
selection of resistant micro-organisms. By contrast, the influence
of antibiotic treatment on the bacterial establishment has been
poorly investigated. Nevertheless, some studies showed the
alteration of the bacterial profile in antibiotic-treated infants even
for a short period. The main feature was a decrease in the
biodiversity.24,25 An increase in potentially pathogenic and
antibiotic-resistant bacteria associated to a decrease in potentially
beneficial bacteria such as bifidobacteria and lactobacilli has
also been reported.26 Intrapartum antibiotics may also impact
the bacterial establishment.27,28 Interestingly, these early
dysbiosis are still visible after a few weeks,24,25,27 suggesting the
potential long-term consequences of dysbiosis linked to early
antibiotic courses.

Gestational age is a major factor in the bacterial establishment,
particularly in very and extremely preterm infants who can have an
aberrant microbiota profile compared with fullterm infants.29–31

Despite the great intervariability observed, the main feature of the
bacterial establishment in the very preterm infants is a great
imbalance in the bacterial profile. In fact, a delay in bacteria
originating from the mother such as enterobacteria, or anaerobes
belonging to the genera Bacteroides and Bifidobacterium is
observed whereas bacteria from the environment such as staphy-
lococci are at high levels with a high frequency. Colonization by
Clostridium which is a spore-forming bacteria that can be in the
environment may be dominant and related to the postnatal
age.29,32 This bacterial establishment can be explained by the fact
that these infants are more frequently born by cesarean section,
very rapidly separated from their mother, placed into a highly
sanitized intensive care environment, and frequently treated by
broad-spectrum antibiotics. This particular bacterial pattern
represent a risk factor for short-term diseases such as sepsis or
necrotizing enterocolitis, the most dreaded disease in neonatal
intensive care units.33,34

The environment can also condition the development of the
microbiota, which may explain the delayed development of the
maternal microbiota observed since a decade in industrialized
countries, related to higher perinatal hygiene conditions in our
countries compared with developing countries. The importance
of the environment was also shown in studies that reported
differences in gut microbiota depending on the geographical
location.35–37

Long-term health consequences of early dysbiosis in
bacterial establishment

Exposure to all perinatal determinants described above may result
in dysbiosis, that is, either a decrease in bacterial diversity or a
delayed colonization by potential health beneficial bacteria, or
both. This early dysbiosis can persist over several months and can
have therefore long-lasting functional effects with an impact on
disease risk later in life8,38 (Fig. 1). Several epidemiologic studies
have shown that factors known to alter the early bacterial gut
pattern – such as cesarean section delivery, prematurity, and early
exposure to antibiotics – have been found as risk factors for
various diseases, as for example, allergic diseases or overweight/
obesity as described later in the text. Dysbiosis has also been
involved in the gut–brain axis, and a recent study reported an
increased risk of autism spectrum disorder (ASD) in preterm
infants born at less than 27 weeks of gestational age and known to
have a major dysbiosis.39

Early dysbiosis and allergic diseases

The prevalence of allergic diseases has increased globally over the
last 50 years with discrepancies among their different clinical
expressions, that is, atopic dermatitis, or intestinal and respiratory
symptoms. It clearly appears nowadays that this increase is linked
to sequential changes in lifestyle such as hygiene, indoor enter-
tainment, changes in diet, and there is mounting evidence that the
microbiota is a key environmental factor that plays a role. Indeed,
allergic diseases are immunological pathologies, hallmarked by
the differentiation of naive T cells into interleukin 4 secreting
T cells (T helper type 2 cells or Th2). Neonates are biased toward
Th2 cell responses with reference to adults.40 This immature
Th2-dominant neonatal response undergoes environment-driven
maturation via microbial contact during the early postnatal per-
iod, leading to the development of intestinal barrier functions and
of regulatory T cell and a Th balance.41,42 Moreover, the immune
system appears to be regulated by microbiota in a time restricted
period during early life and to be influenced by the maternal
microbiota.43,44 Alterations in the sequential establishment of gut
microbiota observed in western countries could therefore be
responsible for a Th balance deviation toward a Th2 profile, a
major factor in the rise of allergic diseases. Indeed, epidemiolo-
gical studies have linked factors influencing microbiota estab-
lishment and risk of allergy. Several studies showed that treatment
with broad-spectrum antibiotics in infancy, leading to dysbiosis,
is associated with increased susceptibility to allergy such as
asthma,45,46 eczema47 and allergic rhinitis.48 Cesarean section was
also involved as a risk factor of food allergy/food atopy, allergic
rhinitis, asthma, but meta-analyses highlighted conflicting
results.49,50 Cesarean section was positively associated with mul-
tiple sensitizations in the French cohort PARIS,51 whereas there
was no evidence of such association neither in the first 5 years of
life of the Asian cohort GUSTO52 nor in the Danish study.53 The
association could be influenced by the underlying indication for
cesarean delivery. Indeed, emergency cesarean delivery, in
contrast with elective one, often occurs after the onset of the labor
and membranes rupture. It is then associated with both maternal
and fetal stress and exposition to vaginal microbiota, favoring a
colonization more similar to vaginal delivery. If Huang et al.49

found a 20% increase in the subsequent risk of asthma in children
delivered by both elective or emergency cesarean section, Rusconi
et al.54 who worked on individual data from nine European birth

Fig. 2. Bacterial establishment in neonates and health consequences.
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cohorts concluded that the increased risk of asthma is more
associated to elective cesarean delivery, especially among children
born at term. Prematurity and breastfeeding are both perinatal
determinants that impact the bacterial establishment and they are
studied for their role toward allergy risk. However, epidemio-
logical studies yielded conflicting results, mainly due to differ-
ences in the study designs and study population, including
definition of breastfed infants (partial, exclusive).

Besides, the role of the gut microbiota in the development of
oral tolerance, as well as specific microbial signatures identifica-
tion in allergy were confirmed using mice models.55 In humans,
several studies highlighted differences in the composition of
bacterial communities in the feces of subject with or without
allergic diseases; however, available epidemiological studies
remain controversial. Numerous studies support that a dysbiosis
in infancy is more important56 than the prevalence of specific
bacterial taxa.57

Prospective studies have shown changes in the fecal micro-
biota before the onset of any atopic symptoms. Colonization by
Clostridium and especially Clostridium difficile has been several
times, but not always, associated with development of atopic
dermatitis, wheezing and sensitization before 2 years, while a high
level of Escherichia coli has been associated only with the risk of
developing eczema. Colonization by Clostridium cluster XIVa at
3 weeks of life could be an early indicator of the future
development of asthma58 and food allergy.59

Moreover, longitudinal studies highlighted different micro-
biota alterations associated with allergy only during the first
weeks of life, defining then a critical window in early life. A
decrease in diversity at 1 week and 1 month but not at 12 months
was associated with asthma at 7 years of age.60 Recently, Arrieta
et al.61 showed at 3 months of age, but not at 1 year, a transient
decrease in the relative abundance of the bacterial genera
Lachnospira, Veillonella, Faecalibacterium and Rothia during the
first 100 days of life. Other bacterial groups were associated with
an increased risk of asthma at 4 years of life, showing the com-
plexity to point up the link between microbiota and pathologies.62

Early dysbiosis and obesity

As for allergy, the prevalence of obesity increased tremendously
over the last decades. If genetic transmission of risk of overweight
and obesity is well established, others factors such as the early
dysbiosis has received several lines of evidence. A first epide-
miologic study on a cohort of 1255 infants showed that infants
delivered by cesarean section had two-fold higher odds of child-
hood obesity, even after adjusting for maternal body mass index,
birth weight and other confounding variables.63 Likewise, expo-
sure of infants to antibiotics was found to increase risk of
childhood overweight in normal weight mother but not in over-
weight or obese mother.64 Moreover, the risk of childhood
overweight is increase in child born from women with a high
gestational body mass index, women who have a gut microbiota
enriched in Bacteroides, Clostridium and Staphylococcus.64,65 This
is in accordance with a transmission of obesogenic microbiota
through vaginal delivery but was not confirmed in other studies.66

However, experimental mice model confirmed that low dose of
penicillin amplifies diet-induced obesity and that perturbation
during a critical window in early life leads to long-term increased
adiposity.67 Among perinatal factors that influence gut microbiota
establishment, cesarean delivery, despite some controversial
study, was also associated with an increased risk of obesity.68

Breastfeeding is also reported to affect the risk of obesity. This
influence can be due to the differences of the gut microbiota
between breastfed and formula fed infants. Furthermore, human
breast milk microbiota was reported to be different in its
composition between mothers who underwent either cesarean
section or vaginal delivery. Moreover, breast milk of obese
mothers is characterized by a reduced microbiota diversity, and
a distinct microbiota composition as compared with that from
lean mothers.68

Early dysbiosis and brain disorders

The concept of the gut–brain axis, that is, a bidirectional channel
of communication between the central nervous system and the
enteric nervous system has long been appreciated. This complex
communication ensures maintenance and coordination of
gastrointestinal functions as well as a feedback from the gut to the
brain.69 Since a decade, gut microbiota has emerged to be a new
participant of these connexions leading to the concept of the
microbiota–gut–brain axis. Numerous transmission routes can
explain this complex network of communication, and recent
findings point to the vague nerve, neuroendocrine systems and
growth factors.70 Today, accumulating evidence supports the
influence of the gut microbiota on stress-related behaviors
including anxiety and depression, as well as neuropsychiatric
disorders.71 ASD is a severe neurodevelopmental disorder that
impairs the child ability of social communications, and which
exact mechanism is not clearly elucidated. ASD is often associated
to gastrointestinal problems, and increasing evidence revealed a
gut dysbiosis in ASD suffering children.72,73 Up to now, there is
little consensus on specific bacteria involved. Several studies have
reported a higher abundance of bacteria belonging to the genus
Clostridium. Besides, a decrease in Bacteroidetes/Firmicutes ratio
and an increase in Lactobacillus and Desulfovibrio has been
correlated with the severity of the pathology. Alterations in the
gut functions have also been described, with, for instance, changes
in bacterial metabolites that may contribute to the ASD patho-
genesis. The potential harmful role of the gut microbiota has also
been suggested by improvement in ASD clinical symptoms by
antibiotic courses. Immune dysregulation frequently observed in
ASD patients could be linked to an abnormal early bacterial
pattern. Moreover, animal models demonstrated that the gut
microbiota participate in the development of brain circuits
involved in the control of stress, motor activity and anxiety
behavior and cognitive functions.74 It therefore raises the possi-
bility that early dysbiosis may impact the neurodevelopment and
the brain functions. Interestingly, prematurity was associated with
an increased ASD risk, with a higher frequency in infants born at
a lower gestational age, known to be colonized by a more aberrant
microbiota.39 Elucidate the mechanisms mediating the interac-
tions between the gut microbiota and the developing brain
deserve further studies.

Could microbial programming of health and disease begin
before birth?

For several decades the human fetus and placenta were con-
sidered sterile but discovery of a colonization in the meconium
suggested a colonization in utero.75 Today, there is mounting
evidence of this microbial colonization despite fetal intact mem-
branes and out of any infectious context. Indeed, placenta has
been reported to harbor a specific microbiota through mainly
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molecular biology approaches.76–78 Moreover, culture allowed
identifying viable bacteria in the placenta.77 This microbiota
appears to be quantitatively low but with some diversity and
exhibits spatially variable profiles according to the different
compartments of placenta (basal plate, placental villous and fetal
membrane). Despite few concordant results, the entire literature
on the placental microbiota does not allow a clear knowledge of
neither its composition nor its origin. Some studies found a
placental microbiome closely related to the oral microbiome
rather than to the vaginal one,76 whereas others found a potential
connection with the bacterial species found in the vagina.79,80

Even if the origin of the placental microbiota is still unknown it is
recognized that it comes from the maternal microbiotas, from
either oral cavity by dissemination, or vaginal microbiota or
intestinal microbiota by translocation. Mounting importance is
given to these first colonizing bacteria that are supposed to impact
the future subsequent health of the mother and her infant. First,
these bacteria and/or their DNA and/or other bacterial structures
could trigger immune responses in the fetus and would therefore
program the infant’s immune development during fetal life,
earlier than previously considered. Second, several recent studies
demonstrated a link between the composition of placental
microbiota and some pathological conditions of the preg-
nancy.76,78,80–86 In particular, it was shown in different studies a
placental dysbiosis in preterm birth. However, discrepancies
between studies suggested that biological and clinical implications
of this microbiome are likely dependent on the microbiota profile
that could or not favor a fetal–placental inflammation and early
preterm birth.78 Nowadays, there are more questions than
answers about the origin of this microbiota and its eventual
transfer to the infant before or during the delivery. However, it is
difficult to conclude on the exact composition of this placental
microbiota because all these recent studies reported different
results about the bacterial species found in placenta. The
variability in these results could be the consequence of a lack of
precautions to prevent contamination of samples and/or a lack of
appropriate controls. Besides, because of the paucity of the
placental microbiota, it has been rightly pointed out by some
scientists that the bacteria found in the placenta could be con-
taminants.87 Thus, to date, data from the literature strongly
suggest the existence of a placental microbiota that remains to be
rigorously explored and characterized.

Several studies except one88 show significant alterations in the
gut microbiota during pregnancy, with a reduced individual
richness and an increased between-subject diversity.89,90 Altera-
tions in abundance of several species have been observed, as for
example, an increased abundance of members of Actinobacteria
and Proteobacteria and a reduced abundance of Faecalibacterium
and other SCFA producers.90 Mechanisms of these modifications
remain to be clarified, but changes in the host immunology as
well as hormonal pattern may be important. These changes, that
is, dysbiosis, inflammation and weight gain, are features of
metabolic syndrome, which may be highly beneficial for pregnant
women as they promote energy storage and provide the growth of
the fetus. Besides, consequences of the maternal composition
during pregnancy on the neonate in terms of health remain to be
determined. Indeed, the maternal microbiota was shown to
impact the immune gene expression and the number of innate
cells in the neonate.91 Furthermore, maternal probiotic supple-
mentation was shown to be able to modify the infant microbiota
and to alter Toll-like receptor genes expression in the placenta
and it was suggested that microbial exposure during pregnancy

may be important for preventing allergic disease in the
offspring.92 By contrast, aberrancies observed in the gut micro-
biota of pregnant women associated with both overweight and
weight gain can be one factor contributing to obesity.93

Prebiotic and probiotics supplementation

The mounting evidence of relationships between the neonatal
bacterial establishment and future health outcomes leads to the
interest of a possible early modulation of the gut microbiota by the
use of pre- and/or probiotics. Prebiotics are defined as substrate that
is selectively utilized by host micro-organisms conferring a health
benefit.94 Probiotics are live micro-organisms that when adminis-
tered in adequate amounts confer a health benefit on the host.95

However, although their use has been increasing since the last two
decades, it remains under debate, and it warrants further research
before large recommendations of their use despite a clear appealing
interest and encouraging results in some fields. This currently limits
the recommendations made by expert committees. First, determin-
ing what constitutes the normal baseline microbiota colonization
and defining dysbiosis and its potential deleterious health
consequences remains questionable and warrant further research.
Second, many questions remain to be answered in terms of which
supplementation for which patients, which bacterial strains, effective
dose, duration. Moreover, proven long-term health benefits of these
supplementation are often lacking. For the period from conception
to early development, that is, the first 1000 days, little research has
been done and the mechanisms by which strains actually confer
health still remain elemental. The optimal time to administer pro-
biotics, the strain, dose and duration as well, to improve later health
of the neonate, such as cognitive function, reduce atopy or infections
and inflammatory events, or to favor a good outcome of pregnancy,
by for instance reducing the risk of premature birth, requires more
study (for review see Reid et al.96). However, some recommenda-
tions have recently been published. Based on meta-analyses, early
supplementation by probiotics of preterm infants has been
recognized to decrease both incidence and severity of necrotizing
enterocolitis.97 Encouraging but discordant results has been reported
for the supplementation with the aim to prevent from pediatric
allergic diseases. This led to the World Allergy Organization (WAO)
to write down specific recommendations concerning this supple-
mentation limiting it to the population at a higher risk of developing
allergy.98 Concerning prebiotic, the WAO suggests to use prebiotic
supplementation in infants who are not exclusively breastfed
and not using prebiotic supplementation in exclusively breastfed
infants.99 Both of these recommendations are conditional and based
on very low certainty of evidence. In addition, WAO has chosen not
to provide a recommendation on prebiotic supplementation during
pregnancy or while breastfeeding. Indeed, to date, there are no
experimental or observational studies of prebiotic supplementation
in pregnant women or breastfeeding mothers.

Hence, there is a potential for pre- and/or probiotics to pre-
vent or repair any early dysbiosis. Their use appears to be a safe
and feasible method to alter maternal and neonatal microbiota
aiming at improving pregnancy and neonatal outcomes.100 It
warrants researches to edict recommendations based on scientific
proofs of their beneficial effects on health.

Concluding remarks

The context of the DOHaD highlights the importance of the
first 1000 days which are a critical window with implications for
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long-term health. Among several factors, the first gut colonizers
and the subsequent gut microbiota establishment appears to be
major determinants for gut maturation, metabolic and immu-
nologic programming and consequently for short- and long-term
health status. Hence, mounting importance is given to improve
this critical period by promoting a ‘healthy’ gut ecosystem using
pre- or probiotics supplementation, but also by taking into
account the perinatal determinants impacting the bacterial
establishment, for instance, by limiting the use of maternal and
neonatal antibiotics or cesarean section.
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