
TLP 6 (6): 645–701, 2006. C© 2006 Cambridge University Press

doi:10.1017/S1471068406002730 Printed in the United Kingdom

645

Set unification

AGOSTINO DOVIER�
Dip. di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy

(e-mail: dovier@dimi.uniud.it)

ENRICO PONTELLI†
Department of Computer Science, New Mexico State University, Box 30001, MSC CS, Las Cruces,

NM 88003, USA

(e-mail: epontell@cs.nmsu.edu)

GIANFRANCO ROSSI‡
Dip. di Matematica, Università di Parma, Via M. D’Azeglio, 85/A, 43100 Parma, Italy

(e-mail: gianfranco.rossi@unipr.it)

submitted 22 January 2003; revised 11 November 2004; accepted 20 July 2005

Abstract

The unification problem in algebras capable of describing sets has been tackled, directly or

indirectly, by many researchers and it finds important applications in various research areas,

e.g. deductive databases, theorem proving, static analysis, rapid software prototyping. The

various solutions proposed are spread across a large literature. In this paper we provide

a uniform presentation of unification of sets, formalizing it at the level of set theory. We

address the problem of deciding existence of solutions at an abstract level. This provides also

the ability to classify different types of set unification problems. Unification algorithms are

uniformly proposed to solve the unification problem in each of such classes. The algorithms

presented are partly drawn from the literature – and properly revisited and analyzed – and

partly novel proposals. In particular, we present a new goal-driven algorithm for general

ACI1 unification and a new simpler algorithm for general (Ab)(C�) unification.

KEYWORDS: Unification theory, set theory, ACI1 unification

1 Introduction

Sets are familiar mathematical objects, and they are often used as an high-level

abstraction to represent complex data structures, whenever the order and repetitions

of elements are immaterial. A key operation when dealing with set data structures is

� A. Dovier is partially supported by MIUR project 2005015491, and by GNCS 2005 project on
constraints and their applications.

† E. Pontelli is partially supported by NSF Grants CNS-0220590, CNS-0454066, and HRD-0420407 and
by MIUR project 2005015491.

‡ G. Rossi is partially supported by by MIUR project 2005015491, and by GNCS 2005 project on
constraints and their applications.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

646 A. Dovier et al.

comparing two sets. According to the traditional extensionality axiom (Kunen 1980),

two sets are equal if and only if they contain the same elements. The problem of set

equality is usually formally addressed within first-order logic. In this context, a set is

represented by a first-order term, called a set term, built from symbols of a suitable

alphabet, using selected function symbols as set constructors. Since, in general,

variables can occur within a set term in place of either individuals or sets, solving

equations between set terms amounts to solving a set unification or a set matching

problem. Intuitively, the set unification problem is the problem of computing (or

simply testing the existence of) an assignment of values to the variables occurring

in two set terms which makes them denote the same set. Set matching can be seen

as a special case of set unification, where variables are allowed to occur in only

one of the two set terms which are compared. Set unification can be thought of as

an instance of E-unification (Siekmann 1989), i.e., unification modulo an equational

theory E, where E describes the (semantic) properties of the interpreted symbols

used to represent sets.

Two main approaches for representing sets as terms have been presented in

the literature. The union-based representation makes use of the union operator

(∪) to construct sets, while the list-like representation builds sets using an element

insertion constructor (typically denoted by {· | ·}). The list-like representation has

been frequently used in the context of logic languages embedding sets. It is used

for instance in Kuper (1990), Jayaraman (1992), in Beeri et al. (1991) – where

{· | ·} is called scons – in the language {log} (Dovier et al. 1996), and in the Gödel

language (Hill and Lloyd 1994). In various papers dealing with computable set

theory, {· | ·} is used and called with (Cantone et al. 2001).

The union-based representation, on the contrary, has been often used when dealing

with the problem of set unification on its own (Büttner 1986; Livesey and Siekmann

1976), where set unification is dealt with as an Associative-Commutative-Idempotent

(ACI) unification problem, i.e., unification in presence of operators satisfying the As-

sociativity, Commutativity, and Idempotence properties. In (Legeard and Legros 1991)

sets are represented using the union-based approach; however, since set operations

are evaluated only when applied to ground sets, set unification is not required at

all.

The computational complexity properties of the set unification and set matching

problems have been investigated by Kapur and Narendran (1986, 1992), who

established that these decision problems are NP-complete. Complexity of the set

unification/matching operation, however, depends on which forms of set terms (e.g.,

flat or nested sets, with zero, one, or more set variables) are allowed. The form of

set terms in turn is influenced by the set constructors used to build them. Thus,

different complexity results can be obtained for different classes of set terms.

In this paper we present a uniform survey of the problem of unification in presence

of sets, across different set representations and different admissible classes of set

terms. We provide a uniform presentation of a number of different approaches and

compare them. Unification algorithms for each considered unification problem are

presented and analyzed. These algorithms are either drawn from the literature or

they represent novel solutions proposed by the authors. In particular a goal-driven

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 647

algorithm for general ACI unification is proposed, together with a new algorithm

(with a simple termination proof) for general (Ab)(C�) unification.

1.1 Application domains of set unification

Various forms of set unification have been proposed by many authors, in different

application frameworks:

Declarative programming languages with sets: Various declarative programming lan-

guages relying on sets as first-class objects have been proposed, which provide

different forms of set unification. Most of these languages are instances of

the Constraint Logic Programming paradigm (Dovier et al. 1996; Dovier et al.

2000; Yakhno and Petrov 2000) or of the Functional-Logic paradigm (Jayaraman

1992; Arenas-Sánchez and Rodrı́guez-Artalejo 2001). The specification language

Z (Spivey 1992) makes use of sets as data abstraction; attempts have been made

to produce executable versions of Z, such as the ZAP compiler (Grieskamp 1999)

(whose implementation, however, does not embed a set unification algorithm).

Deductive databases: Various proposals have been put forward for embedding sets as

primitive data structures in deductive database languages, providing set unification

or set matching as a built-in mechanism for set manipulation (Liu 1998; Abiteboul

and Grumbach. 1991; Naqvi and Tsur 1989; Shmueli et al. 1992; Lim and Ng

1997; Kifer and Lausen 1989). In these frameworks, it is common to deal with

sets involving unions of variables.

AI and Automated deduction: Set abstraction and operations have been shown to

be fundamental in various subfields of Artificial Intelligence. They have been used

as tools for the description of linguistic theories in Natural Language Processing

(Manandhar 1994). In particular, unification based grammars augmented with

set descriptions (Rounds 1988; Pollard and Moshier 1990) require set unification.

Set unification has been used in discovery procedures for determining categorial

grammars from linguistic data (Marciniec 1997). Set data structures have also been

used in pattern matching and pattern directed invocation in various AI languages

(Livesey and Siekmann 1976). Proposals dealing with computable properties and

algorithmic manipulation of set structures have appeared also in the area of auto-

mated deduction, e.g., to reduce the length of proofs (Policriti and Schwartz 1997).

Program analysis and Security: Codish and Lagoon (2000) described an application

of elementary ACI1 unification to the problem of sharing analysis of logic

programs. Wang et al. show how a system based on CLP (SET) (hence, on

set unification) can be used to model access control (Wang et al. 2004).

1.2 Unification algorithms

The problem of solving set unification has been mostly tackled in the form of ACI

unification, and unification algorithms, returning the set of all the solutions to a

given problem, have been proposed. The first work proposing a viable solution

to ACI unification is Livesey and Siekmann (1976). This work mostly deals with

AC unification – by reducing it to the solution of Diophantine equations – and

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

648 A. Dovier et al.

only in the end it suggests a solution of the ACI problem, by replacing arithmetic

equations with Boolean equations. Direct solutions of the ACI problem have been

proposed by Büttner (1986) and Baader and Büttner (1988). More recently, Baader

and Schulz (1996) provided a general methodology allowing the unification with

constants algorithms proposed for ACI to be extended to general ACI1 unification

algorithms.

In recent years, a number of efforts have emerged that propose set unification

algorithms for the list-like representation of sets, hence for a different equational

theory (called (Ab)(C�) in Dovier et al. (1996)). A first proposal in this direction is the

algorithm sketched by Jayaraman and Plaisted (1989). A more general and complete

algorithm is the one in Dovier et al. (1996). The problem of set unification in this

context has been tackled by different authors (Arenas-Sánchez and Dovier 1997;

Dovier et al. 1998; Stolzenburg 1996; Stolzenburg 1999; Dantsin and Voronkov

1999). In particular, the algorithms presented in Arenas-Sánchez and Dovier (1997)

and Stolzenburg (1999) provide solutions which are optimal, in terms of number

of unifiers, for large classes of unification problems. The algorithms in Arenas-

Sánchez and Dovier (1997) and Dantsin and Voronkov (1999) ensure polynomial

time complexity in each non-deterministic branch of the computation.

Various authors have considered simplified versions of the (Ab)(C�) problem

obtained by imposing restrictions on the form of the set terms. In particular, various

works have been proposed to study the simpler cases of matching (Shmueli et al.

1992) and unification of Bound Simple set terms, i.e., bound set terms of the form

{s1, . . . , sn}, where each si is either a constant or a variable (Arni et al. 1992; Arni

et al. 1996; Greco 1996). A parallel algorithm for such restricted (Ab)(C�) unification

has been presented in Lim and Ng (1997). Set matching is also discussed in Kapur

and Narendran (1986).

All these algorithms, however, have been developed in separate contexts, without

considering any relationship among them. They have never been formally compared

and related. A contribution of this paper is to provide a uniform presentation of

the problem, covering most of its different instances, and surveying the different

solutions developed.

1.3 Overall structure of the paper

The paper is organized as follows. In Section 2 we define the universe of sets we

are dealing with, along with a suitable abstract syntax for representing them and

a syntactical classification of the set unification problems. In Section 3 we present

a number of examples of unification problems which provide motivations for set

unification. In Section 4 we discuss the complexity of the set unification decision

problem for each syntactic class of set terms listed in Section 2. In Section 5

we introduce the basic notions and notation concerning E-unification and the

equational theories used in E-unification with sets. In Section 6 we describe the

problem of ACI1 unification with constants and its impact on set unification. In

Section 7 we extend the discussion to the (Ab)(C�) unification problem, i.e., the

problem of set unification in presence of set terms based on the element insertion

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 649

constructor {· | ·}, and we present a new algorithm for this case. In Section 8 we

tackle the most general problem of unification of terms containing both ACI1 and

free (uninterpreted) function symbols. A new general ACI1 unification algorithm is

presented. Some related topics are discussed in Section 9, and concluding remarks

are presented in Section 10. In Appendix A the proofs of the main results of the

paper are reported.

2 Sets and the set unification problem

In this section we characterize the universe of sets we deal with, and we discuss some

well-known operations on sets. Finally, we formally introduce the set unification

problem.

2.1 A universe of sets

A set is an arbitrary, unordered, collection of elements. Typically, a set is specified

either intensionally, by means of a property that characterizes membership to the set,

or extensionally, by explicit enumeration of all its elements. In this paper we restrict

our attention to extensional sets. For instance, {a, b, c} is the (extensional) set which

contains exactly the elements a, b, and c. We denote mathematically the fact: “a

belongs to the set {a, b, c}” using the membership relation: a ∈ {a, b, c}. We assume

the extensionality axiom (Kunen 1980) that states that two sets are equal if and only

if they contain the same elements. Thus, {a, b, c} is the unique set containing exactly

a, b, and c. {a, c, b}, {b, a, c}, etc. are alternative ways to describe the same set. A

particular set is the empty set ∅, that contains no elements. A set containing only

one element is said to be a singleton. If s is a set, then we will denote with |s| its

cardinality.

A set is finite if it contains a finite number of elements.1 For instance ∅, {∅}, and

{a, b, c} are finite sets. However, this definition does not remove all possible cases

leading to infinity. The singleton set {�} is a finite set, but its unique element � is

an infinite set. A set is said to be hereditarily finite if it is finite and all its elements

are hereditarily finite. This definition leaves still a further possibility for infinity. Let

us consider the sets x and y that satisfy the equations x = {∅, y}, y = {x}. They are

hereditarily finite, but they hide an infinite descending chain x � y � x � y � · · ·.
These sets, where the membership relation is allowed to be not well-founded, are

called non well-founded sets (or hypersets) (Aczel 1988; Barwise and Moss 1996).

Hypersets are very important in some areas, such as concurrency theory, but they

are not accepted in traditional set theory, where sets are expected to be well-founded.

Let us focus on hereditarily finite and well-founded sets. We can consider two

approaches to set theory:

• pure sets, in which the only entity that does not contain elements is the empty

set ∅, and

1 A precise, formal, characterization of the notion of finiteness is outside the scope of this work. For a
theoretical analysis of this topic see Tarski (1924).

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

650 A. Dovier et al.

• sets with individuals, in which there exists a collection U of individuals, where

each element of U is not a set and does not contain elements. Since the

elements of U are not sets, we also have that ∅ /∈ U.

In the second approach, the extensionality axiom has to be revised for the elements

of U, since

(i) two individuals are different even if they contain the same elements (namely,

none), and

(ii) all the elements in U are different from ∅.

In this paper we will focus on the approach based on sets with individuals, as it

generalizes the pure sets approach (by taking U = ∅).

Let us introduce the universe of sets we are interested in (see also Cantone

et al. (2001, p. 88)). As usual, the subset relation x ⊆ y denotes the formula

∀z (z ∈ x → z ∈ y). If s is a set, with ℘fin(s) = {x : x ⊆ s∧ x is finite} we denote the

set of all its finite subsets.

Definition 1

The Universe ��U of hereditarily finite sets based on U is obtained as follows:⎧⎪⎨
⎪⎩

��U
0

Def
= ℘fin(U)

��U
i+1

Def
= ��U

i ∪ ℘fin

(
��U

i

)
��U Def

=
⋃

i∈� ��U
i

The sets in ��U
0 contain the finite subsets of the set of individuals: these particular

sets are called flat sets. The sets introduced in ��U
i , with i > 0, may contain

elements that are sets themselves. We refer to such sets as nested sets. For instance,

if U = {a, b, c}, then ��U
0 consists of the flat sets:

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

Some nested sets are the following:

{∅}, {{a}}, {∅, {{a}, b}, {{{c}}}}

2.2 Abstract set terms

So far we have represented sets by exploiting the usual intuitive notation based

on braces and commas. In order to deal with sets as primitive data objects in a

first-order language, however, we need to precisely represent them as first-order

terms of the language. For this reason, one or more function symbols are selected to

be used as set constructors. Set constructors will allow complex sets to be built from

simpler ones. Many different approaches are possible. The two approaches that, to

our knowledge, have received more attention in the literature are the following.

1. Union-based representation. This solution is based on the use of the union

constructor ∪ and, possibly, the singleton constructor {·}. s ∪ t represents the

set which contains the elements of the sets s and t, that is,

s ∪ t = {x : x ∈ s ∨ x ∈ t} ,

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 651

while {t} represents the set containing the single element t. With this approach,

the finite set {t0, . . . , tn} is represented by a union of singletons: {t0} ∪ · · · ∪ {tn},
where t0, . . . , tn are either sets or individuals. The empty set is represented by a

distinguished constant ∅.

2. List-like representation. An alternative representation of sets is based on the

element insertion constructor {· | ·}. {t | s} represents the set obtained by adding

the element t (either a set or an individual) to the set s if it is not yet in s, that

is

{t | s} = {x : x ∈ s ∨ x = t}.
The empty set is represented by a distinguished constant ∅. Thus, the finite set

{t0, . . . , tn} is represented by a sequence of element insertions:

{t0 | {· · · {tn | ∅} · · ·}}

where t0, . . . , tn are either sets or individuals.

As far as the syntactic representation of the individuals (i.e., the elements of U)

is concerned, we can represent them either

• as constant symbols different from ∅ (simple individual terms) or

• as terms of the form f(t1, . . . , tn), n > 0, f different from ∪ and {· | ·}, and

t1, . . . , tn terms (general individual terms).

Both the union-based and the list-like representations allow the elements of the sets

to be either individual terms or other set terms. Individual and set terms can be

nested at any level.

Let us observe that the element insertion constructor {· | ·} can be represented

using ∪, i.e., {s | t} Def
= {s} ∪ t. However, in Dovier et al. (2000) it is proved that,

without singleton sets, the two symbols are not mutually definable, unless we allow

the use of complex formulae involving universal quantifiers. Observe moreover that

the ∪ symbol allows one to define set inclusion: x ⊆ y is equivalent to x ∪ y = y.

Furthermore, let us observe that the definition of ∪, being based on membership,

makes sense on sets, not on individuals. For instance, the union of two individuals

a and b would be a memberless object. There is no way of stating that a is equal or

different from a∪b without introducing new, non-standard, axiomatizations. For this

reason, we assume that the ∪ constructor is used only on sets. Similar considerations

apply to the second argument of the {· | ·} operator.

For the sake of simplicity, in the rest of the work we will make use of a simpler and

more intuitive abstract syntax to denote sets, disregarding the concrete representation

used to encode them as terms in the language at hand.

Definition 2

An abstract set term is a term of the form

{X1, . . . , Xm, a1, . . . , an, s1, . . . , sp} ∪ Y1 ∪ · · · ∪ Yq m, n, p, q � 0

where Xi, Yi are variables, ai are individual terms, and si are abstract set terms

distinct from variables. The Yi variables are called the set variables of the abstract

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

652 A. Dovier et al.

set term. In particular,

• when m = n = p = q = 0, the term is simply written as ∅.

• when m = n = p = 0 and q = 1, the term is the set variable Y1.

The size ||s|| of an abstract set term s is the number of occurrences of symbols in s.

As a notational convention, we will usually use a, b, c, possibly subscripted, to denote

individual terms, and r, s, t, possibly subscripted, to denote (abstract) set terms or

individual terms. Variables are denoted by identifiers with capital letters.

When q � 1, the abstract set term can be rendered concretely using both represen-

tations described above. For example, {X1, X2, a, b, c}∪Y1 can be seen as a shorthand

for both the concrete terms {X1 | {X2 | {a | {b | {c |Y1}}}}} and {X1} ∪ {X2} ∪ {a} ∪
{b} ∪ {c} ∪ Y1. Conversely, when q > 1, the ∪ constructor is required; thus, only the

union-based representation is feasible.

When clear from the context we will omit the word “abstract”, referring to abstract

set terms simply as set terms.

Set terms may contain variables, both as individuals (the variables Xi’s) and as

sets (the variables Yj ’s). A set term containing variables denotes a possibly infinite

collections of sets. For instance, the term {a,X, b} denotes all sets containing two

individuals, a and b, and possibly a third unknown element X. If X takes the value

a or b then the set will have only two elements. Otherwise, e.g., X = c, the set will

contain three elements. Note that the set terms {a, a, b}, {a, b, a}, {b, a, a, b}, etc. are

accepted notations for the same set, i.e., the (unique) set containing exactly a and b.

Note also that variables in set terms could be implicitly forced to assume set values

using the fact that the ∪ constructor requires two set arguments. Thus, for instance,

the variable Y in the set term {a, b} ∪ Y can take only set values. Set terms are

called non-ground (ground) if they do (do not) contain variables. Finally, note that

general individual terms can be non-ground. For instance, f(X,Y) is a non-ground

term, but the fact that the outermost symbol is not a set constructor ensures that it

is an individual.

Example 1

The following are abstract set terms.

• {1, 2, 3} (m = 0, n = 3, p = 0, q = 0)

• {∅} (m = 0, n = 0, p = 1, q = 0)

• {X1, X2, a, b, c, d} ∪ Y (m = 2, n = 4, p = 0, q = 1)

• Y1 ∪ Y2 (m = 0, n = 0, p = 0, q = 2)

• {X, a, b, c, {1, 2, 3}, {∅}} (m = 1, n = 3, p = 2, q = 0)

• {X1, X2, a, f({a, ∅}), ∅} ∪ Y1 (m = 2, n = 2, p = 1, q = 1)

2.3 Set equivalence and set unification

The most natural decision test regarding set terms is testing whether they represent

the same set or, in the case of non-groundness, testing whether there exists an

assignment for the variables that forces the two terms to represent the same set.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 653

Definition 3

Given two terms s and t, s = t is said to be an equation. A conjunction s1 =

t1 ∧· · ·∧sn = tn of equations is said to be a system of equations. Systems of equations

are also commonly viewed as sets of equations.

If X1, . . . , Xn are the variables occurring in a system of equations C , we denote with
�∃C the formula ∃X1 · · · ∃Xn C . The existence of an assignment for the variables in

s and t that forces the two terms to represent the same set will be denoted by

�� |=�∃ s = t, formally defined below.

Before defining the interpretation of ground abstract set terms in ��, we first

show how individual terms (syntax) can be related to individuals (semantics). Let

us assume that U is an infinite set of individuals. Simple individual terms denote

distinct elements of U. For the sake of simplicity, in our examples, the individual

terms a, b, c, . . . will be interpreted as the corresponding individuals a, b, c, . . . of U –

we use the so-called unique name assumption. General individual terms f(s1, . . . , sm)

and g(t1, . . . , tn), with f different from g, denote distinct elements of U, different from

all the individuals associated to the simple individual terms. Each function symbol

f of arity n is interpreted as a one-to-one function f�� from �� to U.

Definition 4

If s ≡ {a1, . . . , an, s1, . . . , sp} is a ground set term, then its interpretation in ��,

denoted by s��, is the following set:

• if n = 0 and p = 0 then s�� is the empty set

• otherwise, s�� is the set containing exactly the elements a��
1 , . . . , a��

n and

s��
1 , . . . , s��

p , where

— if ai is a simple individual term, then a��
i is simply the corresponding

individual.

— if ai is of the form f(t1, . . . , tn) then a��
i is the individual associated to

f��(t��
1 , . . . , t��

n).

If s and t are two ground set terms, then �� |= (s = t) if and only if s�� is the

same set as t��.

If s and t are two set terms, and X1, . . . , Xn are all variables in s and t, then

�� |= �∃s = t if and only if there exists an assignment σ of ground set terms to

X1, . . . , Xn such that �� |= (s = t)σ.

Definition 5

If s and t are two set terms, the set unification decision (SUD) problem is the

problem of checking whether �� |=�∃ (s = t). If s and t are ground, the problem is

also called set equivalence.

Definition 6

If s and t are two set terms and X1, . . . , Xn are the variables occurring in them, the

set unification solution (SUS) problem is the problem of finding an assignment σ of

sets and/or individual terms to the variables X1, . . . , Xn, such that �� |= (s = t)σ.

We give a more standard and complete definition of the unification problem in

Section 5. Note that, if two general individuals have the same outermost symbols

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

654 A. Dovier et al.

but the ordered list of arguments is different, then they denote two distinct individuals

(e.g., f(a, b) and f(b, a)). However, if the two individual terms contain set terms as

their arguments, in order to decide whether the individuals are or not the same,

one needs to compare the sets denoted by the involved set terms. For example,

the general individual terms f({a, b}, c) and f({b, b, a}, c) denote the same individual

since {a, b} denotes the same set as {b, b, a}.
From a computational point of view, the complexity of the SUD problem depends

on the syntactic form of the two set terms s and t. As a matter of fact, while the set

equivalence test of ground set terms denoting flat sets, such as {a, b, c} and {b, c, a}, is
rather easy, when the SUD problem deals with nested set terms involving variables it

becomes NP-complete (see Section 4.4). Thus, to classify the set unification problem,

we subdivide set terms in different syntactic classes.

Definition 7

For m � 0, n � 0, p � 0, q � 0, the class set(m, n, p, q) is the collection of abstract set

terms of the form:

{X1, . . . , Xm′ , a1, . . . , an′ , s1, . . . , sp′ } ∪ Y1 ∪ · · · ∪ Yq′

where 0 � m′ � m, 0 � n′ � n, 0 � p′ � p, 0 � q′ � q, and si ∈ set(m, n, p, q).

Observe that ∅ ∈ set(m, n, p, q) for all m, n, p, q. Furthermore, set(m1, n1, p1, q1) ⊆
set(m2, n2, p2, q2) if m1 � m2 and n1 � n2 and p1 � p2, and q1 � q2. Interesting

special cases can be obtained by setting some of these parameters to 0:

ground =
⋃

n�0,p�0 set(0, n, p, 0): the collection of set terms of the form

{a1, . . . , an, s1, . . . , sp}, with ai simple individual terms and si ground set terms.

gflat(q) =
⋃

n�0 set(0, n, 0, q): the collection of set terms of the form

{a1, . . . , an}∪Y1 ∪· · ·∪Yq′ , with ai simple individual terms and Yi variables ranging

over gflat(q) sets (i.e., sets denoted by gflat(q) set terms) (0 � q′ � q).

flat(q) =
⋃

m�0,n�0 set(m, n, 0, q): the collection of set terms of the form

{X1, . . . , Xm, a1, . . . , an} ∪ Y1 ∪ · · · ∪ Yq′ , with ai and Xi denoting simple individual

terms, and Yi ranging over flat(q) sets (0 � q′ � q).

nested(q) =
⋃

m�0,n�0,p�0 set(m, n, p, q): the collection of set terms of the form

{X1, . . . , Xm, t1, . . . , tn, s1, . . . , sp} ∪ Y1 ∪ · · · ∪ Yq′ , with ti general individual terms, si
non-variable nested(q) set terms, Xi ranging over general individuals or nested(q)

sets, and Yi ranging over nested(q) sets (0 � q′ � q).

gflat(q) and flat(q) denote flat sets only, while ground and nested(q) account for

nested sets. For the same q, we have that gflat(q) ⊆ flat(q) ⊆ nested(q). Moreover,

ground is included in nested(q) (namely, in nested(0)), but it is not included

in the other classes, since ground accounts also for nested sets. Actually, these

classes could be further subdivided into finer subclasses. For instance, we could

further distinguish between ground and non-ground nested set terms, with simple

or general individuals. However, the four classes we identified above turn out to be

sufficient for our analysis.

Observe that, in the concrete representation of sets, the union constructor is not

required whenever q � 1. For these sets we can use the list-like representation, based

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 655

on the element insertion constructor {· | ·}. For q > 1, instead, we need the union

constructor, and possibly the singleton constructor. For instance, the abstract set term

X∪{Y }∪Z can be immediately encoded using the union-based representation while

it has no corresponding encoding in the list-like representation. These observations

will play an important role when we will address the various unification problems.

3 Examples

This section presents a series of instances of the set unification problem. This allows

us to give an intuitive idea of the expressive power of the different frameworks

considered in the rest of the paper.

Chords: This is the problem of determining whether two sets of musical notes denote

the same chord (a chord is a set of at least three notes, i.e., order and repetitions

do not matter). We can encode the problem as a set unification problem between

two (flat) ground set terms:

{c, e, g, b�} = {g, g, e, b�, c, e}

where c, e, g, b� are constants representing musical notes (i.e., individuals of the

language).

Courses covering: This is the problem of verifying whether two teachers are covering

three courses in their current course assignment. The problem can be encoded as

a set unification problem between a gflat(q) set term, composed only of variables,

for the teachers, and a (flat) ground set term for the courses:

Teacher1 ∪ Teacher2 = {course1, course2, course3}

Note that, in this case, variables range over unions of elements (i.e., subsets of

course1 ∪ course2 ∪ course3) rather than simply over individuals. Thus we cannot

use the list-like representation for its concrete rendering.

Graph Coloring: Let us consider the graph-coloring problem consisting of the

undirected graph

〈 {X1, X2, X3, X4} , {{X1, X2}, {X2, X3}, {X3, X4}, {X4, X1}} 〉

and a set of colors

{red, green, blue}
This problem can be easily encoded as a single equation between two nested(q)

(q � 1) set terms in the following way:

{{X1, X2}, {X2, X3}, {X3, X4}, {X4, X1}} ∪ R =

{{red, green}, {red, blue}, {green, blue}}

The right-hand side set is used to encode the set of all viable unordered pairs of

colors, and it can be a ground set term.

The solution of this equation (see Definition 6) provides a solution of the

corresponding graph-coloring problem. A possible solution (actually, the first

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

656 A. Dovier et al.

one returned by the CLP (SET) interpreter (Dovier et al. 2000)) is:

X1 = red, X2 = green, X3 = red, X4 = blue, R = {{green, blue}}

Solutions that make use of only two colors are also computed, such as X1 = X3 =

red, X2 = X4 = green and R = {{red, blue}, {green, blue}}.
Finite State Automata: Let us consider a deterministic finite state automata on the

alphabet {0, 1}, containing the set of states Q = {q0, . . . , qn−1, qn}, where q0 is the

initial state and qn is the unique final state. Q1 = {q0, . . . , qn−1} denotes the set of

non-final states of the automata. We would like to “learn” the structure of the

automata by looking at positive and negative examples of strings that should be

either accepted or rejected. This problem can be encoded as follows. The set of

transitions D is represented by a nested(q) (q � 0) set term whose elements are

triples (source, symbol , destination) (where (· , · , ·) is a ternary free function symbol

used to build the triples):

D = {(q0, 0, X0,0), (q0, 1, X0,1), . . . , (qn, 0, Xn,0), (qn, 1, Xn,1)}

Observe that the destination of each transition is, at this point, unknown. If

a0 · · · ak is a string of length k + 1 that should be accepted, then we need to add

an equation:

{(q0, a0, Y1), (Y1, a1, Y2), . . . , (Yk, ak, qn)} ∪ D = D

that forces the transitions (q0, a0, Y1), (Y1, a1, Y2), . . . , (Yk, ak, qn) to belong to D.

Note that the left-hand side of the equation is a nested(q) set term (q � 1).

Therefore, we can use the concrete list-like representation to encode it, based on

the element insertion constructor {· | ·}, as well as the union-based representation.

If b0 · · · bh is a string that should not be accepted, then we need to add the

equations:

{(q0, b0, Y1), (Y1, b1, Y2), . . . , (Yh, bh, Yh+1)} ∪ D = D , {Yh+1} ∪ Q1 = Q1

that force the state Yh+1 resulting from the execution to be in Q1, and hence not

a final state.

For example, if we want a four-state automata that accepts the strings 000 and

001 and rejects the strings 011 and 10, then we write the system of equations:

Q = {q0, q1, q2, q3}, Q1 = {q0, q1, q2},
D = {(q0, 0, X00), (q0, 1, X01), (q1, 0, X10), (q1, 1, X11),

(q2, 0, X20), (q2, 1, X21), (q3, 0, X30), (q3, 1, X31) },
{W3} ∪ Q1 = Q1, {K2} ∪ Q1 = Q1,

{(q0, 0,W1), (W1, 1,W2), (W2, 1,W3)} ∪ D = D,

{(q0, 1, K1), (K1, 0, K2)} ∪ D = D,

{(q0, 0, Y1), (Y1, 0, Y2), (Y2, 0, q3)} ∪ D = D,

{(q0, 0, Z1), (Z1, 0, Z2), (Z2, 1, q3)} ∪ D = D

A possible solution (the first one returned by the CLP (SET) interpreter) is (see

also Figure 1):

D = {(q0, 0, q1), (q0, 1, q2), (q1, 0, q3), (q1, 1, q2),

(q2, 0, q0), (q2, 1, q0), (q3, 0, q3), (q3, 1, q3)}

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 657

Fig. 1. The DFA computed from examples and counterexamples

Paths and Subgraphs: Let us represent an undirected graph G as the set of all its

edges, where each edge is represented by the set of its two constituting nodes.

Let us consider the problem of computing all the subgraphs of G with nodes

{c1, . . . , cn} such that each subgraph contains at least one path between two given

nodes, e.g., c1, cn. This problem can be immediately encoded as a set unification

problem. In fact, all the subgraphs of G are given by the solutions for G1 of the

equation

G1 ∪ G2 = G (1)

The subgraphs containing the required path can be obtained by adding the

equations:

G3 = G1 ∪ {{c1, c1}, . . . , {cn, cn}}, G3 = {{c1, X1}, {X1, X2}, . . . , {Xn−1, cn}} ∪ G3

Observe that G1 is temporarily extended to the new graph G3 by introducing

artificial loops, thus allowing us to recognize paths of length less than n. Also,

observe that the equation (1) cannot be rendered concretely using the list-like

representation, since its left-hand side set term involves more than one variable

ranging over set terms (i.e., it belongs to the nested(q) class, q � 2).

4 The set unification decision problem and its complexity

In this section, we discuss the complexity of the Set Unification Decision problem

for each one of the syntactic classes of set terms listed in Section 2.

4.1 SUD for the ground class

The set equivalence test for two ground abstract set terms s and t can be solved

in worst-case time O(||s|| + ||t||) (see Definition 2). The proof is based on a tree

representation of a well-founded set and on the existence of a fast algorithm for

proving graph bisimulation. We first focus on the pure case (without individuals).

We can use a tree G = 〈N,E〉, rooted in ν ∈ N, where N is the set of nodes and

E is the set of edges of G, to represent a pure set. Edges represent memberships,

namely 〈m, n〉 means that m has n as an element, and the nodes in the tree denote

all the sets that contribute to the construction of the set. A node without outgoing

edges represents the empty set ∅. It is possible to write a procedure that translates a

ground set term denoting a pure set into a tree in linear time. An example showing

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

658 A. Dovier et al.

Fig. 2. Two bisimilar trees obtained from {{∅}, {∅, {∅}}} and {{{∅, ∅}, ∅}, {∅}, {∅}}

two trees obtained in this way is shown in Figure 2. From the figure it is possible to

observe the sets associated to the subtrees.

According to Aczel (1988), a bisimulation between a graph G1 = 〈N1, E1〉 and a

graph G2 = 〈N2, E2〉 is a relation b ⊆ N1 × N2 such that:

1. ∀u ∈ N1 ∃v ∈ N2 such that (u b v) and ∀v ∈ N2 ∃u ∈ N1 such that (u b v)

2. (u1 b u2) ∧ 〈u1, v1〉 ∈ E1 ⇒ ∃v2 ∈ N2((v1 b v2) ∧ 〈u2, v2〉 ∈ E2)

3. (u1 b u2) ∧ 〈u2, v2〉 ∈ E2 ⇒ ∃v1 ∈ N1((v1 b v2) ∧ 〈u1, v1〉 ∈ E1).

We can use the notion of bisimulation on trees. Specifically, given a tree G1, rooted

in node ν1, and a tree G2, rooted in node ν2, G1 is bisimilar to G2 if and only if there

exists a bisimulation b between G1 and G2 such that ν1 b ν2. It is simple to verify

whether the two trees of Figure 2 are bisimilar. Observe that conditions 2. and 3.

resemble the extensionality axiom (Section 2.1) – in fact, pure sets are equal if and

only if their graph representations are bisimilar (Aczel 1988). In Dovier et al. (2004)

it is proved that bisimilarity between acyclic and rooted graphs can be tested in

linear time. This result is based on an algorithm that guesses an initial partition

of the nodes – in particular, all leaves are initially placed in the same class – and

refines it using a suitable computation strategy.

As far as sets with individuals are concerned, the situation is similar. Let us

assume that a1, . . . , am are the individuals occurring in the two terms. One can obtain

the two trees as in the previous case, but adding a label to each node: 0 for a set

node and i if the node contains the individual ai. Then one can run the same graph

algorithm as in the previous case with a single change at the beginning: the leaf

nodes are split into different classes according to their labels.

Remark 1

In the procedure described above, for ground sets with individuals, we need to

partition leaf nodes according to their labels (individual names). A similar problem

will emerge in other procedures presented in the paper, where constants symbols and

variables must be ordered. If we assume that the input is given as a string and the

set of constant/variable symbols used is known in advance, then we can order them

in linear time using radix sort. If we assume that the input terms are represented

by trees using structure sharing (namely, there are no multiple occurrences of nodes

representing the same constant/label), we have an implicit ordering of constants

given by their memory locations. If, otherwise, the input is simply a string or

a graph without structure sharing, we first need to provide the ordering of the

symbols used, which requires time O((||s|| + ||t||) log(||s|| + ||t||)).

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 659

4.2 SUD for the gflat(q) class

Let q be fixed and consider two gflat(q) set terms to be tested: s = {a1, . . . , an} ∪
Y1 · · · ∪ Yq′ and t = {b1, . . . , bn′ } ∪ Z1 ∪ · · · ∪ Zq′′ (q′ � q and q′′ � q). Let:

V1 = vars(s) \ vars(t)

V2 = vars(t) \ vars(s)

V3 = vars(s) ∩ vars(t)

C1 = consts(s) \ consts(t)

C2 = consts(t) \ consts(s)

C3 = consts(s) ∩ consts(t)

(2)

where vars(α) and consts(α) denote the set of variables and the set of simple

individual terms occurring in the term α, respectively (see Remark 1 for a comment

on the time required to determine these sets).

If q′ = q′′ = 0 (i.e., vars(s) = vars(t) = ∅), then we are in the ground case studied

in the previous section.

If q′ and q′′ are both greater than 0 (i.e., vars(s) �= ∅ and vars(t) �= ∅), then

s and t are always unifiable: a solution can be obtained by assigning the set

{a1, . . . , an, b1 . . . , bn′ } to all the variables in vars(s) ∪ vars(t).

If exactly one between q′ and q′′ is 0, then we have that:

• if q′ = 0, then the problem admits a solution if and only if C2 = ∅;

• if q′′ = 0, then the problem admits a solution if and only if C1 = ∅.

Thus, to solve the SUD problem for gflat(q) set terms we simply need to compute

the sets Ci and Vi, a task that can be accomplished in time O(||s|| + ||t||). The

considerations made in Remark 1 apply to this case as well.

4.3 SUD for the flat(q) class

Let q be fixed and consider two flat(q) set terms to be tested:

s = {X1, . . . , Xm, a1, . . . , an} ∪ Y1 ∪ · · · ∪ Yq′

and

t = {W1, . . . ,Wm′ , b1, . . . , bn′ } ∪ Z1 ∪ · · · ∪ Zq′′

(q′ � q and q′′ � q), and let Vi and Ci be the sets defined in formula (2).

If m = m′ = 0 we are in the case gflat(q) studied before. If q′ and q′′ are both

greater than 0, then a trivial solution always exists, as in the gflat(q) case.

If q′ = q′′ = 0, then we can observe that a necessary condition for the existence

of a solution is that:

|V1| + |V2| + |V3| � |C1| + |C2|, |V1| + |V3| � |C2|, |V2| + |V3| � |C1| (3)

Condition (3) is also sufficient. If (3) holds, then we will be able to construct a

solution by assigning a different value from C2 to each variable in V1, a different

value from C1 to each variable in V2, and by assigning all remaining elements of

C1 and C2 (if any) to the variables in V3. Condition (3) guarantees that there are

enough variables in V3. If some variables are not assigned by this algorithm, then the

solution can be easily completed. For example, when |V1| > |C2|, we can complete

the solution by assigning any value from C2 or C3 to the remaining variables of V1.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

660 A. Dovier et al.

Table 1. Complexity of the SUD problem s = t and E-theory used

to solve the SUS problem

ground gflat(q), q > 0 flat(q), q = 0, 1

SUD Complexity O(||s|| + ||t||) O(||s|| + ||t||) O(||s|| + ||t||)
Theory (Ab)(C�) ACI1 with constants (Ab)(C�)

flat(q), q > 1 nested(q), q = 0, 1 nested(q), q > 1

SUD Complexity O(||s|| + ||t||) NP NP

Theory gen. ACI1 (Ab)(C�) gen. ACI1

If exactly one of q′ or q′′ is 0 (without loss of generality, let us assume q′′ = 0),

then we can determine Vi and Ci as in the previous cases, but without considering

the variables Yi, Zi. The problem admits a solution if and only if |V2| + |V3| �
|C1|.

Thus, the SUD problem for flat(q) set terms can be reduced to the problem of

computing the sets Vi and Ci. This can be done in time O(||s|| + ||t||) (again, see

Remark 1). As discussed more extensively in Section 7.4, the class of problems flat(0)

has been studied in Arni et al. (1992) and Greco (1996), where these set terms are

called Bound Simple set terms.

4.4 SUD for the nested(q) class

The set unification test for nested sets with non-ground elements (i.e., with general

individuals) has been proved to be NP-hard in Kapur and Narendran (1986) even

for the simple case of nested(q) with q = 0. We report here the NP-hardness proof

from Dovier et al. (1996). Let us consider an instance of 3SAT, e.g.:

(X1 ∨ ¬X2 ∨ X3) ∧ (¬X1 ∨ X2 ∨ ¬X3)

Checking its satisfiability is equivalent to testing set unification of the two following

nested(0) set terms:

{{X1, Y1}, {X2, Y2}, {X3, Y3}, {X1, Y2, X3, ∅}, {Y1, X2, Y3, ∅}} and {{∅, {∅}}}

where we interpret ∅ as false and {∅} as true.

To prove that the test is in NP, instead, one needs to prove that, when it

is satisfiable, there exists a witness for this situation that can be verified in

polynomial time. Proofs for this result are rather complex and they can be found

in (Kapur and Narendran 1992; Omodeo and Policriti 1995).

4.5 Summary of results for the SUD problem

Table 1 summarizes the complexity of the SUD problem for the different classes

of set terms we have introduced. The Theory row will be explained in the next

sections.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 661

4.6 Equations vs. systems

We have defined the SUD and SUS problems on a single equation. The notions can

be extended to deal with systems of equations as well: in this case we need to check

whether all the equations in the system are simultaneously unifiable.

In the ground case nothing changes: each equation is analyzed independently. For

gflat(q) we know from Kapur and Narendran (1992) and Hermann and Kolaitis

(1997) that the ACI1 with constants unification problem for systems of equations

can be reduced to propositional Horn satisfiability and, thus, it is in P . In Section 6

we prove the equivalence of this problem with the gflat(q) unification problem.

As far as the flat(q) class is concerned, we can adapt the reduction of the 3SAT

problem done for the nested(q) class, using the constant 1 instead of the set {∅}.
The instance of 3SAT is mapped to the system of equations:

{X1, Y1} = {∅, 1}, {X2, Y2} = {∅, 1}, {X3, Y3} = {∅, 1},
{X1, Y2, X3, ∅} = {∅, 1}, {Y1, X2, Y3, ∅} = {∅, 1}

where all equations involve only flat(q) set terms. Thus, while the flat(q) SUD

problem for a single equation requires linear time, the same problem for systems of

equations is NP-complete.

Regarding the nested(q) class, each system of equations {s1 = t1, . . . , sn = tn} can

be polynomially reduced to an equisatisfiable equation as follows:

{(1, s1), . . . , (n, sn)} = {(1, t1), . . . , (n, tn)}

where n is a polynomial encoding of the natural number n (e.g., 0 = ∅, n + 1 = {n})
and (x, y) is an encoding of the ordered pair (e.g., (x, y) = {{x}, {x, y}}). Thus, the

complexity of the problem on systems of equations is the same as for a single

equation.

5 E-unification

E-unification is concerned with solving term equations modulo an equational theory

E. Set unification can be seen as an instance of the E-unification problem, where

the underlying equational theory contains the identities that capture the properties

of set terms, i.e., the fact that the ordering and repetitions of elements in a set are

immaterial. Different approaches have been considered to encode sets. Accordingly,

different choices of E should be considered to describe their basic properties.

We assume the reader to be familiar with the notions of equational theory, E-

unification, E-unifier and related topics (Siekmann 1989; Baader and Snyder 2001).

In this section we introduce a few basic notations concerning E-unification and set

unification which will be useful in the rest of the paper.

A signature Σ consists of a set of function symbols. Terms built from Σ and from

a denumerable set V of variables are called Σ-terms. T(Σ,V) is the set of all the

Σ-terms – and it is called the term algebra. Given a sequence of terms t1, . . . , tn,

vars(t1, . . . , tn) denotes the set of variables occurring in the terms. vars is naturally

extended to equations and sets of equations.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

662 A. Dovier et al.

A substitution σ : V −→ T(Σ,V) is represented by the notation [X1/t1, . . . , Xn/tn],

where dom(σ) = {X1, . . . , Xn} (the domain of σ) and, for each i = 1, . . . , n, σ(Xi) = ti.

A substitution is uniquely extended to a function over T(Σ,V) using structural

induction. The application of a substitution σ to a term t will be denoted by tσ (or,

equivalently, by σ(t)).

An equational theory is a finite collection of identities E, where each identity is

written as s ≈ t, and s, t are terms belonging to T(Σ,V). The relation =E is the least

congruence relation on the term algebra T(Σ,V), which contains E and it is closed

under substitution (Baader and Snyder 2001). Function symbols not occurring in E

are said to be free.

We describe now the properties of the function symbols that we use as the set

constructors. The properties that the ∪ constructor should have in a set theory can

be described by the following identities:

(A) (X ∪ Y) ∪ Z ≈ X ∪ (Y ∪ Z) (Associativity)

(C) X ∪ Y ≈ Y ∪ X (Commutativity)

(I) X ∪ X ≈ X (Idempotence)

Moreover, the constant symbol ∅, used to denote the empty set, is the identity

element for the ∪ operator. This is stated by:

(1) X ∪ ∅ ≈ X (Identity)

Let EACI1 be the equational theory consisting of identities (A), (C), (I), and (1).

The {· | ·} constructor, instead, should exhibit the properties described by the

following identities:

(Ab) {X | {X |Z}} ≈ {X |Z} (Absorption)

(C�) {X | {Y |Z}} ≈ {Y | {X |Z}} (Commutativity on the left)

A substitution σ is an E-unifier (or, simply, a unifier when the context is clear) of

two terms s, t if sσ =E tσ – i.e., sσ and tσ belong to the same E-congruence class.

An E-unification problem over Σ is a system of equations E = {s1 = t1, . . . , sn = tn}
between Σ-terms. A substitution µ which is an E-unifier of all the equations in E is

said to be an E-unifier (or an E-solution) of E. The set of all the E-unifiers of E is

denoted by UE(E).

Let E be an equational theory and W a set of variables (W ⊆ V). UE(E) can be

sorted with respect to the pre-order �W
E : given two substitutions σ1, σ2:

σ1 �W
E σ2 iff there exists a substitution λ such that

σ2(X) =E (σ1 ◦ λ)(X) for all X in W.

In this case we say that σ1 is more general modulo E on W than σ2. If σ1 �W
E σ2

and σ2 �W
E σ1, then we say that σ1 =W

E σ2. Whenever W is omitted from �W
E , then

W is implicitly assumed to be vars(E).

While traditional syntactic unification problems between Herbrand terms admit

at most one most general unifier (mgu), E-unification problems may not have a

single most general unifier. In this context, the role of the most general unifier is

taken on by a minimal complete set of unifiers. A complete set of E-unifiers for an

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 663

E-unification problem E is a set C of E-unifiers (i.e., a subset of UE(E)) that satisfies

the additional condition:

• for each E-unifier σ there exists an element θ in C such that θ �E σ.

A complete set of E-unifiers C is called a minimal complete set of E-unifiers if it

fulfills the minimality condition:

• for any pair µ1, µ2 in C, if µ1 �E µ2, then µ1 = µ2.

A substitution σ in a minimal complete set of E-unifiers C is called a maximal

general E-unifier. When C is a singleton set {σ} we say that σ is the most general

E-unifier. If one minimal set of E-unifiers can be obtained from another one by

variable renaming and vice versa, the two sets are equivalent and only one of them

needs to be computed.

A special form of systems of equations, called the solved form, plays an important

role in the definition of unification algorithms. An equation e of the form X = t is

said to be in solved form with respect to a system E if X does not occur neither in t

nor elsewhere in E. In this case, X is said to be a solved variable in E. A system E
is said to be in solved form if, for all e in E, e is in solved form with respect to E.

From a system in solved form {X1 = t1, . . . , Xn = tn}, it is simple to derive the most

general E-unifier [X1/t1, . . . , Xn/tn].

E-unification problems can be classified according to whether their signature Σ

contains free elements (i.e., function symbols that do not occur in E). In particular,

it is possible to distinguish between:

• elementary unification, where the terms to be unified are built only using the

symbols appearing in the considered equational theory;

• unification with constants, where the terms to be unified are built using symbols

in the equational theory and additional free constants;

• general unification, where the terms to be unified are arbitrary terms containing

function symbols which are either free or present in the equational theory.

The unification problem studied in the next section falls in the class of unification

with constants. The remaining sections consider general unification problems.

The SUD problem studied in Section 4 is an abstract case of the E-unifiability

problem (namely, deciding whether or not an E-unifier exists). In the next sections

we deal with the SUS problem, i.e., the problem of determining a complete set of

E-unifiers of an equation s = t or of a system of equations E.

6 ACI1 with constants

According to the classification presented in Section 2 the simplest non-ground set

terms we deal with are those belonging to the gflat(q) class. In this section we show

that the SUS problem for this class can be solved by using the solution to the ACI1

with constants unification problem.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

664 A. Dovier et al.

6.1 Language and semantics

Let Σ = {∅,∪, c1, c2, . . .} be a signature composed of the binary function symbol ∪,

the constant symbol ∅, and an arbitrary number (possibly infinite) of free constant

symbols c1, c2, . . .

Definition 8

An ACI1 with constants term is either a variable, a constant, or a Σ-term of the

form s1 ∪ s2, where s1 and s2 are ACI1 with constants terms.

The properties of the function symbols ∪ and ∅ are described by the identities (A),

(C), (I), and (1) introduced in Section 5. Thanks to the associativity property (A),

ACI1 with constants terms can be always written as strings of the form α1 ∪ · · · ∪ αm
where αi is either a variable, ∅, or a constant term ci. Moreover, using (C), (I), and

(1) we can restrict our attention to terms without duplications of sub-terms and

without ∅ as a sub-term (unless the whole term is ∅).

Flat set terms with variable elements (i.e., flat(q) set terms) are not expressible in

this language. Indeed the language does not allow us to distinguish individuals from

sets. Variables in a set term are always interpreted as set variables. Furthermore,

nested set terms are not expressible in this language (Dovier et al. 2000).

6.2 Which kind of set unification

The ACI1 with constants language allows us to describe the set unification problem

for gflat(q) set terms. The SUS problem for this class can be solved using the solution

to the corresponding ACI1 with constants unification problem (defined below). As

an example, let us consider the gflat(q) unification problem:

{a, b} ∪ Y1 ∪ Y2 = {a, b, c, d}

The solutions for this problem are those mapping Y1 and Y2 to subsets of {a, b, c, d}
such that c and d are in the image of Y1 or Y2. For instance, [Y1/{a, c}, Y2/{a, b, d}] is

a solution. Let us consider now the related ACI1 with constants unification problem:

a ∪ b ∪ Y1 ∪ Y2 = a ∪ b ∪ c ∪ d

In this case, a, b, c, d are not interpreted as set elements. However, thanks to the

properties of the ∪ operator, the solutions for this problem are closely related to

those for the gflat(q) unification problem. The solutions for the ACI1 with constants

unification problem are those mapping Y1 and Y2 to unions of elements of {a, b, c, d}
such that c and d are in the image of Y1 or Y2. For instance, [Y1/a∪ c, Y2/a∪ b∪ d].

We formalize this idea by defining a function (·)∗ that translates gflat(q) set terms

into ACI1 with constants terms as follows:

({a1, . . . , an} ∪ Y1 ∪ · · · ∪ Yq)
∗ Def

= a1 ∪ · · · ∪ an ∪ Y1 ∪ · · · ∪ Yq

(·)∗ admits an inverse function. The function can also be extended to substitutions:

σ∗(X) = (σ(X))∗.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 665

Fig. 3. The ACI-matrix for the problem S1 ∪ S2 ∪ X = T1 ∪ T2 ∪ X

Lemma 1

σ is a solution of the gflat(q) SUS problem s = t if and only if σ∗ is a ACI1 unifier

of s∗ = t∗.

For the proof, see Appendix A.

Example 2

The following are set terms and set unification problems which are allowed in ACI1

with constants:

• X1 ∪ X2 ∪ X3 = X4 ∪ X1

• a ∪ b ∪ X1 ∪ X2 = c ∪ X3 – that is ({a, b} ∪ X1 ∪ X2)
∗ = ({c} ∪ X3)

∗

• the first problem of Section 3 (the Chords problem) can be encoded as the

ACI1 with constants problem c ∪ e ∪ g ∪ b� = g ∪ g ∪ e ∪ b� ∪ c ∪ e.

6.3 Unification algorithm

A general algorithm capable of computing a minimal complete set of ACI1-unifiers

for ACI1 with constants unification problems has been presented in Baader and

Büttner (1988).

Given two Σ-terms s and t the algorithm computes a complete set S of ACI1-

unifiers for s = t. Without loss of generality, we assume that if only one of the

terms is ground, then it is t. The set S can be extracted from a schema of Boolean

ACI-matrices. Each column of the matrix is associated to a variable in s = t. Each

row, instead, is associated to new variables that will enter in the solutions. The

matrix is composed of identity matrices, by matrices of 0 with exactly one column

set to 1, and by 0 matrices.

Example 3

Let us consider the problem:

S1 ∪ S2 ∪ X = T1 ∪ T2 ∪ X

The sets V1, V2, V3, C1, C2, C3 are computed as in formula (2) of Section 4.2: V1 =

{S1, S2}, V2 = {T1, T2}, V3 = {X}, and C1 = C2 = C3 = ∅. Since the given problem

does not involve constants, the matrix is unique (see Figure 3). R1, . . . , R9 are new

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

666 A. Dovier et al.

variables that allow to compactly represent the unique mgu:⎡
⎢⎢⎢⎢⎣
S1 / R1 ∪ R2 ∪ R5,

S2 / R3 ∪ R4 ∪ R6,

T1 / R1 ∪ R3 ∪ R7,

T2 / R2 ∪ R4 ∪ R8,

X / R5 ∪ R6 ∪ R7 ∪ R8 ∪ R9

⎤
⎥⎥⎥⎥⎦

The two 1’s in a row state that the two variables should have a part in common in

each solution. For instance, in the first row it is stated that R1 is a part of S1 and of

T1 (in other words, R1 = S1 ∩ T1).

When the problem involves constants, the matrices have also rows for C1, C2, C3.

In this case several matrices are non-deterministically generated. Each of them

describes a solution; their union covers the whole solution space.

Example 4

Let us consider the problem:

X1 ∪ X2 ∪ X3 = a ∪ b

where V1 = {X1, X2, X3}, C2 = {a, b}, V2 = V3 = C1 = C3 = ∅. There are 49

ACI-matrices for this problem. Two of them are:

V1︷ ︸︸ ︷
X1 X2 X3

0 1 1

1 0 1

a

b

}
C2

V1︷ ︸︸ ︷
X1 X2 X3

0 0 1

0 1 0

a

b

}
C2

yielding the unifiers: [X1/b,X2/a,X3/a ∪ b], [X1/∅, X2/b,X3/a].

The number of ACI-matrices to be computed for a given ACI1 unification

problem is (2|V2|−1+|V3|)|C1|(2|V1|−1+|V3|)|C2|(2|V1|+2|V2|−1)|C3| which is O(2(||s||+||t||)2)

(Baader and Büttner 1988).

The detection of a solution of a unification problem (i.e., solving the SUS problem)

clearly implies solving the related decision problem. Thus, the complexity of finding a

solution can be no better than the complexity of solving the corresponding decision

problem. In this case, both the problems can be solved in linear time (with the

assumption in Remark 1). This can be achieved as follows. First verify that the

decision problem s = t has a positive answer; this can be done in linear time thanks

to the results in Lemma 1 and Section 4.2. If the test succeeds, then a solution can

be constructed by assigning to each variable X in s = t a term composed of the

union of all the constants present in s = t. For further details the reader is referred

to Baader and Büttner (1988).

6.4 Discussion

A simpler unification problem – called the elementary ACI1 unification problem –

has been considered in the literature. This problem involves terms which are

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 667

constructed using only variables, the constant ∅, and the binary constructor ∪
(i.e., a subcase of gflat(q) with n = 0 and q � 0). This problem is simpler in the

sense that the decision problem has always a positive answer, i.e., each unification

problem s = t has a solution. Therefore, the complexity of finding an arbitrary

solution is O(1). Furthermore, each elementary ACI1 unification problem admits a

single most general unifier. In Appendix B we show a variant of the ACI-matrices

for this simplified problem.

As a final remark, Hermann and Kolaitis (1997) and Kapur and Narendran

(1992) show how the result presented in this section can be extended to provide a

polynomial time solution to systems of ACI1 with constants unification problems.

7 General (Ab)(C�) unification

Set terms involving variable elements and/or nested sets are not expressible in the

language of ACI1 with constants (see Section 6.2). The proposal we describe in this

section is intended to enlarge the domain of discourse to the more general class of

nested(q) set terms with q � 1. As already observed at the end of Section 2.3, in

this case we can rely on the element insertion operator {· | ·} as the set constructor

for the concrete implementation of sets. This choice allows the presence of at

most one set variable in each set term, while ACI1 with constants does not place

any restriction on the number of set variables which can occur in each set term.

On the other hand, it allows us to represent nested sets – which is not possible

using ACI1 with constants unification. Moreover, it allows sets to be viewed and

manipulated in a fashion similar to lists. As a matter of fact, this approach has been

adopted in a number of logic and functional-logic programming languages (e.g.,

CLP (SET) (Dovier and Rossi 1993; Dovier et al. 2000), SEL (Jayaraman 1992),

SETA (Arenas-Sánchez and Rodrı́guez-Artalejo 2001)).

The unification algorithm we propose here is similar to the one presented in Dovier

et al. (1996) – but with a considerably simpler termination proof. The underlying

equational theory contains the two identities (Ab) and (C�) shown in Section 5,

stating the fundamental properties of the set constructor {· | ·}.

7.1 Language and semantics

Σ is a signature containing the binary function symbol {· | ·}, the empty set constant

symbol ∅, and an arbitrary number (possibly infinite) of free function symbols with

arbitrary arities.

Definition 9

An (Ab)(C�) set term is either a variable, or the constant ∅, or a Σ-term of the form

{t | s}, where t is a Σ-term and s is an (Ab)(C�) set term. An individual term is either

a variable or a Σ-term of the form f(t1, . . . , tn) with f �≡ {· | ·}, f �≡ ∅ and t1, . . . , tn are

Σ-terms (if n = 0 it is a constant term).

The function symbol {· | ·} has the properties described by the identities (Ab) and

(C�) introduced in Section 5. Hence, set terms denote hereditarily finite sets based

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

668 A. Dovier et al.

AbCl unify(Ein) :

Es := ∅; Ens := Ein; Eaux := ∅;
E := 〈Es, Ens, Eaux〉;
while Ens �= ∅ or Eaux �= ∅ do

if Eaux �= ∅ then e := pop(Eaux)

else select arbitrarily an equation e from Ens and remove it;

AbCl unify actions(E,e);
AbCl unify final(E)

Fig. 4. General (Ab)(C�) Unification Algorithm (main)

on U, while individual terms denote arbitrary elements of the universe U. As a

notational convenience { s1 | { s2 | · · · { sn | t } · · ·}} will be written as {s1, . . . , sn | t} or

simply as {s1, . . . , sn} when t is ∅.

7.2 Which kind of set unification

The (Ab)(C�) language allows us to describe the SUD and SUS problems for

nested(1) set terms, i.e., arbitrary nested sets with at most one set variable per set

term. In particular, the language allows us to deal with all classes of set terms that

are included in nested(1), namely ground, gflat(1), and flat(1).

Example 5

The following are set terms and set unification problems which are allowed in

(Ab)(C�):

• {X, {Y }} = {Z, ∅}
• {{X1, a} |Y1} = {X3 |Y2} (i.e., in abstract syntax – cf. Section 2 – {{X1, a}} ∪

Y1 = {X3} ∪ Y2)

• the Graph coloring problem of Section 3 can be encoded as an (Ab)(C�)

problem:

{{X1, X2}, {X2, X3}, {X3, X4}, {X4, X1} |R} = {{c1, c2}, {c1, c3}, {c2, c3}}

On the other hand, the problem A ∪ B ∪ C = {a} ∪ D cannot be expressed in this

framework.

7.3 Unification algorithm

The algorithm consists of three parts. The first part (AbCl unify – see Figure 4)

chooses one equation at a time using a semi-deterministic strategy. The second

part (AbCl unify actions – see Figure 5) performs the rewriting of the selected

equation. A final processing of membership equations, i.e., equations of the form

X = {t0, . . . , tn |X} with X �∈ vars(t0, . . . , tn), (AbCl unify final – see Figure 5)

constitutes the third and final part of the algorithm.

The system E is split into three parts: Es is the solved form part (initially set to

empty), Ens is a system of equations (initially set to the input system Ein), and Eaux

is a system of equations dealt with as a stack. For Eaux we assume the existence

of a push operation that puts an equation on the top of the stack and of a pop

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 669

AbCl unify actions(E, e):
case e of

(1) X = X �→ Ens := Ens

(2) t = X
t is not a variable

}
�→ Ens := Ens ∧ (X = t)

(3)
X = f(t1, . . . , tn)

f �≡ {· | ·} and X occurs in f(t1, . . . , tn)

}
�→ fail

(4)
X = {t0, . . . , tn | t}

t �≡ {· · ·} and X occurs in t (X �≡ t),
or X occurs in t0, . . . , tn

}
�→ fail

(5) X = t
X does not occur in t

}
�→ Es := Es[X/t] ∧ (X = t);

Ens := Ens[X/t]; Eaux := Eaux[X/t]

(6) f(s1, . . . , sm) = g(t1, . . . , tn)
f �≡ g

}
�→ fail

(7)
f(s1, . . . , sn) = f(t1, . . . , tn)

f �≡ {· | ·}
}

�→ Ens := Ens ∧ (s1 = t1 ∧ . . . ∧ sn = tn)

(8) {t | s} = {t′ | s′} �→ AbCl step(E, {t | s} = {t′ | s′})

AbCl step(E, {t | s} = {t′ | s′}) :

if tail(s) and tail(s′) are not the same variable then choose one among:

(i) Ens := Ens ∧ (t = t′); push(s = s′ , Eaux)

(ii) Ens := Ens ∧ (t = t′); push({t | s} = s′ , Eaux)

(iii) Ens := Ens ∧ (t = t′); push(s = {t′ | s′} , Eaux)

(iv) push(s = {t′ |N} , Eaux); push({t |N} = s′ , Eaux)

N new variable

else let {t | s} ≡ {t0, . . . , tm |X} and {t′ | s′} ≡ {t′0, . . . , t′
n |X}, X variable;

select arbitrarily i in {0, . . . , n}; choose one among:

(i) Ens := Ens ∧ (t0 = t′i); push({t1, . . . , tm |X} = {t′0, . . . , t′
i−1, t

′
i+1, . . . , t

′
n |X},Eaux)

(ii) Ens := Ens ∧ (t0 = t′i); push({t0, . . . , tm |X} = {t′0, . . . , t′
i−1, t

′
i+1, . . . , t

′
n |X},Eaux)

(iii) Ens := Ens ∧ (t0 = t′i); push({t1, . . . , tm |X} = {t′0, . . . , t′
n |X},Eaux)

(iv) push(X = {t0 |X},Eaux); push({t1, . . . , tm |X} = {t′0, . . . , t′
n |X},Eaux)

AbCl unify final(E) :

Repeatedly perform any of the following actions;

if neither applies then stop with success;

(1)

X = {t00, . . . , t0n0
|X} ∧ . . . ∧ X = {tk0, . . . , tknk |X} ∧ E

k > 0, the number of all membership equations involving X

X does not occur in t00, . . . , t
0
n0
, . . . , tk0, . . . , t

k
nk

⎫⎬
⎭ �→

X = {t00, . . . , t0n0
, . . . , tk0, . . . , t

k
nk

|N} ∧ E[X/{t00, . . . , t0n0
, . . . , tk0, . . . , t

k
nk

|N}]

(2)
X = t ∧ E

X occurs in t

}
�→ fail

Fig. 5. General (Ab)(C�) unification rewriting rules

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

670 A. Dovier et al.

operation that returns and removes the equation on the top of the stack. Given a

system of equations Ein, the algorithm non-deterministically returns either fail or

a collection of systems in solved form.

In the algorithm we make use of the function tail, defined as follows:

tail(t) =

{
t if t is a variable or a term f(t1, . . . , tn), f �≡ {· | ·}
tail(t2) if t is {t1 | t2}

For instance, if s = {a, b}, namely s = {a | {b | ∅}}, then tail(s) = ∅.

The core of the unification algorithm (Figure 5) is very similar in structure to

the traditional unification algorithms for standard Herbrand terms (Martelli and

Montanari 1982). In particular, rule (1) is also known as the Trivial rule, rule

(2) as the Orient rule, rules (3) and (4) are the Occurs Check rules, rule (5) is

known as the Variable Elimination rule, rule (6) as the Symbol Clash rule, and

rule (7) as the Term Decomposition rule (Jouannaud and Kirchner 1991). The main

difference is represented by the presence of rule (8), whose aim is the reduction of

equations between two set terms. Reduction of this kind of equations is performed

by the procedure AbCl step (see Figure 5) that implements the two identities (Ab)

and (C�). (Ab) and (C�) are equivalent, for terms denoting sets, to the following

axiom (Dovier et al. 1998):

(Es
k) ∀Y1Y2V1V2

⎛
⎜⎜⎜⎜⎝

{Y1 |V1} = {Y2 |V2} ↔
(Y1 = Y2 ∧ V1 = V2)∨
(Y1 = Y2 ∧ V1 = {Y2 |V2})∨
(Y1 = Y2 ∧ {Y1 |V1} = V2)∨

∃K (V1 = {Y2 |K} ∧ V2 = {Y1 |K})

⎞
⎟⎟⎟⎟⎠

which can be easily converted into a rewriting rule to be used in the unification

algorithm. (Es
k) is in a sense a “syntactic version” of the extensionality axiom, which

allows the extensionality property to be expressed in terms of only equations, without

having to resort to any membership, universal quantifiers, or inclusion operation.

(Es
k) allows also to account for equations of the form

{t0, . . . , tm |X} = {t′0, . . . , t′n |X} ,

where the two sides are set terms with the same variable as tail element. Unfortu-

nately, a blind application of the rewriting rule obtained from (Es
k) would lead to

non-termination in this situation. This is the reason why this case has been isolated

and dealt with as special in the algorithm (within the procedure AbCl step), actually

splitting the rewriting rule obtained from (Es
k) into two distinct rules.

A call to AbCl step introduces equations in the stack Eaux that are immediately

processed. This generates a deterministic sequence of actions. We refer to the

sequence of actions performed until the stack becomes empty as the global effect of

AbCl step.

Membership equations, i.e., equations of the form X = {t0, . . . , tn |X}, with

X �∈ vars(t0, . . . , tn), are not dealt with by any rule of AbCl unify actions. This

kind of equations turns out to be satisfiable for any X containing t0, . . . , tn since

duplicates are immaterial in a set thanks to (Ab) and (C�) (this justifies the name

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 671

membership equations). These equations are processed at the end of AbCl unify by

the procedure AbCl unify final. Also, observe that the occur-check test performed

by the standard unification algorithm is modified accordingly, so as to distinguish

this special case from others (rules (3) and (4)).

Correctness and completeness of the algorithm presented in this paper derive

immediately from the similar algorithm of Dovier et al. (1996). The termination

proof for this algorithm, however, turns out to be simpler than that in Dovier

et al. (1996), since here we rely on a more deterministic strategy, and we provide

a separate treatment of membership equations. Basically, in the algorithm of this

paper we avoid the repeated application of the rewriting rule:

X = {t0, . . . , tn |X} �→ X = {t0, . . . , tn |N}

that increases the number of variables in the algorithms in Dovier et al. (1996, 2000).

This change allows the number of variables in the system to be kept under control.

The simpler termination proof can be found in Appendix A.

Example 6

Let us consider the unification problem

{X1, X2, X3} = {a, b, c}

(i.e., {X1 | {X2 | {X3 | ∅}}} = {a | {b | {c | ∅}}}). The algorithm AbCl unify returns the

following six independent solutions that constitute the minimal complete set of

E-unifiers for the given unification problem:

X1 = a,X2 = b,X3 = c

X1 = a,X2 = c, X3 = b

X1 = b,X2 = a,X3 = c

X1 = c, X2 = a,X3 = b

X1 = b,X2 = c, X3 = a

X1 = c, X2 = b,X3 = a

In general, the algorithm AbCl unify may open a large – though finite – number

of alternatives, possibly leading to redundant solutions. Arenas-Sánchez and Dovier

(1997) and Stolzenburg (1999) show how to improve the algorithm to minimize the

number of redundant unifiers.

7.4 Discussion

The problem of finding solutions we tackle here extends the satisfiability problem

for set unification (i.e., the SUD problem), shown to be NP-complete (c.f. Section

4.4). To be precise, we mean that there exists an algorithm on a non-deterministic

machine that can also find the answer (the correct class is FNP). Omodeo and

Policriti (1995) propose a methodology to guess a solution of a conjunction of

literals built using variables, the constant symbol ∅, the function symbol {· | ·} and

the predicate symbols =,∈,∪,∩, and \. The unification problem is the particular

case where only positive literals based on the equality predicate = are used. A guess

is represented by a graph containing a number of nodes polynomially bounded by

the number of variables in the original problem. Verification of whether a guess is

a solution of the problem can be done in polynomial time. Omodeo and Policriti

(1995) also show how this technique can be extended to the general problem with

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

672 A. Dovier et al.

free function symbols – the one we deal with in this paper. A non-deterministic

algorithm based on a “guess-and-verify” technique has also been proposed in Kapur

and Narendran (1986).

The algorithm presented here, as well as those in Dovier et al. (1996) and Arenas-

Sánchez and Dovier (1997), have the common drawback that, due to the explicit

application of substitutions during the solving process they have a computational

complexity which falls outside of the FNP class. Nevertheless, it is possible to encode

this algorithm using well-known techniques – such as multi-equations or graphs

with structure sharing (Martelli and Montanari 1982; Paterson and Wegman 1978)

– that allow us to maintain a polynomial time complexity along each non-

deterministic branch of the computation. For instance, in Aliffi et al. (1999) a goal

driven algorithm in FNP for non-well-founded and hybrid sets has been presented.

In that paper it is also shown how to use the algorithm for well-founded sets, to

solve the problem dealt with in this section. A similar result is presented in Dantsin

and Voronkov (1999). A detailed discussion of such kinds of enhancements, however,

is outside the scope of this paper.

As far as the size of the computed complete set of unifiers is concerned, we can

observe that the algorithm opens, for each level of nesting, a number of alternatives

equivalent to the number of solutions returned by the global effect of AbCl step.

This number is no greater than the size of the minimal complete set of (Ab)(C�)-

unifiers for the problem:

{X1, . . . , Xh |M} = {Xh+1, . . . , Xn |N}

This value has a rough upper bound equal to O(2n lg n) (Arenas-Sánchez and Dovier

1997). Since this process can be repeated once for each nesting, a rough upper bound

to the number of solutions is O(2n
2 lg n).

Various authors have considered simplified versions of the (Ab)(C�) problem

obtained by imposing restrictions on the form of the set terms. Most notable is the

use of sets in the context of relational and deductive databases (Liu 1998; Abiteboul

and Grumbach. 1991; Naqvi and Tsur 1989; Lim and Ng 1997). Typical restrictions

which have been considered are flat and completely specified set terms, i.e., elements

either of the gflat(q) or flat(0) classes. Specialized algorithms have been provided for

some of these cases. In particular, various works have been proposed to study the

simpler case of matching and unification of Bound Simple set terms (Greco 1996),

i.e., elements of flat(0). These restrictions are sufficient to make the task of deciding

unifiability between set terms very simple – as also discussed in Section 4.

Let us illustrate the results in the simple case of matching (Arni et al. 1996) (the

approach has been generalized to sequential unification in Greco (1996) and to

parallel unification in Lim and Ng (1997)). In the case of matching, the two set

terms s and t to be unified can be written as:

s ≡ {c1, . . . , cr, X1, . . . , Xh} t ≡ {b1, . . . , bk, c1, . . . , cr}

where, according to our notation (see Section 4.2), bi ∈ C2, ci ∈ C3, and Xi ∈ V1

(C1 = ∅ otherwise the problem has no solutions). The two terms unify iff h � k (see

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 673

Section 4.3). From Arni et al. (1996) we know that the number of solutions is

k∑
i=0

(−1)i
(
k

i

)
(k + r − i)h

The set of substitutions representing the correct solutions of the matching problem

s = t can be obtained by:

• computing all the h-multisets of {b1, . . . , bk, c1, . . . , cr} that contain all the

elements of the set {b1, . . . , bk}
• computing all the distinct permutations of each multiset.

An algorithm based on this approach is optimal, in the sense that it computes

exactly a complete and minimal set of unifiers, with a complexity that is linear in

the size of such set of unifiers.

8 General ACI1 unification

The unification problem considered in Section 6 is capable of dealing with flat

set terms containing an arbitrary number of set variables. On the other hand, the

unification problem of Section 7 allows unification between possibly nested set terms

with at most one set variable per set term. The goal of this section is to provide a

solution to unification problems which do not fall in any of the two above categories,

namely, unification problems in presence of set terms which can be nested at any

depth and which may contain an arbitrary number of set variables. We will refer to

this kind of problems as general ACI1 unification problems.

We propose a novel solution that combines the algorithms of Sections 6 and 7

developed for solving ACI1 unification with constants and general (Ab)(C�) unific-

ation. The result is a new goal-driven algorithm for general ACI1 unification.

8.1 Language and semantics

We consider a language whose signature Σ contains the constant ∅, the binary

function symbol ∪, and a (possibly infinite) collection of free function symbols with

arbitrary arities.

Definition 10

An ACI1 set term is either a variable, or the constant ∅, or a Σ-term of the form

t ∪ s, where t and s are Σ-terms. An individual term is either a variable or a Σ-term

of the form f(t1, . . . , tn) with f �≡ ∪ and f �≡ ∅ and t1, . . . , tn are Σ-terms (if n = 0 it

is a constant term).

The function symbols ∪ and ∅ have the properties described by the identities (A),

(C), (I) and (1) introduced in Section 5. Hence, set terms denote hereditarily finite

sets based on U, while individual terms denote arbitrary elements of the universe U.

In the rest of the discussion we will assume the existence of at least one function

symbol f ∈ Σ of arity greater than zero – note that if such symbol does not exist,

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

674 A. Dovier et al.

then we are in the case discussed in Section 6. Intuitively, terms based on such symbol

will be used to encode singleton sets. Without loss of generality we assume to use the

unary function symbol {·} to represent singleton sets (more generally, if the chosen

symbol f is of arity n, n � 0, we could assume that the term f(s, ∅, . . . , ∅) is used to

denote the singleton set containing the element s). In this way, it will be possible,

for instance, to distinguish the individual element a from the set containing a (i.e.,

{a}). Moreover, as a notational convenience, we will denote the term {s1} ∪ · · · ∪ {sn}
with {s1, . . . , sn}.

8.2 Which kind of set unification

The general ACI1 language allows us to describe the SUD and SUS problems for

any abstract set terms in set(m, n, p, q). In particular, the cases flat(q) and nested(q)

with q � 2 are handled in this framework (and not in any of the previous ones).

Example 7

The following are set terms and set unification problems which are allowed in general

ACI1:

• {{A,B} ∪ C ∪ D} ∪ E ∪ F = {{X, 1}} ∪ E ∪ G

• {{g(a)} ∪ X} ∪ Z = {b} ∪ T ∪ S

8.3 Unification algorithm

In this section, we propose a novel algorithm to directly solve the general ACI1

unification problem. The algorithm is composed of a main procedure (general aci)

and a rewriting function (aci step), which deals with equations between set terms

(see Figure 6).

The structure of the main procedure is very similar to the structure of standard

unification algorithms for the Herbrand case. The algorithm maintains two separate

collections of equations, Es and Ens: the first collects the equations in solved form

while the second contains the equations that require further processing. As in the

case of (Ab)(C�) unification, the main changes with respect to standard Herbrand

unification are concerned with the two rules dealing with set terms (i.e., terms

containing occurrences of ∪ at the outermost level):

• rule (5) which is aimed at dealing with equations of the form X = · · ·∪X which

are satisfiable in the case of ACI1 theory, whereas they were not satisfiable if

the ∪ symbol would be uninterpreted;

• rule (8) which is used to solve equations between two set terms.

We will use the notation s̄ to denote the list of terms s1, . . . , sn, and s̄ = t̄ to denote

s1 = t1, . . . , sn = tn.

aci step receives as input the equation between set terms to be solved and non-

deterministically produces as result two systems of equations (corresponding to the

Es and Ens of the main unification procedure) and a substitution. aci step performs

its task in four successive steps, as shown in Figure 6. Term Propagation is the only

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 675

general aci(E) :

Es := ∅; Ens := E (i.e., the initial system of equations);

while Ens �= ∅ do

select arbitrarily an equation e from Ens and remove it;

case e of

(1) X = X �→ Ens := Ens

(2)
t = X

t is not a variable

}
�→ Ens := Ens ∧ (X = t)

(3)

X = t

t can be re-ordered as

f1(̄s1) ∪ · · · ∪ fn (̄sn) ∪ V1 ∪ · · · ∪ Vm

n � 0, fi �≡ ∪, m � 0, and X ∈ vars (̄s1, . . . , s̄n)

⎫⎪⎪⎬
⎪⎪⎭ �→ fail

(4)
X = t

X does not occur in t

}
�→

Es := Es[X/t] ∧ (X = t); Ens := Ens[X/t]

(5)

X = t

t can be re-ordered as t′ ∪ X ∪ · · · ∪ X,

t′ = f1(̄s1) ∪ · · · ∪ fn (̄sn) ∪ V1 ∪ · · · ∪ Vm,

fi �≡ ∪, m � 0,

X �∈ vars(t′)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�→ Ens := Ens ∧ (X = t′ ∪ N)

N new variable

(6)
f(s1, . . . , sm) = g(t1, . . . , tn)

f �≡ g

}
�→ fail

(7)
f(s1, . . . , sn) = f(t1, . . . , tn)

f �≡ ∪

}
�→

Ens := Ens ∧ (s1 = t1 ∧ . . . ∧ sn = tn)

(8) s1 ∪ s2 = t1 ∪ t2 �→
Let 〈E′

1,E′
2, θ〉 be a result of

aci step(s1 ∪ s2 = t1 ∪ t2);

Es := Esθ ∧ E′
1; Ens := Ensθ ∧ E′

2

aci step(e):

En := Normalization(e);

〈EACI
1 ,EACI

2 〉 := Elementary ACI1 Solution(En) ;

〈E1,E2〉 := Term Propagation(EACI
1 ,EACI

2) ;

ρ := Variables Removal(E1,E2) ;

return 〈E1,E2ρ, ρ〉

Fig. 6. General ACI1 unification procedure and the function aci step

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

676 A. Dovier et al.

(don’t know) non-deterministic step of the whole algorithm. Both Term Propagation

and Variables Removal can lead to a failure for some of the non-deterministic choices

performed within Term Propagation. Let us analyze these steps in more detail.

Normalization:

input: A system consisting of the single equation

f1(̄l1) ∪ · · · ∪ fk1
(̄lk1

) ∪ L1 ∪ · · · ∪ Lk2
= g1(r̄1) ∪ · · · ∪ gh1

(r̄h1
) ∪ R1 ∪ · · · ∪ Rh2

(4)

where Li, Rj (0 � i � k2, 0 � j � h2) are variables and fi, gj (0 � i � k1,

0 � j � h1) are function symbols different from ∪.

output: A system

En = NL
1 = f1(̄l1) ∧ · · · ∧ NL

k1
= fk1

(̄lk1
) ∧

NR
1 = g1(r̄1) ∧ · · · ∧ NR

h1
= gh1

(r̄h1
) ∧

NL
1 ∪ · · · ∪ NL

k1
∪ L1 ∪ · · · ∪ Lk2

= NR
1 ∪ · · · ∪ NR

h1
∪ R1 ∪ · · · ∪ Rh2

where NL
i and NR

j are new distinct variables.

This step, following the idea used in Lincoln and Christian (1989) and Baader

and Schulz (1996), performs a normalization of the problem E into the problem

En – producing an equation between set terms that contains only variables.

Elementary ACI1 Solution:

input: The system En produced by the Normalization step;

output: A pair of systems EACI
1 and EACI

2 obtained by solving the elementary

ACI1 unification problem

NL
1 ∪ · · · ∪ NL

k1
∪ L1 ∪ · · · ∪ Lk2

= NR
1 ∪ · · · ∪ NR

h1
∪ R1 ∪ · · · ∪ Rh2

(5)

of En. This problem can be directly solved by using the techniques seen in Section 6

(see also Example 3). The result of the computation is a collection of equations of

the form V = Aa1 ,b1
∪ Aa2 ,b2

∪ . . . where V is a variable occurring in the two terms

to be unified and Aa1 ,b1
, Aa2 ,b2

, . . . are new variables generated by the unification

algorithm. The solved form equations associated to Lj and Ri form the set EACI
1 .

EACI
2 is composed of the equations concerning the variables NL

j and NR
i . These

variables are immediately replaced by the terms they have been set equal to during

the Normalization step.

Term Propagation:

input: The pair of systems EACI
1 and EACI

2 produced in the previous step;

output: A pair of systems E1 and E2.

The equations in EACI
2 can be simplified using the semantic properties of ∅ and ∪.

As a matter of fact, the equations in EACI
2 can be immediately satisfied by binding

each Ai,j appearing in the right-hand side of an equation either to ∅ or to a term

which unifies with the left-hand side of the equation. Observe, however, that each

Ai,j can occur in the right-hand side of more than one equation; thus, it should

receive a consistent binding in order to satisfy EACI
2 .

More precisely, a substitution λ describing the solution of the equations in EACI
2

can be build as follows. Let us assume that an ordering has been fixed on the

equations in EACI
2 and on the variables Ai,j . Thus, for each Ai,j occurring in EACI

2

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 677

we can identify an equation eAi,j
which contains the “first” occurrence of such

variable in its right-hand side. If f(̄s) is the left-hand side of such equation, then

λ(Ai,j) is non-deterministically defined to be either

• λ(Ai,j) = ∅ or

• λ(Ai,j) = f(̄s).

As soon as the value of λ(Ai,j) has been determined, the substitution is immediately

applied to EACI
2 . Once all the Ai,j occurring in EACI

2 have been processed, the system

is reduced to a collection of equations of the form:

f(̄s) = f1(̄s1) ∪ · · · ∪ fh (̄sh)

with h � 1 (without loss of generality, we may assume that all the occurrences of

∅ in the union have been removed, as well as repetitions of the same term). The

above result also relies on the assumption that at least one Ai,j per equation is

assigned a term different from ∅.

If some of the fi is different from f for some equation, then another guess for λ

must be chosen; if no choice leading to the satisfaction of this condition can be

made, then the system does not admit solutions. Otherwise, let the output system

E2 consist of all equations of the form:

s̄ = s̄1 ∧ . . . ∧ s̄ = s̄h

for each equation in EACI
2 .

The other output system, E1, is obtained by applying λ to the input system EACI
1 ,

with the usual elimination of ∅ and repetitions in the unions. Thus,

E1 =
∧

1�j�k2
Lj =

⋃h1

i=1 λ(Ai,k1+j) ∪
⋃h1+h2

i=h1+1 Ai,k1+j ∧∧
1�i�h2

Ri =
⋃k1

j=1 λ(Ah1+i,j) ∪
⋃k1+k2

j=k1+1 Ah1+i,j

Variables Removal:

input: The pair E1 and E2 computed in the previous step;

output: The substitution ρ.

From E1 we can directly produce a substitution which allows all variables Lj

and Ri to be removed. More precisely, this is obtained as follows. Let ρLj
and

ρRi
denote the substitutions that respectively replace Lj (1 � j � k1) and Ri

(1 � i � h1). In order to guarantee that E1 ∪ E2 admits solutions we need to make

sure that no cyclic conditions occur.

Let us define the relation ⇒ as follows:

X ⇒ Y iff Y ∈ vars(XρX)

and let us denote with ⇒∗ the transitive closure of ⇒.

A necessary condition for the solvability of the set of equations E1 is that

(∀X ∈ {L1, . . . , Lk1
, R1, . . . , Rh1

})(X �⇒∗ X).

If this test is satisfied, then we can construct a global substitution

ρ = ρL1
◦ · · · ◦ ρLk1

◦ ρR1
◦ · · · ◦ ρRh1

which allows all variables {L1, . . . , Lk1
, R1, . . . , Rh1

} to be removed.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

678 A. Dovier et al.

A detailed description of the algorithms for the Elementary ACI1 Solution step and

the Term Propagation step is reported in Appendix B.

Example 8

Let us consider the unification problem:

{{a}} ∪ {b} ∪ X = {{W }} ∪ Y ∪ Z

The Normalization step leads to the system

En ≡ NL
1 = {{a}} ∧ NL

2 = {b} ∧ NR
1 = {{W }} ∧ NL

1 ∪ NL
2 ∪ X = NR

1 ∪ Y ∪ Z

The equation NL
1 ∪ NL

2 ∪ X = NR
1 ∪ Y ∪ Z can be solved and its solution applied to

the rest of the system (Elementary ACI1 Solution step), leading to:

EACI
1 ≡ X = A1,3 ∪ A2,3 ∪ A3,3 ∧

Y = A2,1 ∪ A2,2 ∪ A2,3 ∧
Z = A3,1 ∪ A3,2 ∪ A3,3

EACI
2 ≡ {{a}} = A1,1 ∪ A2,1 ∪ A3,1 ∧

{b} = A1,2 ∪ A2,2 ∪ A3,2 ∧
{{W }} = A1,1 ∪ A1,2 ∪ A1,3

A possible substitution λ produced by the Term Propagation step is the following:

A1,1 A2,1 A3,1A1,2A2,2A3,2A1,3

{{a}}{{a}} ∅ ∅ {b} ∅ ∅

This produces the systems

E2 ≡ {W } = {a} E1 ≡ X = A2,3 ∪ A3,3 ∧ Y = {{a}} ∪ {b} ∪ A2,3 ∧ Z = A3,3

and the substitution ρ = [X/A2,3 ∪ A3,3, Y /{{a}} ∪ {b} ∪ A2,3, Z/A3,3]. From E2 it

is then computed [W/a].

8.4 Results for the general ACI1 unification algorithm

8.4.1 Soundness and Completeness

The soundness and completeness results can be derived as follows.

Lemma 2

Given an equation e of the form

f1(̄l1) ∪ · · · ∪ fk1
(̄lk1

) ∪ L1 ∪ · · · ∪ Lk2
= g1(r̄1) ∪ · · · ∪ gh1

(r̄h1
) ∪ R1 ∪ · · · ∪ Rh2

let 〈Ei
1,Ei

2, ρ
i〉, for i = 1, . . . , k, be the collection of all the distinct solutions non-

deterministically produced by the call aci step(e). Then:

• if σ is a unifier of Ei
1 ∪ Ei

2 then σ is a unifier of e and σ � ρi

• if σ is a unifier of e then there exists 1 � i � k and a substitution γ such that

σ ∪ γ is a unifier of Ei
1 ∪ Ei

2.

For the proof, see Appendix A.

Theorem 1

The unification procedure general aci is correct and complete with respect to the

general ACI1 theory.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 679

Proof

Immediate from the above Lemma 2 concerning the auxiliary function aci step,

and from the classical results regarding Herbrand unification for the remaining

rules. �

8.4.2 Termination of general aci

The development of a termination proof for general unification algorithms for

theories obtained using some or all of the (A), (C), (I), and (1) axioms is a

well-known challenging task (Baader and Schulz 1996). Fages (1987) proposed a

termination proof for general AC unification. The complexity measure developed by

Fages to prove termination, however, is not applicable to our problem – mainly due

to the need, in our algorithm, to introduce new variables to handle cases such as

X = Y ∪ X, that are unsatisfiable in AC but admit solutions in ACI1.

The detailed termination proof (Theorem 3) is reported in Appendix A. We give

here the main ideas behind that proof. First of all, aci step replaces an equation

between two sets with equations between members of the sets, thus with equations

of a “lower level”. The process cannot enter in a loop thanks to the occur-check test

which avoids the possibility of generating infinitely-nested sets. To formalize this

idea we define the notion of p-level (Def. 11). Terms can be naturally viewed as trees.

We use two kinds of edges in these trees, edges connecting ∪-nodes to their children

and edges linking all other types of nodes. We show how the unification algorithm

operates on this tree representation of terms, and we determine some properties

related to cycles involving edges of the second type (+1-edges). Finally, we define a

complexity measure built from the notion of p-level of the terms occurring in the

system of equations. We show that this measure is well-ordered and that any given

sequence of applications of rules either decreases it, or an occur-check failure is

detected.

8.5 Discussion

A non-deterministic algorithm for general ACI is presented by Kapur and Naren-

dran (1992) that can be adapted to general ACI1. Another algorithm for general

ACI1 unification can be obtained as an instance of the general technique of Baader

and Schulz (1996) for combining unification algorithms. Combining unification

procedures for different unification problems has been a major topic of investigation

for years (Siekmann 1984). Various proposals have been put forward to allow com-

bination of unification procedures under different conditions on the equational theor-

ies (Yellick 1985; Herold 1986; Tiden 1986; Kirchner 1989; Schmidt-Schauß 1989).

and Schulz (1996) proposed a general technique for combining unification procedures

over disjoint theories under very simple restrictions, i.e., constants restriction. In the

context of general ACI1 unification, we need to combine two theories: the theory

ACI1 for ∅ and ∪, and the empty equational theory for all the other function symbols.

The technique proposed by Baader and Schulz can thus be used to integrate the

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

680 A. Dovier et al.

unification procedure for ACI1 with constants and a standard Herbrand unification

algorithm to obtain a unification procedure for general ACI1.

Let us briefly compare these two proposals with the unification algorithm for

general ACI1 presented in this paper. All three unification procedures start with

a Normalization step (implicit in Kapur and Narendran (1992)). New variables are

introduced for subterms. As an example, the problem

{X} ∪ {Y } = {a} ∪ {b} (6)

is rewritten as

NL
1 ∪ NL

2 = NR
1 ∪ NR

2 , N
L
1 = {X}, NL

2 = {Y }, NR
1 = {a}, NR

2 = {b} (7)

All three procedures introduce don’t know non-determinism. In particular, Baader

and Schulz (1996) introduces non-determinism in steps 3 and 4, where

• step 3 computes an arbitrary partition of the variables in independent sets (all

the variables in the same component of the partition will be aliased to each

other in the final solution);

• step 4 imposes an arbitrary order over the elements of the previously computed

partition.

In the formula 7, for instance, there are 6 variables. Therefore, there are
∑6

i=1

{
6
i

}
=

203 possible partitions of the set of variables2, and 6! = 720 possible strict orderings

among the 6 variables. Actually, the problem (6) has only two independent solutions

X = a, Y = b and X = b, Y = a that suggests the need of only 2 non-deterministic

choices. The high number of choices in Baader and Schulz (1996) derives from the

generality of the combination procedure (which is not specifically tied to the problem

of set unification). On the other hand, it is unclear whether the instantiation of that

framework to the problem at hand would actually reduce the number of alternatives

compared to the algorithm we propose in this paper.

The unification procedure presented in Kapur and Narendran (1992) is rather

different. It performs a series of non-deterministic guesses for the variables to find

ground substitutions. It has two main practical drawbacks. The first is that the

number of choices does not depend on the structure of the problem but rather on

the signature. The second drawback is that the algorithm always returns ground

substitutions. The number of ground substitutions of a general ACI problem can

be infinite. Let us consider, for instance, the problem

{∅} ∪ Y = Y (8)

Y = {∅}, Y = {∅} ∪ {{∅}}, Y = {∅} ∪ {{∅}} ∪ {{{∅}}}, . . . are all the ground solutions

for (8). However, a unique most general unifiers, Y = {∅} ∪N is sufficient to finitely

describe all solutions (this is exactly what our algorithm returns). Even for problems

where only ground unifiers are present, our algorithm has the advantage of using

2
{
n
i

}
is the number of partitions of n elements into i classes, known as Stirling number of the second

type (Graham et al. 1994).

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 681

the symbols in the problem to drive the construction of the solution, instead of

performing a blind enumeration based on the language signature.

As for the non-determinism introduced by our algorithm, first observe that the

Normalization step allows us to call the elementary ACI1 unification step with terms

containing only variables. In this case it is known that the unification problem

admits a unique mgu. So, we are not exploiting the possibility of the ACI1 with

constants unification algorithm to return non-deterministically all the mgus and we

perform that choice later. The rationale behind this is that the non-variable terms

s1, . . . , s�, t1, . . . , tr in an equation X1 ∪· · ·∪Xm∪s1 ∪· · ·∪s� = Y1 ∪· · ·∪Yn∪ t1 ∪· · ·∪ tr
can be compound terms. We do not know (yet) if some of them can be unified, and

thus we cannot consider them as equal or different constants when calling the ACI1

with constants algorithm. Possible optimizations of our algorithm include the use

of ACI1 with constants in those cases where a simple preprocessing allows us to

quickly determine what individuals in the equations are equal or distinct. If V1, V2, V3

are the set of variables in the elementary ACI1 unification problem as defined

in Section 4.2, then the Boolean ACI matrix (Baader and Büttner 1988) is of size

(|V1|+|V2|+|V3|)(|V1||V2|+|V1||V3|+|V2||V3|+|V3|) and the new variables introduced

are |V1||V2| + |V1||V3| + |V2||V3| + |V3|. Our elementary ACI matrix (see Appendix B)

introduces the same number of variables, but its size is (|V1| + |V3|)(|V2||V3|). For

instance, if |V1| = |V2| = |V3| = v we need space 4v2 against space 9v3 + 3v2.

All non-deterministic choices are performed in the Term Propagation step. If k is

the number of variables introduced by the matrix, this would potentially open 2k non-

deterministic choices. However, using the auxiliary Boolean matrix (see Appendix B)

we do not try all these choices, since for each column and each row of the matrix

for Term Propagation there must be at least one variable which is different from ∅.

This decreases the number of choices. In the case of the system of equations (7) we

have only 8 non-deterministic choices instead of the 24 expected (and the 203 × 720

of the naive application of the Baader-Schulz procedure).

As far as the difference in non-determinism between the general ACI1 and the

general (Ab)(C�) unification is concerned, we can observe that the ACI1 algorithm

opens, for each level of nesting, a number of alternatives equivalent to the resolution

of an ACI1 with constants problem; this leads to O(2n
2

) solutions (see Section 6.3).

Since this process can be repeated once for each nesting, a rough upper bound to the

number of solutions is O(2n
3

). Observe that this number of solutions is greater than

those computed by the (Ab)(C�), namely O(2n
2 log n). This fact suggests that the gen-

eral ACI1 unification should be used only when the problem is really not expressible

using the general (Ab)(C�) unification and the full range of solutions is required.

9 Related work

Most of the related proposals have already been discussed throughout the paper. In

this section we provide a brief overview of other related contributions.

Boolean unification. Boolean unification is a very powerful framework that allows

one, in particular, to mimic the ACI1 with constants unification problems. The

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

682 A. Dovier et al.

richer language of Boolean unification, however, allows the various solutions of

a given ACI1 problem to be encoded in a very compact way, as a single complex

solution – instead of using multiple ACI-matrices as in Section 6. A fundamental

work in this area is Martin and Nipkow (1989), which surveys both the Boole’s

method and the Löwenheim’s method. The former has been originally described

in Büttner and Simonis (1987) while the second has been initially described

in Martin and Nipkow (1988). All these approaches deal with Boolean unification

with constants, where the signature Σ contains a possibly infinite collection of

constants, which intuitively represent the elements of the universe U. The class

of terms allowed in this framework extends the one considered in this paper by

allowing a variety of different operators to be used in the construction of sets,

such as intersection ∩ and complementation (̄·).
The complexity of the decision problem of Boolean unification has been studied

in Baader (1988). In the elementary case, i.e., without constants, the problem is

NP-complete, while in the case with constants the problem becomes PSPACE-

complete. However, if the input is of the form admitted by ACI1 unification, the

test between two ground terms can be performed in linear time. The computation

of the unifier for a given Boolean unification problem s = t is based on the fact

that µ is a unifier of s = t if and only if µ is a unifier of s � t = ∅, where �
is a function symbol which is interpreted as the symmetric difference. Thus, to

solve a unification problem, it is sufficient to solve a matching problem. The work

in Büttner and Simonis (1987) shows that a unique most general unifier is sufficient

to cover all the solutions. The generality of this scheme and the power of this

unification procedure are balanced by the complexity of the answers produced –

sets built using � are arguably more complex and less intuitive than those

constructed using ∪.

Computable Set Theory. The work on Computable Set Theory (Cantone et al. 2001)

has been mainly developed at the New York University, with the objective of en-

hancing the expressive power of inference engines for automated theorem provers,

and for the implementation of the imperative set-based programming language

SETL (Schwartz et al. 1986). The general problem is to identify computable classes

of formulae of suitable sub-theories of Zermelo-Fraenkel set theory. In this context,

the set unification problem is seen as a special case of the satisfiability problem

for the ∃∗∀-class of formulae. As a matter of fact, thanks to the extensionality

axiom, testing whether two terms s and t with variables X1, . . . , Xn are unifiable is

equivalent to testing whether the following holds:

�� |= ∃X1 · · · ∃Xn ∀Z(Z ∈ s ↔ Z ∈ t).

Unification algorithms can be obtained by instantiating the general (and complex)

techniques for testing satisfiability of ∃∗∀-formulas (Dovier et al.).

Set constraints. Set constraints (Kozen 1998; Aiken 1994) are conjunctions of lit-

erals of the form e1 ⊆ e2 where e1 and e2 are set expressions, constructed

using variables, constant and function symbols, and the union, intersection, and

complement of set expressions. Set expressions denote sets of Herbrand terms. An

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 683

expression identifies a subset of the Herbrand universe. A unification problem of

the type s = t can be expressed in this framework as the constraint s ⊆ t ∧ t ⊆ s.

The framework is sufficiently powerful to solve ACI1 unification problems with

constants; nevertheless, the peculiar interpretation given to terms in the language

is such to prevent to encode large classes of set unification problems. In particular,

to represent nested sets in set constraints we need to make use of a distinguished

functional symbol {·} (as described also in Section 8.1); on the other hand, using

the set constraint interpretation of expressions, the two expressions {{s, t}} and

{{s}, {t}} would be mapped to the same set.

Alternative representations of sets. Other syntactic representations of sets are also

feasible. For instance a set of n elements can be represented by {}n(t0, . . . , tn),
where {}n is a function symbol of arity n. This solution requires the introduction

of an infinite signature, with a different set constructor for each possible finite set

cardinality. This approach has been adopted, for example, in (Shmueli et al. 1992).

In order to use this solution it is necessary to introduce a complex infinite

equational theory, capable of specifying the unifiability of set terms with different

main functors – as in the case {}3(X,Y , Z) = {}2(a, b).

This representation scheme allows one to express only set terms with a known

upper bound on their cardinality. Namely, | {}n(t1, . . . , tn) | � n .

10 Conclusions

In this paper we have presented a survey of the problem of solving unification in the

context of algebras for sets. We have abstractly defined the set unification problem

and developed the corresponding equational theories, starting from the simpler case

of ACI1 with constants and proceeding to the most comprehensive case of general

ACI1 unification. We have presented decision and unification procedures for the

different classes of unification problems and analyzed their complexity. Complexity

results, as well as the suitable equational theory for a given set unification problem,

are summarized in Table 1. The algorithms presented are either drawn from the

literature or are brand new algorithms developed by the authors.

We believe this work fills a gap in the literature on this topic, by providing a

uniform and complete presentation of this problem, and by presenting a comparative

study of the different solutions proposed.

Acknowledgments

We thank the anonymous referees that helped us to improve the quality of

presentation of the paper. The research presented in this paper has benefited from

discussions with A. Formisano, E. G. Omodeo, C. Piazza, A. Policriti, and D. Ranjan,

all of whom we would like to thank.

References

Abiteboul, S. and Grumbach., S. 1991. A Rule-Based Language with Functions and Sets.

ACM Trans. on Database Systems 16, 1, 1–30.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

684 A. Dovier et al.

Aczel, P. 1988. Non-well-founded sets. CSLI Lecture Notes, vol. 14. Stanford University

Press.

Aiken, A. 1994. Set constraints: Results, Applications, and Future Directions. In Principles and

Practice of Constraint Programming, A. Borning, Ed. Lecture Notes in Computer Science.

Springer Verlag, 326–335.

Aliffi, D., Dovier, A., and Rossi, G. 1999. From Set to Hyperset Unification. Journal of

Functional and Logic Programming 1999, 10, 1–48.

Arenas-Sánchez, P. and Dovier, A. 1997. A Minimality Study for Set Unification. Journal

of Functional and Logic Programming 1997, 7, 1–49.

Arenas-Sánchez, P. and Rodrı́guez-Artalejo, M. 2001. A General Framework for Lazy

Functional Logic, Programming with Algebraic Polymorphic Types. Theory and Practice of

Logic Programming 2, 1, 185–245.

Arni, N., Greco, S., and Saccà, D. 1992. Set-term matching in logic programming. In

Database Theory – ICDT’92, 4th International Conference, Berlin, Germany, October 14-16,

1992, Proceedings, J. Biskup and R. Hull, Eds. Lecture Notes in Computer Science, vol.

646. Springer, 436–449.

Arni, N., Greco, S., and Saccà, D. 1996. Matching of Bounded Set Terms in the Logic

Language LDL++. Journal of Logic Programming 27, 1, 73–87.

Baader, F. 1998. On the Complexity of Boolean Unification. Information Processing

Letters 67, 4, 215–220.

Baader, F. and Büttner, W. 1988. Unification in commutative and idempotent monoids.

Theoretical Computer Science 56, 345–352.

Baader, F. and Schulz, K. U. 1996. Unification in the union of disjoint equational theories:

Combining decision procedures. Journal of Symbolic Computation 21, 211–243.

Baader, F. and Snyder, W. 2001. Unification Theory. In Handbook of Automated Reasoning,

A. Robinson and A. Voronkov, Eds. Elsevier, Amsterdam, Chapter 8, 446–533.

Barwise, J. and Moss, L. 1996. Vicious Circles. On the Mathematics of non-well-founded

phenomena. CSLI Lecture Notes, vol. 60. Stanford University Press.

Beeri, C., Naqvi, S., Shmueli, O., and Tsur., S. 1991. Set Constructors in a Logic Database

Language. Journal of Logic Programming 10, 3, 181–232.

Büttner, W. 1986. Unification in the Data Structure Sets. In Proc. of the Eight International

Conference on Automated Deduction, J. K. Siekmann, Ed. Vol. 230. Springer-Verlag, Berlin,

470–488.

Büttner, W. and Simonis, H. 1987. Embedding Boolean Expressions into Logic Programming.

Journal of Symbolic Computation 4, 191–205.

Cantone, D., Omodeo, E. G., and Policriti, A. 2001. Set Theory for Computing. From

Decision Procedures to Declarative Programming with Sets. Monographs in Computer

Science. Springer-Verlag, Berlin.

Codish, M. and Lagoon, V. 2000. Type Dependencies for Logic Programs using ACI-

Unification. Theoretical Computer Science 238, 1–2, 131–159.

Dantsin, E. and Voronkov, A. 1999. A Nondeterministic Polynomial-Time Unification

Algorithm for Bags, Sets, and Trees. In Proc. of Foundations of Software Science

and Computation Structure. Second International Conference, FoSSaCS’99, W. Thomas,

Ed. Lecture Notes in Computer Science, vol. 1578. Springer-Verlag, Berlin, 180–

196.

Dovier, A., Formisano, A., and Omodeo, E. Decidability results for sets with atoms. ACM

Transaction on Computational Logic 7(2): 269–301, 2006.

Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G. 1996. {log}: A Language for

Programming in Logic with Finite Sets. Journal of Logic Programming 28, 1, 1–44.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 685

Dovier, A., Piazza, C., and Policriti, A. 2000. Comparing Expressiveness of Set Constructor

Symbols. In Frontier of Combining Systems, H. Kirchner and C. Ringeissen, Eds. Lecture

Notes in Computer Science, vol. 1794. Springer-Verlag, Berlin, 275–289.

Dovier, A., Piazza, C., and Policriti, A. 2004. An efficient algorithm for computing

bisimulation equivalence . Theoretical Computer Science 311, 1–3, 221–256.

Dovier, A., Piazza, C., Pontelli, E., and Rossi, G. 2000. Sets and Constraint Logic

Programming. ACM Transactions on Programming Languages and Systems 22, 5, 861–931.

Dovier, A., Policriti, A., and Rossi, G. 1998. A uniform axiomatic view of lists, multisets,

and sets, and the relevant unification algorithms. Fundamenta Informaticae 36, 2/3, 201–234.

Dovier, A. and Rossi, G. 1993. Embedding Extensional Finite Sets in CLP. In Proc. of Int’l

Logic Programming Symposium, ILPS’93, D. Miller, Ed. The MIT Press, Cambridge, Mass.,

540–556. Vancouver, BC, Canada.

Fages, F. 1987. Associative-Commutative Unification. Journal of Symbolic Computation 3,

257–275.

Graham, R. L., Knuth, D. E., and Patashnik, O. 1994. Concrete Mathematics. Addison-

Wesley.

Greco, S. 1996. Optimal Unification of Bound Simple Set Terms. In Proc. of Conference on

Information and Knowledge Management. ACM Press, 326–336.

Grieskamp, W. 1999. A set-based calculus and its implementation. Ph.D. thesis, Technical

University of Berlin.

Hermann, M. and Kolaitis, P. 1997. On the Complexity of Unification and Disunification in

Commutative Idempotent Semigroups. In Principles and Practice of Constraint Programming

– CP97, Third International Conference, Linz, Austria, October 29 – November 1, 1997,

Proceedings, G. Smolka, Ed. Lecture Notes in Computer Science, vol. 1330. Springer-

Verlag, Berlin, 282–296.

Herold, A. 1986. Combination of Unification Algorithms. In Proc. of 8th International

Conference on Automated Deduction, J. Siekmann, Ed. Lecture Notes in Computer Science,

vol. 230. Springer-Verlag, Berlin, 450–469.

Hill, P. M. and Lloyd, J. W. 1994. The Gödel Programming Language. The MIT Press,

Cambridge, Mass.

Jayaraman, B. 1992. Implementation of Subset-Equational Programs. Journal of Logic

Programming 12, 4, 299–324.

Jayaraman, B. and Plaisted, D. A. 1989. Programming with Equations, Subsets and

Relations. In Proceedings of NACLP89, E. Lusk and R. Overbeek, Eds. The MIT Press,

Cambridge, Mass., 1051–1068. Cleveland.

Jouannaud, J. P. and Kirchner, C. 1991. Solving equations in abstract algebras: A rule-

based survey of unification. In Computational Logic: Essays in Honor of Alan Robinson,

J. L. Lassez and G. Plotkin, Eds. MIT Press.

Kapur, D. and Narendran, P. 1986. NP-completeness of the set unification and matching

problems. In 8th International Conference on Automated Deduction, J. H. Siekmann, Ed.

Lecture Notes in Computer Science, vol. 230. Springer-Verlag, Berlin, 489–495.

Kapur, D. and Narendran, P. 1992. Complexity of Unification Problems with Associative-

Commutative Operators. Journal of Automated Reasoning 9, 261–288.

Kifer, M. and Lausen, G. 1989. F-logic: a higher-order language for reasoning about objects,

inheritance, and scheme. In International Conference on Management of Data and Symposium

on Principles of Database Systems. ACM Press, 134–146.

Kirchner, C. 1989. From Unification in Combination of Equational Theories to a New AC-

Unification Algorithm. Resolution of Equations in Algebraic Structures, vol. 2. Academic

Press.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

686 A. Dovier et al.

Kozen, D. 1998. Set Constraints and Logic Programming. Information and Computation 142, 1,

2–25.

Kunen, K. 1980. Set Theory. An Introduction to Independence Proofs. Studies in Logic. North

Holland, Amsterdam.

Kuper, G. M. 1990. Logic Programming with Sets. Journal of Computer and System

Science 41, 1, 66–75.

Legeard, B. and Legros, E. 1991. Short Overview of the CLPS System. In Symposium on

Progr. Languages Implementation and Logic Programming. Springer Verlag, 431–433.

Lim, S.-J. and Ng, Y.-K. 1997. Design and Analysis of Parallel Set-Term Unification. In

Proc. of Computing and Combinatorics, Third Annual International Conference, T. Jiang and

D. T. Lee, Eds. Lecture Notes in Computer Science, vol. 1276. Springer-Verlag, Berlin,

321–330.

Lincoln, P. and Christian, J. 1989. Adventures in Associative-Commutative Unification.

Journal of Symbolic Computation 8, 1/2, 217–240.

Liu, M. 1998. Relationlog: a Typed Extension to Datalog with Sets and Tuples. Journal of

Logic Programming 36, 3, 271–299.

Livesey, M. and Siekmann, J. 1976. Unification of Sets and Multisets. Technical report,

Institut fur Informatik I, Universitat Karlsruhe.

Manandhar, S. 1994. An Attributive Logic of Set Descriptions and Set Operations. In 32nd

Annual Meeting of the Association of Computational Linguistics. ACL, 255–262.

Marciniec, J. 1997. Infinite Set Unification with Application to Categorial Grammar. Studia

Logica 58, 339–355.

Martelli, A. and Montanari, U. 1982. An Efficient Unification Algorithm. ACM

Transactions on Programming Languages and Systems 4, 258–282.

Martin, U. and Nipkow, T. 1988. Unification in Boolean Rings. Journal of Automated

Reasoning 4, 4, 381–396.

Martin, U. and Nipkow, T. 1989. Boolean Unification – The Story So Far. Journal of

Symbolic Computation 7, 3/4, 275–293.

Naqvi, S. and Tsur, S. 1989. A Logical Language for Data and Knowledge Bases. Computer

Science Press.

Omodeo, E. G. and Policriti, A. 1995. Solvable set/hyperset contexts: I. Some decision

procedures for the pure, finite case. Communications on Pure and Applied Mathematics 48, 9–

10, 1123–1155. Special Issue in honor of J.T. Schwartz.

Paterson, M. S. and Wegman, M. N. 1978. Linear Unification. Journal of Computer and

System Sciences 16, 158–167.

Policriti, A. and Schwartz, J. T. 1997. T -Theorem Proving I. Journal of Symbolic

Computation 20, 3, 315–342.

Pollard, C. J. and Moshier, M. D. 1990. Unifying partial description of sets. In Information,

Language and Cognition, P. Hanson, Ed. University of British Columbia Press, Vancouver,

BC, 285–322.

Rounds, W. C. 1988. Set values for unification based grammar formalisms and logic

programming. Research Report CSLI-88-129, Center for the Study of Language Language

and Information, Stanford, CA.

Schmidt-Schauß, M. 1989. Unification in a Combination of Arbitrary Disjoint Equational

Theories. Journal of Symbolic Computation 8, 1/2, 51–99.

Schwartz, J., Dewar, R., Dubinsky, E., and Schonberg, E. 1986. Programming with Sets:

an Introduction to SETL. Springer-Verlag, Berlin.

Shmueli, O., Tsur, S., and Zaniolo, C. 1992. Compilation of Set Terms in the Logic Data

Language (LDL). Journal of Logic Programming 12, 1/2, 89–119.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 687

Siekmann, J. K. 1984. Universal Unification. In Proc. of 7th International Conference on

Automated Deduction, R. E. Shostak, Ed. Lecture Notes in Computer Science, vol. 170.

Springer-Verlag, Berlin, 1–42.

Siekmann, J. K. 1989. Unification Theory. Journal of Symbolic Computation 7, 3/4, 207–274.

Spivey, J. 1992. The Z Notation: a Reference Manual. Prentice Hall.

Stolzenburg, F. 1996. Membership-Constraint and Complexity in Logic Programming with

Sets. In First Int’l Workshop on Frontier of Combining Systems, F. Baader and K. Schulz,

Eds. Kluwer Academic Publishers, 285–302.

Stolzenburg, F. 1999. An Algorithm for General Set Unification and Its Complexity. Journal

of Automated Reasoning 22, 1, 45–63.

Tarski, A. 1924. Sur les ensembles fini. Fundamenta Mathematicae VI, 45–95.

Tiden, E. 1986. Unification in Combinations of Collapse-free Theories with Disjoint Sets of

Function Symbols. In Proceedings of the International Conference on Automated Deduction,

J. Siekmann, Ed. Lecture Notes in Computer Science, vol. 230. Springer-Verlag, Berlin,

431–449.

Wang, L., Wijesekera, D., and Jajodia, S. 2004. A logic-based framework for attribute

based access control. In Formal Methods in Security Engineering: From Specification to

Code. ACM, 45–55.

Yakhno, T. and Petrov, E. 2000. Extensional Set Library for ECLiPSe. In Perspectives

of System Informatics, Third International Andrei Ershov Memorial Conference, PSI’99,

D. Bjørner, M. Broy, and A. V. Zamulin, Eds. Lecture Notes in Computer Science, vol.

1755. Springer, 434–444.

Yellick, K. 1985. Combining Unification Algorithms for Confined Equational Theories. In

Proceedings of the Conference on Rewriting Techniques and Applications, J.-P. Jouannaud,

Ed. Lecture Notes in Computer Science, vol. 202. Springer-Verlag, Berlin.

Appendix A Proofs

A.1 Termination of AbCl unify

To prove the following theorem, we will use the notions of solved variable and

solved equation. Given a system E an equation in E is solved if it is of the form

X = t and X does not occur neither in t nor elsewhere in E. If X is the r.h.s.

of a solved equation then it is a solved variable. Moreover, size is the function

returning the number of occurrences of constant and functional symbols in a term

(size(X) = 0, size(f(t1, . . . , tn)) = 1 +
∑n

i=1 size(ti)).

Theorem 2 (AbCl unify termination)

For any Herbrand system E, and for any possible sequence of non-deterministic

choices, AbCl unify(E) terminates.

Proof

To start, do not consider the final call to AbCl unify final. We associate the

complexity pair 〈A,B〉 to a system E, where:

• A is the number of non-solved variables in E
• let p = max{size(�) : � = r in E}. For i = 0, . . . , p, let η(i) be the num-

ber of non-solved equations � = r in E s.t. size(�) = i. Then B is the

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

688 A. Dovier et al.

list: [η(p), η(p − 1), . . . , η(0)]. We define the ordering among lists as follows:

x <list y iff (length(x) < length(y)) or

(length(x) = length(y) and head (x) < head (y)) or

(length(x) = length(y), head (x) = head (y), and tail (x) <list tail (y))

where length , head , and tail are three functions on lists returning the length of the

list, its first element, and the list deprived of its first element, respectively.

The ordering between two complexity pairs is the lexicographic ordering in which

usual < is used for the integer numbers of the first argument and <list for the

second. It is immediate to prove that this ordering is well-founded.

We show that each non-failing call to AbCl unify actions causes the decreasing

of the complexity. Well-foundedness of the ordering implies termination. By case

analysis, we note that:

• rules 1, 2, and 7 cannot increase A, while B always decreases
• rule 5 decreases A

• rule 8 is more complicated to analyze, since it calls AbCl step(E, {t | s} =

{t′ | s′}). In this case, equations are added on the part of the system dealt

as a stack, driving the following rule applications. These sequences of rule

applications always allow us to empty the stack. We consider these operations

as a unique step that removes {t | s} = {t′ | s′} and introduces other equations

in the system. Four cases must be distinguished:

1. tail(s) and tail(s′) are not variables: in this case A cannot increase

and B decreases, since the equation is replaced by a certain number of

equations between the elements of the two sets and between their tails,

but all of fewer (leftmost) size;

2. exactly one of them is a variable. Assume tail(s) is a variable: a

substitution for it is computed and applied: A decreases. The situation

when tail(s′) is a variable is perfectly symmetrical.

3. tail(s) and tail(s′) are the different variables X and Y , respectively.

One of the following cases happens:

(a) a substitution X = {. . . |Y } is computed,

(b) a substitution Y = {. . . |X} is computed,

(c) a substitution X = {. . . |N} and Y = {. . . |N} (N a new variable, the

same for the two equations) is computed.

In all the three cases the application of the substitution causes A to

decrease.

4. tail(s) and tail(s′) are the same variable X. In this case one equation

X = {. . . |X} is added to E together with a certain number of equations

between elements of the two sets {t | s} and {t′ | s′}. All these equations

have (leftmost) size smaller than {t | s}.
To conclude the proof, let us observe that the termination of AbCl unify final

is evident. For any variable X occurring in a equation X = {. . . |X} we perform at

most one rewriting and application of substitution. X occurs elsewhere in the system

only as l.h.s. Equations in solved form remain in solved form and do not fire any

new action. �

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 689

A.2 Correspondence between ACI1 with constants and gflat(q) unification

Lemma 1. σ is a solution of the SUS problem s = t if and only if σ∗ is a ACI1 unifier

of s∗ = t∗.

Proof

Without loss of generality, we assume that symbols in s and t are sorted, so as they

are of the form

s = {a1, . . . , am}︸ ︷︷ ︸
C1

∪ {b1, . . . , bn}︸ ︷︷ ︸
C3

∪Y1 ∪ · · · ∪ Yp︸ ︷︷ ︸
V1

∪W1 ∪ · · · ∪ Wq︸ ︷︷ ︸
V3

t = {d1, . . . , dm′ }︸ ︷︷ ︸
C2

∪ {b1, . . . , bn}︸ ︷︷ ︸
C3

∪Z1 ∪ · · · ∪ Zp′︸ ︷︷ ︸
V2

∪W1 ∪ · · · ∪ Wq︸ ︷︷ ︸
V3

where Ci and Vi are determined according to formula (2) – Section 4.2. The

corresponding (s)∗ and (t)∗ are:

s = a1 ∪ · · · ∪ am︸ ︷︷ ︸
C1

∪ b1 ∪ · · · ∪ bn︸ ︷︷ ︸
C3

∪Y1 ∪ · · · ∪ Yp︸ ︷︷ ︸
V1

∪W1 ∪ · · · ∪ Wq︸ ︷︷ ︸
V3

t = d1 ∪ · · · ∪ dm′︸ ︷︷ ︸
C2

∪ b1 ∪ · · · ∪ bn︸ ︷︷ ︸
C3

∪Z1 ∪ · · · ∪ Zp′︸ ︷︷ ︸
V2

∪W1 ∪ · · · ∪ Wq︸ ︷︷ ︸
V3

σ is a solution of s = t if and only if

• for each ai in C1 there is X in V2 ∪ V3 such that σ(X) = {ai, · · ·} and

• for each bj in C2 there is X in V2 ∪ V3 such that σ(X) = {bj , · · ·} and

• each variable in V1 ∪ V2 ∪ V3 is mapped on a set of constants in C1 ∪ C2 ∪ C3

plus, possibly, other constants.

µ is a solution of s = t if and only if

• for each ai in C1 there is X in V2 ∪ V3 such that µ(X) = ai ∪ · · · and

• for each bj in C2 there is X in V2 ∪ V3 such that µ(X) = bj ∪ · · · and

• each variable in V1 ∪V2 ∪V3 is mapped on a union of constants in C1 ∪C2 ∪C3

plus, possibly, other constants.

Clearly, µ = σ∗. �

A.3 Soundness and completeness of general ACI1 unification algorithm

Lemma 2. Given an equation e of the form

f1(̄l1) ∪ · · · ∪ fk1
(̄lk1

) ∪ L1 ∪ · · · ∪ Lk2
= g1(r̄1) ∪ · · · ∪ gh1

(r̄h1
) ∪ R1 ∪ · · · ∪ Rh2

let 〈Ei
1,Ei

2, ρ
i〉, for i = 1, . . . , k, be the collection of all the distinct solutions non-

deterministically produced by the call aci step(e). Then:

• if σ is a unifier of Ei
1 ∪ Ei

2 then σ is a unifier of e and σ � ρi

• if σ is a unifier of e then there exists 1 � i � k and a substitution γ such that

σ ∪ γ is a unifier of Ei
1 ∪ Ei

2.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

690 A. Dovier et al.

Proof
Let us prove the lemma by showing that the conditions hold at each step of the

construction of each solution.

• For the Normalization step, it is trivial to show that σ is a unifier for e if

and only if σ ∪ γ is a unifier for En, where γ possibly binds the new variables

NL
i , N

R
j . In this case k is equal to 1. The substitution γ is [NL

i /fi (̄li)σ | 1 � i �
k1] ∪ [NR

j /gj(r̄j)σ | 1 � j � h1].
• For the Elementary ACI1 Solution step the result follows from the results for

elementary ACI1 unification (Baader and Büttner 1988). In this case we have

that σ is a unifier of En if and only if σ ∪ γ is a unifier for EACI , where

dom(γ) ⊆ {Ai,j | 1 � i � h1 + h2 ∧ 1 � j � k1 + k2}.
• Let us consider the Term Propagation step. We prove that σ′ = σ∪γ is a unifier

for EACI (where dom(σ) ∩ dom(γ) = ∅ and dom(γ) = {Ai,j | 1 � i � h1 + h2 ∧ 1 �
j � k1 + k2}) iff σγ′ is a unifier for E1 ∪ E2 (where γ′ is the restriction of γ to

{Ai,j | h1 + 1 � i � h1 + h2 ∧ k1 + 1 � j � k1 + k2}).
Let σ′ = σ∪ γ be a unifier for EACI and let us consider the equations e in EACI

2

in the same arbitrary order used to build E2. Such equations have the form

f(̄s) =
⋃
Ai ∪

⋃
Bj . If σ′ is a unifier for EACI , then (from the ACI properties

and Clark’s Equational Theory) each Aiγ and Bjγ must be either ∅ or f(̄s)σ;

furthermore, at least one of Ai, Bj must be assigned f(̄s)σ. Let I and J be

the collection of indices for which respectively Ai and Bj receive f(̄s)σ in σ′.

We can use I and J to select a certain E1 ∪ E2 – the one in which the λ is

constructed by taking λ(Ai) = f(̄s) (λ(Bj) = f(̄s)) for i ∈ I (j ∈ J), and ∅ for

the remaining variables in the equation. The process can be repeated for the

remaining equations, until all the variables have received an assignment in λ.

The consistency of σ′ guarantees that this construction will provide a consistent

E2. It is straightforward to observe that σ′ is a unifier for E2. Observe also

that σ′ � λ, i.e., σ′ = λ ◦ θ. This last fact, together with the fact that σ is a

unifier for EACI
1 , is sufficient to conclude that σ′ is a unifier for E1.

Vice versa, let σ′ be a unifier for a certain E1 ∪ E2 produced by the algorithm.

Since the construction was possible, then there is a substitution λ which

has been used to convert EACI
2 into E2. If σ′ is a solution of the equations

s̄ = s̄1, . . . , s̄ = s̄h present in E2, then σ′ is also a unifier for the equation

f(̄s) = (
⋃
Ai ∪

⋃
Bj)λ which produced such elements of E2. Thus, σ′ ∪ [A/Aλ ◦

σ′ |A ∈ dom(λ)] is a unifier for EACI
2 . The result for EACI

1 is obvious.
• Correctness for the Variables Removal step follows from the fact that we are

not interested in solutions over infinite terms. �

A.4 Termination of general ACI1 unification algorithm

Definition 11
Let E be a set of equations, and let us consider a function lev : vars(E) −→ �. This

function can be extended over elements of T (Σ,V) as follows:

lev (f(t0, . . . , tn)) = 1 + max{lev (t0), . . . , lev (tn)} f ∈ Σ, f �≡ ∪
lev (s ∪ t) = max{lev (s), lev (t)}

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 691

The function lev is said to be a partial p-level if it satisfies the condition:

(∗) lev (�), lev (r) � p, for any equation � = r in E.

Any partial p-level lev is said to be a (complete) p-level if it satisfies also the

condition:

(∗∗) lev (�) = lev (r) for any equation � = r in E.

Lemma 3

Let us consider a system of equations E, and let p be the number of occurrences of

elements of Σ in E; then, exactly one of the following conditions holds:

• there exists a complete p-level for E
• for any natural number q, there are no complete q-levels for E.

Proof

Given the system E, it is possible to obtain, by adding a suitable number of new

variables, an equivalent system E′ in flat form, i.e., each equation in E is in one of

the following forms:

1. X = Y

2. X = f(Y1, . . . , Yn), f ∈ Σ and f �≡ ∪
3. X = Y1 ∪ Y2

Observe that at most p equations of type (2) can appear in E′.

The goal is to map E′ to a set of linear integer constraint systems. Each possible

complete p-level for E′ (and thus for E) is a solution of at least one of such systems

of constraints. Vice versa, each solution of one of these systems can be used to

generate a complete q-level for E′, for a suitable q. Such mapping is realized as

follows: for each (term) variable X in E′ we introduce a corresponding (integer)

variable x; then we add equations and disequations according to the following rules:

X = X �→ if X does not occur elsewhere, then add x = 0

X = Y �→ x = y

X = f(Y1, . . . , Yn), n > 0 �→
∨n

i=1(x = yi + 1 ∧
∧n

j=1,j �=i yj � yi)

X = a �→ x = 1

X = Y1 ∪ Y2 �→ (x = y1 ∧ y2 � y1) ∨ (x = y2 ∧ y1 � y2)

Through simplifications (e.g., distributivity) it is possible to obtain a disjunction

of systems S1 ∨ · · · ∨ Sk , where each system Si contains only equations of the form:

x = y x = y + 1 x = 0 x = 1 x � y

Furthermore, in each system there can be at most p occurrences of equations of

the type x = y + 1 and x = 1. Our aim is to show that, if one of the systems Si is

satisfiable, then there will be one solution σ of Si such that for each variable x we

have σ(x) � p.

Each system Si can be further simplified using the following observations:

• All equations of the form x = 1 can be eliminated and replaced with the

equations w = 0 and x = w+1, where w is a new variable. Note that the total

number of equations x = y + 1 is still at most p even after this simplification.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

692 A. Dovier et al.

y2 = 0

y2 � x

y2 � y1

x = y1 + 1

y1 = y2 + 1

y3 � x

•x

•y1

• y2• y3

�

�
�

��

�
�

�
�

���

�
�

�
�

���
2

1

0

Fig. A 1. A simplified integer system, the corresponding graph, and a solution

• The equations of the form x = y induce an equivalence relation on the

variables. We can remove all these equations and replace each occurrence of

each variable in Si with a selected representative from its equivalence class.

For each Si we can construct a labeled graph GSi = 〈vars(Si), Ei〉 as follows (see

example in Figure A 1; thick lines are used for +1 edges and thin lines for 0 edges):

• for each equation of the form x = y + 1 in Si, generate an edge (y, x) with

label +1

• for each equation of the form x � y in Si, generate an edge (x, y) with label 0,

unless there is already an edge (x, y) with label +1.

If GSi contains a cycle with at least one edge labeled +1, then Si will not admit

solutions. Cycles in GSi composed only of edges of type 0 denote an implicit equality

between the nodes in the cycle – thus we can collapse the cyclic component. These

observations allow us to focus only on directed acyclic graphs.

A solution of Si can be described as a labeling of the nodes of the graph. A

consistent labeling σ of the nodes of the graph representing a solution should fulfill

the following conditions:

• if (x, y) is an edge of type +1, then σ(y) = σ(x) + 1

• if (x, y) is an edge of type 0, then σ(x) � σ(y)

• if there is an equation x = 0 in Si, then σ(x) = 0.

We claim that if the GSi admits a labeling with the above properties, then GSi

also admits a labeling φ of the nodes such that for each node X we have φ(X) � r,

where r is the number of +1 edges in GSi – in particular r � p.

Let us develop a proof by lexicographical induction over the measure 〈A,B〉,
where A is the number of +1 edges and B is the number of 0 edges in the graph.

〈0, 0〉 In this case the graph is composed only of disconnected nodes, and the original

system Si contains only equations of the form x = 0; the solution σ such that

σ(x) = 0 for each node x is a consistent 0-labeling.

〈m, n〉 Let x be an arbitrary node of GSi with no outgoing edges, (v1, x), . . . , (vh, x)

incoming edges of type +1, and (w1, x), . . . , (wk, x) incoming edges of type 0. With

no loss of generality we assume h + k � 1. Let us distinguish the following cases:

1. h = 0: consider the graph G′
Si

obtained by removing node x and all its

incoming edges (all of type 0). The measure for the graph G′
Si

is 〈m, n −
k〉. By inductive hypothesis, there is a consistent m-labeling σ of G′

Si
. σ

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 693

can be extended to a consistent m-labeling of GSi by assigning σ(x) =

max{σ(w1), . . . , σ(wk)}.
2. h > 1 and k � 0: in each consistent labeling of GSi we must have that

σ(v1) = · · · = σ(vh) = σ(x) − 1. Let us consider the graph G′
Si

obtained

by collapsing nodes v1, . . . , vh into a single node v. The measure of G′
Si

is

〈m − h + 1, n〉; thus, by inductive hypothesis, it is possible to determine a

consistent (m − k + 1)-labeling σ of G′
Si
. σ can be extended into a consistent

(m−k+1)-labeling of GSi by defining σ(v1) = · · · = σ(vh) = σ(v). By definition

σ is also a consistent m-labeling of the graph.

3. k = 0 and h = 1: consider the graph G′
Si

obtained by removing X and its

incoming edge. The measure of G′
Si

is 〈m−1, n〉, thus, by inductive hypothesis,

there is a consistent (m − 1)-labeling σ of such graph. This labeling can be

extended to a consistent m-labeling of GSi by defining σ(x) = σ(v1) + 1.

4. k > 0 and h = 1: in each consistent labeling of GSi we must have that:

(a) σ(v1) = σ(x) − 1

(b) σ(wi) � σ(x) for i = 1, . . . , k, thus σ(wi) = σ(x) or σ(wi) � σ(v1)

Let us consider the following class of simplified graphs: we arbitrarily

partition {w1, . . . , wk} into two subsets B1, B2 and we consider the graph

obtained by:

• removing all edges (wi, x)

• collapsing all nodes in B1 ∪ {x}
• adding the edges (wi, v1) for each wi ∈ B2

• if B1 = ∅, then the node x and the edge (v1, x) are removed.

The two properties (4a) and (4b) guarantee that each consistent labeling of

GSi is a consistent labeling of at least one of the simplified graphs, and each

consistent labeling of a simplified graph can be extended (see below) to a

consistent labeling of GSi . Since we are under the assumption that GSi admits

consistent labelings, at least one of the simplified graphs admits consistent

labelings. The measure of each simplified graph is 〈m, n − |B1|〉 if B1 �= ∅,

〈m − 1, n〉 otherwise. By inductive hypothesis we can build a consistent m-

labeling (or (m−1)-labeling in the last case) σ for such graph. If B1 �= ∅, then

σ can be extended to a consistent m-labeling of GSi by defining σ(wi) = σ(x)

for each wi ∈ B1. Otherwise, a consistent m-labeling of GSi is obtained by

defining σ(x) = σ(v1) + 1. �

The notion of p-level has a direct interpretation on a graph-encoding of the

system of equations. The unification algorithm itself can be mapped on a collection

of graph manipulation operations. The mapping of the unification algorithm on

graphs allows us to intuitively demonstrate that for each intermediate system of

equations during the unification process it is possible to determine a partial p-level

(where p is the number of occurrences of elements of Σ in the initial system).

Given the initial system E0 we define the directed labeled graph G0 as follows:

• G0 contains a node for each occurrence of a function symbol in E0; without

loss of generality, we assume that each occurrence of a constant c has been

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

694 A. Dovier et al.

replaced with a term c(B), where B is a fixed variable, and c is a new unary

function symbol.

• G0 contains a node for each variable in E0.

• For each term f(t1, . . . , tn) (f different from ∪) in E0, if µ is the node created

for the specific occurrence of f, and νi is the node created for the main functor

of ti (or for the variable ti), then the edge (µ, νi) with label +1 is added to G0.

• let t be a term t1 ∪ · · · ∪ tn such that: n > 1, the main functor of each ti is

different from ∪, and either

— the term t is the left-hand side or the right-hand side of an equation in E0;

or

— there exists a term f(t1, . . . , tn) in E0 such that t ≡ ti and f is different from

∪.

Let µ be the node introduced for the first occurrence of ∪ in t, i.e.,

t1 ∪︸︷︷︸
⇑

t2 ∪ · · · ∪ tn

and let νi be the node created for the main functor of ti (or for the variable

ti); the graph G0 contains the edges (µ, νi) with label 0 for i = 1, . . . , n.

• remove from G0 all the nodes created for occurrences of ∪ which do not have

any outgoing edges.

Example 9

Let E0 be the system f(X) ∪ f(g(Y)) = f(g(Z) ∪ h(Z,V)) ∪ V ∪ W . Then G0 is the

graph (thick lines are used for +1 edges while thin lines are used for 0 edges):

• ∪

•f

•X

• f

• g

• Y

�
�

��

�
�

��

� �

�

• ∪

•f

• ∪

• g • h

•Z • V • W

�
�

��

�
�
�
�
�
�
�
�
�
�
�
�	

�
�
�
�
�
�
�
�
�
�
�
�

�
�

��

�
�

��

�

�

�
�

��

�������

Let us define an iteration to be a single application of a rule of the procedure

general aci. Each rule of the unification algorithm can be mapped onto an

operation on the graph. If Ei is the system obtained after i iterations of the unification

algorithm, then we denote with Gi the corresponding graph. The graph operations

corresponding to the different non-failing unification rules are the following:

1. if Ei+1 is obtained by removing an equation X = X from Ei, then Gi+1 = Gi

2. if Ei+1 is obtained by replacing t = X with X = t in Ei, then Gi+1 = Gi

4. if Ei+1 is obtained by replacing each occurrence of X with t in Ei, then Gi+1 is

obtained by adding the edge (µ, ν) with label 0, where µ is the node associated

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 695

with the variable X and ν is the node created for the main functor of term t

(or for the variable t)

5. if Ei+1 is obtained by replacing the equation X = t where t ≡ f1(̄s1) ∪ · · · ∪
fn (̄sn) ∪ V1 ∪ · · · ∪ Vm ∪ X (assumed in this ordered form as explained in the

unification algorithm – note that this simplification is not needed in the graph

representation) with the equation X = f1(̄s1) ∪ · · · ∪ fn (̄sn) ∪ V1 ∪ · · · ∪ Vm ∪ N,

N new variable, then Gi+1 is obtained by adding a new node ν for N, by

removing the edge (µ, ξ) where µ is the node for the functor of t and ξ the

node for X, and by adding the new edge (µ, ν)

7. if Ei+1 is obtained by replacing the equation f(t1, . . . , tn) = f(s1, . . . , sn) in Ei,

then Gi+1 = Gi

8. let us assume that Ei+1 is obtained by replacing the equation

f1(̄s1) ∪ · · · ∪ fn (̄sm) ∪ X1 ∪ · · · ∪ Xh = g1(̄t1) ∪ · · · ∪ gn (̄tn) ∪ Y1 ∪ · · · ∪ Yk

in Ei with a family of equations:

fi (̄si) = gj (̄tj) for some i, j

and by substituting Xi (Yi) with terms of the form:

Xi = gi1 (̄ti1) ∪ · · · ∪ gir (̄tir) ∪ N1 ∪ · · · ∪ Ns

(similarly for Yi). Gi+1 is obtained from Gi as follows:

— introducing a new node νi for each new variable Ni

— if µ is the node for Xi (Yi) and ηj is the node for the main functor of term

gj (̄tj) (fj (̄sj)), then add the edge (µ, νw) and (µ, ηj) with label 0 for each

gj (̄tj) (fj (̄sj)) and for each Nw present in the substitution for Xi (Yi).

Lemma 4

Let One(G) be the set of +1 edges present in the graph G. Then for each Gi obtained

from the above transformations we have One(Gi) = One(G0). Furthermore, Gi does

not contain any cycles which include edges labeled +1.

Proof

The first property is obvious from the definition of the transformations.

The second property is straightforward for the cases (1), (2), and (7) of the

unification algorithm, since they do not add edges – and thus cannot generate

cycles. Case (5) adds a new edge, but the destination of the edge is a new variable

which has no outgoing edges.

Case (4) can be seen as follows: let us assume, by contradiction, that the addition

of the edge from the node of X to the node of t generates a cycle with +1 edges.

This means that, before this operation, there exists a path from the root of t to the

node of X (with at least one +1 edge). This path can be only the result of a sequence

of edge additions leading from a node reachable from the root of t to the node of

X. Each of these edges has been introduced during previous variable substitutions

– and each of the nodes reachable using this path identifies a sub-term of t. Thus,

X is a sub-term of t. This contradicts the possibility of applying case (4), since this

situation is explicitly handled by case (3) and leads to a failure.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

696 A. Dovier et al.

Case (8) can be seen as a combination of cases (7) (new equations of the type

fi (̄si) = gj (̄tj) which do not modify the graph), (5) for the new variables Ni, and (4)

for the substitution of existing variables. �

Lemma 5

Let us assume that there is a non-failing sequence of k non-deterministic choices,

such that general aci(E) generates (one per each successive iteration) the systems

E = E(0),E(1),E(2), . . . ,E(k). Let p be the number of occurrences of function symbols

in E(0). Then, there exists

lev : vars

⎛
⎝ k⋃

j=0

E(j)

⎞
⎠ −→ �

such that:

• it fulfills condition (∗) of Def. 11 for all systems of equations E(j) (i.e., lev (�) � p

and lev (r) � p for all the equations � = r in E(j)), and

• any time a substitution [X/t] has been applied, then lev (X) = lev (t).

Proof

Let us consider the graphs Gj associated to the systems E(j). First of all, observe

that if there is a function fulfilling the requirements for the system E(j), then the

same function works for all graphs E(i) with i < j. This allows us to concentrate

on E(k). By Lemma 4, we know that Gk is acyclic and it contains the same number

(p) of +1 edges as E(0). From this fact, starting from leaf nodes and going back on

edges, augmenting a value only if a +1 edge is encountered, it is natural to find a

function lev fulfilling the required property. �

Theorem 3 (termination)

Given a system of equations E, all the non-deterministic branches of the computation

of general aci(E) terminate in a finite number of steps.

Proof

Assume that there is a non-failing sequence of non-deterministic choices E(0),E(1),

E(2), . . . ,E(k) (they are the values of E at the 0th, 1st, 2nd, . . . , kth iteration, respectively),

and let p be the number of occurrences of function symbols in E(0). We know from

Lemma 5 that there exists a function lev : vars
(⋃

j�0 E(j)
)

−→ � such that

• it fulfills condition (∗) for all the systems of equations E(j), and

• each time a substitution [X/t] has been applied, then lev (X) = lev (t),

We call this property condition (α).

Picking such a lev , we define a measure of complexity LE for the system of

equations E:

L(lev)
E = [#(2p),#(2p − 1),#(2p − 2), . . . ,#(1),#(0)]

where #(j) returns the number of equations not in solved form � = r in E such

that lev (�) + lev (r) = j. The ordering between two lists of this form is the usual

well-founded lexicographical ordering.

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 697

Let h be the number of equations in the initial system. The initial tuple L(lev)
E(0) is

necessarily less than or equal to [h, 0, . . . , 0]. Let us consider how the various rules

in Figure 6 modify the complexity measure tuple:

• rule (1) clearly reduces the complexity by removing one equation

• rule (2) does not affect the complexity but can be safely ignored (we could

easily rewrite the algorithm without it by adding explicit cases for equations

t = X wherever we analyze X = t)

• rule (4) reduces the complexity: in fact one equation of complexity 2lev (X) is

removed, while the rest of the system is unaffected, since X is replaced by a

term with the same level

• rule (5) will lead in one additional iteration to a rule (4), which means

that the complexity of the original equation must be 2lev (X); by assigning

lev (N) = lev (X) we have that after two reductions the complexity will decrease

• rule (7) replaces an equation of complexity 2 + l1 + r1 with a collection of

equations each having complexity l + r � l1 + r1, leading to a smaller total

complexity (thanks to lexicographical ordering)

• rule (8) is a complex rule which leads to the execution of the aci step function.

Let e be the equation communicated to aci step. The only equations in non-

solved form that are generated by aci step are the equations s̄ = s̄′ present

in Ens. Such an equation s̄ = s̄′ originates from simplifying an equation

f(̄s) = f(̄s′) ∪ · · ·. Observe that in this equation f(̄s) and f(̄s′) originally

appeared on distinct sides of the equation e – in the general structure of

the equation, one of the two is a fj (̄lj) and the other is a gi(r̄i). Thus, the

equation f(̄s) = f(̄s′) has a complexity which is less or equal than that of e,

which implies also that the complexity of s̄ = s̄′ is strictly lower than that

of e. Thus the original equation is replaced by a collection of equations of

smaller complexity (assuming, as stated earlier, that the equations of the form

Li = ti and Rj = sj · · · that lead to ρ are all such that lev (Li) = lev (ti) and

lev (Rj) = lev (sj)).

Thus, every rule application decreases the complexity measure L(lev)
E . The lexico-

graphical ordering on constant-length lists of non-negative integers is a well-founded

ordering, and thus this activity cannot be done indefinitely.

However, this is not sufficient for termination, since we are not sure that the

complexity measure tuple reaches the value [0, . . . , 0] within k rule applications.

Moreover, we do not know if the function lev fulfills condition (α) for the successive

systems E(k+1),E(k+2),

To prove termination, a further measure is needed: let

ME = {[L(�)
E : � is a function from vars(E) to {0, . . . , p} that fulfills condition (α)]}

Multisets of tuples are governed by (well-founded) multiset ordering.

ME(0) is finite. All the initial tuples are less than or equal to [r, 0, . . . , 0]; each of

them is associated to a function from vars(E(0)) to {0, . . . , p} that fulfills condition

(α).

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

698 A. Dovier et al.

Let us consider this multiset and the effects of an iteration over each of its tuples.

After one iteration it holds that:

• The function � fulfills condition (α) for the successive systems. In this case t is

replaced by a smaller tuple (see the proof above).

• The function � does not assign values to new variables. However, it is possible

to extend � into �′ in order to assign values for these variables. In this case

the tuple t is replaced by a certain (finite) number of tuples smaller than t

(the new variables N are introduced in equations of the form X = · · · ∪N and

thus, �′(N) � �(X)).

• The function � does not fulfill condition (α) for the new system and, moreover,

it is not possible to extend � into �′ in order to assign values for these variables

to fulfill condition (α). In this case the tuple t is simply removed from the

multiset.

Since multiset ordering is well-founded, this ensures termination. �

Appendix B Matrix for Term Propagation

In this section we briefly show how it is possible to compute automatically the

output equations of the Term Propagation phase of the General ACI unification

algorithm (Section 8.3). The method we propose builds on the solution of the ACI

unification with constants problem based on ACI-matrices; the novelty is the use of

a simplified form of ACI-matrix that takes advantage of the format of the equations

to be dealt with in this context, i.e., elementary ACI1 equations.

Given an elementary ACI1 unification problem

S1 ∪ · · · ∪ Sn ∪ X1 ∪ · · · ∪ Xp = T1 ∪ · · · ∪ Tm ∪ X1 ∪ · · · ∪ Xp

the elementary ACI-matrix is as follows:

S1 . . . Sn X1 . . . Xp

A1,1 . . . A1,n A1,n+1 . . . A1,n+p

...
. . .

...
...

. . .
...

Am,1 . . . Am,n Am,n+1 . . . Am,n+p

Am+1,1 . . . Am+1,n Am+1,n+1 . . . Am+1,n+p

...
. . .

...
...

. . .
...

Am+p,1 . . . Am+p,n Am+p,n+1 . . . Am+p,n+p

T1

...

Tm

X1

...

Xp

However, variables Am+i,n+j with i > 0, j > 0, i �= j are not used and thus we can

avoid their introduction. The most general unifier for the elementary problem can

be obtained as follows:

Sj =

m+p⋃
i=1

Ai,j Ti =

n+p⋃
j=1

Ai,j

Xj =

m⋃
i=1

Ai,n+j ∪
n⋃

k=1

Am+j,k ∪ Am+j,n+j

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 699

One can easily prove that this method provides the same solution as the ACI

unification with constants algorithm based on Boolean ACI matrices of (Baader

and Büttner 1988), briefly recalled in Section 6.

Example 10

Let us consider the same unification problem S1 ∪ S2 ∪ X = T1 ∪ T2 ∪ X as in

Example 3; the elementary ACI-matrix is

S1 S2 X

R1 R3 R7

R2 R4 R8

R5 R6 R9

T1

T2

X

Let us observe that the variables in the matrix have been named to show the

correspondence with the new variables used in Example 3.

Given the unification problem:

En ≡ NL
1 = f1(̄l1) ∧ · · · ∧ NL

k1
= fk1

(̄lk1
) ∧

NR
1 = g1(r̄1) ∧ · · · ∧ NR

h1
= gh1

(r̄h1
) ∧

NL
1 ∪ · · · ∪ NL

k1
∪ L1 ∪ · · · ∪ Lk2

= NR
1 ∪ · · · ∪ NR

h1
∪ R1 ∪ · · · ∪ NR

h2

we solve the elementary ACI1 problem on the equation:

NL
1 ∪ · · · ∪ NL

k1
∪ L1 ∪ · · · ∪ Lk2

= NR
1 ∪ · · · ∪ NR

h1
∪ R1 ∪ · · · ∪ Rh2

We build an auxiliary Boolean matrix B that allows us to reduce the non-

determinism. We deal with two cases:

• If {L1, . . . , Lk2
} ∩ {R1, . . . , Rh2

} = ∅ any (non-deterministic) solution can be

described using a (h1 + h2) × (k1 + k2) matrix B such that

— for h1 + 1 � i � h1 + h2 and k1 + 1 � j � k1 + k2 we have B[i, j] = ⊥
— all the other components of B have a value taken from {0, 1}
— for each 1 � i � h1

∑k1+k2

j=1 B[i, j] � 1 and for each 1 � j � k1∑h1+h2

i=1 B[i, j] � 1.

Thus, B is a boolean matrix with the exception of the fourth quadrant, where

the matrix contains only the value ⊥. The matrix B can be used to describe

the substitution λ:

λ(Ai,j) =

⎧⎪⎪⎨
⎪⎪⎩
Ai,j if B[i, j] = ⊥
∅ if B[i, j] = 0

h(ri) if B[i, j] = 1 ∧ j > h1

h(lj) if B[i, j] = 1 ∧ j � h1

Additionally, B generates the new set of equations:

Econf =
∧

B[i,j]=1∧1�i�k1∧1�j�h1

h(lj) = h(ri)

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

700 A. Dovier et al.

• Assume now that the two sides of the equation share some variables. I.e., let

us assume that the problem at hand is

NL
1 ∪ · · · ∪ NL

k1
∪ L1 ∪ · · · ∪ Lk2

∪ Com1 ∪ · · · ∪ Comc =

NR
1 ∪ · · · ∪ NR

h1
∪ R1 ∪ · · · ∪ Rh2

∪ Com1 ∪ · · · ∪ Comc

The solution of the problem in this case can be built around the elementary

ACI-matrix shown in Figure B 1. The table in Figure B 1 assumes h = h1 + h2

and k = k1 + k2. The solution of the ACI problem, in this case, will be

composed of equations of the form:

Lj =

h1⋃
i=1

Ai,k1+j ∪
h1+h2⋃
i=h1+1

Ai,k1+j ∪
h1+h2+c⋃

i=h1+h2+1

Ai,k1+j

Ri =

k1⋃
j=1

Ah1+i,j ∪
k1+k2⋃
j=k1+1

Ah1+i,j ∪
k1+k2+c⋃

j=k1+k2+1

Ah1+i,j

Comv =

h1+h2+c⋃
i=1

Ai,k1+k2+v ∪
k1+k2+c⋃

j=1

Ah1+h2+v,j

In Figure B 2, we depict the boolean matrix B which will be used in this case.

The matrix B should satisfy the following properties:

— quadrant 5, 6, and 8 are filled with ⊥;

— the non-zero entries in quadrant 9 are assigned ⊥; observe that the quadrant

9 is a diagonal matrix with non-zero elements only along the main diagonal;

— quadrant 1, 2, 3, 4, and 7 are boolean matrices;

— for 1 � j � k1 we have
∑h1+h2

i=1 B[i, j] +
∑c

i=1 B[i, j] � 1

— for 1 � i � h1 we have
∑k1+k2

j=1 B[i, j] +
∑c

j=1 B[i, j] � 1

The substitution λ and the collection of new equations Econf are defined

exactly as above.

NL
1 . . . NL

k1
L1 . . . Lk2 Com1 . . . Comc

A1,1 . . . A1,k1 A1,k1+1 . . . A1,k A1,k+1 . . . A1,k+c NR
1

.
.
.
.

Ah1 ,1 . . . Ah1 ,k1 Ah1 ,k1+1 . . . Ah1 ,k Ah1 ,k+1 . . . Ah1 ,k+c NR
h1

Ah1+1,1 . . . Ah1+1,k1 Ah1+1,k1+1 . . . Ah1+1,k Ah1+1,k+1 . . . Ah1+1,k+c R1

.
.
.
.

Ah,1 . . . Ah,k1 Ah,k1+1 . . . Ah,k Ah,k+1 . . . Ah,k+c Rh2

Ah+1,1 . . . Ah+1,k1 Ah+1,k1+1 . . . Ah+1,k Ah+1,k+1 . . . Ah+1,k+c Com1

.
.
.
.

Ah+c,1 . . . Ah+c,k1 Ah+c,k1+1 . . . Ah+c,k Ah+c,k+1 . . . Ah+c,k+c Comc

Fig. B 1. Elementary ACI-matrix

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

Set unification 701

NL
1 . . .N

L
k1
L1. . .Lk2Com1. . .Comc

NR
1

Quad 1 Quad 2 Quad 3
.
.
.

NR
h1

R1

Quad 4 Quad 5 Quad 6
.
.
.

Rh2

Quad 9 Com1

Quad 7 Quad 8 Ic,c
.
.
.

Comc

Fig. B 2. Extended Boolean Matrix B

https://doi.org/10.1017/S1471068406002730 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002730

